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ABSTRACT

This thesis presents a GIS-based tool Arc-BEST (Bioaccumulation Evaluation Screening

Tool) to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccu-

mulation risk is important to help predict potentially adverse effects from contaminants on

ecosystems and human health, which are key factors in the development of sound public

policy.

Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS

(Bioaccumulation Risk Assessment Modeling System) software, released in 2012. It predicts

concentration of concern contaminants in predators tissues from concentrations in organisms

at the bottom of the food chain. It also estimates carcinogenic and non-carcinogenic risks for

humans that consume those species. The new tool is easy to use, requires few parameters,

and is flexible to modify the food chain structure and exposure scenarios.

The greatest contribution of Arc-BEST is that it enables the automated use of digital

spatial data sets, which improves model creation speed and the analysis, comparison and

visualization of results. Furthermore, the model was improved to consider up to four trophic

levels. The code for Arc-BEST is written in Python, is open-source, and can also be used as

a stand-alone model called by other software programs.

In this work Arc-BEST is proposed to be used as part of a screening-level risk assessment

process in order to identify hot spots where further studies and monitoring should be per-

formed to ensure humans and ecosystems health. The tool is successfully applied to a case

study of PCBs in the Laurentian Great Lakes, where long-term effects of PCBs is performed,

based on concentrations in zebra mussels (Dreissena polymorpha).

Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing

the bioavailability of contaminants for predator species. PCBs concentrations in different-

level predators are predicted. Furthermore, health risks for humans that consume sport fish

are estimated for different exposure scenarios. The distribution of the risks in the different

lakes is analyzed, and critical areas are identified.
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CHAPTER 1

INTRODUCTION

1.1 What is Bioaccumulation?

The environment is continuously loaded with man-made organic chemicals and metals

released by urban communities and industries. Examples of these chemicals are poly-

chlorinated biphenyls (PCBs), organochlorine pesticides, polycyclic aromatic hydrocarbons

(PAHs), dioxins, and mercury. The ultimate destination for many of these contaminants is

the aquatic environment, either due to direct discharges or to hydrologic and atmospheric

processes [2]. They can represent a potential risk for human health and for both aquatic and

terrestrial ecosystems due to the mechanism of bioaccumulation.

Bioaccumulation is defined as “the uptake of organic compounds by biota from either water

or food. Many toxic organic chemicals attain concentrations in biota several orders of magni-

tude greater than their aqueous concentrations, and therefore, bioaccumulation poses a serious

threat to both the biota of surface waters and the humans that feed on these surface-water

species” [3]. Bioaccumulation happens because the rate of intake in an organism exceeds

the removal rate. Besides organic chemicals, some heavy metals also have the capacity to

bioaccumulate. Furthermore, sediments can serve both as a sink and reservoir of contam-

inants, entering the aquatic food web through benthic organisms [4]. Figure 1.1 shows an

schematic representation of the links between contaminants generated from human activities

and receptors. As it can be observed in this figure, chemicals from different sources, such

as industries, cities, and agriculture can end in water bodies, where they can be distributed

into the water column and sediments. Then, bioaccumulation of contaminants from these

compartments to organisms at the bottom of the trophic chain, and their subsequent transfer

through the food web provides an exposure pathway to higher-level predators, such as fish,

birds, and mammals.
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Figure 1.1: Schematic representation of bioaccumulation. Contaminants that are discharged
in water bodies are transferred through the trophic web to higher-level predators. (From [1]).

It is important to estimate bioaccumulation of chemicals in aquatic organisms to help

predict potentially adverse effects on ecosystems in general, and particularly on high-level

predators that consume them [5]. Because humans are at the top of the food chain, the

health risks for consuming contaminated species can be magnified.

1.2 Objective and Motivation

This thesis has two main objectives. The first one is to develop a Geographic Information

System (GIS)-based tool to calculate bioaccumulation of contaminants in aquatic ecosys-

tems, and estimate health risks for humans that feed on these species. The second objective

is to use Arc-BEST in the study of current risks to local aquatic ecosystem and population

posed by PCBs in the Great Lakes region of the Midwest.

For the first objective, GIS can add extremely valuable resources to a risk analysis as-

sessment, facilitating the incorporation of social-cultural, economical, and environmental

aspects to the study. There are several works that use a GIS-based approach in assessing
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human and ecological risks due to environmental pollutants. Some examples are Clifford

et. al. [6], Morra et. al. [7], Nadal et. al. [8], Liang et. al. [9], and Chen et. al. [10]. In

these studies, GIS has proved to be a very effective tool to manipulate and analyze spatially

arrayed data, in order to better analyze the spatial distribution of hazards and generate risk

maps. This type of map could be useful in decision-making processes concerning environ-

mental pollutants. On the other hand, the United States Army Corps of Engineers (USACE)

and the Environmental Protection Agency (USEPA) released in 2012 the Bioaccumulation

Risk Assessment Modeling System (BRAMS) software [11]. The Bioaccumulation Evalua-

tion Screening Tool (BEST) is one of the two models available in BRAMS software. It has

a number of strengths: it is easy to use, requires few parameters, and it is flexible to modify

the food chain structure and exposure scenarios. However, BRAMS tool is site-specific, and

only one site at a time can be studied. Moreover, results are given in portable document

format (PDF). This considerably hinders and slows further analyses of results. Particularly,

it is not possible to use digital spatial datasets, map results, or incorporate other spatially

arrayed aspects or data to the study. Combining the strengths of the original BEST tool

with the numerous capabilities of GIS, a Python code with an interface in ArcMap® (by

Environmental Systems Research Institute, Inc. (ESRI®)) is developed in this work, in

order to perform spatially distributed bioaccumulation risk analyses. This new tool is based

on the framework of BEST model, and hence, it is named Arc-BEST. Arc-BEST predicts

concentration of concern contaminants in predators tissues from concentrations in organisms

at the bottom of the food chain, which are typically invertebrates. It also estimates carcino-

genic and non-carcinogenic risks for humans that consume those species.

Regarding the second objective, the Laurentian Great Lakes are one of the largest fresh

surface water system in the planet, covering more than 94,000 square miles and draining

more than twice as much land [12]. They support a wealth of biological diversity and unique

ecosystems. The Great Lakes have abundant fish stocks harvested by recreational anglers

and commercial fisheries. Historically, more than 160 local native communities have incor-

porated considerable amounts of fish in their diets [13]. However, persistent bioaccumulative

toxic chemicals have affected water quality, contaminated fish, and have impacts in the en-

tire ecosystem. PCBs are among these critical contaminants in the Great Lakes [14, 15].

In this work, a screening-level bioaccumulation risk analysis of long-term effects of PCBs

is performed, based on concentrations in zebra mussels (Dreissena polymorpha), which are

invertebrates at the bottom of the food chain. They are an invasive species of the Great
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Lakes [16], which have a great filtration capacity and high bioconcentration rates [17], in-

creasing the bioavailability of contaminants for predator species. PCBs concentrations in

different-level predators: round goby (Neogobius melanostomus) and smallmouth bass (Mi-

cropterus dolomieu) are predicted. Furthermore, health risks for humans that consume sport

fish are estimated for different exposure scenarios. The distribution of the risks in the dif-

ferent lakes is analyzed, and hot spots are identified.

1.3 Importance to Civil and Environmental Engineering

As highlighted above, bioaccumulation of persistent, toxic substances represent a potential

hazard for organisms in all compartments of the food web, but particularly to higher-order

predators, because the concentration of toxic chemicals can be magnified as the trophic-level

increases. It is critical to estimate bioaccumulation in order to predict potentially adverse

effects on ecosystems and human health. Knowing the magnitude of these effects can guide

the implementation of protective, preventive, and restorative measures, and in general it

can help decision-making and the development of sound public policy. To be more specific,

a clear example is the elaboration of safe fishing guides and update of fish consumption

advisories, which currently exist for some fish in all of the Great Lakes [13]. Other poten-

tial applications where bioaccumulation could play an important role are the regulation of

wastewater discharges, of dredge material, and the use of toxic chemicals such as pesticides.

In short, the integrated management of watersheds, including the evaluation, modeling, and

monitoring of water quality, regulation and control of discharges and contaminant loads,

and regulation of the different uses of water resources, are areas of civil and environmental

engineering where the tool and approach proposed in this work can make a contribution.

1.4 Contributions

The main contributions of Arc-BEST are the following: it enables the automated use of

digital spatial data sets, its code is open source, and it can be use in an screening-level

risk assessment process. Firstly, the automated use of digital spatial datasets can improve

model creation speed, as well as facilitate the analysis, comparison and visualization of re-
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sults. Furthermore, the model was improved to consider up to four trophic-levels, instead

of only three as in the original BEST model. Secondly, Arc-BEST is open-source, so the

user can know how the model works, which equations are being used, and modify the code

to incorporate additional capabilities. The Python code can also be used as a stand-alone

model called by other software. Finally, the USACE and USEPA BEST model was originally

developed to help with dredged material management. In this work Arc-BEST is proposed

to be used as part of a screening-level risk assessment process, in order to identify hot spots

where further studies and monitoring should be performed to ensure humans and ecosystems

health. The tool is successfully applied to a case study of PCBs in the Laurentian Great

Lakes. Arc-BEST could be of interest for federal, state and other organizations that promote

safe practices and that are committed with the protection of the environment; for regulatory

agencies and decision makers; and for scientist and researchers.

1.5 Organization of the Thesis

The chapters in this thesis are organized as follows:

• A review of the model is included in Chapter 2. It begins with the description of the

background of BEST model, and continues with the methods used to estimate risks

due to bioaccumulation of contaminants through the trophic chain.

• Chapter 3 details the implementation of the methodology presented in Chapter 2,

including the geoproccessing application created in ArcGIS®.

• Chapter 4 comprises the case study of PCBs in the Great Lakes region. The approach,

which is a screening-level risk assessment, is firstly detailed. Based on this approach,

the motivation and relevance of the case study are addressed. Finally, the results are

presented.

• Chapter 5 discusses the results, including the uncertainties and limitations of the case

study. In addition, strengths and limitations of Arc-BEST are included.

• Chapter 6 finishes with the conclusions and findings of the research, and potential

future applications of the tool.
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CHAPTER 2

MODEL REVIEW

Arc-BEST is based on the framework of the Bioaccumulation Evaluation Screening Tool

(BEST), released by USACE and USEPA as part of the Bioaccumulation Risk Assessment

Modeling System (BRAMS) in 2012 [11]. In this work the capability of the model was

expanded to consider up to four trophic levels, while the original model only manages three

levels. This chapter begins with a background of the original software. Next, it outlines the

equations used: 1) to estimate bioaccumulation of contaminants from organisms in one level

to predators in the following level, which are based on biomagnification factors (BMFs);

and 2) to calculate human health risks due to consumption of contaminated species, using

cancer slope factor (CSF ) for carcinogenic risks and reference dose (RfD) for health risks

other than carcinogenic.

2.1 Background

BRAMS is a stand-alone tool for calculating the potential human health and ecological

risks associated with bioaccumulation of contaminants. It was released in 2012 by US-

ACE and USEPA [11]. It includes two fully customizable models, Trophic Trace (TT) and

the Bioaccumulation Evaluation Screening Tool (BEST), based on the 2005 USACE Troph-

icTrace and the 1999 EPA Region 1 bioaccumulation risk assessment model frameworks,

respectively [18]. Arc-BEST, as it names suggests, is based on the approach and equations

of BEST.

The model was originally conceived to help with dredged material management, since

sediment-associated contaminants, partially due to bioaccumulation and biomagnification in

aquatic food chains, are the primary source of environmental risk associated with dredged

sediment disposal. Required by the Marine Protection Research and Sanctuaries Act, the

current approach (tiered approach) for evaluating dredged materials is outlined in the Ocean
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Testing Manual and Inland Testing Manuals (OTM [19], ITM [20]). The OTM provides a

general protocol for evaluating sediment toxicity and determining the suitability of dredged

materials for open-water disposal. USEPA and USACE share the responsibility for regula-

tion of this dredged material. This material is potentially unacceptable if animals exposed to

it bioaccumulate statistically greater amounts of contaminants than those exposed to refer-

ence sediments or higher concentrations than Food and Drugs Administration (FDA) action

levels. BEST model can be used in Tier III of OTM and ITM, using data collected during

regulatory evaluations of dredged material [18]. Therefore, BEST was originally conceived to

estimate bioaccumulation due to trophic transfer and risks associated with contaminants in

dredged sediments. The model components are: contaminants concentrations in invertebrate

tissues; site food web; receptor exposure scenarios; and contaminant transfer and toxicity

factors.

2.2 Methods

In this work a Python code was developed based on BEST models governing equations,

following BRAMS Manual [18]. With the script, a geo-processing tool was created: Arc-

BEST. This makes the use of digital spatial datasets possible. The model equations are

described below.

The original BEST model considers a three level food chain: invertebrates1, predators, and

humans. In Arc-BEST, an extra trophic level is incorporated, which allows the user to create

a more realistic and complex scenario. The components of the food chain in Arc-BEST are:

invertebrates, first-level predators, second-level predators, and humans. The tool predicts

edible tissue concentrations of contaminants in predators species by applying a trophic trans-

fer model to the measured concentrations in prey species. This approach assumes that the

prey species represent the diet species typically consumed by predators [18]. The result of

edible tissue concentration is used to determine the dose to humans that consume them. The

lifetime average daily dose (LADD) is calculated for carcinogenic and non-carcinogenic risks.

1BEST model uses invertebrates to represent organisms at the bottom of the trophic chain, mainly be-
cause invertebrate species are typically used in bioaccumulation testings. In this work, the use of any species
in the first level of the food chain is restrained. However, for convenience the terminology “invertebrates” is
used to refer to them.
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The model predicts the chemical concentrations in any predator species by applying a

trophic transfer model to the measured contaminant concentrations in the corresponding

prey species using equation (2.1).

CPred =
CPrey

NF
×BMF × LipidPred

LipidPrey

(2.1)

where CPred is the concentration of contaminant in edible tissue of the predator species

(in mg/kg), LipidPred is the predator’s mean lipid fraction (in g lipid/g tissue), LipidPrey

is the prey’s mean lipid fraction (in g lipid/g tissue), BMF is the biomagnification factor

(dimensionless), and CPrey is the concentration of contaminant in edible tissue of the prey

species. CPrey must be in µg/g for metals and in ng/g for organic contaminants. NF is

the unit normalization factor, which is equal to 1 for metals and equal to 1000 for organic

contaminants, to convert from ng/g to µg/g.

The model allows multiplying CPrey by a steady state correction factor (SSCF , dimen-

sionless) if the data is obtained from laboratory tests. The SSCF is applied to further

estimate prey tissue concentrations under natural exposure periods that are longer than the

standard testing duration.

The biomagnification factor BMF accounts for accumulation of chemicals in predator’s

tissue from consumption of preys. Chemicals that biomagnify, or increase their concentra-

tion up the food chain, will have BMFs > 1 while those that do no biomagnify will have

BMFs ≤ 1.

The result from equation (2.1) is used to determine the dose to humans that consume these

species. The lifetime average daily dose (LADD, in mg/kg-day) is calculated as follows:

LADD =
CPred × FI × F × IR× ED

BW × LT
(2.2)

where CPred is the edible tissue concentration of humans’ diet species (in mg/kg), FI is

the fraction ingested (unitless), F is the frequency of ingestion (in days/year), IR is the

ingestion rate (in kg/day), ED is the exposure duration (in years), BW is the body weight

(in kg), and LT is the lifetime (in days).

To determine the carcinogenic risk level, the LADD is multiplied by an oral cancer slope
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factor (CSF ) according to equation (2.3). According to USEPA [21]:

“Traditionally all cancer effects were considered to lack a threshold, based on the thinking

that some risk is associated with all levels of exposure between a dose of zero and the lowest

observed tumor response, and that the risk increases in a linear fashion defined by the slope

of the line. The slope of the line is termed the Cancer Slope Factor (CSF ). The linear

approach is used for direct-acting carcinogenic agents, those that cause chemical changes

(mutations) in DNA. It is also the default choice for carcinogens when there are insufficient

data to demonstrate that the mode of action of the chemical is nonlinear.”

Cancer Risk = LADD × CSF (2.3)

To determine the non-carcinogenic hazard or hazard index, the LADD is divided by an oral

reference dose (RfD, in mg/kg-day) according to equation (2.4). According to USEPA [22]:

“The RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of

a daily exposure to the human population (including sensitive subgroups) that is likely to be

without an appreciable risk of deleterious effects during a lifetime. Usually, doses less than

the RfD are not likely to be associated with adverse health risks, and are therefore less likely

to be of regulatory concern.”

Hazard Index =
LADD

RfD
(2.4)

A hazard index greater than 1 is considered indicative of potential health effects. For

cancer risks, an acceptable risk upper bound between 1 × 10−4 and 1 × 10−6 is typically

applied [18].

Besides calculating cancer and non-cancer risks and comparing them with indicative

thresholds, the model also compares CPred values with FDA (Food and Drug Administra-

tion) action levels [23] and with ecological effect levels when available.
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CHAPTER 3

IMPLEMENTATION

Arc-BEST is able to perform the equations presented in Section 2.2 for several locations

at the same time. The locations are usually associated with the places where invertebrate

(prey) samples are collected. The interface of the tool in Arc-Map® is presented in Figure

3.1.

Arc-BEST has five required inputs: four data tables with information related to inver-

tebrates (preys), chemicals, first-level predators, and humans; and the output folder where

the results are saved. It is important to highlight that the input tables can contain multiple

chemicals, multiple invertebrate and predator species, and multiple human exposure scenar-

ios. In addition, a data table with information regarding second-order predators is optional,

giving the user the possibility to simulate three- and four-level trophic chains. The minimum

information (fields) that each tabular dataset must contain is described in Tables 3.1 to 3.4

for invertebrates, chemicals, predators, and humans, respectively. However, it is possible to

have additional information. The fields names in each tabular dataset are optional inputs.

If the user does not specify them, the default names are used, and if they do not match with

the names in the input tables, an error occurs. Other optional inputs are the cancer and

non-cancer risk thresholds, the default values are set equal to 1 × 10−4 for cancer risk and 1

for hazard index [11]. Finally, a correction for the BMF between the first- and second-level

predators is also an optional input. The BMF specified in the chemicals table (Table 3.2) is

the biomagnification factor between invertebrate and first-level predator species. If the user

specifies a correction factor as an input, the value from Table 3.2 is multiplied by this fac-

tor when estimating the contaminant concentration in second-level predators from first-level

predators. Otherwise, a value of 1 (no correction) is used as default. Note that the correc-

tion is not used when second-order predators are not considered (e.g. three-level food chain:

invertebrates-predators-humans). It is also worth noticing that the BMFs are treated by

the tool as chemical- and trophic level-specific, but not species-specific, i.e., the same value

is used to calculate the biomagnification of a certain contaminant from one trophic level to
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the next one.

The outputs are two (when only first-level predators are considered) or three (when both

first- and second-order predators are considered) data tables, which are located in the spec-

ified output folder. The first table, called “inv pred.dbf”, has, among other parameters,

the concentration of contaminant in edible tissue of invertebrate species, and the calculated

concentration of contaminant in edible tissue of first-level predator species. An example of

this output for the case study analyzed in this thesis is presented in Figure 3.2. The second

output table is named “inv pred pred2.dbf” (see Figure 3.3), and it contains the comparison

between the concentration of contaminant in edible tissue of first- and second-level predator

species with FDA action levels and with ecological effect levels through a Boolean expres-

sion: 0 if it does not exceed the levels and 1 if it does. If second-order predators are not

considered in the study, these comparisons are included in the first table, “inv pred.dbf”.

Finally, the third output table, named “inv pred hum.dbf” contains the estimated LADD

for humans, based on the calculated chemical concentrations in their diet species. It also has

the associated cancer risk and hazard index, and the comparison between the risks and their

respective thresholds through a Boolean expression. An example of this output is shown

in Figure 3.4. The information in each row of each output table is associated to a specific

location, defined as “SpecificLoc” (see Table 3.1), where invertebrate’s data was collected.

Hence, the tables can be easily converted to shapefiles or feature classes based on the latitude

and longitude coordinates of the sites. Next, the user can map the results and apply any of

the geoprocessing tools available in ArcMap® to analyze them.

Usage instructions of the tool are presented in Appendix A, where a more detailed de-

scription of how Arc-BEST manages the relationships between multiple contaminants, in-

vertebrates, predators, and human exposure scenarios is also included.
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Figure 3.1: Arc-BEST tool interface in ArcMap®.

Table 3.1: Minimum fields that the data table for invertebrates (preys) must contain.

Default
field name

Description

SpecifLoc
Specific location where the sample was taken. It must be a unique identifier of
the location.

DataYear Year when the invertebrate sample were collected.
IName Name of the invertebrate species.
Chemical Chemical name whose concentration was measured in the invertebrates tissues.

Cprey
Chemical concentration in the invertebrates tissues, in µg/g for metals and
ng/g for organic contaminants.

Ilipid Lipid content of the invertebrate, in g lipid/g tissue.

Table 3.2: Minimum fields that the data table for contaminants must contain.

Default
field name

Description

Chemical
Chemical name. It must match with the name used in the table for inverte-
brates.

Type Chemical type: Organic or Metal.
CSF Oral cancer slope factor, in (mg/kg − day)−1.
RfD Oral reference dose, in mg/kg − day.
BMF Biomagnification factor between invertebrate and first-level predator species.

TEF
Human toxicity equivalent factor. Only for compounds whose toxicity infor-
mation are uncertain or unavailable.

TEFrel
TEF relation: name of the TEF reference chemical that is going to be used
to estimate risks based on TEF value. Only for compounds whose toxicity
information are uncertain or unavailable.

SSCF
Steady state correction factor. Only when invertebrate inputs are based on
bioaccumulation tests.

FDAAL Food and Drug Administration (FDA) action levels, in ppm.
EcoEL Ecological effect levels, in ppm.
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Table 3.3: Minimum fields that the data table for predators (first- and second-level) must
contain.

Default
field name

Description

PName Name of the predator.
Plipid Content of lipid, in g lipid/g tissue.

Prey
Name of invertebrate that the predator usually consumes. It must match with
the name used in the invertebrates table.

Table 3.4: Minimum fields that the data table for humans must contain.

Default
field name

Description

HName
Name to identify human groups with common characteristics, for instance:
Weekly consumer.

BodyW Body weight, in kg.
Lifetime Lifetime in days.

Diet
Name of species that the humans consume. It must match with the name used
in predators table.

Fraction Fraction ingested.
Freq Frequency of ingestion, in days/year.
Rate Ingestion rate, in kg/day.
ExposureT Exposure time (in years).

Figure 3.2: Example of the “inv pred.dbf” output table, which has the following fields: ob-
ject id (“OID”), unique identifier of the location (“SpecifLoc”), year when the invertebrate
samples were collected (“DataYear”), name of the invertebrate (“I Name”), name of the
contaminant (“Chemical”), lipid content of the invertebrate (“I lipid”), contaminant con-
centration in edible tissue of invertebrate (“EdibTis I”), name of the predator (“P Name”),
lipid content of the predator (“P lipid”), biomagnification factor (“BMF”), and contaminant
concentration in edible tissue of predator (“EdibTis P”, highlighted column).
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Figure 3.3: Example of the “inv pred pred2.dbf” output table, which has, in addition to
the fields described in Figure 3.2 (some of them are not visible in this figure), the name,
lipid content, and contaminant concentration in edible tissue of the second-level predator
(“P2 Name”, “P2 lipid”, “EdibTis P2”, respectively). Furthermore, it has FDA action levels
for each chemical (“FDA AL”) and ecological effect levels for each chemical (“Eco EL”).
The last four highlighted fields compare if “EdibTis P” and “EdibTis P2” exceed “FDA AL”
(“PexceedAL” and “P2exceedAL”, respectively) and if they exceed “Eco EL” (“PexceedEL”
and “P2exceedEL”, respectively).

Figure 3.4: Example of the “inv pred hum.dbf” output table, which has, among other pa-
rameters already described in Figures 3.2 and 3.3, the lifetime average daily dose for hu-
mans (“LADD”) based on the calculated chemical concentrations in their diet species (“Ed-
ibTis D”), the estimated cancer risk (“CancRisk”) and hazard index (referred as “NCan-
cRisk”), and the comparison between them and risk thresholds (“ExceedCRT” and “Ex-
ceedNCRT”).
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CHAPTER 4

CASE STUDY: POLYCHLORINATED BIPHENYLS
IN THE GREAT LAKES REGION

4.1 Approach

In this thesis, Arc-BEST is proposed to be used as a screening-level assessment of the risks

associated to the bioaccumulation of contaminants in aquatic ecosystems. The approach de-

scribed below is used for the analysis of polychlorinated biphenyls (PCBs) in the Great Lakes

region, and it could be extrapolated to other case studies.

A risk assessment process evaluates the probability that adverse effects are occurring or

might occur in the future because of the presence of contamination, and it typically follows

the following steps: i) hazard identification, ii) exposure assessment, iii) effects assessment,

and iv) risk characterization [24].

The first step, hazard identification, involves the general site and contaminant charac-

terization. Moreover, the exposure pathway for contaminants, or in other words the links

between contaminant sources and receptors, should be defined. For this case study, the haz-

ard identification is presented in Section 4.2. Firstly, a general description of the chemical

structure and properties of PCBs is given, including their high persistence in the environ-

ment, which makes them a long-term hazard for humans and ecosystems. The manufacture

history and sources of PCBs are detailed, focused on the U.S. and specifically on the Great

Lakes region. Moreover, their exposure routes and health effects are mentioned. Secondly,

available data of total PCBs concentrations in zebra mussels (Dreissena polymorpha) tissue

in several sites across the Great Lakes is presented. An exploratory analysis of these data

is also performed. And finally, the exposure pathway of PCBs from zebra mussels to higher

order predators, including humans, is defined.

The second step, which is the exposure assessment, requires to quantify exposure char-
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acteristics of human and ecological receptors identified in the previous step. As mentioned

in Section 2.2, Arc-BEST can address ecological risks by comparing contaminants concen-

trations in predator species with ecological thresholds. This is a simplified approach, and

the user cannot define specific exposure characteristics for other ecological receptors, such

as mammals or birds. For humans, on the other hand, the exposure scenarios can be well

defined in the tool. In Section 4.3, exposure characteristics for humans are detailed.

Effects assessment is the third step, where the potential toxicity of contaminants should

be addressed. For this case study, a qualitative description of the potential health effects of

PCBs is included in hazard identification, as mentioned above. In effects assessment, a more

quantitative description is given, focusing on the parameters used by Arc-BEST to estimate

health risks and how their values are obtained. The third step is presented in Section 4.4.

The final step is the risk characterization, where information from previous steps is used

to calculate dose and risks, and compared them to established thresholds.These are the re-

sults obtained using Arc-BEST, which are presented in Section 4.5. Firstly, the estimated

concentrations of contaminants in predators tissue is compared with the Food and Drug

Administration (FDA) safety levels and with ecological threshold. Secondly, the cancer risk

and hazard index (associated with non-cancer effects) for different human exposure scenarios

are detailed, comparing them with recommended thresholds.

Due to the limitations of Arc-BEST, and the uncertainties in the case study, which are

both detailed in Chapter 5, in this work the tool is used to perform a screening-level risk

assessment, as mentioned before. A screening-level risk assessment is generally followed by

a more detailed evaluation of the study site(s). It is used to initially identify the hazards

generated by the presence of contaminants and possibly rebut the presumption of risk. The

assumptions tend to be conservative or protective and the analysis is based on minimal data.

From the point of view of evaluation of risk-management strategies, the possible results of a

screening-level assessment could be [25]:

• The degree of contamination is small and poses no significant risk.

• The risk is estimated to be relatively great but the extent of contamination is relatively

small. In such cases, a particular risk-management strategy could be identified as

feasible and cost effective without further refinement of the risk assessment.
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• Potential risks cannot be rebutted and the extent of contamination is relatively great.

In these cases more thorough studies should be conducted.

The evaluation of risk-management strategies is out of the scope of this work. The aim of

the study is to identify the degree of risk posed by PCBs in the Great Lakes region, following

a screening-level risk assessment process.

4.2 Hazard Identification

Poly-chlorinated biphenyls (PCBs) are among critical contaminants in the Great Lakes

[14, 15]. In this section, firstly, a brief summary of PCBs characteristics is presented. Sec-

ondly, available data of PCBs concentration in zebra mussels (Dreissena polymorpha) tissue

is described, which is obtained from the Mussel Watch Program of the National Oceanic and

Atmospheric Administration (NOAA). An exploratory analysis of the data is also included.

Finally, the trophic chain considered in this study and its importance in the Great Lakes

region is detailed.

4.2.1 Properties, Sources and Effects of Polychlorinated Biphenyls

In this subsection, the characteristics and properties of PCBs, their manufacture history

in the U.S., probable sources of in the Great Lakes, and their health effects are detailed.

The information presented here is mainly based on the book: A Risk-Management Strategy

for PCB-Contaminated Sediments [25].

What are PCBs?

Poly-chlorinated biphenyls (PCBs) are aromatic compounds. They consist of two hexagons

of carbon atoms connected by carbon-carbon bonds, which is called the biphenyl. PCBs have

between 1 and 10 chlorine atoms substituting for hydrogen atoms in the biphenyl rings. De-

pending on the number and position of the chlorine atoms, 209 different chemical structures
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are possible, which are called congeners [25].

Properties and Sources of PCBs

Among their main properties, PCBs are nonflammable, are miscible with organic com-

pounds, have low reactivity, and have high chemical and thermal stability. These char-

acteristics made them useful in several industrial applications, such as insulating fluids in

electrical transformers and capacitors, as well as in hydraulic systems, surface coatings, and

flame retardants. They began to be industrialized in 1929, in complex mixtures of up to 50

or 60 congeners. In the U.S. they were produced almost exclusively by Monsanto under the

commercial name of Aroclors. Their commercialization was banned in 1979. Between those

years, around 700,000 tons of PCBs were produced in the U.S., and almost 90% was used

domestically [25].

Also according to [25], although their commercial manufacture is banned and their dis-

posal from existing equipment is usually regulated, there are still several potential sources

that release PCBs to the environment, such as: improper disposal of electric equipment and

other products manufactured before 1977 and that contain PCBs; leaks from poorly main-

tained hazardous waste sites; and combustion of PCB-containing materials. The recycling

of PCB-contaminated products (e.g. carbonless copy paper, nonmetallic automobile and

truck parts, military equipment, plastics, and asphalt-roofing materials) can keep PCBs in

circulation for many years [25]. According to the USEPA, between 1998 and 2011, 45,800

tons of PCBs were registered to remain in service in electrical equipment [26].

Once in the environment, PCBs are slow to biodegrade and are generally persistent in all

media [25]. Particularly, they are relatively stable in the atmosphere ad therefore, they are

subject to atmospheric transportation [27]. In the Great Lakes region, the United States

and Canadian governments created the Integrated Atmospheric Deposition Network in 1990

to investigate the deposition of PCBs from the atmosphere, which was attributed as the

primarily source of these toxics in the lakes [28]. The East Coast of the U.S. is the most

intense area of historical PCB use in the country, and the Upper Hudson River in eastern

New York is a probable source of PCBs to Lake Erie [28]. Chicago seems to be a source

of atmospheric concentrations of PCBs to Lake Superior and the Chicago area itself, and
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a possible source to the east coast of Lake Michigan [27, 28]. More recently, [29] studied

loadings from different organic contaminants from Toronto to Lake Ontario. They found

that atmospheric was the dominant loading pathway for PCBs.

Once in a water body, PCBs tend to partition to the more organic components of the

environment, where the highest concentrations are usually found in fine-grained, organically

rich sediments [25]. They can also be freely dissolved in water or associated with dissolved

organic carbon. The degradation and bioaccumulation of PCBs is congener specific, so the

composition of congener mixtures in the environment can be significantly different from that

of the original commercial mixtures [25].

Exposure Routes and Health Effects of PCBs

The USEPA defines several exposure routes for humans [30]: food chain exposure, sed-

iment or soil ingestion, dust or aerosol inhalation and inhalation of evaporated congeners,

dermal exposure, and ingestion of water-soluble congeners. According to [25], dermal ex-

posure is more common to occupational contact with PCBs. But the primarily means of

exposure to both wildlife and humans is through the food chain due to the bioaccumulation

an biomagnification characteristics of these chemicals, and this is particularly true in the

Great Lakes region [31,32].

PCBs have found to have neurotoxic effects in exposed animals and cell cultures, they

can affect the metabolism of thyroid hormones, and the immune system. Furthermore, they

might contribute directly to carcinogenesis [25].

According to the USEPA [33], there is clear evidence that PCBs cause cancer in animals,

and they are probable human carcinogens based on animal studies and epidemiological stud-

ies with workers exposed to PCBs. Among non-cancer effects, the most serious ones are:

• Immune effects. Based on studies with Rhesus monkeys, which have very similar

immune systems than humans, and other animals, have revealed a number of serious

effects on the immune system following exposure to PCBs.

• Reproductive effects. Multiple studies with variety of animals, such as Rhesus monkeys,

rats, mice, and mink, have shown potentially serious effects on their reproductive
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systems. Moreover, decreased birth weight and decrease in gestational age were found

in children born to women who worked with PCBs in factories.

• Neurological effects. Studies with monkeys exposed to PCBs have shown significant

and persistent deficits in neurological development. Studies in humans suggest similar

effects, including learning deficits and changes in activities.

• Endocrine effects. PCBs can affect thyroid hormone levels in animals and humans,

which are critical for normal growth and development. PCB exposures have been

associated with changes in thyroid hormone levels in infants in studies conducted in

the Netherlands and Japan, but additional research will be required to determine the

significance of these effects in the human population.

A thorough review of effects of PCBs on development and reproduction of humans and

animals can be found at [34].

Limitations to Determine the Hazards of PCBs

According to [25], most of the data on human health effects from exposures to PCBs are

based on occupational exposures or consumption of contaminated fish. However, these data

might not be easy to obtain and analyze. For instance, epidemiological studies of workers

exposed to PCBs have reported increased mortality from cancer, although results have not

been consistent across studies.

Due to limitations of the available human data, studies with animals are performed. In

these studies, industrial Aroclor mixtures are generally used. However, commercial mixtures

can be substantially different from the composition of PCBs found in the environment, par-

ticularly in water and sediments, and from those to which humans and high order predators

are exposed through the consumption of contaminated fish. The change of PCBs mixtures

over time in the environment is due to a combination of effects, such as volatilization, sorp-

tion, solubility, dechlorination, and metabolism [25].

As claimed by [25], the toxicity and biological activity of PCBs is congener specific. There-

fore, their bioaccumulation capacity and their health effects could be very different. However,

additional data are needed to address this. In this study, only total PCBs concentrations
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were used, which is believed to be a reasonable approach for a screening-level risk assessment

that should be performed with minimal data.

4.2.2 PCBs Concentration in Zebra Mussels

Concentration of total PCBs in zebra mussels (Dreissena polymorpha) were obtained for

52 locations in the Great Lakes, indicated in Figure 4.1, from the National Status and Trends

(NS&T) program of the NCCOS, NOAA (National Center for Coastal Ocean Science, Na-

tional Oceanic and Atmospheric Administration). NS&T is comprised of three nationwide

programs, and one of them is called Mussel Watch. Datasets from Mussel Watch Program can

be downloaded for free at: http://egisws02.nos.noaa.gov/nsandt/index.html#, where

total PCBs concentrations in zebra mussels are available. The most recent data for each lo-

cation was selected, which is generally between 2009 and 2011. One location has data from

2008, one from 2006, and one from 2003. The dataset also has lipid content information,

which is used in the implementation of Arc-BEST.

Figure 4.1: Locations in the Great Lakes where concentration of PCBs in zebra mussels were
obtained (study sites).

21



Mussel Watch Program uses a performance based quality assurance process to ensure data

quality [35]. Therefore, good quality of the data is assumed. Nevertheless, some exploratory

analyses are performed. Particularly, the presence of trends is studied. For most locations,

concentrations from 1992-1994 and up to 2009-2011 are available typically every other year.

To determine the existence of trends, a Mann-Kendall test [36] is applied to total PCBs con-

centrations in each of the 52 locations, with a confidence level of 95%. None of the locations

present any increasing or decreasing trend. Moreover, with a confidence level of 90%, only

two sites are detected to have a decreasing trend, both located in the east coast of Lake

Michigan.

However, the Mann-Kendall test detects only monotonic trends [36]; and moreover, the

amount of data is limited to preform sound trend analyses (at most 11 years of data are

available for a given site). The evolution of PCBs concentrations in zebra mussels tissue are

plotted over time for each lake (see Appendix B). In some locations the concentrations re-

main relatively constant, while in others they oscillate over time, although a regular pattern

is not clearly identified visually. A more thorough description of the temporal evolution of

PCBs concentrations in zebra mussels tissue can be found in Appendix B, where their cor-

relation with lipid content and with concentration of PCBs in sediments are also presented.

Although PCBs concentrations in zebra mussels do not seem to clearly decline over the

last two decades in most of the study sites, there are some recent studies that have found

decreasing trends of PCBs in Great Lakes’ fish. The work of [37] shows significant declines

in PCBs in fillet portions of lake trout and whitefish over the past 20 years, while [38] found

decreasing PCBs concentrations in lake trout in the last 34 years, however, the half-lives

of these contaminants have increased in later years, and hence, their decline rates have de-

creased.

As mentioned before, in order to perform the risk analysis in this work, the most recent

concentrations of total PCBs in zebra mussels tissue were selected. From the analysis pre-

sented in Appendix B, there is no evident justification for selecting any concentration over

another. Therefore, the most recent value is assumed to be a reasonable representation of

the current concentration in each location.
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4.2.3 Exposure Pathway Definition

According to the United States Geological Survey (USGS), zebra mussel (Dreissena poly-

morpha) is one of the two dreissenid mussel species known to have been introduced into the

United States, together with quagga mussels (Dreissena rostriformis bugensis) [16]. Origi-

nally from Eastern Europe, they were picked up in the ballast water of ocean-going ships

and brought to the Great Lakes in the 1980s. By 1990 zebra mussels and quagga mussels

had infested all of the Great Lakes [39].

The mussels have a high filtering capacity, the tendency to feed on contaminated sed-

iments and algae [40], and high bioconcentration rates [17]. Consequently, contaminants

previously destined for sediments can be redistributed into zebra mussels, increasing con-

taminant bioavailability and the potential transfer of these contaminants to higher levels in

the trophic chain [41–43].

Several sport fish that are potential predators of zebra mussels are identified in the Great

Lakes. They are: yellow perch and freshwater drum [41], lake whitefish [44], lake sturgeon

and catfish [45].

As mentioned before, mussels have a great potential to accumulate contaminants. More-

over, the model assumes that prey species -zebra mussels in this case- are the primary diet

species of the next trophic-level predator, which is generally not true for the fish species men-

tioned in the previous paragraph. This can lead to overestimate the risks if their primary

diet species bioaccumulate less amount of chemicals than zebra mussels. On the other hand,

the risk could be underestimated when the trophic chain involves more than three levels,

as the case of the round goby (Neogobius melanostomus) that consumes zebra mussels, and

at the same time is a diet species of the smallmouth bass (Micropterus dolomieu) [40]. In

order to take protective assumptions, which is one of the premises of a screening-level risk

assessment, the four-level food chain composed by zebra mussels-round gobies-smallmouth

bass-humans is selected for this study.

Round goby is also an invasive species, first detected in the Great Lakes in 1990, and

they feed aggressively on zebra mussels [43]. Several piscivorous fish feed on round goby,

including commercial and recreational species such as walleye, yellow perch, and smallmouth

bass; where the latter seems to be the most important, since field and experimental data
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suggest that round goby is their preferred prey [43].

4.3 Exposure Assessment

As mentioned in the last section, zebra mussels provide a pathway for contaminants to

higher level predators that otherwise could become buried in layers of sediments. A typical

aquatic food chain in the Great Lakes is selected for this study: zebra mussel-round goby-

smallmouth bass. Shore birds and terrestrial mammals, as well as humans, could be exposed

to PCBs through the consumption of any of these species. In this section we attempt to

quantify exposure characteristics of human and ecological receptors.

Arc-BEST can address ecological risks by comparing contaminants concentrations in preda-

tor species with ecological thresholds. Predator species in this case are round goby and

smallmouth bass, whose exposure characteristics are defined by the food chain described in

the previous section and by the biomagnification factors, which are detailed in Section 4.4.

The comparison with ecological thresholds is a simplified approach, and the user cannot

define specific exposure characteristics for other ecological receptors.

On the other hand, the tool allows to define detailed exposure scenarios for humans, which

are presented in the following section.

4.3.1 Human Data and Exposure Scenarios

The data required to characterize human exposure scenarios in Arc-BEST are: fraction

ingested (dimensionless), frequency (days/year), ingestion rate (kg/day), exposure duration

(years), body weight (kg), and lifetime (days).

The fraction ingested is considered equal to 1, so that the information related to fish con-

sumption is only considered in the ingestion rate and in the frequency of ingestion. The

ingestion rate is selected as one portion of fish, which is equal to 100 g/day (or 0.1 kg/day,

which is approximately 4 oz per day). Rather than selecting a fixed frequency, different sce-

narios are considered in order to evaluate the health risks based on the ingestion frequency.
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These scenarios are presented in Table 4.1.

Table 4.1: Fish ingestion frequency scenarios considered in this study.

Name
Ingestion frequency

[days/year]
Daily consumer 365
Weekly consumer 52
Monthly consumer 12
Annual consumer 1

The exposure duration of humans to contaminants due to consumption of fish from

the Great Lakes is difficult to estimate. As mentioned before, there are no decreasing

trends in the concentration of total PCBs in zebra mussels in the last 20 years, so it

is not safe to assume that the contamination level will decrease in the future. In or-

der to estimate an average exposure time, data of population mobility in the Midwest

was considered. Data of population mobility was obtained from the U.S. Census Bureau

(https://www.census.gov/hhes/migration/data/cps.html).

For a given year, total and nonmover population was obtained. A person is considered a

nonmover if in the previous year he/she lived in the same county than in the year the survey

was conducted. If a person moves to another county, state, region or abroad, it is assumed

that they are no longer consuming fish from the same site in the Great Lakes. Then, the

probability that a person does not move in a given year is estimated as:

P (not moving in one year) =
Nonmovers

Total Population
(4.1)

Thus, the probability that a person does not move in n years is given by:

P (not moving in n years) = P (not moving in one year)n (4.2)

Equation (4.2) is true if the result from equation (4.1) is constant over the years. To

estimate the “average” number of years that a person is exposed to contaminated fish from

one site, the value of n that gives a probability of non moving equal to 50 % is calculated.

The results are presented in Table 4.2, where it can be observed that it is approximately,

constant considering data from several years. Rounding up (to be more conservative), a

value of 20 years is considered to be the average exposure duration.
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Table 4.2: Values of n that give a probability of non moving equal to 50 %, using data of
population mobility in the Midwest.

Data year n [years]

2009 to 2010 19
2010 to 2011 17
2011 to 2012 18
2012 to 2013 16
2013 to 2014 18

Lower and upper bounds of 1 and 60 years are also considered in order to estimate error

bars for the results.The probability of non moving in 60 years is less than 10 %. Furthermore,

60 years is 75 % of the life expectancy in the U.S., which is equal to 80 years [46]. Hence,

60 years is considered as a reasonable upper exposure limit. The lower bound of 1 year is

conservative, since there are people that do not consume any fish (or that do not consume

any fish from the Great Lakes).

Regarding body weight, the average weight of an adult person in the U.S. (based on data

from 2003 to 2006) is 78.3 kg. Lower and upper bounds are also considered in the estimation

of the error bars. The weight of female adults in the 5th percentile is selected as the lower

limit, while the weight of male adults in the 95th percentile is considered as the upper bound.

These values are equal to 50.5 kg and 122.6 kg, respectively [47].

Finally, lifetime is estimated based on life expectancy at birth in the U.S., which is equal

to approximately 80 years (29,200 days), as mentioned above.

4.4 Effects Assessment

A thorough description of the potential health effects of PCBs was presented in Section

4.2, in addition to the limitations of considering total PCBs instead of specific congeners.

The former are used in this work, which is consistent with a screening-level risk assessment.

In this section, however, the quantification of the effects are discussed, focusing on the pa-

rameters used by Arc-BEST.
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4.4.1 BMFs and Ecologic Effect Level

Thresholds are used to determine the risks for ecosystems. The estimated PCBs concen-

tration in predator tissues, which in this study are round goby and smallmouth bass, are

compared with an ecological effect threshold.

The concentrations in predator tissues are calculated based on biomagnification factors

(BMFs), as detailed in Section 2.2. Kwon et al [43] studied the trophic transfer of PCBs in

zebra mussel, round goby, and smallmouth bass in four sites in Lake Erie. From their work,

which is specific for the species considered in this study and for the Great Lakes, the BMFs

between these species are calculated. BMFs are estimated as the rate of lipid normalized

PCBs concentrations in each species, and the average between the four sites is used. From

mussel to goby, the BMF is equal to 1.57, which is greater than the value of 1.124 recom-

mended by [11] to be used between invertebrates and first-order predators. However, this

latter value is not species- or site-specific. Between goby and smallmouth bass, a BMF of

2.53 is obtained. The lipid content for both goby and smallmouth bass are also obtained

from [43], while for zebra mussels the lipid content is obtained from Mussel Watch Program

of the NOAA.

The ecological effects threshold is a contaminant-specific upper bound, but it is not species-

specific. For total PCBs, a value of 4 ppm is considered according to [11].

4.4.2 FDA Safety Level, CSF , and RfD

To assess risks for humans the most simple approach is to compare the concentration of

PCBs in smallmouth bass, which is the fish consumed by humans, to the Food and Drug

Administration (FDA) safety level of 2 ppm [23]. This gives an idea of risk hot spots before

considering any exposure scenario. To put this value of 2 ppm under context, it represents

“FDA and EPA levels relating to safety attributes of fish and fishery products published in

regulations and guidance. In many cases, these levels represent the point at or above which

the agency will take legal action to remove products from the market.” [23].

However, a more detailed characterization of the risks involves the cancer slope factor

(CSF ) for carcinogenic effects and the reference dose (RfD) for non-cancer risks, as shown
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in Section 2.2. The CSF and the RfD are obtained from the EPA Integrated Risk Infor-

mation System (IRIS) [30].

The RfD is based on commercial mixtures of PCBs: Aroclor 1016, Aroclor 1284, and Aro-

clor 1254. For the former and the latter, the RfD for oral exposure is estimated as 7 × 10−5

and 2 × 10−5, respectively. Both have a medium confidence level, with uncertainty factors

(already applied to the mentioned values) in the order of a few hundreds. For Aroclor 1284

there is inadequate and insufficient data to derive a RfD for oral exposure. In order to use

protective assumptions, a RfD equal to 2× 10−5 is considered in this study, since the RfD

is in the denominator of the equation used to calculate the hazard index.

Total PCBs are classified by the IRIS as probable human carcinogens. For food chain

exposure, which is considered as high risk and high persistence, a CSF of 2 is defined based

on the upper bound-estimate. Differently from the RfD, the CSF multiplies the lifetime

average daily dose in the equation used to calculate cancer risk.

Finally, as mentioned before, human risks estimated based on the CSF and the RfD are

also compared to recommended thresholds. For cancer risks, a value of 1×10−4 is considered,

while for hazard index, which represents non-carcinogenic health effects, a value of 1 is used,

both based on [11].

4.5 Risk Characterization

Using the information presented in previous steps, the concentration of total PCBs in

round goby and smallmouth bass are calculated and compared to FDA and ecological effect

levels. Furthermore, the cancer risk and hazard index are estimated for the different human

exposure scenarios, and compared to established thresholds. The considered assumptions

are detailed below.
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Assumptions

Besides the simplifications and assumptions in the model’s equations, the following are the

most important assumptions in this study:

• The BMFs estimated from the work of [43] represent the typical trophic transfer of

PCBs from zebra mussels to round goby, and from goby to smallmouth bass in all the

sites analyzed in this work.

• The most recent concentration of PCBs in zebra mussel tissues from Mussel Watch

Program of the NOAA are assumed to be a reasonable assumption of current concen-

tration levels.

• All organisms are assumed to feed and remain at each of the sites. This is true for sessile

mussels, but it is an assumption for fish species. According to [43], goby are territorial

and mobility of smallmouth bass is limited, only 1 to 3 km during multiple-season field

studies. All sites are more than 3 km appart.

• Risk ranges presented in Section 4.5.2 only consider uncertainty in human exposure

scenarios, as described in Section 4.3.1.

Arc-BEST takes 14.17 seconds to run the case study.

4.5.1 FDA and Ecological Effect Levels

Before evaluating the risks, the simplest analysis that can be done is to compare the

estimated concentration of total PCBs in predators tissue with the FDA safety level of 2

ppm and ecological effect level of 4 ppm. These results are presented in Figure 4.2. Figure

4.2a shows the locations where PCBs concentration exceeds these limits in smallmouth bass

tissue. The FDA safety level is exceeded in six locations, mainly in the west coast of Lake

Michigan, but also in one site in Lake Erie, and in one site in Lake Ontario. These sites are

located in relatively high populated areas, usually between 100 and 1,000 people per square

mile. Furthermore, three of them are very close to important urban centers (with more

than 1,000 people per square mile), such as Chicago (southest location at Lake Michigan),

Cleveland (Lake Erie), and Rochester (Lake Ontario).
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The magnitude of PCBs concentration in predators tissue is presented in Figure 4.2b.

It can be observed that, for round goby, the FDA recommended limit is exceeded in only

one location, while the ecological effect level is not exceeded in any site. For smallmouth

bass, the FDA bound is exceeded in the six locations mentioned above, and the ecological

effect level is exceeded in three of those six sites. In the sites presented in Figure 4.2b, the

concentration of PCBs in smallmouth bass tissue is generally between -or slightly above- the

considered FDA and ecological levels. However, in “Sheboygan River”, the concentration is

extremely higher, reaching a value of 17 ppm. It is important to highlight that this site is

very close to the city of Sheboygan.

4.5.2 Human Health Risks

In this section the risk for humans that consume contaminated smallmouth bass from the

Great Lakes is evaluated. As described in Section 4.3.1 the cancer risk and hazard index are

estimated for a person with average body weight, average exposure time based on mobility

data, and expected life span of 80 years. Lower and upper bounds for body weight are consid-

ered in order to estimate error bars for the results. In addition, different ingestion scenarios

are considered: once per day (365 day/year), once per week (52 day/year, once per month

(12 day/year), and once per year (1 day/year). This way, risks due to different consumption

rates can be compared. The results are presented for each lake: Michigan, Huron, Erie, and

Ontario. In Lake Superior there are not enough sites to perform a thorough analysis.

The results are presented in Figures 4.3 to 4.6 for Lakes Michigan, Huron, Erie, and On-

tario respectively. Each figure has two panels: in panel a) the study sites are presented in

the map of each lake, and a gray-scale is used to indicate the distribution of the risk, where

darker colors represent higher human health risks; while in panel b) the average cancer risk

level and the hazard index for each site is shown, together with error bars indicating lower

and upper bounds. In panel b) the sites are sorted from west to east and from north to south

along the coastline. A threshold of 1×10−4 is considered for cancer risks, and a threshold of

1 is considered for the hazard index. The cancer risk can be interpreted as the probability

of developing cancer during a lifetime due to the consumption of fish that are contaminated

with PCBs; if it is lower than 1 × 10−4, it is considered potentially safe to consume fish (for

a given ingestion rate). Note that “potentially safe” is used instead of “safe”, given that the
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presence of other toxic compounds is not studied in this work. This is further analyzed in

Chapter 5. The cancer risk threshold can be interpreted as follows: from 10,000 people that

consume those fish, one person will likely develop cancer due to ingestion of PCBs that are

present in fish tissues. On the other hand, the hazard index represents all adverse health

effects other than cancer. As explained in Section 2.2, it is the rate between the LADD

and the reference dose. The latter is considered as the maximum dose for which no adverse

effects are observed during a lifetime. If the hazard index is greater than one, it means that

the LADD is greater than the reference dose, which is not safe.

Figure 4.3a shows that higher health risks are estimated in the west coast of Lake Michi-

gan. This can also be observed in Figure 4.3b, where the same sites are sorted from west

to east and from north to south. Considering the thresholds mentioned above, overall it is

potentially safe to consume fish only once per year or less frequently. However, in the sites

located at the south and east coasts of the lake, it is potentially safe to consume fish once

per month, and even once per week if the average risk values are considered. The site with

the highest risk is “Sheboygan River”, which is near the city of Sheboygan, a relatively high

populated area with 100 to 1,000 people per square mile. Other sites with high risks that

are located near important urban centers are “Waukegan Harbor”, “Milwaukee Alternate”,

and “Milwaukee Bay”. In this areas the population density is more than 1,000 people per

square mile.

According to Figure 4.4a, the sites with the highest risks in Lake Huron are located in

Saginaw Bay. Compared with the considered thresholds, it is potentially safe to consume

fish once per week or less frequently, except for “Saginaw River”, where an ingestion rate

of once per month seems to be the safe limit regarding PCBs toxicity (Figure 4.4b). It is

important to highlight that this site is located near a relatively high populated area, with

100 to 1,000 people per square mile. Considering the average risk, even an ingestion rate of

365 days/year is potentially safe in the sites of Lake Huron, except for “Saginaw River”.

In Lake Erie, it is difficult to identify safer fishing areas from Figure 4.5a due to the amount

of sites in this lake. However, from Figure 4.5b it can be observed that the risk fluctuates

along the coastline. Overall it is potentially safe to consume fish once per month or less

frequently if the average values of risk are considered. Moreover, for almost all the sites the

risks exceed their respective thresholds for an ingestion rate of once per year. Regarding
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population density, the entire coast of this lake is relatively highly populated, with popula-

tion rates between 100 and 1,000 people per square mile or more. The site with highest risk,

“Cuyahoga River”, is near the important urban area of Cleveland (south coast of Lake Erie).

Other sites with relatively high risks are close to the highly populated areas of Detroit and

Toledo (east coast of Lake Erie).

For Lake Ontario, the risk levels do not seem to follow any clear pattern from Figure 4.6a.

On the other hand, from Figure 4.6b it can be observed that there is one site with outstand-

ing risk values, which is “Eighteenmile Creek”. Here, the risk thresholds are exceeded for a

consumption rate of once per month. In all the other sites, a consumption rate of once per

week seems to be safe regarding PCBs toxicity. The coast of Lake Ontario is also relatively

highly populated, being Rochester the main urban center in the U.S. coast. “Eighteenmile

Creek” is not very far from this area.

Overall, from Figures 4.3 to 4.6, it can be observed that the risk levels are in general

high compared to the considered thresholds, and non-cancer risks (i.e., hazard indices) seem

to be the main hazard. The lake that seems to present the lowest risks is Lake Huron, at

least for the sites under study. To consume smallmouth bass once per month seems to be

a potentially safe frequency, except for a few sites in Lake Michigan and one site in Lake

Ontario. However, as stated in Section 4.1, this is an screening-level risk assessment. Hence,

the risks values obtained have a considerable level of uncertainty.
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(a) Locations where FDA and ecological levels are exceeded

(b) Concentration of total PCBs in predators tissues

Figure 4.2: a) Locations where FDA safety level is exceeded (black dots), and where ecolog-
ical effect level is exceeded (grey triangles), both in smallmouth bass tissue. U.S. population
density in the surroundings of the lakes is also presented. b) Concentration of total PCBs
in goby (blue markers) and smallmouth bass (green markers) tissues for the same locations
presented in a), which are sorted following the coastline from west to east and north to south.
FDA safety level and ecological effect level are also indicated (solid lines).
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(a) Locations in Lake Michigan

(b) Cancer risk (left) and hazard index (right) based on ingestion rates.

Figure 4.3: a) Study sites in Lake Michigan, where darker colors indicate higher health risks.
U.S. population density in the surroundings of the lakes is also presented. b) Average cancer
risk (left) and hazard index (right) levels for the same locations presented in a), which are
sorted following the coastline from west to east and from north to south. Upper and lower
bounds for the risks are presented. Risk thresholds (1 × 10−4 for cancer risk and 1 for the
hazard index) are also indicated (solid red lines).
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(a) Locations in Lake Huron

(b) Cancer risk (left) and hazard index (right) based on ingestion rates.

Figure 4.4: Same as Figure 4.3 but for Lake Huron.

35



(a) Locations in Lake Erie

(b) Cancer risk (left) and hazard index (right) based on ingestion rates.

Figure 4.5: Same as Figure 4.3 but for Lake Erie.
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(a) Locations in Lake Ontario

(b) Cancer risk (left) and hazard index (right) based on ingestion rates.

Figure 4.6: Same as Figure 4.3 but for Lake Ontario.
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CHAPTER 5

DISCUSSION

5.1 Polychlorinated Biphenyls in the Great Lakes Region

Firstly, it is important to highlight that the assumptions and analysis of results are meant

to be conservative. As stated in the previous chapter, zebra mussels have a high filtering

capacity and the tendency to feed on contaminated sediments and algae, in addition to high

biocconcentration rates. This could overestimate the calculated health risks, since other

sport fish consumed by humans that primarily feed on other species may bioaccumulate less

amount of PCBs than the smallmouth bass. But it is consistent with a conservative analysis,

which is the goal in a screening-level risk assessment.

In the next subsectionsthe analysis of the results is presented first, followed by a description

of the uncertainties and limitations of the study, and finally a summary with the conclusions

regarding the case study.

5.1.1 Analysis of Results

In terms of highest hazard levels, there are six critical sites, where total PCBs concentra-

tion in smallmouth bass tissue exceeds the FDA safety level of 2 ppm. Four of them are

located in the west coast of Lake Michigan, one in Lake Erie, and one in Lake Ontario. They

are all located in areas of relatively high population density, and three of them are very

close to important urban centers: Chicago, Cleveland, and Rochester, which are indicated

in Figure 5.1. There is one particular location where PCBs concentration is estimated to be

considerably higher than in the rest of the sites, which is “Sheboygan River”, shown in blue

in Figure 5.1. In this site the concentration is 4 to 8 times higher than in the other five sites.
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As indicated in the previous chapter, historical sources of PCBs to the Great Lakes are

industrial plants, while current sources could be atmospheric deposition, illegal disposal of

PCB-containing products and leaks from hazardous waste sites or old factories. PCBs are

highly persistent compounds, and hence, they can be in circulation for many years in the

environment, eventually becoming available for bioaccumulation. In the case of Sheboygan

River, the main source of PCBs was a former industrial plant that manufactured refrigera-

tion compressors [48].

Sheboygan River was classified as an area of concern (AOC) by the USEPA [49], which

encompasses the lower Sheboygan River downstream from the Sheboygan Falls Dam, in-

cluding the harbor and near-shore waters of Lake Michigan. An AOC is a location that has

experienced environmental degradation. The former Tecumseh Product Co. plant in She-

boygan Falls is considered the primary source of PCB contamination in river sediment [48].

The Wisconsin Department of Natural Resources has fishing warnings downstream of the

Sheboygan Falls Dam due to the high levels of PCB concentration in fish [50]. With a

millionaire budget, dredging of contaminated sediments and habitat restoration projects in

Sheboygan AOC began in August 2012, and concluded in June 2013 [49,51]. The data used

for this study is from 2011, previous to the beginning of the restoration activities. Although

it could take years to see environmental improvements after the clean up [51], the current

levels of PCBs concentration could be lower than those estimated in this work.

Regarding human health risks, results for each lake were presented: Michigan, Huron,

Erie, and Ontario. Lake Superior was not considered because of lack of data. Furthermore,

different fish consumption scenarios were analyzed: daily, weekly, monthly, and annual con-

sumers. Overall, the estimated risks are relatively high, and non-cancer risks (i.e., hazard

indices) seem to represent the greatest hazard in the region.

To put the consumption scenarios in terms of real consumption rates, the study Estimated

Per Capita Fish Consumption in the United States was considered [52]. According to this

study, and assuming that the portion of fish fillet in one meal weights 100 grams (approxi-

mately 4 oz), the frequency of freshwater fish consumption is about 29 times per year, which

is slightly more than twice per month. When the 90th percentile is considered, this number

increases to approximately 69 meals per year. Specifically in the Great Lakes states, adults

consume on average 38 meals per year [13]. In general, the fish consumed by a person would
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Figure 5.1: Same as Figure 4.2a. Purple dots indicate the locations of highly populated
urban centers near sites where FDA safety level for total PCBs concentration in fish tissue is
exceeded. The site with highest concentration level, Sheboygan River, is indicated in blue.

likely not come all from the Great Lakes. However, in order to be conservative, the risks

for weekly consumers should be analyzed. A daily consumer seems excessively conservative

considering the average consumption rate, and even for a consumer in the 90th percentile.

According to the results of the screening-level risk assessment, the health risks due to

PCBs for a weekly consumer are relatively small only in Lake Huron and Lake Ontario.

However, even in these lakes, there are a couple of isolated sites where the hazard index for

a monthly consumer is higher than the considered threshold. They are “Saginaw River” in

Lake Huron and “Eighteenmile Creek” in Lake Ontario, both shown in Figure 5.2.

On the other hand, in Lake Michigan and Lake Erie, for a weekly consumer the hazard

index is greater than the considered threshold in almost all the sites. The east coast of Lake

Michigan seems, however, potentially safe for monthly consumers. Besides this last result,

the general conclusion for Lake Michigan and Lake Erie is that the presumption of risks

imposed by bioaccumulation of PCBs cannot be rebutted in these lakes. As revealed by the

screening-level risk assessment performed in this work, the risk and extent of contamination
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(a) Saginaw River site in Lake Huron
(b) Eighteenmile creek site in Lake On-
tario

Figure 5.2: Sites with highest risks in a) Lake Huron and b) Lake Ontario. In both cases
the hazard index for a monthly consumer exceeds the considered threshold of 1.

are predicted to be relatively great in both lakes.

5.1.2 Uncertainties and Limitations of the Case Study

As in every model, there are sources of uncertainties embedded in the parameters, data,

and assumptions of the study, which are discussed in the following paragraphs.

Firstly, Arc-BEST calculates concentration of PCBs in predators tissue using a trophic

transfer model based on biomagnification factors (BMFs). These factors depend primarily

on the trophic level of the prey and predator species, as well as the contaminant, but they

can vary with the species under study and with environmental conditions. In this work,

BMFs that are specific for the species under study and for the Great Lakes are used, which

are obtained from the work of [43]. This significantly reduces the uncertainty incorporated

by these parameters in the results compared to factors that are general for any physical

location and not species-specific, such as the BMFs suggested by [11]. However, another

source of uncertainty is the food chain, which in this case consists of: zebra mussels, round

goby, smallmouth bass, and humans. As mentioned before, this is a typical food chain in

the Great Lakes region, composed by two invasive species -the mussels and the goby- that
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provide a pathway for contaminants to reach higher level predators. The mussels have a high

filtering capacity, the tendency to feed on contaminated sediments and algae [40], and high

biocconcentration rates [17]. These factors probably overestimate the health risks, since hu-

mans also consume fish species other than smallmouth bass, and in general fish also consume

organisms that bioaccumulate less amount of contaminants than mussels. As the tool uses

statistical relationships averaged over long periods of time, the results are considered to be

conservative using the selected food chain. This follows the spirit of a screening-level risk

assessment, where the goal is to make conservative assumptions.

Secondly, the model computes the average daily dose for humans that consume contami-

nated species. These are referred as the consumption scenarios in this work. As described

in the previous chapter, different consumption scenarios are defined: daily, weekly, monthly,

and annual. Furthermore, bounds for body weight and exposure duration for humans are

considered in order to obtain lower and upper limits for the health risks in each consumption

scenario. This way, part of the uncertainty incorporated by the lifetime average daily dose

is captured, allowing to make a more confident interpretation of the results. However, be-

cause human consumption during long periods of time (up to 60 years) are being analyzed,

there is uncertainty associated with the concentration of PCBs in future years. To put it

in other words, the tool estimates the risk levels assuming the most updated concentrations

of contaminants available, and considering that they remain constant during the exposure

period. As previously analyzed in Chapter 4, no increasing or decreasing trends where found

in the concentration of PCBs in zebra mussels tissue during the last two decades. Although

common sense would suggest that the concentrations should eventually decrease considering

the long-term banned production of PCBs, there is no evidence to believe that, nor to believe

that they would increase. Therefore, it seems a reasonable assumption to consider constant

concentrations.

Thirdly, the tool estimates cancer risk and hazard index using the cancer slope factor

(CSF ) and the reference dose (RfD), respectively, both for total PCBs. On the one hand,

these parameters have intrinsic uncertainties due to the fact that there are few epidemio-

logical studies with humans, and they are mainly based on laboratory studies with animals.

The USEPA affects both parameters by uncertainty factors, which leads to more protective

results. On the other hand, the CSF and RfD are based on studies with Aroclors, which

are industrial mixtures of PCBs. As mentioned in Chapter 4, different PCB congeners could
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have different toxicity and biological activity. The uncertainty posed by considering total

PCBs instead of specific congeners could not be quantified in this study due to lack of

available data. However, this is an acceptable level of uncertainty for a screening-level risk

assessment, where minimal data is used.

In the previous paragraphs, uncertainties and limitation that are mainly related with the

parameters of the model and assumptions of the modeler were described. Another limitation

of the study is data availability. All the analyzed sites are located in the US coast of the

lakes, and sometimes they are long distances apart. Hence, the results cannot be extrap-

olated to every location in the lakes. Between two sites along the shore, interpolation of

results seems reasonable if there is not a point source of PCBs between them. Regarding

offshore locations, we could think that the risk should diminish since they are far from urban

centers that are -or were once- potential sources of PCBs to the water and sediments. But

this assumption is not valid a priori, since one of the main sources of PCBs to the Great

Lakes could be atmospheric transport, as described before. An assumption that seems more

valid is that people tend to fish near the coast rather than far away from it, but yet this is

not proved in this work. Overall, the extrapolation of results to any location in the lakes

could be reasonable if more densely and uniformly distributed sites were available.

Finally, there is uncertainty related to the presence of other contaminants, which are not

analyzed in this work. One could argue that this is out of the scope of the study, where the

goal is to analyze the potential health risks due to the presence of PCBs in the Great Lakes

region. However, interactions between different contaminants are uncertain, and the hazard

generated by several contaminants together could be worse than the sum of each of them

acting individually. These interactions are not clear and there is still a lot of research to be

done in this area. For the Great Lakes region, a previous risk analysis for heavy metals was

performed using Arc-BEST [53]. It was found that the level of risks due to metals do not

seem to represent a great hazard for human health, since the thresholds for cancer and non-

cancer risks were exceeded in some sites only for a daily consumer during a 30-year exposure

duration. In addition, trends for metal concentrations in dresissenid mussels were studied

and, in general, it was found that the levels remained constant or had a decreasing trend

in the last two decades. Regarding the present study, it is important to clarify that only

PCBs are considered, and hence, if the risk is relatively low in one site, we cannot conclude

that it is safe to consume fish from that site or that the local ecosystem is not threaten by
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contaminants.

5.2 Strengths and Limitations of Arc-BEST

Arc-BEST has several strengths that are indicated below. Some of them are inherited from

the original BEST model, however, it has some unique contributions and improvements. As

any model, it also has limitations, which are described below as well.

In the first place, Arc-BEST is a friendly and easy-to-use tool. As described in Chapter 3,

four tabular datasets are needed with information regarding invertebrates, chemicals, preda-

tors, and human consumption scenarios. They can be easily imported to ArcGIS® from

other softwares, such as Excel. Once the calculations are performed by the tool, the results

can be easily converted into a shapefile or feature class based on latitude and longitude in-

formation, and after that any geoprocessing tool from ArcGIS® can be applied to visualize

and analyze the results.

Secondly, the model needs few parameters and data. The most important data is the con-

centration of contaminants under study in invertebrate species (or in the species considered

at the bottom of the food chain). Also, this is potentially the most time-consuming and

costly data to obtain. According to [54], collecting samples and performing bioaccumulation

tests could cost about $1000 per sample (in 2002). However, there is free available data,

for example from NOAA’s Mussel Watch Program, which is the longest running estuarine

and coastal -including the Great Lakes- pollutant monitoring effort conducted in the United

States that is national in scope each year [35]. Apart from these data, the tool requires

lipid content for the different species, which is relatively easy to obtain from bibliography if

measures are not available, and the exposure scenarios for humans, which should be defined

based on the case study. The selection of the food chain also depends on the location and

environment under study. Arc-BEST allows the user to consider up to four levels in the

food chain, which is an improvement to the original model that only allows three trophic

levels. Furthermore, the tool is flexible to modify food chain structure and the exposure

scenarios for humans. Regarding parameters, the model requires biomagnification factors

(BMFs) for each chemical, and the CSF and RfD to estimate potential health risks to hu-

mans. The Environmental Protection Agency has a database where these parameters can be
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found for a wide range of contaminants: the Integrated Risk Information System (IRIS) [30].

Thirdly, the code of the tool is open source. This has two straight-forward advantages

with respect to the original model: 1) users can know how the model works, which equations

are used, and even modify the code to incorporate additional capabilities to the tool, and 2)

it can also be used as a stand-alone model called by other software.

However, the greatest contribution of Arc-BEST is that it enables the use of digital spatial

datasets, allowing the user to perform spatial distributed risk analysis, which is a completely

new capability of Arc-BEST. This also improves model creation speed compared to BEST

when multiple sites are being analyzed. As the number of locations increases, the model

creation speed decreases considerably. In addition, using a GIS software, significantly im-

proves the comparison, analysis, and visualization of results with respect to the original tool.

In the latter, the final risks are given in .pdf format, and hence, the users do not have the

possibility to create their own graphs, map the spatial distribution of the risk, or incorporate

other factors to the analysis, such as the population density used in this work.

The model also has some limitations. Firstly, it is an empirical model. This means that

it uses statistical relationships. Although the definition of risk involves statistical concepts,

the model has the disadvantage that it does not explain the mechanisms of the relationships,

i.e., the cause-effect chain. The modeler has to account for the uncertainties in the statistical

parameters that it uses, as detailed in Section 5.1.2.

Furthermore, the concentration of contaminants in species at the bottom of the food chain

must be provided. The model cannot estimate this concentration based on environmental

concentrations (i.e., in water or sediments) and conditions. However, since the code is open

source, another model could be coupled to Arc-BEST to perform these calculations.

In addition, Arc-BEST is not time-varying. This means that it gives a “picture” of the risk

based on the given concentration of contaminants in species at the bottom of the food chain.

It does not consider potential decay or increase of concentrations. For instance, fate of con-

taminants can occur in the water column, their bioavailability can decrease if they settle to

the bottom of the water body and get covered by new layers of sediments, or inversely it could

increase if sediments are resuspended during an extreme event or during dredging activities.

45



Population dynamics is also not considered. The trophic chain defined by the modeler is

considered to remain the same during the modeled period. In highly contaminated places

this could not be a reasonable assumption, since populations of aquatic organisms could be

affected by the levels of contaminants and get extincted from that location, or reduced to

a few individuals. According to the case study, the modeler must consider if these assump-

tions are reasonable. Another way to address this limitation is to interpret the results as

the potential levels of risk that humans would be exposed in the future given the current

conditions in order to determine if restorative measures or more studies are needed.

Regarding ecological health, Arc-BEST’s capability to analyze it is limited to the compar-

ison of contaminant concentration in predator species to an ecological threshold. Although

this threshold is contaminant-specific, it is not species-specific and it is not related to any

specific risk or effect. This is an extremely simplified analysis. Therefore, when the threshold

is exceeded we can conclude that the local ecosystem is potentially threaten by the presence

of the contaminant under study, but further analyses and/or field data are needed to draw

more specific conclusions and to help decision-making.

Finally, from the previous paragraph it can be inferred that the model cannot capture any

specific effect of contaminants in organisms, such as the impact of a spike in contaminants

concentrations in species populations and local ecosystems. With respect to human health

it can only estimate risks due to long-term effects of contaminants, which are called chronic

effects.

46



CHAPTER 6

CONCLUSIONS

6.1 Summary

In this work, a Python code with an ArcMap® interface is developed to perform bioac-

cumulation risk analysis. The tool is named Arc-BEST. It is based on the equations of

BEST model, released by the USEPA and USACE in 2012 as part of the BRAMS software.

The main contribution of the tool is that it enables the use of digital spatial datasets in

order to perform spatially distributed risk analysis. Arc-BEST is easy to use and it increases

model creation speed with respect to the original tool when several sites are being analyzed.

Furthermore, it significantly improves the analysis, comparison and visualization of results.

To put it in other words, the analysis of results becomes considerably more flexible, since in

the original BEST model they are given in .pdf format, and therefore, the modeler does not

have the possibility to create his/her own graphs, map the spatial distribution of the risk, or

incorporate other factors to the analysis, such as population density, distance to contaminant

sources, distance to urban centers, etc. Moreover, the code is open source. This way, users

can know how the model works and are able to modify the code to incorporate additional

capabilities to the tool. In addition, it can also be used as a stand-alone model called by

other software.

Using Arc-BEST, the ecological and human health risks due to PCBs are studied in the

Great Lakes region of the Midwest. PCBs are man-made organic chemicals, and are among

critical contaminants in the Great Lakes. Following a screening-level risk assessment ap-

proach, the study is meant to be conservative and use minimal data. The latter justifies

the use of total PCBs to characterize the risks, instead of specific congeners that could have

different toxicity. Protective assumptions are made in the selection of the food chain, and

in the definition of the consumption scenarios for humans, where an upper limit for body

weight and exposure duration are considered to account for the uncertainties. The parame-
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ters that are used to estimate cancer risk and hazard index for humans (the CSF and RfD,

respectively) also account for uncertainties in their definition. Based on historical data, it

is concluded that assuming constant concentrations of PCBs in future years is a realistic

assumption.

The ecological hazards are addressed comparing total PCBs levels in predator species with

the ecological threshold of 4 ppm. For the round goby the threshold is not exceeded in any

site, while for smallmouth bass it is exceeded in four sites: three in the west coast of Lake

Michigan and one in Lake Ontario. Particularly, the estimated PCBs concentration in small-

mouth bass in “Sheboygan River” site (Lake Michigan) is considerably high compared to the

the rest of the locations, reaching 17 ppm, which indicates that the potential hazards are

also great in this location. This result is consistent with the fact that this is a well known

area of concern defined by the USEPA, and restoration measures have been recently applied

in this area.

Regarding human health, cancer risk and hazard index (associated with non-cancer effects)

are estimated based on long-term exposure to PCBs in the diet (from consuming contam-

inated fish from the lakes). Non-cancer effects seem to represent a greater hazard in the

region than cancer risks. Considering that the average consumption of freshwater fish in the

U.S. is approximately two meals per month, the analysis of the results is focused on a weekly

consumer, in order to be conservative with the conclusions.

Overall, Lake Huron and Lake Ontario present the lower risks -due to PCBs- among all

lakes. The upper bound of the hazard index does not exceed the recommended threshold for

a weekly consumer, except in two locations: “Saginaw River” in Lake Huron and “Eighteen-

mile Creek” in Lake Ontario. More field data and analyses are needed in these two sites and

in their surrounding area in order to identify which species are -or are not- safe to consume.

In Lake Michigan and Lake Erie the hazard index exceeds the threshold for all locations

for a weekly consumer. However, in the former lake it is clear that the risk is greater in

the west coast than in the east coast, where the upper part of the confidence bars exceed

the threshold, but the mean values remain below it. In the east coast of Lake Michigan the

risks due to PCBs do not seem to represent a great hazard for a monthly -or less frequent-

consumer. On the other hand, for Lake Erie the risk seems to oscillate along the coast, and
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safer areas cannot be easily defined based on the risk distribution. In both lakes the potential

risks due to the presence of PCBs cannot be rebutted, and high risks are not found to be

isolated -on the contrary, vast areas of high risks are identified-. A more thorough analy-

sis and more data are needed to further characterize the risk and potential effects on local

ecosystems and human health, especially for vulnerable populations that are not addressed

in this work, such as children and pregnant women.

6.2 Limitations

The greatest limitation of the case study is that other critical contaminants are not ana-

lyzed. Consequently, safe fishing areas cannot be identified from this study, even if the risk

due to PCBs is low. Another limitation is that data is available only in the U.S. coast of

the lakes. Given that atmospheric transportation could be an important source of PCBs in

the Great Lakes, we cannot draw any conclusions regarding health risks in offshore locations.

Arc-BEST capability to analyze ecological health is extremely simplified, limited to the

comparison of contaminant concentration in predator species to an ecological threshold,

which is not species-specific and it is not related to any specific risk or effect. Therefore,

when the threshold is exceeded we can conclude that the local ecosystem is potentially

threaten by the presence of the contaminant under study, but further analyses and/or data

are needed to draw more specific conclusions and to plan any restoration measure.

Another limitation is that it is an empirical model, and hence, it does not explain the

mechanisms of the relationships. Moreover, Arc-BEST is not time-varying. This means that

it gives a prospective “picture” of the risk considering the given concentration of contami-

nants in invertebrate species and the food chain defined by the user.

Finally, the tool is meant to estimate risks due to long-term effects of contaminants, so it

cannot capture the impact of a spike in contaminants concentrations in local ecosystems or

any acute effect on human health.
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6.3 Recommendations

Arc-BEST can perform spatially distributed bioaccumulation risk analysis, helping de-

cision and policy making. However, the modeler must understand its limitations and the

simplifications in the underlying complex mechanisms that it tries to represent, which in-

volves chemical, physical and biological processes. They are thoroughly described in Sections

5.2 and 6.2. The results should be analyzed based on the capabilities of the model and con-

sidering -and quantifying when possible- the uncertainties. In order to reduce uncertainty,

the following points are suggested.

Firstly, it is crucial to collect enough -and good quality- samples of the study sites, which

will depend on the characteristics of the environment, the organisms, and the contaminants

under study. For zebra mussels in the Great Lakes, a few tens of individuals seem enough for

each location [17]. Regarding free available data, the Mussel Watch program of the NOAA

has very good quality. It uses up to 100 or more individuals for zebra mussels in the Great

Lakes, 30 individuals for other mussels and 20 for oysters in other regions [55]. It also uses

a performance based quality assurance process to ensure data quality [35].

Secondly, as important as the data collection is the definition of a proper food chain. It

must represent a simplified but realistic trophic structure and pathway of contaminants to

higher level predators in the local ecosystem. When available, it is preferable to use bio-

magnification factors (BMFs) from studies that are specific for the selected species and the

location under analysis.

Thirdly, it is advisable that human exposure scenarios are defined using data from the

region when available in order to realistically quantify the risks. Data of body weight, popu-

lation mobility and fish consumption are generally available in a regional or national scale in

the U.S. Some references used in this work that could be useful for other studies are the follow-

ing: [46], [47], and [52]. Moreover, data of population mobility can be obtained from the U.S.

Census Bureau (https://www.census.gov/hhes/migration/data/cps.html). Regarding

the potential human health risks of contaminants, values for cancer slope factors and ref-

erence dose are available in the Integrated Risk Information System (IRIS) of the USEPA,

and safety levels determined by the FDA can be found in [23].

In conclusion, Arc-BEST is a useful tool for screening-level risk assessment, as it was
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proved in this work. It enables to initially identify the hazards generated by contaminants

and possibly rebut the presumption of risk. This way, it can contribute to make more in-

formed decisions regarding restoration measures, monitoring of the sites under study, and

collection of more specific data, ultimately enhancing humans’ health and quality of life and

protecting ecosystems. When the presumption of risk cannot be rebutted under conservative

assumptions and considering the uncertainties of the study, it is advisable to use other bioac-

cumulation risk assessment models and perform field studies in order to improve robustness

of the results and better characterize the risk.

6.4 Future Work

As stated before, the case study in this work is focused on the risks due to PCBs, which

are among critical contaminants in the Great Lakes. Given free available data from the Mus-

sel Watch Program of the NOAA, a screening-level risk assessment of all (or most) critical

contaminants in the region could be performed. This study could potentially identify safe

fishing zones and hot spot areas with high levels of risk. Another potential application of

the tool that addresses a current threat to the Great Lakes region is described below.

Asian carps have infested much of the Mississippi River basin since escaping from south-

ern fish farms some decades ago [56]. Currently, they are threatening to reach the Great

Lakes [56–59]. They are invasive species without natural predators that compete with native

species, which raises the concern of local authorities, the fishing industry, and researchers,

among other social actors [57]. A consensus on the best solution to combat these species has

not been reached [60,61]. One proposed alternative is to foster fishing and human consump-

tion of Asian carps as a management strategy to control their population [62,63]. However,

they could represent a potential hazard to human health due to bioaccumulation of con-

taminants. Some studies have detected accumulation of metals and other contaminants in

samples of Asian carps collected from the Mississippi and Illinois rivers [64–66].

Arc-BEST tool would be useful to estimate human health risk due to consumption of these

fish. The tool has the advantage that uses as input the concentration of contaminants in

the diet species of the carps, which are mainly larger zooplankton, such as rotifers and crus-

tacean zooplankton [67], avoiding the collection, handling and testing of fish. Particularly,
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it could be used to forecast the risk if the carps happen to invade the Great Lakes in a near

future, allowing the local state governments to make a more informed decision on whether

it is safe to foster the consumption of Asian carps to reduce their population.
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APPENDIX A

ARC-BEST USAGE INSTRUCTIONS

A.1 Background

The purpose of this document is to provide usage instructions for Arc-BEST, which is a

tool to perform spatially distributed bioaccmulation risk analysis. The source code of the

tool is written in Python with an ArcMap® (by ESRI®) interface, shown in Figure A.1.

Although the code can be used as a stand-alone model called by other software, the instruc-

tions below are for the ArcMap® application.

Figure A.1: Arc-BEST tool interface in ArcMap®, where required inputs are indicated.

53



A.2 System Requirements

Arc-BEST was created as a geoprocessing tool in ArcGIS® 10.1. It is proved to work

with this and later versions of the software. The system requirements are then the same

required for ArcGIS®, which can be found at http://resources.arcgis.com/en/help/

system-requirements/10.1/index.html#//015100000002000000.

A.3 User Interface

As a geoprocessing tool, the user interface of Arc-BEST (see Figure A.1 follows the stan-

dard patter of ArcGIS® tools. The required inputs are the output folder where results

are saved and tables with information of invertebrate species, chemical properties, preda-

tor species, and human exposure scenarios. They are indicated with green dots in Figure

A.1. These are the minimum inputs that the user should specify. The tool also has several

optional inputs, and a brief description of the model is available in the right panel of the

interface. After uploading all the required information, Arc-BEST can be run by pressing

the OK button located at the bottom of the interface.

A.4 Running Arc-BEST

The basic usage of Arc-BEST includes specification of required inputs, specification of

optional inputs (or leaving the default values), and running the model to get the results.

A.4.1 Required Inputs

Arc-BEST has five required inputs: four data tables with information related to inverte-

brates (preys), chemicals, first-level predators, and humans; and the output folder. The first

four inputs are database tables and should have the extension .dbf, while the fifth input is

the directory path and folder name where the results are going to be saved. The tables can

be created in Excel and imported to ArcGIS® as a .dbf file using ArcCatalog®.
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The minimum required fields in the input tables are described in Chapter 3 and presented

in Tables 3.1 to 3.4 for invertebrates, chemicals, predators and humans, respectively. An

example of each table can observed in Figures A.2 to A.4.

It is important to highlight that the input tables can contain multiple chemicals, multiple

invertebrate and predator species, and multiple human exposure scenarios.

Figure A.2: Example of an input table with invertebrate information.

Figure A.3: Example of an input table with first-order predator information.

Figure A.4: Example of an input table with human exposure scenarios information.
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A.4.2 Optional Inputs

A data table with information regarding second-level predators is optional, giving the user

the possibility to simulate three- and four-level trophic chains. The minimum information

(fields) that this tabular dataset must contain is the same as the first-level predator table.

An example is shown in Figure A.5.

Figure A.5: Example of an input table with second-order predator information.

The fields names in each tabular dataset are also optional inputs (format: text arrays).

however, if the user does not specify them, they must match the default names or an error

occurs when running the model.

Other optional inputs are the cancer and non-cancer risk thresholds (format: double), the

default values are set equal to 1 × 10−4 for cancer risk and 1 for hazard index [11]. Finally,

the correction for the BMF between the first- and second-level predators is also an optional

input (format: double). See Chapter 3 for more information about this last parameter.

A.4.3 Outputs

After the required inputs are specified, the model can be run by pressing the OK button at

the bottom of the tool’s interface (Figure A.1).

The outputs are two (default) or three -when optional second-level predators are also

specified- data tables (.dbf files), which are located in the output folder previously selected

by the user.

One output table is called “inv pred.dbf” and has, among other parameters, the concen-

tration of contaminant in edible tissue of invertebrate species, the calculated concentration

of contaminant in edible tissue of predator species, and the comparison between the latter

with FDA action levels and with ecological effect levels through a Boolean expression: 0 if
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it does not exceed the levels and 1 if it does.

The second output table is named “inv pred hum.dbf”, and contains as a result the esti-

mated LADD (lifetime average daily dose, see Section 2.2) for humans based on the calcu-

lated chemical concentrations in their diet species, as well as the associated cancer risk and

hazard index (non cancer risk), and the comparison between the risks and their respective

thresholds through a Boolean expression.

If (optional) second-level predators are specified, a third output table is generated, named

“inv pred pred2.dbf”. It contains the comparison between the concentration of contaminant

in edible tissue of first- and second-level predator species with FDA action levels and with

ecological effect levels. In this case, the first output table only contains the concentration

of contaminant in edible tissue of invertebrate species and the calculated concentration of

contaminant in edible tissue of first-order predator species.

Examples of these tables are shown in Figures 3.2 to 3.4. All the output tables contain

other relevant information that was given as input by the user, such as the specific location

identifier where invertebrate data samples where collected. Therefore, the tables can be eas-

ily converted to shapefiles or feature classes based on the latitude and longitude coordinates

of the sites. Next, the user can map the results and apply any of the geoprocessing tools

available in ArcMap® to analyze them.

A.5 Interpretation of Results

As mentioned before, multiple chemicals, invertebrate species, predator species, and hu-

man exposure scenarios can be included in the input tables of the tool. Figure A.6 shows the

potential links between the different levels in the food chain. All the existent links should

be specified by the user, i.e., the tool does not automatically assume them. Hence, first-level

predators can feed on one or multiple invertebrates; second-level predators can feed on one

or multiple first-level predators; and humans can consume one or multiple species form any

-or both- of the predator levels.

The model does not add the concentrations or the risks at any moment during the calcu-
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lation. So for a given number of chemicals c, invertebrates i, and first-level predators p, the

potential number of results (rows) in “inv pred.dbf” is c × i × p, which correspond to the

calculated concentrations of each chemical in each predator tissue due to the consumption

of each invertebrate species. Similarly, for a given number of second-level predators n, the

potential number of results in “inv pred pred2.dbf” is c× i× p×n; and for a given number

of human exposure scenarios h, the potential number of results in ”inv pred hum.dbf” is

c× i× p× h+ c× i× p× n× h. These numbers are referred to one particular location, so

the potential number of results could be incremented by the number of sites.

Figure A.6: Potential interactions between different levels of the food chain in Arc-BEST.
Different arrow formats are just to improve visualization and do not have a special mean-
ing. Similarly, the links between human 2 and human h categories with the 1st L predator
categories are not included to allow a clearer visualization of the other links.

The justification for not adding the risks is in first place -and most importantly-, not to

loose information. As an example, the risks of a particular contaminant on human health

due to consumption of different species could be added. But the information of which one

represents a higher hazard, either due to higher biomagnification of the chemical or to con-

sumption habits, would be lost. In addition, in some cases there is not enough information

to know if adding is the proper procedure. For instance, interactions between different chem-

icals are not clear and the risk of consuming two different contaminants could be greater

than just the sum of their individual risks. Another example is that the concentration of

chemicals in predator species are calculated assuming that each prey species is their pri-

marily diet species. Although adding the concentrations would be a protective assumption,

the user might consider more appropriate to use an average or the maximum of them. As

a summary, further summary of the results is left to the modeler criteria based on the case
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study and on the uncertainty of the input data.

59



APPENDIX B

EXPLORATORY ANALYSES OF
POLYCHLORINATED BIPHENYLS

CONCENTRATION IN ZEBRA MUSSELS

B.1 Temporal Evolution

The concentration of total PCBs in zebra mussels over time is presented in Figures B.1

to B.5 for Lakes Superior, Michigan, Huron, Erie, and Ontario, respectively. It can be ob-

served from the left panels in these figures that in some locations the concentrations remain

relatively constant over time, while in other they oscillate. However, a regular patter cannot

be visually identified. By applying a Mann-Kendall test, the existence of monotonic trends

are studied. With a 95% confidence level no trends are detected, and only two sites present

trends with a 90% confidence level, which are decreasing. Both sites are located in the east

coast of Lake Michigan. However, Mann-Kendall test better detects monotonic trends and

the time series are short to get statistical significance.

The most updated (or recent) concentration is also compared with the mean concentration

over the entire time period for each location, which are presented in the right panels of the

figures. It can be observed that the most recent concentration is very similar to the mean

concentration in a number of cases. For the remaining cases it is generally lower, except in

Lake Michigan, where it is greater in various sites. The fact that the most updated value

is lower than the mean for the entire period could indicate that, although the concentra-

tions oscillate with time, they tend to decline, as it seems for “Leelanau State Park” (Figure

B.1) or “Cape Vincent” (Figure B.5b). For other sites, such as “Olcott” (Figure B.5b) and

“Niagara Falls” (Figure B.4) this does not seem to be valid. However, any decreasing or

decreasing trend could be statistically proved in this study.

The most alarming (highest) concentrations in the last years occurred in Lakes Michigan

and Erie, which are proved in this work to be the two lakes with greater risks, and in one

site in Lake Ontario, also detected as a critical location in terms of risk.
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Figure B.1: Temporal evolution of PCBs concentration in zebra mussels in sites located
in Lake Superior (left panel), and difference between mean and most updated (or recent)
concentrations for each location (right panel).

Figure B.2: Temporal evolution of PCBs concentration in zebra mussels in sites located
in Lake Michigan (left panel), and difference between mean and most updated (or recent)
concentrations for each location (right panel).
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Figure B.3: Temporal evolution of PCBs concentration in zebra mussels in sites located
in Lake Huron (left panel), and difference between mean and most updated (or recent)
concentrations for each location (right panel).

Figure B.4: Temporal evolution of PCBs concentration in zebra mussels in sites located in
Lake Erie (left panel), and difference between mean and most updated (or recent) concen-
trations for each location (right panel).
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(a) Including all sites in Lake Ontario.

(b) Zoom of Figure B.5a

Figure B.5: Temporal evolution of PCBs concentration in zebra mussels in sites located
in Lake Ontario (left panels), and difference between mean and most updated (or recent)
concentrations for each location (right panels).
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B.2 Correlations with Lipid Content and with PCBs

Concentrations in Sediments

Figure B.6 shows the concentration of PCBs in zebra mussels tissue versus their lipid

content. PCBs are hydrophobic contaminants that tend to accumulate in lipids, so a high

correlation was expected. Although the correlation of 0.32 is statistically significant, it is

not very high, and a considerable amount of scatter can be observed in Figure B.6.

In addition, the concentration of PCBs in zebra mussels versus the concentration of PCBs

in sediments is presented in Figure B.7. The correlation is not statistically significant and

extremely low. This suggests that the mussels accumulate PCBs from water rather from

sediments. Unfortunately, water concentrations of PCBs are not available in the locations

under study.
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Figure B.6: Concentration of PCBs in zebra mussels tissue versus their lipid content.
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Figure B.7: Concentration of PCBs in zebra mussels tissue versus concentration of PCBs in
sediments.
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