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Abstract 

According to United Nations, 700 million people around the world suffer water scarcity, value 

that will probably double over the next ten years. Now a days, wastewater reclamation is a 

viable water source for irrigation, industrial purposes and even drinking water is increasing. 

Furthermore, anaerobic treatment has proven to be an efficient treatment compare to aerobic 

ones, due to reduction of up to 90% of sludge production and footprint, production of energy 

(as methane gas) and high applicable organic loading rates. Anaerobic Membrane Bioreactors 

(AnMBR) are particularly useful when treating particulate high organic load wastewater, as 

dairy industry one. When treating dairy industry wastewater, if AnMBR is coupled with a 

second step of anaerobic Reverse Osmosis (RO), high quality effluent is achieved, with almost 

none restriction regarding its reuse in agricultural irrigation.  

 

AnMBR dairy industry permeate has a silt density index around 3, which implies that it is 

suitable to use as RO feed without provoking extreme fouling and scaling of the membrane. 

Moreover, this research is focus on the differences of keeping the AnMBR permeate anaerobic 

as RO fed, compare to aerating it. This latter brings as a consequence, 10 times higher amounts 

of particle formation than the anaerobic one, but with similar particle size distribution. Main 

salts that precipitate are calcium carbonate and calcium phosphate. 

 

Setting, starting up and running a laboratory scale anaerobic Reverse Osmosis system coupled 

with batch scale AnMBR has its difficulties and challenges. System is allow to run up to a 

pressure of 23 bars, but no stable conditions regarding pressure or recovery are achieve. 

Maximum recovery is 4.2 % per meter of membrane, and high removal efficiencies are achieved 

in the process. However, bacteria present in AnMBR permeate and RO permeate may 

compromise its reuse. Values of 25 and 2 millions of active cells are found in RO concentrate 

(AnMBR permeate) and permeate respectively. Permeate characteristics allows its reuse with 

almost none restriction for irrigation, and also, for industrial processes such as cooling and 

boiling towers, cleaning, etc., where no direct contact with dairy industry products is expected. 

In order to achieve better recoveries and removal efficiencies, and less constrains in streams 

reuse, especial considerations regarding sterilization and disinfection must be carried out.  
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CHAPTER 1  

Introduction 
 

 

 

1.1. Background 

Anaerobic digestion dates from over 100 years ago, but most advances in this technology were 

conducted since 1970s, mainly due to the energy crisis (Van Lier, et al., 2001). When high rate 

reactors were developed, such us Up Flow Anaerobic Sludge Blanket (UASB) in the 1970s, it 

was recognised to be an effective alternative in comparison to aerobic treatment, mainly to treat 

industrial wastewater. Some of the core advantages on anaerobic wastewater treatment are 

(Henze, 2008): high treatment efficiencies, reduction of up to 90% of sludge production and 

footprint, production of energy (as methane gas) and high applicable organic loading rates. 

 

Nowadays, broader applications of anaerobic wastewater treatment technologies are being 

carried out, and one of the most recent developments in this subject is the anaerobic membrane 

bioreactor (AnMBR). This technology can ensure the decoupling of sludge and hydraulic 

retention time, holding all biomass in the reactor and allowing degradation of even slow-

degradable compounds (Dereli, et al., 2012).  

 

Reverse osmosis technology (RO) is widely use in drinking water treatment, especially when 

desalination of brackish or seawater is needed. However, several countries are using RO as a 

post treatment of conventional wastewater treatment, for wastewater reclamation. One of the 

main drivers to use this technology is due to water scarcity, which may lead to an increase in 

water cost, compromise economic development and social crisis. When couple with AnMBR, 

RO has proven to be a technology well suited for treating domestic wastewater, allowing 

nutrient recovery and a high quality effluent (Grundestam and Hellström, 2007).  

 

Finally, Uruguay situation regarding industrial wastewater treatment is quite diverse. Several 

pollution problems in Río Santa Lucía basin have arisen due to improper wastewater discharge, 

where dairy industries are in the top 3 of most pollutant ones, regarding organic load and 

nutrient (phosphorus and nitrogen) discharge (JET / DINAMA, 2010). High organic loads and 

nutrient concentration (primarily nitrogen and phosphorus) are the central complications in the 

basin, causing a significate danger to the main source of drinking water in the country. AnMBR 

coupled with RO systems seems to be an adequate technology for cases such as the ones of 

dairy industries, because a high quality effluent can be reached (low organic loads and nutrient 

concentration), and additionally, besides that treated wastewater can be reused for industrial 

purposes, there might be a possibility to recover nutrients from RO concentrate.    
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1.2. Problem statement 

According to United Nations, 700 million people around the world suffer water scarcity, value 

that will probably double over the next ten years (Www.un.org, 2016). Reuse water policies 

will be key to prevent water crisis from getting worse, even in countries with no water 

limitations. Industrial water use represents around 20% of the total water consumption (Caridad 

Canales, et al., 2012), and reuse of treated wastewater may lead to reduce water consumption 

by millions of cubic meters per year. Furthermore, according to Fritzmann, et al. (2007), as 

water resources are used, agriculture, industry and public water users compete for them, leading 

to higher water prices, restrained economic development and social issues in water stress 

countries.  

 

On the other hand, world estimated demand for fertilizer in 2018 will overcome the supply 

possibilities in several areas (FAO, 2015), causing massive impacts in agriculture and 

worldwide economy. Whilst the annual growth rate of nitrogen and phosphate will be around 

1.4% and 2.2%, this values will reach 3.3 and 3.6% respectively for Latin America and 

Caribbean, contributing to 7% and around 15% of the World nitrogen and phosphate 

consumption (FAO, 2015).  Moreover, in Latin America, fertilizer balance (supply/demand) 

indicates that even now, the region depends on nitrogen and phosphate imports, situation that 

will be worst by 2018, with a demand of nitrogen above 3,200 and almost 3,000 thousands of 

tons per year of phosphate, over the possible supply (FAO, 2015).  Nutrients situation across 

the World is not only important due to its imminent scarcity, but also because wastewater 

discharge with high nutrient concentration into water bodies causes pollution.  

 

In Latin America, Uruguay situation regarding pollution from excess of nutrients and organic 

loads in Río Santa Lucía basin is critic. Aguas Corrientes, the main drinking water treatment 

plant of the country, which provides fresh water to around half of Uruguay inhabitants 

(Ose.com.uy, 2015), use Santa Lucía Rivers as water source. Industries that discharge their 

wastewater into this river, agriculture and livestock are the principal pollution causes. There is 

an increasing need to upgrade wastewater treatment plants in the area, to improve water quality 

of the river, prevent further problems and, promote water reuse.   

 

Among the most pollutant commercial enterprises in Río Santa Lucía Basin, dairy industries 

are in top 3 (JET / DINAMA, 2010). Dairy industry wastewater can be categorize as strong and 

particulate, with high organic load, suspended solids content, fats, oils and grease (Demirel, et 

al., 2005). Currently, high strength wastewater is mostly treated by anaerobic high rate systems 

and conventional wastewater processes (like Activated Sludge among others). Soluble high rate 

wastewater is well treated by several high rate anaerobic reactors, such as up flow anaerobic 

sludge blanket (UASB) and expanded sludge bed (EGSB) reactors (Liao, et al., 2006). 

However, wastewater with high particulate matter and high strength is hard to treat by this 

technology, mainly because of: slow growing biomass is not retained enough time to actually 

degrade all compounds, large HRT is needed for sufficient hydrolysis (Liao, et al., 2006), and 

finally, this type of wastewater may hamper the development of granular sludge formation and 

stability (Visvanathan and Abeynayaka, 2012).  

 

Bearing in mind the provision of the preceding paragraphs, anaerobic membrane bioreactors 

couple with reverse osmosis systems, seems a capable technology to apply in this cases with 
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particulate and high organic load, not only due to its high quality effluent and water reuse 

possibilities, but also because of the nutrient recovery potential.  Reverse osmosis membranes 

(RO) is an effective technology to remove dissolved matter, pathogens (up to a certain extent), 

and nutrients, allowing wastewater reuse. When previously couple with anaerobic membrane 

bioreactors (AnMBRs), which allow complete retention of biomass, with a small footprint and 

methane production (energy recovery), RO treatment seems like a promising technology, where 

permeate flux (after passing through the RO) may be reclaim for industrial purposes and the 

concentrated flux as fertilizer. This latter may be the case when treating some industrial 

wastewater, with a high content of nutrients (such as nitrogen and phosphorus). 

 

Lack of information about the characteristics of permeate of AnMBR, and treatment system of 

AnMBR plus RO for handling industrial wastewater, implies a challenge and gap in knowledge 

regarding possible and feasible applications of this technology. Assessing the possibility of 

coupling both system when treating dairy industry wastewater, analyse permeate and 

concentrate flows for reuse and nutrient recovery, may have an important impact on industrial 

water demand, and a better understanding in the main constrains and benefits of these 

technology. 
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CHAPTER 2  

General and specific objectives 
 

The aim of this research is to assess the feasibility and analyse the performance of an RO 

system, fed with permeate from an AnMBR system treating dairy wastewater. To carry out the 

above, a laboratory scale RO reactor will be installed and operated at Biothane-Veolia in Delft. 

The general research question is: Can the permeate of an AnMBR be feasibly treated by an 

anaerobic reverse osmosis system for water reuse and nutrient recovery? 

 

The four specific objectives of the current research are as follows: 

 to identify RO fouling potential fed with permeate from an AnMBR treating dairy 

wastewater (keeping the permeate at anaerobic conditions);  

 to link the AnMBR permeate characteristics to the RO operability and efficiency; 

 to assess the RO performance in terms of pollutants rejection (removal efficiencies); 

 to characterize the permeate and concentrate flows of the RO systems, considering the reuse 

of these streams in an industrial context. 

 

The specific objectives presented above are directly linked to the specific questions as follows:  

 Which are the particulate size distribution, ions content (Cl-, NO3
-, Ca2

+, K+, Mg2
+ among 

others), TSS/VSS ratio, conductivity, Langelier Saturation Index (LSI), Sild Density Index 

(SDI), and Modified Fouling Index (MFI) of the RO feed?  

 Does the oxygen concentration influence fouling potential of the RO membrane?  

 What are the operational conditions such as RO membrane flux, permeability, recovery, 

and rejection established during the assessment of the RO membrane?  

 Which is the impact of pressure on the RO system performance? Considering the feed flow 

characteristics, which is the feed pressure range at which the RO system adequately 

perform?  

 Which are the concentrations of organic matter, nutrients, pathogens, and solids on the RO 

permeate? What are the removal efficiencies on these compounds?    
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 Which are the concentrations of organic matter, nutrients, pathogens, and solids on the RO 

concentrate? 

 Is it possible to reuse the concentrate of the RO system? For what purpose?   
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CHAPTER 3  

Literature review 
 

In this section, the current state of relevant literature is summarized. 

 

3.1. Industrial water consumption and wastewater 
treatment: worldwide situation 

As stablished in the Sustainable Development Goals (Sustainabledevelopment.un.org, 2016) 

Sanitation involves the adequate management and disposal of different types of wastes with a 

view to minimizing harmful effects to human health and the environment. Within this wide 

definition, having an adequate industrial effluent treatment plays a key role in pollution 

prevention and development of sustainable cities.  

 

Water use in industries is around 20% of the whole word consumption of freshwater and 

continuous increase over the years (Caridad Canales, et al., 2012). These values goes up to 90% 

in some European countries (Europa.eu, 2016), which lead to greater volumes of wastewater 

produced. According to data collected by the statistical office of the European Union (Eurostat), 

industrial wastewater produced in 17 European countries reached up to around 14.000 millions 

of cubic meters per year, and the range of wastewater treated previous it is discharge into 

different water bodies varies from 8% (Croatia) to 60% (Czech Republic) (Europa.eu, 2016).  

 

Since the 20th century, several wastewater treatment technologies have arisen throughout the 

years. These new developments were strongly influenced by what happened at time, like 

increase in organics loads (because of rapid growth of cities), necessity of smaller footprints, 

eutrophication of surface water due to an increase of nutrients in water bodies, and energy crisis. 

Furthermore, water scarcity issues lead to water reuse policies and new advance treatments, 

which are not only restricted to water shortage regions (Henze, 2008). 

 

3.1.1. Uruguay industries and wastewater treatment  

In 2014, around 14% of the Gross Domestic Product (GDP) of Uruguay was due to industrial 

activity, where manufacturing of food products, drinks and tobacco represent 50% of it. 

According to data from 2013, industries embodied 4% of the total consumption of surface water 

of the country, and 18% of ground water (MVOTMA-DINAMA, 2014). Water consumption 

for industrial purposes is about 390 million of cubic meters per year, and total effluent discharge 

into different water bodies around 67 million of cubic meter per year (MVOTMA-DINAGUA, 

2016). Monitoring and controlling that discharges of industrial wastewater treatment plants 

(WWTP) are done according the require standards is responsibility of the National Directorate 

of Environment (DINAMA) all over the country but in the capital city, Montevideo, where the 

Industrial Effluent Unit (UEI-IM) is the accountable entity. Data collected is divided and 
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evaluated regarding the main hydrographic basins: Laguna Merín, Atlantic Ocean (Océano 

Atlántico), Río Santa Lucía, Río de la Plata, Río Negro, and Río Uruguay, as shown in Figure 

3-1.  

 

Figure 3-1: Uruguay most important hydrographic basins. Source: MVOTMA-DINAGUA (2016) 

Of the 550 registered industries located all over the country, 80 are situated in the capital 

(Montevideo), and discharge around 7.1 million of cubic meters per year of effluents into 

different water bodies (IM-UEI, 2015). Decree 253/79 (Uruguay Government, 1979) stablishes 

that all industries generating wastewater in the production process must have an effluent 

treatment plant approved by the National Environment Directorate, and the treated effluent 

must cope with the require standards according to its final disposal (water bodies, sewer system, 

etc.). Allocation and amount of industrial and domestic wastewater treatment plants in the 

whole country are shown in Figure 3-2.  
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Figure 3-2: Allocation of wastewater treatment plants in Uruguay. The sky blue dots represent the industrial WWTP while 

the blue dots corresponds to the domestic ones. Source: Dinama.gub.uy (2016) 

Even though several industries count with WWTP’s, these do not adequately treat the effluent 

(according to the needed standards), and are responsible of discharging grater amount of organic 

loads and nutrients into water bodies, seriously polluting and compromising water quality. 

Pollution in Río Santa Lucía basin is one of the main concerns of the Uruguayan government 

and population, due to the fact that Santa Lucía River is one of the most important sources of 

drinking water and where the main drinking water treatment plant is located. As an example of 

problems arise, total phosphorus concentration in Río Santa Lucía basin has increased during 

the years, with values up 30 times higher than the required standards. Concentration of this 

nutrient in two main reservoirs in Río Santa Lucía basin is shown in Figure 3-3. In this particular 

subject, Uruguayan government has shown great concern and developed in 2013, an Action 

Plan to protect water of  Río Santa Lucía basin (MVOTMA, 2013), which embrace a more 

exigent control in industrial discharge of total nitrogen and phosphorus. 

 

 

Figure 3-3: Total phosphorus in Río Santa Lucía basin reservoirs throughout the years. Source: MVOTMA-DINAMA (2014) 
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Besides the problem of excess amount of nutrients in water bodies, most of industries are 

located in the south region of Uruguay, which is the densest one. Lack of space to build or 

upgrade WWTP in Montevideo city is a key matter. The capital city has around 1.5 million of 

inhabitants, and 80 industries registered in DINAMA, of which several but not all are located 

in the peri-urban area (Figure 3-2). Coexistence between population and industries is delicate, 

and presses the latter into embracing smaller footprints for their WWTP, deal with noxious 

odours to prevent unrest in neighbouring, etc.   

 

3.1.2. Worldwide dairy industry situation and in Uruguay: need to improve 

wastewater treatment plants 

According to IDF (2014), milk consumption has increase worldwide over the years, reaching 

in 2014 around 110 kg per capita per year (including fresh milk and dairy products, butter, 

cheese, milk powder, skim milk powder and others). Furthermore, this value rise up to 165 and 

270 kg per person per year in South America and Europe respectively.  

 

The top three industries regarding 2012 sales are located in Europe, two in France (Danone and 

Lactalis) which sum up represent around 32 billion euros in sale, and one in Switzerland 

(Nestlé) with sales that reach up 23 billion euros per year (Rabobank.com, 2016). Additionally, 

as stated by PMMI (2013), dairy market is part of the fastest market growing sector, and 

forecasts made for 2020 consider worldwide milk production of 827 million tons (compare to 

692 million tons in 2013). 

 

Dairy sector plays a key role in Uruguayan economy and it is one of the industrial sectors that 

generates more added value. Furthermore, in 2014 dairy exports represented around 8% of the 

total goods sales in Uruguay (Uruguay XXI, 2015). Overall, since 2012 milk productivity index 

has increase around 12%, value that reach to 60% when compare to 2007 data (Uruguay XXI, 

2015). In 2014, milk production in Uruguay was above 2,300 million litters, where the principal 

cause of production increase is due to an improvement of production per animal and surface 

area (DIEA, 2016). The growing milk production goes hand in hand with the increase in the 

price aid to the producer, which was USD 0.46 per litter of milk.  

 

High per capita consumption of milk in Uruguay was not enough for the offer to overcome the 

domestic market supply, what forced industries to expand exports, given the comparative 

advantages of the country (contrasting to some other Latin America countries) (Uruguay XXI, 

2015). Even though dairy exportations slightly decrease in 2014, it represented almost 800 

million dollars and above 200,000 tons of milk (Figure 3-4), data revealing the importance of 

this market in Uruguay. Most exports can be divided between 5 main dairy companies, where 

CONAPROLE stands out with 64% of the total exports (Uruguay XXI, 2015).  
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Figure 3-4: On the left, Tons of milk exported in Uruguay from 2004 to 2014, and its corresponding economic gain. On the 

right, milk exportations from Uruguay. Source: Uruguay XXI (2015). 

One of the main concerns regarding dairy industry in Uruguay is about its (treated) wastewater 

discharge. As shown in Figure 3-5, in Río Santa Lucía Basin is where the highest percentage of 

milk production in dairy farms, which is of main concern of Uruguayan government. Therefore, 

this industries are especially pressure by the government and population, to upgrade their 

wastewater treatment plants, minimizing discharges into water bodies.  

 

 

Figure 3-5: Percentage of milk production in dairy farms per police department, for the period 2010/2011. Source: (Uruguay 

XXI, 2015) 

According to Vourch, et al. (2007), dairy industry is among one of the most pollutants 

(considering volume) of food industries, producing between 0.2 to 1 L of wastewater per litter 

of treated milk. Furthermore, studies conducted in 11 dairy plants in France, show a water 

consumption between 800 to 3,400 m3/day, corresponding to 1.2 to 3.4 L of water consumed 

per litter of processed milk.   
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3.2. Technology selection: anaerobic wastewater 
treatment 

Anaerobic wastewater treatment was developed more than 100 years ago, and studied 

worldwide mainly due to the energy crisis in the 1970s (Henze, 2008). Anaerobic digestion is 

a process where microorganism break down material (digestion) in the absence of O2. 

Considering its process, digestion can be divided into four phases (Van Lier, et al., 2008):  

 Hydrolysis: enzymes convert undissolved matter into dissolved and less complex one, 

which can then pass through cell membranes. This process may be the slowest and 

bottleneck of all anaerobic digestion phases. 

 Acidogenesis: this is the fermentation step, where the small and dissolved matter from 

hydrolysis is taken by fermentative microorganisms and converted into volatile fatty 

acids (VFA), alcohols, lactic acid, CO2, among others.  

 Acetogenesis: step where digestion products are transformed into acetate, hydrogen (H2) 

and CO2. 

 Methanogens: methanogenic bacteria convert the latter compounds from acetogenesis 

into methane (CH4), CO2, and new cell material. 

 

Whilst anaerobic wastewater processes started to be important due to the energy crisis, they 

also have outstanding advantages over aerobic treatment technologies, such as (Van Lier, et al., 

2008): 

 around 90% less of sludge is produced, 

 up to 90% of smaller footprint needed, 

 high applicable organic loading rates (in comparison with aerobic processes), 

 production of methane (that can be transformed into energy) and reduction on overall 

energy consumption,  

 and none or very little use of chemicals.  

 

These pluses are counterbalance by the slow growth rates of some organisms (specially the 

methanogenic ones), and system complexity (Liao, et al., 2006). Morover, providing a long 

enough solids retention time (SRT) is key to the development of organisms and, organics 

effluent concentration achieved by anaerobic treatment is lower than the one achieved by 

aerobic ones. Additionally, anaerobic processes have two core limiting steps: hydrolysis and 

methanogensis. The first one is the limiting step for wastewater with high particulate content, 

and both strongly depend on temperature, pH, hydrolyzing concentration, toxicity, amount of 

nutrients and particulate organic type (Visvanathan and Abeynayaka, 2012). Last constrain 

conisder is that, overall, anaerobic treatments have a minimum nutrient removal, needing 

further treatment in case of water reuse (Visvanathan and Abeynayaka, 2012). 
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According to Van Lier, et al. (2008) a big share of agroindutrials wastewater is treated by 

anaerobic reactor systems in the Netherlands. In 2008, the total amount of registered scale 

installations of anaerobic high rate reactors reach to 2,226,  almost twice the amount of 

installations ten years before. High rate anaerobic systems are those in which hydraulic 

retention time (HRT) and sludge retention time (SRT) are uncoupled, allowing higher organic 

loading rates with smaller footprints (due to high biomass concentration and retention).  

Anaerobic granular sludge is one of the main pros for this type of reactor (Visvanathan and 

Abeynayaka, 2012). However, various industrial wasewaters characteristics, like high amount 

of suspended solids, high oil, fat and grease content, salinity, toxicity, flow variations, etc., may 

affect negatively the granular sludge formation and stability, worsen the performace of the 

anaerobic reactor (Visvanathan and Abeynayaka, 2012). Furthermore, according to Dereli, et 

al. (2012), changes in organic loading rates (OLR), high amount of fats, oil and grase (FOG), 

high temperature and amount of suspended solids (SS) are key drivers that hamper granular 

sludge development.  

 

3.2.1. Anaerobic membrane bioreactor 

Anaerobic Membrane Bioreactors (AnMBRs) were developed first in the late 1980s and are an 

excellent solution to alleviate the main disadvantages related with conventional high rate 

anaerobic treatment. AnMBR is biological treatment with membrane separation by 

microfiltration or ultrafiltration (MF or UF respectively) without oxygen (Henze, 2008, Liao, 

et al., 2006). Membranes are permselective materials, which implies that while wastewater (or 

any other flow) is passing through it, several compounds (physical, chemical and biological) 

are reteined by it, according to the pore size of the material. The flow that passes through the 

membrane is called the permeate, while the one rejected is the retentate (or concentrate).  

 

Wastewater can be categorized based on two features, concentration of consituents (e.g. 

wastewater with high concentration of organics is known as ‘strong’), and their particulate 

nature (solubable or particulate) (Liao, et al., 2006, Visvanathan and Abeynayaka, 2012). 

According to this, wastewater can be clasified into 4 categories,  as shown in Figure 3-6. 

 

 

Figure 3-6: Applications of AnMBRs to different types of wastewater modified from  Liao, et al. (2006). 
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Nowadays, the high strength soluble wastewater is well treated by high rate anaerobic reactors, 

especially UASB (Visvanathan and Abeynayaka, 2012). Hence, AnMBR application in this 

type of effluent is striking mainly in case water is reuse after treated. Additionally, AnMBRs 

used for low strengh effluents (quadrants III and IV of Figure 3-6) would also be necessary only 

when wastewater reclamation is inteended. However, this technology provides a suitable option 

for high strength flows, especially particulate ones, like dairy industry wastewater. This is due 

the fact that membrane allows the complete retention of partiulates and hence, a total 

degradation of slowly degraded compounds (Liao, et al., 2006). Several industries have an 

effluent corresponding with the characteristics of quadrant II, which makes them suitable for 

AnMBR treatment. From 2008 to 2009, the amount of articles on AnMBRs research for 

application in industries trebled, from 10 to 30 journal publications (Visvanathan and 

Abeynayaka, 2012), many of them, outstanding the posibilities and constrains of the 

technology.   

 

According to Liao (Liao, et al., 2006), one of the strongest point of AnMBRs is that they are 

able to completely retein biomass, which leads to smaller footprints and decouple the hydraulic 

and sludge retention time of the process. Other advantajes of this process are:  

 high quality treated effluent (permeate), clarified and lagerly free of pathogens, 

 operation at high values of MLSS (mixed liquid suspended solids), compare to 

processes like Activated Sludge (AS), 

 allowance to operate with high SRT, promoting an enhance treatment due to the growth 

of slow growing bacteria, 

 and reduction of sludge produced. 

 

Although AnMBR present several benefits, it also has two main drawbacks: larger process 

complexity, and higher capital equipment and operating costs (Henze, 2008). Additionally, 

membrane fouling represents one of the core tailbacks (Dereli, et al., 2012), reducing the flux 

due to setting of solid material onto the membrane surface and within its structure (Henze, 

2008). Membrane fouling depends on several variables, like influent characteristics, biomass 

propoerties, and reactor features and operation. According to several authors cited by Dereli 

(Dereli, et al., 2012), cake layer formation was identified as the most important fouling process 

for AnMBR. Furthermore, when AnMBR are used for treating industrial wastewater, membrane 

fouling do to inorganic compounds (like calcuim and phosphorus) tend to increase compare to 

the performance of MBRs.  

 

3.2.2. Reverse Osmosis for wastewater treatment 

Reverse Osmosis (RO) is a pressure driven process, based on the rejection of dissolved and 

particulate compounds in the feed water by a semi-permeable membrane (Malaeb and Ayoub, 

2011). It is able to remove smaller particles than ultra, nano or microfiltration, dissolved organic 

compounds, free atoms and small organic monomers, are shown in Figure 3-7.  
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Figure 3-7: Membrane separation processes. Source: Henze (2008) 

 

RO technology is widely use to obtain drinkable water from brackish and seawater 

(desalination), and for tertiary treatment of wastewater, due to the possibilities of reuse the 

treated effluent. Furthermore, according to Tanuwidjaja (2002), RO technology will be broadly 

used in industrial wastewater treatment to take over large conventional wastewater treatment 

systems.  

 

RO membranes are very permeable to water, but they are capable to retain dissolved substances 

and particulate compounds. By applying pressure, water that is in the feed flow passes through 

the membrane, and end up having less concentration of different composites. To overcome the 

feed side osmotic pressure, which will naturally lead into water flowing from the less 

concentrated solution into the more concentrated one, high feed pressure is needed, as shown 

in Figure 3-8. External pressure applied in RO is very diverse, and can vary from 15 bar 

(brackish water desalination) to 200 bar (landfill leachate treatment).  

  

 

Figure 3-8: Reverse osmosis. Source: modified from kandrwaterservice.com (2016).  
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Water that passes through the RO membrane is called permeate, and the one that does not is the 

concentrate. The relation between this two flows is entitled recovery, and it affects the passage 

and product flow. Additionally, as water permeates through the membrane and different 

compounds are rejected, the retained solutes gather on the membrane surface, gradually 

increasing their concentration. This phenomenon is called Concentration of Polarization and 

have numerous negative impacts on the RO performance (Fritzmann, et al., 2007), of which the 

main ones are: 

 salt and other compounds rejection decrease, leading to higher concentrations in the 

permeate (although this may not be a problem when the feed flow of the RO is pre-

treated by AnMBR), 

 precipitation of divalent ions on the membrane,  

 reduction of water flux as a result of higher osmotic pressure, 

 cake formation in the membrane surface due to particles accumulation.  

 

RO (and all membranes) have two main hydrodynamic conditions: membrane flux and 

transmembrane pressure. The first one is considered as the key parameter to assess RO 

performance (Liao, et al., 2006). Moreover, membrane fouling capacity (and foulants removal) 

have a direct relation with flux and a range for optimal and sustainable process conditions can 

be define. Furthermore, according to Lin, et al. (2013), flux across the membrane is one of the 

limiting factors for full scale application. On the other hand, transmembrane pressure (TMP) 

refers to the pressure differential through the membrane cell to obtain a certain flux. RO can be 

operated at constant TMP, where the flux is variable, or a constant flux variating the TMP. 

 

RO processes have some limitations that can be diminished when coupling this systems with 

membrane bioreactors. This drawbacks are not only regarding the increase of the osmotic 

pressure attributable to the effect of concentration of polarisation, but also by membrane 

deterioration and blocking (Fritzmann, et al., 2007). The former may well occur due to the use 

of some chemicals that harm the active layer, like oxidants or cleaning chemicals. Moreover, 

membrane surface type can be critical when evaluating their susceptibility to pH variation (like 

the polymeric ones, which are affected by high or low pH). 

 

Membrane fouling can be categorized into reversible and irreversible one, based on the cleaning 

practice. Furthermore, reversible fouling can be divided into two subcategories: removable or 

irremovable (Lin, et al., 2013). The latter corresponds with the fouling that has to be remove by 

adding chemicals, while the removable one only requires physical means (like backwash). The 

irreversible fouling is a permanent one, which cannot be eradicated by any means without 

damaging the membrane. Whilst these membrane fouling classification is widely approve, there 

is other way to classify the fouling types, included in a broader category called blocking.  

 

Membrane blocking is one of the primary limitations of RO (Bartels, et al., 2005), and can be 

divided into two main mechanism: fouling or scaling, shown in Figure 3-9. The former one is 

caused by supersaturation of inorganic compounds, which are concentrated on the feed side of 

the membrane. Furthermore, the downstream part of the RO in a cross flow type is the most 

prone to scaling, due to the increase of different compounds that cannot pass through the 
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membrane (Fritzmann, et al., 2007). The most often scaling substances when treating 

wastewater are calcium carbonate, silica and calcium phosphate (Bartels, et al., 2005). To 

alleviate this problem, the use of antiscalants and pH adjustments are common activities 

performed. 

 

 

Figure 3-9: RO membrane limiting factor mechanisms. Source: modified from Bartels, et al. (2005).  

   

Membrane fouling can also be categorize into three main kinds:  colloidal fouling, organic 

fouling and biofouling (Bartels, et al., 2005). The former type is one of the most frequent RO 

fouling when treating wastewater, but can be controlled by an adequate pretreatment, especially 

with ultrafiltration (UF) or microfiltration (MF) (Bartels, et al., 2005, Malaeb and Ayoub, 

2011). Particulate and colloidal matter may form a layer on top of the membrane and decrease 

significantly the RO performance. These process is known as cake formation. 

 

Biofouling is caused by microbial growth sticking in the feed side of the RO membrane, 

producing a layer that seems like a gel (Fritzmann, et al., 2007). This type of fouling causes 

lower permeability and higher pressure drops in RO membrane channels. As in colloidal 

fouling, having a pretreatment that reduce the amount of bacteria and microorganism is key to 

prevent and diminish biofouling of the RO membrane.  

 

Last but not least, organic fouling is mainly due to high concentrations of dissolved organic 

material present in wastewater. Beside a decrease in flux, adhesion of organic matter to the 

membrane enhance microbial growth due to the amount of nutrients present in the system, and 

therefore enlarge biofouling. While there are some measures that can be carried out to prevent 

and minimize all types of fouling, it can never be fully avoided. Hence, periodical cleaning of 

the membrane must be performed. According to Fritzmann (Fritzmann, et al., 2007), cleaning 

must be done when either the flow decrease by 10%, rejection increase 10% from the initial 

conditions in the first 48 hours of operation, or when pressure losses reach up to 15% in the 

feed channels.  
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3.3. System configuration  

Dairy industry wastewater is a strong high particulate wastewater, characterized by its high 

organic matter and FOG concentration, adequate to be treated by AnMBR. Taking into account 

that this type of industry consume a great amount of water (mainly for cleaning processes), 

reuse of treated wastewater for industrial purposes seems a solid option to pursue. Wastewater 

treatment with RO system allows to reuse the permeate flow for several purposes.  Moreover, 

according with numerous authors (Bartels, et al., 2005, Fritzmann, et al., 2007, Grundestam and 

Hellström, 2007, Xu, et al., 2010) when RO is couple with a previous step of ultrafiltration (UF) 

or microfiltration (MF), optimal process conditions can be achieve: minimal membrane fouling 

and best effluent quality.  

 

RO systems were mostly developed for desalination purposes. High conductivity of sea water 

leaded to apply high transmembrane pressure in order to be able to increase as much as possible 

the permeate flow, while having high salt rejection. However, when RO is used to treat 

wastewater, especially after a membrane pretreatment (AnMBR in this particular case), 

conductivity of the feed flow (permeate of AnMBR) is not as high as the one of seawater. 

Therefore, low pressure reverse osmosis systems (LPRO) are possible to apply, drastically 

reducing the energy consumption.  

 

3.3.1. Wastewater characterization  

Among different industrial effluents possibilities to analyse the efficiency of an AnMBR couple 

with RO system, dairy industry wastewater seems to be a perfect option. High rate anaerobic 

reactors (like UASB) have several difficulties when dealing with this effluent, mainly due to 

effluent fluctuation, high lipid content and high amount of suspended solids. Dairy industries 

produce a huge variety of products, and each one had and effluent with different 

characterization. Also, such properties are likely to vary from industry to industry. Furthermore, 

one of the main characteristics of dairy industries is flow variation, mainly due to seasonal, 

diurnal and hourly fluctuations. Several papers present considerable variations of this industrial 

wastewater (Andrade, 2011, Demirel, et al., 2005, Janczukowicz, et al., 2008, Multilateral 

Investment Guarantee Agency, 1996). Nevertheless, similar characteristics and proportions 

amongst parameters can be detected, enabling the definition of a reasonable wastewater 

constitution. 

 

According to Andrade (Andrade, 2011), the main constituents of the dairy industry effluent are: 

proteins, carbohydrates, lactose, fats, suspended solids, nitrogen, phosphorus and inorganic 

pollutants. Besides such parameters the following might also be present in this wastewater: 

detergents, disinfectants and some compounds used in cleaning, oil and lubricants from 

machinery and domestic sanitary sewage. Between all parameters mentioned, the ones that 

define the reactor characteristics and efficiency (main ones) are: biological and chemical 

oxygen demand (BOD and COD respectively), total suspended solids (TSS), volatile suspended 

solids (VSS), pH, fats, oils and grease (FOG), alkalinity, total phosphorus, and total Kjeldahl 

nitrogen (TKN). Values of this parameters are shown in Table 3-1 and 3-2. 
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Table 3-1: Dairy industry wastewater characterization. Source: Janczukowicz, W et al (2008)  

 
 

Table 3-2: Dairy industry wastewater characterization. Source: Demirel, B, et al (2005)  

 
In what denotes to pathogens, not mentioned in previous references, dairy effluent may contain 

organisms prevenient from production process (Multilateral Investment Guarantee Agency, 

1996), even though no information regarding possible pathogens concentration in dairy industry 

effluent was found. Since permeate from the RO is likely going to be reuse for industrial 

processes, pathogen analysis in the treated effluent is key parameter to consider.   

 

3.3.2. Legislation of treated wastewater reuse 

Several drivers can be found for treated wastewater reuse, like increasing water prices, water 

scarcity, and strict environmental regulations for wastewater discharge among others. 

Wastewater reuse for agricultural purposes is worldwide studied and a variety of standards, 

guidelines and recommendations can be found for this purpose. According to Kramer and Post 

(NY), three central criteria should be analyse when reusing treated wastewater for irrigation: 

salt concentration, heavy metals and dangerous organic compounds, and health safety. 

Furthermore, World Health Organisation (WHO) developed in 2006 wastewater reuse in 

agriculture guidelines entitled: “Guideline for the safe use of wastewater, excreta and 

greywater” (World Health Organization, 2006).  
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Even though vast standards and recommendations can be found for wastewater reuse in 

agricultural, limited information is available for industrial purposes reuse. Industrial processes 

are very diverse and water may be use differently, like cleaning and cooling (among others). 

Hence, treating wastewater for industrial reuse purpose requires to be tailored according the 

particular applications (Hoinkis, et al., 2012).  

 

World Health Organization (2006) and FAO (Ayers and Westcot, 1985) developed guidelines 

for wastewater reclamation in agricultural purposes, restricting wastewater reuse according to 

the crop type, in none, moderate and severe restrictions in wastewater reuse. Figures 3-10 and 

3-11, shows a summary of some restrictions for wastewater reuse in agriculture by WHO and 

FAO.  

 

 

Figure 3-10: WHO guidelines for using wastewater in agriculturea. Source: (Kramer and Post, NY). 
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Figure 3-11: Guidelines for interpretation of water quality for irrigation. SAR corresponds to Sodium adsorption ratio and 

ECw electrical conductivity. Source: (Kramer and Post, NY). 

 

Particularly in Uruguay, treated wastewater for industrial purposes must cope with the drinking 

standards. Sanitary Works of the State public company (OSE), is the state agency responsible 

for supplying drinking water and sanitation to all the country (but Montevideo department), and 

is also in charge of stablishing the require standards for drinking water. Applied standards 

undertaken by OSE are regarding what it is stablished by Uruguayan Institute of Technical 

Standards (UNIT) (2010), which is based on WHO recommendations. Most important 

parameters and allowable values are presented in Table 3-3. Therefore, permeate parameters of 

the RO system must be compare to the values given by UNIT 833:2008.  
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Table 3-3: Uruguay most important parameters for drinking water with their corresponding maximum allowable values. 

Source: UNIT 833:2008.  

Parameter Standards  Units 

Total Coliforms Absence in 100 ml c.f.u/100ml 

Faecal Coliforms Absence in 100 ml c.f.u/100ml 

Pseudomonas aeruginosas Absence in 100 ml c.f.u/100ml 

Heterotrophic 500 c.f.u/ml 

Enterococci Absence in 100 ml c.f.u/100ml 

Clostridios sulphate reducers Absence in 100 ml c.f.u/100ml 

Colour 15 Esc.Pt-Co 

Conductivity (at 25°C) 2000 μS/cm 

Odour Absence - 

Taste Absence - 

pH 6.5-8.5 uPH 

Turbidity 1 NTU 

Ammonia 1.5 mgNH4/L 

Arsenic 0.02 mgAs/L 

Chlorides 250 mgCl/L 

Hardness 500 mgCaCO3/L 

Fluoride 1.5 mgF/L 

Iron 0.3 mgFe/L 

Manganese 0.1 mgMn/L 

Mercury 0.001 mgHg/L 

Nitrate (NO3
-) 50 mgNO3/L 

Nitrite (NO2
-) 0.2 mgNO2/L 

Lead 0.03 mgPb/L 

Sodium 200 mgNa/L 

Total dissolved solids 1000 mg/L 

Sulphate 400 mgSO4/L 

Zinc 4 mgZn/L 

Cyanide 0.07 mgCN/L 

Sulphide 0.05 mgS/L 

Total Chromium 0.05 mgCr/L 
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CHAPTER 4  

Materials and methods 
 

 

4.1. RO setup 

4.1.1. Pretreatment step: AnMBR 

A bench-scale AnMBR is coupled to an RO flow cell at the laboratories of Biothane, located in 

Delft, Netherlands. AnMBR systems are marketed by Biothane, under the trade name 

Memthane® (www.Veoliawatertechnologies.com). The bench scale AnMBR system consists 

of an anaerobic continuously stirred tank reactor (CSTR), with a volume of 10L and mechanical 

mixers. The CSTR is connected to a tubular inside out ultrafiltration (UF) membrane of 3 

meters, operated under cross-flow mode. The UF membrane consists of polyvinylidene fluoride 

(PVDF).  

 

The AnMBR-RO system is evaluated using synthetic dairy industry wastewater as feed flow. 

Permeate from the AnMBR is drawn from the membrane column by a pump, allowing (and 

controlling) a certain flux through the membrane. Sludge retention time and cross flux of the 

AnMBR are 20 days and around 10 Litters per hour and square meter of membrane (lmh) 

respectively.  

 

To the date, two bench-scale Memthane® reactors are set-up in Biothane’s laboratory, and 

operating with synthetic dairy industry wastewater (diluted milk and macro nutrients). These 

systems, are operated by PhD student Alejandra Szabo, for achieving stabilised conditions prior 

to coupling to the LPRO system, using AnMBR permeate as the feed of the latter. AnMBR 

setup is shown in Figure 4-1. 
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Figure 4-1: AnMBR laboratory scale setup. Source: Biothane. 

 

4.1.2. Experimental set up 

RO system is a cross flow membrane flow cell, developed by STERLITECH. The cell is 

designed to evaluate RO membranes and simulates the flow dynamics of larger, commercially 

available membrane elements, such as spiral wound membrane elements. The material is 

stainless steel, and it is able to handle a maximum pressure of 69 bar (1,000 psi) and 88°C. 

Figure 4-2 shows the RO parts and different components.  

 

 
Figure 4-2 A 
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Figure 4-2: Figure A, system parts to be assemble. Figure B, suggested set up according to manufacturer.  

 

Features and technical specifications of the RO cell are presented in Table 4-1. Apart from the 

membrane constituents, other components need to be installed. The main ones are: feed pump 

and tank, filtration membrane pack, conductivity meter, and permeate retention tanks. Due to 

the fact that there is few literature about AnMBR and RO coupling for industrial wastewater 

treatment, there is no information regarding optimal flux or applicable Net Driving Pressure 

(NDP). While these parameters are key for the membrane performance, they must be identify 

regarding the type of membrane that will be used.  
  

Figure 4-2 B 
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Table 4-1: CF042SS RO membrane specific characteristics. Source: modified from STERLITECH Corporation (NY) and 

Sterlitech.com (2016) 

Parameter  Description 

Membrane Active Area  42 cm² (6.5-inch²) 

Maximum Pressure  69 bar (1000 psig) 

Maximum Temperature  80 °C (190 ºF) 

O-rings:  Viton (Other materials available) 

pH Range:  Membrane Dependent 

Cross Flow Velocity  0.1 - 0.5 m/s 

CF042SS  Stainless Steel 

Dimensions  

  Slot depth 2.28 mm (0.09 inches) 

  Slot width 39 mm (1.54 inches) 

 Active Membrane Area 42 cm2 

 O-Ring Buna-N or Viton 

 Outer Dimensions 12.7 x 10 x 8.3 cm 

 Active Area Dimensions 9.207 x 4.572 cm 

 Membrane Support 20 µm Sintered Stainless Steel 

 Hold-Up Volume 17 mL 

 

 

Laboratory scale AnMBR (Memthane®) is coupled with a LPRO, and the experimental setup 

and lab scale set up are shown in Figure 4-3 and Figure 4-4 respectively.  

  

 

Figure 4-3: Experimental setup. 
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Figure 4-4: Experimental laboratory scale setup in Biothane.  

Considering the system set-up, the LPRO should run at constant feed flow and Net Driving 

Pressure (NDP), variable cross flow velocity, normalized flux and recovery. These are key 

parameters to identify fouling potential of treating AnMBR permeate with RO systems.  

 

4.1.3. Membrane and spacers chose 

A vast variety of membranes can be chosen, considering the type of water to be treated and 

desire rejection (removal efficiency). Among the most known brands, Dow Filmtec™ is widely 

used. For this particular research, three different types of membranes were bought, but only one 

used. Membrane characteristics and rejections, according the type of feed wastewater are 

presented in Table 4-2. Two Dow Filmtec™ membrane are bought: one for sea water and one 

for brackish water, with similar operational conditions but maximum allow pressure of 83 for 

the first one and 41 for the second one. Additionally, a Toray™ membrane for brackish water 

is also bought. This have similar characteristics than the Dow Filmtec™ for brackish water. 
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Table 4-2: Membrane specifications and operating conditions. Sources: (DOW-FILMTEC, 2017), (Toray.com, 2017), 

(Sterlitech.com, 2017)  

Series 

Dow Filmtec™  

Flat sheet 

membrane 

SW30XLE 

Dow Filmtec™  

Flat sheet 

membrane 

BW30XFR 

Toray™  

Flat sheet 

membrane 

73AC 

Feed Seawater Brackish water  Brackish water  

Type Extra Low energy 

Fouling 

resistant, extra 

low energy 

High rejection, 

low energy, Cl 

resistant 

pH range (25°C) 2 - 11 2 - 12 2 - 11 

Cleaning pH range 1 - 13 1 - 13 1 - 13 

Maximum feed temperature 45 °C 45 °C 45 °C 

Design flux range , maximum flux (lmh) 13-20 (24) 13-20 (24) - 

NaCl rejection (%) 99.5 99.7 99.8 

Maximum Feed Silt Density Index SDI <5 SDI <5 SDI <5 

Maximum operating pressure (bar) 83 41 41 

Polymer Polyamide Polyamide Polyamide 

 

Dow Filmtec™ BW30XFR is the membrane used for the research trials, due to the fouling 

resistance, low energy, literature available and worldwide use. 

 

Besides membrane type, spacers are used in flat sheet membranes to simulate spiral wound RO. 

According to Bucs, et al. (2014), spacers have a crucial role in spiral wound RO systems, 

keeping membranes away from each other and enhancing fluid mixing. Feed spacers may be 

classify according to: space between spacer filaments, angle of the filaments, flow angle, and 

the spacer thickness (Li, et al., 2002). Geometry corresponding to five commercially available 

spacers were bought by Biothane, but only one was used for this research. Four different spacers 

thickness are contemplated: 17, 31, 47 and 61 mil (1 mil = 25.4 μm), and two different filaments 

angles: diamond and parallel (Figure 4-5).  

 



 28 

 

     
 

   

Figure 4-5: Spacers type available for the research. From left to right and top to bottom: 17 mil diamond, 31 mil diamond, 

47 mil diamond, 65 mil diamond, and 47 mil parallel.  

 

The chosen feed spacer is the one of 31 mil and diamond shape. This spacer is considered low 

foulant, and used in several researches (Bucs, et al., 2014, Farhat, et al., 2016, Li, et al., 2002, 

Vrouwenvelder, et al., 2009a, Vrouwenvelder, et al., 2009b).  

 

4.1.4. Pumped feed flow   

Feed is pumped into the RO by a Hydra-Cell positive displacement pump (Appendix A) with 

performance characteristics according to what is shown on Figure 4-6. The system can work at 

a frequency range from 2 to 20 Hz (corresponding to speeds from 100 to 1750 rpm 

respectively), and for pressures between 6.9 to 69 bar. Considering the overall pump workable 

frequencies, the desire applied frequency will be between 10 to 15 Hz (600 - 900 rpm), to keep 

settings around the middle of the working pump rate. In this conditions, the feed flow should 

be between 2.5 and 3.5 L/m. If smaller cross flows are needed compare to the ones achieved at 

10 Hz, due to membrane resistance, then a bypass needle valve is used, and a share of the flow 

is recirculated to the feed vessel. 
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Figure 4-6: Pump performance for different given pressures. In between the red dots lines is the desire working frequency of 

the laboratory scale reactor.  

As said by the pump manufacturer, suction line should be one size larger than the pump inlet 

(12.7 mm), and inlet velocity should not exceed 0.9 m/sec, in order to avoid cavitation and 

undesired head losses. Considering the inlet tube diameter (12 mm), then frequencies equal and 

below 10 Hz ensure an inlet pump velocity below 0.9 m/sec.  

 

4.1.5. Cross flow velocity 

According to the manufacturer, cross flow velocities should be between 0.1 to 0.5 m/s, but on 

average, systems are design to operate al velocities between 0.1 to 0.2 m/s (Vrouwenvelder, et 

al., 2011). Bearing this in mind and the flows given by the pump between 10 and 15 Hz, 

calculations were conducted to find out if there is the need to bypass a share of the feed flow in 

order to ensure cross flow velocity range. The calculations for the velocities are based on 

findings of Vrouwenvelder, et al. (2009a) and shown in the equation below , where Q is the 

feed flow at the membrane module, h is the flow channel height, w its width and ε the feed 

spacer porosity, established as 0.85 (Vrouwenvelder, et al., 2009b). 

𝑣 =
𝑄

ℎ𝑤𝜖
                               (1) 

Considering a cross flow velocity between 0.1 and 0.5 m/s, feed and bypass flows per pump 

frequency were calculated.  

 

4.1.6. Safety considerations 

Even though the system is operated as a batch process, during working hours (maximum 8 

hours per day) to minimize possible pressure problems, there are several issues that may arise. 

The pump can run at pressures between 6.9 to 69 bars, but it is operated at pressures below 30 

bar (435 psi).  Therefore, a pressure relief valve is installed in the pump, allowing a maximum 
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pressure of 24.3 bar. However, pressure is not the only critical share from the whole system 

regarding safety concerns, and problems related to leakages or high pressure must be considered 

to avoid further complications and risky procedures. Two PVC plates located around the pump 

and the RO cell, protects the user in case of any inconvenient. Furthermore, the pump is placed 

on top of rubber to prevent its movement.  

 

Frequency may vary from 2 to 29 Hz (100 to 1750 rpm) and the desire one is below 15 Hz. To 

do this, a frequency meter is installed. The device is located near the pump but the furthest away 

from liquids, to prevent any electrical cut off. Additionally, an acrylic plate is installed around 

the RO cell (as shown in Figure 4-7). This helps to prevent liquid leakages outside a secure 

area, where the system runs at high pressure. Acrylic (Plexiglas) is used as a lid due to its 

characteristics: transparency, lightweight, high impact resistance, good chemical resistance, 

among others.  

 

 

Figure 4-7: System configuration location sketch. 

According to pump manufacturer, the feed vessel should be able to cope with twice the flow at 

which the pump is working. Considering the pump performance, the feed flows is below 

4 L/min, leading to a feed vessel that needs to be able to handle 8 L/min. This recommendation 

is to avoid pump cavitation. Hence, an air tight feed vessel of 20 L is considered for running 

the experiments Taking into account a working frequency between 10 and 15 Hz, then the inlet 

velocity will be around 0.8 m/sec regardless the system pressure.  

Besides working pressure, one of the main concerns regarding the system is the heating of the 

feed line due to the pump. To prevent it, a coil cooling system is mounted in the concentrate 

line (as shown in Figures 4-3 and 4-7). Calculations of the stainless steel coil have been 

conducted considering worst case scenarios, which led to have 30 m length of cooling pipe.      

Finally, and emergency button is located near the frequency meter. This will allow the user to 

cut off all energy to the system, avoiding further complications in case something goes wrong. 
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It is important to highlight that the emergency bottom is located close enough to the system and 

easy to reach, to minimize possible negative outcomes.  

 

4.2. Experimental analysis 

4.2.1. Sampling points 

Three main sampling points are defined and located in the feed, permeate and concentrate flows 

of the RO. Taking into account that the main driver of applying RO systems to AnMBR 

permeate is to reuse the treated effluent for industrial purposes, identify the membrane fouling 

potential, and the concentrate reuse possibilities, different parameters and sampling frequency 

will be measure in each flow.  

 

To begin with, AnMBR permeate (initial RO feed) must be analysed in detail to assess the 

possibility of using it as a RO feed, bearing in mind the fouling capacity of the system. Hence, 

several parameters must be measured, where the most critical ones are the Silt Density Index 

(which should be below to 5 in order to be able to use RO systems according to Fritzmann, et 

al. (2007)), bacteria count, ion composition (to assess scaling potential), total dissolve solids 

(and conductivity), and total solids (TS). Measurements performed on the RO feed (AnMBR 

permeate) are done only once, due to the system setup characteristics, where concentrate stream 

is recirculated into the feed vessel, as described in previous section (Figure 4-3).   

 

Furthermore, based on parameters measured by Fritzmann, et al. (2007), master thesis of 

Azadeh Rahimpour (2015) and María Cecilia Ceiter Techera (2016) (who evaluated an AnMBR 

for the treatment of pot ale and MBR for a brewery factory, respectively), key parameters to be 

measured in the concentrate and permeate flows of the system were defined, and shown on 

Table 4-3.   
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Table 4-3: Suggested analysis parameters and sampling frequency per batch test.  

Parameter 
Sampling frequency per stream 

Analysis Location 
Feed Permeate Concentrate 

pH Once Once per day Hourly Biothane 

Temperature Once Once per day Hourly Biothane 

COD Once Three times per week Daily Biothane 

TSS/VSS Once -- -- UNESCO-IHE 

TS/VS Once Three times per week Daily Biothane 

VFA Once Three times per week Daily Biothane 

TKN Once Three times per week Daily Biothane 

NH4
+ -N Once Three times per week Daily Biothane 

TP Once Three times per week Daily Biothane 

PO4-P Once Three times per week Daily Biothane 

Alkalinity Once Three times per week Daily Biothane 

TDS* Once Once per day Hourly Biothane 

Conductivity* Once Once per day Hourly Biothane 

E Coli Once Once Once UNESCO-IHE 

Anions (Cl-, NO3
-, SO4

-, HCO3
-) Once Twice per week Twice per week External Laboratory 

Cations (Ca2+, K+, Mg2+, Ba2+, Na+) Once Twice per week Twice per week External Laboratory 

PSD Once -- -- TU Delft 

Particle count Once -- -- UNESCO-IHE 

Silt density Index (SDI) Once -- -- UNESCO-IHE 

Modify Fouling Index (MFI) Once -- -- UNESCO-IHE 

Bacteria count Once Once Once a month UNESCO-IHE 

CaCO3 Langelier Saturation Index 

(LSI)  
Once -- -- UNESCO-IHE 

*TDS and Conductivity are measured together.      
** This parameters are outsourced to an external lab.      
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Moreover, four more parameters will be measured to identify membrane performance, fouling 

potential, and assess the applicability of this particular system configuration. These parameters 

will be used to calculate flux and normalized flux, net driving pressure (NDP), recovery and 

permeability, key aspects to understand fouling potential. A list of the main analysis required 

to evaluate the RO fouling prospective are shown in Table 4-4.  

Table 4-4: Suggested parameters and sampling frequency to evaluate RO performance 

Parameter Frequency 

Bypass flow Every 5 minutes 

Feed Pressure Every 5 minutes 

Concentrate pressure Every 5 minutes 

Volume of permeate produced Every 5 minutes 

 

 

Based on these parameters, equations for flux, normalized flux, NDP, recovery and 

permeability are shown below (Water Environment Federation, 2006). 

 𝐽 =
𝑄𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐴𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
      (2) 

  𝐽20 = 𝐽 × 𝑒[ −0.032×(𝑇𝑒𝑚𝑝−20)]    (3) 

𝑁𝐷𝑃 = 𝑃𝑓𝑒𝑒𝑑−
𝑃𝑓𝑒𝑒𝑑−𝑃𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒

2
− 𝑃𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒 − ∆𝜋    (4) 

𝑅 =
𝑄𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝑄𝑓𝑒𝑒𝑑
× 100     (5) 

𝐾 =
𝐽

𝑁𝐷𝑃
      (6) 

 

Where J is the flux, Qpermeate is the permeate flow, Amembrane is the total area of the system, J20 

is Normalized Flux at 20°C, P indicates pressure (feed, concentrate or permeate), Δπ represents 

the change in osmotic pressure, R is the recovery and K the permeability. 

 

 

4.2.2. Analysis 

 

Wastewater characterization  

Table 4-5 presents the analysis for wastewater characterization carried out, the standard 

measuring method and range if applicable. In several cases, Standard methods for the 

examination of water and wastewater were used (APHA, et al., 2005).  
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Table 4-5: Standard measuring method by parameter.  

Parameter 
Standard measuring 

method 
Test ID and range 

pH HACH pH meter   

Temperature HACH temperature meter 0 - 60°C 

COD HACH Lange 

914, 5-60 mgO2/L 

514, 100-2000 mgO2/L 

014, 1000-10000 mgO2/L 

TSS/VSS 
Standard methodology by 

gravimetric analysis 
  

TS/VS 
Standard methodology by 

gravimetric analysis 
  

VFA 
Quantitative determination 

by gas chromatography 
  

TKN 

Quantitative determination 

by chemical decomposition, 

distillation and titration 

  

NH4
+ -N 

Quantitative analysis by 

distillation and titration 
  

TP HACH Lange 350, 2-20 mg PO4-P/L 

PO4-P HACH Lange 350, 2-20 mg PO4-P/L 

Alkalinity 
Standard methodology by 

centrifuge and titration 
  

Conductivity* HACH Conductivity meter 0.01 μS/cm-200mS/cm 

E Coli 
Standard methodology by 

plate count 
  

Anions (Cl-, NO3
-, SO4

-, HCO3
-) External Lab (IC and ICP)   

Cations (Ca2+, K+, Mg2+, Ba2+, Na+) External Lab (IC and ICP)   
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Particle Size distribution and Particle count  

Particle Size distribution is measured in TU Delft using a Blue Laser Diffraction Particle Size 

Analyser (BLUEWAVE), with a measuring range between 0.01 to 2800 μm. This technology 

use three different types of lasers (one red and two blue) in order to recognize particles below 

1 μm. When measuring AnMBR permeate (RO feed), approximately 200 mL of sample is 

needed in order to perform the analysis. Furthermore, particles are considered as absorbent or 

transparent, and with irregular shape, and flow is set up in 30%. Additionally, Bluewave 

performs three runs with the same sample, and gives results of particle size distribution of each, 

and an average one conducted based on the three distributions found before. 

 

Particle count is measured in UNESCO-IHE Laboratory using Crystalline Particle Viewer 

(PV), which combines temperature and turbidity measurements with real time particle imaging 

(Crystallizationsystems.com, 2017). Crystalline PV counts particles from 2 to 200 μm passing 

through a define window in 5 seconds, and gives the total particle count per size (from 2 to 200 

μm). For this particular case, samples were stirred and measure for 20 minutes.  

 

Bacteria count 

Bacteria is quantify using flow cytometry, discriminating between the total and the intact cell 

share by staining the sample and then analysing it using BD Accuri™ C6 software. In flow 

cytometry, particles and suspended cells pass through a pulsed beam of laser light, and two 

lasers, two scatter detectors, and four fluorescence collect the signal and digitalize them for 

computational analysis (Gatza, et al., 2013). Furthermore, by adding to the sample two different 

kinds of dyes: SYBR® Green I and Propidium iodide (PI), total bacteria count of damage and 

intact cells can be differentiate from the intact one. The first dye stains double–stranded DNA, 

and when excited by a certain electromagnetic wavelength emits red and green light, enable the 

count of total amount of bacteria. PI fixes to DNA and RNA in cells that lost membrane integrity 

(damage cells). Hence, when a damage cell is stained with PI, no light is emitted.  

Since the device was design to work in a range of 102 to 107 cell/mL, concentrate and feed 

samples were diluted 200 times, and  permeate was measured with no dilution needed (500μL).   

 

 

Figure 4-8: On the left, BD Accuri™ C6; on the right, and example of visualization of bacteria count. Source: Gatza, et al. 

(2013) 

SDI and MFI 
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Silt density index and modify fouling index are measured in UNESCO-IHE laboratory. They 

are performed to characterize fouling potential of feed water, were desire SDI values are 

generally below 3. AnMBR permeate is passed through a membrane of 0.45 μm pore size and 

at a pressure of 210 kPa (2.1 bar). Weight of volume of feed passing through the membrane is 

recalled over time in order to calculate the parameters, where the decay in filtration rate (SDI) 

is stated as a percentage per minute, according to the equation below, where Δt are the time 

needed to collect the first and second fixed volume ΔV, T=T is the time when the second volume 

is starting to be collected, an T=0 the start of collection of the first volume.  

 

𝑆𝐷𝐼 =

∆𝑉

∆𝑡 𝑇=0
−

∆𝑉

∆𝑡 𝑇=𝑇
∆𝑉

∆𝑡 𝑇=0

×
100

𝑇
                              (7) 

 

 

Figure 4-9: SDI and MFI  

Since one of the main issues when measuring SDI in effluents of MF and UF (like the AnMBR 

permeate), is that values are relatively high, MFI was developed. It is define as the minimum 

value of the slope in the graph t/V versus V, during cake filtration.  

𝑀𝐹𝐼 =
𝜂×𝐼

2×𝑃×𝐴2
                                (8) 

 

η refers to viscosity at 20°C, I is the fouling index, P is pressure set as 200 kPa and A is area of 

13.8x10-4m2.  
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4.3. Experimental methods 

Three main phases are defined: the start up, with no membrane and demineralized water, Phase 

1 with membrane and demi-water keeping aerobic conditions, and finally, the trials with 

AnMBR permeate as feed. In the first one, the main objective is to evaluate system safety and 

pump characteristics. The second one is performed to assess the system when working with 

demi-water an aerobic conditions. Finally, phase 2 is the core of the research, and permeate and 

concentrate characteristics apart from the operational conditions of the system are studied.  

 

4.3.1. Phase 0: Start up with demineralized water and no membrane. 

- Pump is started at a Frequency of 2 Hz (minimum frequency). System leakages and 

pressure build up are assess, while feed flow is being measured. This procedure is 

repeated for 5, 7, 10, 15 and 20 Hz.  

- Real values of feed flow given by the pump are analysed and compare to the ones given 

by pump manufacturer.  

 

4.3.2. Phase 1: Trials with demineralized water and membrane, keeping aerobic 

conditions   

- The system is tested for 5 and 10 Hz, considering that the maximum cross flow velocity 

should be below 0.2 m/s.  

- Real feed flows with membrane are calculated and compare to values obtained in Phase 

0.  

- Pressure build up, recovery, temperature and valve configuration are evaluated.  

 

4.3.3. Phase 2: Trials with AnMBR permeate as feed and membrane, keeping 

anaerobic conditions  

- Considering the feed values obtained from Phase 1, the system is ran at 10 Hz, and with 

assume constant feed flow. 

- Volume of permeate, pressure in feed and concentrate lines, bypass flow and 

temperature are recorded every 5 minutes. 

- Temperature, pH and conductivity of concentrate is measured every hour, and once a 

day in permeate produced.  
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CHAPTER 5  

Results and discussion 
 

This chapter comprehends a detailed description of outcomes obtained, evaluation and 

discussion of them. They are presented considering the specific objectives, and an assessment 

is conducted keeping in mind research questions.  

 

Results include RO feed and its complete characterization, focusing on the differences in 

particle count and size distribution when the feed is kept anaerobic versus aerobic conditions. 

Furthermore, AnMBR permeate is evaluated as RO feed, and operational conditions when 

performing trials are detailed.    

 

Finally, concentrate and permeate concentrations from RO system, ions, pH, etc., are presented 

and assess for reuse possibilities. 

 

5.1. RO feed characterization  

RO system is utilized as a second step of synthetic dairy industry wastewater treatment. Whilst 

this latter has a wide variation regarding the products made (milk, cheese, etc.), for this 

particular research, diluted milk plus macro nutrients (Ca, Mg and K) and Vithane® (micro 

nutrients) are used as feed of an AnMBR (Appendix B: Vithane characteristics). Hence, 

permeate of AnMBR treating synthetic dairy wastewater is used as RO feed. AnMBR chose 

works at mesophilic conditions (around 36 °C), 20 days SRT, flux around 10 lmh, volumetric 

load rate of 5 gCOD/Lday, and permeate production of approximately 4 L per day. The system 

is started at mid-November and Figure 5-1 shows the AnMBR system in Biothane.  

 

    

Figure 5-1: AnMBR set-up in Biothane. 
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Due to system characteristics, approximately 3 SRT are needed to ensure stable conditions 

(Dagnew, et al., 2011). Therefore, RO feed characteristics are assess from 1st of January on, 

even though, RO batch tests with AnMBR permeate are started on the 15th of February, after 

accumulating permeate for 3 days (14.77 L). Permeate storage is changed from aerobic to 

anaerobic, and measurements were done bearing in mind that they should be as anaerobic as 

possible.  

 

      

Figure 5-2: On the left, the new anaerobic accumulation vessel; on the right, the previous accumulation and feed buckets of 

AnMBR.  

Hence, Tables 5-1 and 5-2 show RO feed characteristics of the volume accumulated in the 

anaerobic vessel between the 13th and 15th of January. With values of parameter found and 

average values of AnMBR feed, removal efficiencies are calculated. Furthermore, even though 

feed characteristics for RO system are analysed ones due to the fact that all trails are going to 

be conducted with the same initial feed that will get concentrated, AnMBR permeate is analysed 

several times, and standard deviation is calculated from data of 1st of January on.   
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Table 5-1: RO feed wastewater characteristics and AnMBR removal efficiencies. 

Parameter Unit Value Standard Deviation 

AnMBR 

removal 

efficiencies  

pH - 7.3 - - 

Conductivity mS/cm 3.48 - - 

TCOD mg/L 58.7 35 99% 

TS mg/L 2073 121 66% 

VS mg/L 740 100 86% 

TSS mg/L 30 0 99% 

VSS mg/L 0 0 100% 

VFA meq/L 0 0 100% 

TP mg/L 30.4 2 - 

PO4-P mg/L 30.2 2 0% 

TKN mg/L 216 21 21% 

NH4-N mg/L 191 30 - 

Alkalinity meq/L 31.5 7 Build up 

MFI s/L2 210 - - 

SDI - 3 - - 

CaCO3 Langelier 

Saturation Index (LSI) 
- 0.86 - - 

Intact Bacteria count Events/mL 26,000,000 - - 

Table 5-2: RO feed anions and cations 

Cations mg/L Anions mg/L 

NH4
+ 179 Cl- 220.0 

Al3+ 0.0098 SO4
- 12.9 

Na+ 400 HCO3
- 2196 

K+ 106 NO3
- <6 

Ca2+ 92.2 PO4
- 31 

Mg2+ 31.6   

Ba2+ 0.0208   

Mn2+ 0.012   

Fe2+ 0.055   

Sr2+ 0.17   
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In light of AnMBR removal efficiencies obtained, RO feed characteristics are according to what 

is expected (Demirel, et al., 2005). Since the system is kept anaerobic, no nitrification or 

biological phosphorus removal is expected, due to the fact that the system is not only not design 

for phosphorus and nitrogen removal, but also because this processes are aerobic ones. Thus, 

nutrients removal efficiency is extremely low for this kind of systems, and in this particular 

case, it corresponds to 0 and 21 percent for orthophosphate and Total Kjeldahl Nitrogen 

respectively. Moreover, total solids removal is quite low (66%), while the one for suspended 

solids reaches almost 100%. When analysing conductivity and TS values of AnMBR permeate, 

it can be concluded that almost all solids are presented as dissolved ones, since a conductivity 

of 3.52 mS/cm corresponds to a total dissolved solids (TDS) of around 2,000 mg/L. 

Conductivity and TDS are comparable in diluted samples, with a comparison factor between 

0.5 to 0.7 (Walton, 1989). Some dissolved solids are able to pass through ultrafiltration 

membrane, and are found in AnMBR permeate.  

 

AnMBR pH is controlled and in a range around 7.1. Furthermore, its permeate pH is 7.3, which 

leads to assume that all alkalinity is presented mostly as bicarbonate, as shown in Figure 5-3.  

 

 

Figure 5-3: Alkalinity and pH diagram. Source: Chardonlabs.com (2016) 

 

Feed alkalinity of AnMBR is zero, but anaerobic processes build up alkalinity, due to anaerobic 

digestion. McCarty developed a stoichiometric equation for the overall conversion of organic 

matter to methane, cited by Pavlostathis and Giraldo-Gomez (1991) and shown below: 

𝐶𝑛𝐻𝑎𝑂𝑏𝑁𝑐 + (2𝑛 + 𝑐 − 𝑏 −
9𝑠𝑑

20
−

𝑒𝑑

4
) 𝐻2𝑂 →

𝑑𝑒

8
𝐶𝐻4 + (𝑛 + 𝑐 −

𝑠𝑑

5
−

𝑑𝑒

8
) 𝐶𝑂2 

+
𝑠𝑑

20
𝐶5𝐻7𝑂2𝑁 + (𝑐 −

𝑠𝑑

20
) 𝑁𝐻4

+ + (𝑐 −
𝑠𝑑

20
)𝐻𝐶𝑂3

−
     (9) 

 

Where d = 4n + a – 2b – 3c; s = fraction of waste converted to cells; e = fraction of waste 

converted to methane gas for energy (s + e = 1), CnHaObNc is an empirical formula of waste 

being digested, and C5H7O2N is the empirical formula for bacteria dry mass. 
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High values of ammonium, sodium, potassium, calcium, magnesium and chloride are typical 

from dairy industry wastewater, as shown in Table 5-3. Moreover, calcium, magnesium and 

potassium are added as macronutrients to AnMBR feed (24, 29 and 47 mg of Ca, Mg and K 

respectively per litter of feed). 

 

Table 5-3: Concentration of selected ions in dairy industry wastewater. Source: Demirel, et al. (2005) 

 
 

According to RO membrane manufacturer, feed of this type of system should have a SDI below 

5 in order to be able to obtain permeate without overstressing the membrane, and pH between 

2 and 11. MFI values between 180 and 225 s/L2 corresponds to SDI values below 3, which is 

coherent with what is stablished before. When SDI and MFI are conducted, dilution of permeate 

sample are needed to do, in order for permeate to pass through the 0.45 μm filter. Then, in 10 

times dilution, MFI values obtained is multiply by 10 to find the real value, and SDI serves as 

an indicative value. AnMBR permeate has then, an MFI value of 210 s/L2 and SDI 

approximately 3.  

 

Thus, after assessing RO feed characteristics, it can be conclude that AnMBR permeate of 

synthetic dairy industry wastewater meet the necessary characteristics that allows its use as RO 

feed (in the given conditions).  

 

5.1.1. Modelling feed characteristics 

Based on feed characterization, Genesys membrane master 3vc software is used to predict 

membrane scaling and prevent severe membrane damage. Calculations are conducted 

considering an estimated recovery of 8%, design pressure of 15 bar, feed flow of 350 mL/m 

(corresponding to a cross flow velocity of 0.2 m/s), and temperature of 18 °C. RO feed ions 

compositions is loaded into the software and considering the operational parameters mentioned 

above, software is ran. Genesys gives results regarding feed scaling and fouling potential, ion 

composition of concentrate, and the possibility to calculate final recovery is a real scale with 

several trains system is installed. Fouling and scaling potential of RO feed (AnMBR permeate) 

are shown in Figure 5-4. Feed water chart showed in figure, contains the usual solutes that 

precipitate considering brackish water in the abscissa (given by Genesys software), and 

saturation index on the ordinate.  
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Figure 5-4: Fouling and scaling potential in Ro feed water. 

As can be seen in Figure 5-4, calcium carbonate exceeds the saturation limit (100%) and it is 

oversaturated, which means is going to precipitate promoting membrane fouling. Apart from 

calcium carbonate, calcium phosphate and iron are also prone to precipitate, but in smaller 

quantities.  The rest of the possible compounds to precipitate have saturation levels below 10%. 

However, pH variations have a significant impact on saturation and precipitation of different 

compounds, and as an example, calcium carbonate may not precipitate if pH decrease enough.  

 

Calcium carbonate is a salt formed from a weak acid (carbonic acid), according the equation 

shown below: 

𝐶𝑎𝐶𝑂3 + 𝐻2𝑂 ↔ 𝐶𝑎2+ + 𝐻𝐶𝑂3
− + 𝑂𝐻−                         (10) 

If pH increase, then we will have a lower concentration of H+ and a higher one of OH-, shifting 

the reaction the left, and producing more CaCO3. Thus, calcium carbonate ion product (define 

as the product of Ca+ and CO3
- actual concentration) increase, and when higher than the 

solubility product (Ksp is 2.8x10-9), precipitation occurs. Therefore, to avoid CaCO3 

precipitation, RO feed pH should decrease to obtain better results regarding scaling and fouling 

potential.  

 

Calcium phosphate is also formed from a weak acid (phosphoric acid), and a pH decrease will 

also produce a decrease in its saturation and precipitation possibilities. Furthermore, calcium 

phosphate is more prone to precipitate than struvite, because smaller concentrations are needed 

in order to have a super saturated solution. Experimental values of struvite solubility constant 

varies from 3.89x10-10 to 4.37x10-14 Rahaman, et al. (2006), while this value for calcium 

phosphate is 2.07x10-33. Ksp equations for calcium phosphate and struvite are shown below: 

 

𝐾𝑠𝑝𝐶𝑎3(𝑃𝑂4)2
= [𝐶𝑎2+]3 × [𝑃𝑂4

3−]
2

= [3𝑠]3 × [2𝑠]2 = 108𝑠5   (11) 

𝐾𝑠𝑝𝑀𝑔𝑁𝐻4𝑃𝑂4
= [𝑀𝑔2+] × [𝑁𝐻4

+] × [𝑃𝑂4
3−] = [𝑠] × [𝑠] × [𝑠] = 𝑠3        (12) 

 

Where s represents the mols of each compound. When the concentration of actual solutes 

exceed the solubility product, then ions will precipitate as salts. For calcium phosphate, the 

limiting concentration s is 1.13x10-7 mol/L, while for struvite is between 4.9x10-6 to          

5.06x10-5 mol/L. Thus, considering Mg2+, Ca2+, PO4
3- and NH4

- concentration in AnMBR 

permeate, calcium phosphate formation is more possible than struvite.  

 

As a result from Genesys membrane master 3vc model, antiscalant to prevent scaling and obtain 

higher recoveries is recommended. Considering feed characteristics, a broad spectrum 

antiscalants is recommended: Genesys WB (Appendix C). A similar antiscalant is bought, but 

from Veolia brand: HYDREX 4103. However, it arrived after all test are concluded.  
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5.1.2. Bacteria in RO feed  

Bacteria count value is high considering an ultrafiltration membrane, were pore size is 0.03 μm, 

and in theory, no bacteria should pass through the membrane. However, AnMBR permeate is 

reach in nutrients, and therefore, a medium prone to bacteria proliferation. Additionally, 

permeate is store for three days in the vessel, so enhanced growth conditions may be achieved. 

To evaluate this latter hypothesis, samples from different locations are taken: in the 

accumulation tank and before it, as shown in Figure 5-5.  

 

Figure 5-5: Measurements of bacteria count. On the left, the accumulation tank, on the right the  

Total and intact (alive) cells are calculated in duplicates, and values are shown in Table 

5-4.  

Table 5-4: Total and Intact cell count in two sampling points. 

Location 
Accumulation 

vessel 

Before 

Vessel 

Total count 

(Events/mL) 
31,500,000 14,500,000 

Intact count 

(Events/mL) 
26,000,000 10,250,000 

 

Either for total or intact count, values from the accumulated vessel are more than twice the ones 

found before it. Nevertheless, taking into consideration that both orders are the same (107), there 

is no significant difference between samples. This leads to conclude that the accumulation 

vessel is not the only system component where bacteria are prone to grow. Furthermore, it can 
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be concluded that lines and accumulation tank are contaminated and not properly sterilize, 

which entails into higher RO fouling potential.    

 

Bacteria count is performed by FCM and BD Accuri™ software is used to analysed data 

obtained. This latter is able to count all intact cells, which correspond to bacteria and viruses. 

This latter size is between 0.01 to 0.1 μm, while bacteria varies from 0.1 μm up to 40 mm. 

AnMBR pore size is 0.03 μm, hence, small viruses may pass through the membrane and can be 

found in permeate. Furthermore, membrane pore size is an average, but bigger pores are present 

in it, which means that larger particles (bacteria and viruses) than 0.03 μm can be found in 

permeate 

 

5.1.3. Particle count and size distribution in RO feed 

Particle size distribution on AnMBR permeate is measured in TU Delft four different days: 

January 18th, February 1st, 3rd, and 14th. Average particle size distribution found from 3 runs per 

sample are shown in Figure 5-6. 

 

 

Figure 5-6: AnMBR permeate average particle size distribution, from different dates. 

Results show a great variation between samples, even though they were measure under the same 

conditions. Differences between the 1st and 3rd of February are especially important, 

considering that samples were taken from the anaerobic accumulation vessel, which stored 

AnMBR permeate from 23rd January until 27th January, and was kept at temperatures around 

8°C, hence, they are the same sample. Table 5-5 presents d10, d50, and d90 values for all 

measurements. 
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Table 5-5: Diameters at which 10, 50 and 90% of sample’s mass is comprised of smaller particles, in different sampling 

days.  

Sample d10 (μm) d50 (μm) d90 (μm) 

18/01/2017 Average 0.3 79 155 

01/02/2017 Average 0.2 1 3 

03/02/2017 Average 1 103 266 

14/02/2017 Average 0.3 11 221 

 

Moreover, considerable deviation among particle size distribution happens not only for 

different samples, but also for different runs of the same sample, as shown in Figure 5-7.  

 

 

Figure 5-7: Deviation between 3 runs of the same sample taken the 18th of January, on particle size distribution. 

 

In order to further study and understand the different results of PSD, analysis are also performed 

in UNESCO-IHE with Crystalline Particle Viewer (PV), which counts particles from 2 to 

200 μm. Same sampling points used for bacteria count, are also used to measure particle count 

and particle distribution (accumulation vessel and before it). Moreover, the sample took in the 

feed vessel was divided into two, and one was saturated with air, while the rest of the samples 

are taken under anaerobic conditions. In the aerated sample, pH increase from 7.0 to 8.2, and 

more particles were visually detected (Figure 5-8).  
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Figure 5-8: On the left, aerated sample, and on the right the anaerobic one after performing all the measurements. Both 

samples were taken from the accumulation vessel. 

 

Increase in pH when aerating the sample is due to CO2 exchange with the atmosphere. Aqueous 

CO2 reacts with water forming carbonic acid (H2CO3). If pH is between 7 and 10, carbonic acid 

is mainly dissociated into HCO3
- and H+ (as shown in Figure 5-3, Section 5.1). Then, CO2 

equation follows:  

𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻𝐶𝑂3
− + 𝐻+     (13) 

When CO2 is released, the equilibrium shifts to the left, and as a consequence, the system has 

lower concentrations of HCO3
- and H+. Thus, pH increase.  

  

Samples were stirred and measure for 20 minutes, where data is collected every 5 seconds. 

Relative particle size distribution and its standard deviation are shown in Figure 5-9.  
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Figure 5-9: Relative particle size distribution. The dots represent the accumulated while relative count per particle size 

(diameter size) is expressed in bars with their standard deviation.  

 

When analysing relative particle size distribution with Crystalline PV, all samples have a 

similar distribution, where around 30% of the total count represent particles of 6 μm size, and 

d50 is 6 μm. The distributions have a considerably different standard deviation per particle size, 

and the content of particles higher than 20 μm is slightly higher in the sample taken before the 

accumulation vessel. If instead of analysing PSD in the 20 minutes ran, it is done every 30 
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seconds (as the Bluewave particle size distribution), PSD has a considerable deviation, as 

shown in Figure 5-10. However, d50 values are below 10 μm. 

 

 

Figure 5-10: On red, PSD of a sample measure for 30 seconds at initial time 1 minute, and on green, measurements for 30 

seconds at initial time 10 minutes. 

 

According to Lousada-Ferreira, et al. (2016), permeate analysed in 450 MBR present with a 

pore size of 0.04 μm, particles in the range from 2-100 μm were counted. This corresponds to 

the values found (when Crystalline PV is used), in all samples of the research, where d50 (6 μm 

approximately) is around 100 time higher than the membrane pore size (0.03 μm). Furthermore, 

AnMBR integrity is studied considering data of anaerobic sample from accumulation vessel. 

Graphical representation followed indications given by (APHA, et al., 2005): normalization of 

data by dividing particle count in a given size range by the size interval, and presenting particle 

size in logarithmic scale. Hence, PSD is presented as a power-law function as shown below: 

𝑙𝑜𝑔𝑁(𝑑𝑝) = 𝐴 × 𝑙𝑜𝑔(𝑑𝑝) + 𝑙𝑜𝑔𝐵    (12) 

Where N(dp) is the derivate of particle diameter (dp), and A and logB are power-law 

coefficients.  Figure 5-11 shows the graphical results obtained for the above considerations.  

 

 

Figure 5-11: Normalized particle count, from anaerobic sample taken in the accumulation vessel. 
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PSD permeate sample has a R2 power-law above 0.95, which according to Lousada-Ferreira, et 

al. (2016), means that AnMBR membrane does not present integrity failure. Additionally, VSS 

values are zero, and if membrane integrity is compromise, then several suspended solids are 

able to pass through it and TSS and VSS values should be above zero, which is not the case in 

this research. 

 

Aside from studying PSD, total particle count is asses in the 3 samples: anaerobic and aerobic 

from the accumulation vessel, and before the accumulation tank. Total particle count in 20 

minutes is shown in Figure 5-12. 
 

 

Figure 5-12: Total particle count in 20 minutes of measurements. 

 

Total particle count have massive differences in the three samples. In the aerated sample, values 

reach up to almost 11,500 while in the anaerobic one is almost 1,000, and in the one before the 

vessel it is almost 200. Hence, when aerating AnMBR permeate (RO feed), more particles are 

developed than if it is kept anaerobic. Particles can be formed due to precipitation and 

crystallization of certain compounds, like calcium carbonate and calcium phosphate, among 

others, which precipitate when samples are aerated due to higher pH. As a conclusion for this 

experiment, aerating feed of RO that can be kept anaerobic, without controlling pH, leads to 

have around 10 times more particles than if we keep it anaerobic, but with a similar distribution.  
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5.2. System operability  

5.2.1.  Set-up and start-up of the system 

RO set up is build up in the work space of Biothane laboratory, in view of safety considerations 

mainly regarding the pump. Experimental set up design is shown in Figure 5-13.  

 

 

Figure 5-13: RO experimental setup. 

 

Feed vessel is connected to the pump which increments line pressure, measurable with a 

pressure gauge located in the RO feed line. The gauge is able to measure a difference of 2 bars, 

and a range from 0 to 100 bars, as shown in Figure 5-14. 

 

 

Figure 5-14: Pressure gauges. 
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Permeate of RO is accumulated in a glass tank, located on top of a weight scale. Concentrate 

(or brine) line is also connected to a pressure gauge and high/low pressure valves, to decrease 

pressure to atmospheric one and recirculate concentrate into the feed vessel. Before arriving to 

the vessel, concentrate passes through a coil cooling system which decrease the line 

temperature. Since all concentrate is recirculated into the feed vessel, after a certain amount of 

time, wastewater characteristics of the feed vessel are almost the same as the one in the 

concentrate (depending on RO rejection, recovery and feed flow). Therefore, only two sample 

points are needed: one in the permeate line, and another in the concentrate line. This latter will 

provide information regarding the feed characteristics to RO membrane.  

 

RO cell is a solid prism of around 15x10-4 m3 (10cm x 10cm x 15cm) that weights around 6 kg. 

Permeate line is in the top of the cell, while concentrate and feed ones are located in the bottom, 

as shown in Figure 5-15.  

 

    

Figure 5-15: RO cell system. On the left, the whole RO cell, with permeate, feed and concentrate lines. On the right, the cell 

opened, where feed spacers and membrane can be seen.  

 

A frequency meter is installed to control the pump given frequency and assure a constant feed 

flow from the pump. However, when the system is being set up, the original frequency meter 

is burned out due to an electrical connection error. Therefore, a new system with the same 

frequency range is bought and installed (Figure 5-16).  

 

Permeate line 

Feed line 

Concentrate line 
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Figure 5-16: On the left, the original frequency meter that was burned out. On the right, the installed frequency meter. 

 

Flow meter is installed in the bypass line, but can be also connected in the concentrate line.  

Since cross flow velocities should be between 0.1 to 0.5 m/s, feed flow to RO membrane should 

be between 200 and 1000 mL/m (0.05 to 0.26 gpm). Nevertheless, the flow meter is able to 

measure flows from 750 to 7500 mL/m (0.2 to 2.0 gpm) as shown in Figure 5-17, and possible 

concentrate flows (which are below 100 mL/m) may be outside the meter range.  

 

 

Figure 5-17: Installed flow meter.  

 

Additionally, since RO membrane has 10 cm length, small flow changes have a significant 

effect in recovery percentage, but flow meter is able to measure 0.1 gpm differences (350 

mL/min). Hence, the installed device is not appropriate for the system conditions. It is 
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connected to the concentrate or bypass line, considering which is the largest flow and therefore, 

measurable.   

 

Stainless steel coil cooling system of 15 m is mounted in the concentrate line and connected to 

a cooling device. The coil is firstly immerse into a 20 L bucket filled with tap water, and 

connected through two lines to the cooling device. However, when the system is installed, it is 

found that the cooling device has a pump to push water from it to the bucket, but it works in 

close systems (like water jackets), were water entering the system is the same as the one leaving 

it. Since the bucket is not a close system, water started overflow. Therefore, another coil is used 

to cool down the system. The final setup has two stainless steel coils submerge in a 40 L bucket. 

One is used to cool down the concentrate coming from the RO membrane, and the other, cools 

down the water were both coils are submerged, which consequently chills the concentrate line. 

Initial cooling system and final one are shown in Figure 5-18. 

 

   

   

Figure 5-18: On the left, the cooling system; on the right, the installed one. 

Once the cooling structure is installed, the system is ready to run. A trial with demineralized 

water and no membrane is conducted to assess leakages. Several tubes are changed, due to the 

fact that connections between tubes were done considering European metric system (cm), while 

some setup pieces are bought in USA. Therefore, differences of 0.5 mm are found in tubes 

diameters and several connections leak when the system is started. Figure 5-19 show the final 

system setup. 
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Figure 5-19: RO system setup. On the left and centre, RO cell, feed and permeate vessels; on the right, in the upper picture is 

the frequency meter and emergency button, while at the bottom are the pump and cooling system. 

 

5.2.2. Trials with demineralized water  

Once leakages are fixed, the system is ran with demi-water and no membrane, to assess feed 

flows and compare them to the ones given by the pump manufacturer. Flows are found for 2, 

5, 7, 10, 12, 15 and 20 Hz and results are shown in Table 5-6 and Figure 5-20. 

Table 5-6: Average flow and standard deviations for different pump frequencies, with no membrane and demineralized 

water. 

Parameter Unit 
Frequency (Hz) 

2 5 7 10 12 15 20 

Average Flow  mL/m 74.3 365.5 511.0 675.8 900.8 1124.0 1520.0 

Standard deviation  mL/m 1.0 1.9 2.7 10.8 11.3 7.8 10.0 
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Figure 5-20: Comparison of flows obtained when the RO system is started out.  

Flows are measured as the volume of concentrate plus permeate obtained per minute (no bypass 

flow is admitted), and trials were conducted for around 10 minutes. Time limitation is because 

laboratory weight scale used support a maximum of 15 kg. Graphical results shown in Figure 

5-20 corresponds to average values obtained per frequency. Moreover, standard deviation is 

calculated in each case, and values are always below a 2% difference from average flows. Real 

flows are considerable lower than the ones given by the pump manufacturer. This can occur 

because pump performance is assess from pressures in the range of 6.9 to 69 bars. However, 

while this trial is carried out, no pressure is detected by the pressure gauges, and no permeate 

is obtained (recovery zero).   

 

As a second step, the system is evaluated using demineralized water, spacer (31 mil and 

diamond shape) and selected RO membrane: DOW-FILMTEC BW30XFR, keeping aerobic 

conditions. Since membrane crossflow velocities should be below 0.5 m/s, and usually, between 

0.1 and 0.2 m/s, pump frequencies are kept below 10 Hz. Hence, trails, with 5 and 10 Hz are 

conducted. The main objectives of this step is to measure pumped flows, pressure build up, 

maximum recoveries achieved and changes in temperature.  

 

To begin with, pump frequency is established at 5Hz. During 25 minutes, volume of concentrate 

and permeate produced over time are weight every 2 minutes, and feed and concentrate 

pressures are measured. Permeate flow is asses, and results are shown in Figure 5-21. 
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Figure 5-21: Feed flow over time when using demi-water in aerobic conditions, for a pump frequency of 5 Hz. 

 

Average feed flow found is 308 mL/m, with a standard deviation of 9 mL/min (less than 3%). 

Therefore, it can be assume that at the given conditions, feed flow is constant. This value will 

be further assume for larger trials, due to weight scale limitations in the laboratory (maximum 

of 15 kg). Although a constant flow is achieved, system pressure increased as shown in Figure 

5-22.   

 

 

Figure 5-22: Feed pressure increase over time when using demi-water in aerobic conditions, for a pump frequency of 5 Hz. 

 

RO system is design to work at constant feed pressure when feed characteristics remain 

constant. Hence, more trials are conducted assuming the found feed flow, in order to achieve 

constant pressure by changing the concentrate valve opening. It is important to highlight that 

during trials with demi-water and pump frequency of 5 Hz, no bypass flow is needed because 

cross flow velocity is 0.15 m/s. While performing trials with 5 Hz, concentrate valve open 

position affects pressure build up and recovery achieved. When concentrate valve is opened 

approximately 45° from the closed position, a constant feed pressure of 13 bar is achieved 
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during 40 minutes (in an hour duration trial), with a maximum recovery per meter of membrane 

near 9%. Furthermore, cooling system is not turned on during trial, and total increase of 

temperature in 60 minutes is 1.4°C. Figure 5-23 shows feed pressure, recovery per meter of 

membrane and temperature variation over time, through the whole trial.   

 

 

 

 

Figure 5-23: Increase in pressure over time (Figure A), recovery per meter of membrane over time (Figure B), and 

temperature variation over time (Figure C), of RO system ran with demi-water, pump frequency of 5 Hz, constant feed flow 

of 308 mL/min, concentrate valve opened 45°, and Dow-Filmtec BX30XFR membrane.  
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Similar procedure as the one conducted for 5 Hz is done for 10 Hz.  Two trails with RO 

membrane, of 12 minutes each where bypass valve is closed are conducted in order to find 

pump feed flow at 10 Hz (concentrate vale is opened). Average feed flow found is 1060 mL/m, 

with a standard deviation of almost 100 mL/m (around 9%). This value is used as pumped feed 

flow for the rest trials performed (with demi-water and AnMBR). Additionally, in demi-water 

trials where no bypass is allowed, concentrate flux is measured by a flowmeter.   

 

A 75 minutes trial with demi-water, pump frequency at 10 Hz, no bypass flow, and a 

concentrate valve angle of around 65° is conducted. Concentrate valve angle is stablished in 

65° from closed position in order to start the system with a feed pressure below 10 bars and be 

able to observe pressure build up but giving the system enough margin. If concentrate valve is 

kept at 45 °, initial system pressure is around 15 bar, and in less than 30 minutes increase to 22 

bars, which is the maximum allowed pressure. A maximum recovery of 2.2% per meter of 

membrane is obtained and feed pressure is stabilized at 12 bar after 45 minutes ran. Figure 5-

24 shows evolution of recovery and pressure over time.  

 
 

 

 

Figure 5-24: Recovery per meter of membrane over time (Figure B) and increase in pressure over time (Figure A), of RO 

system ran with demi-water, pump frequency of 10 Hz, constant feed flow of 1060 mL/min and Dow-Filmtec BX30XFR 

membrane. 
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5.2.3. Trials with AnMBR permeate 

AnMBR permeate collected anaerobically between 13th and 15th of January is used as RO 

feed. The system is ran in batch, at 10 Hz and for a total of 21 hours 45 minutes, where the 

membrane is cleaned twice. Due to working hours in Biothane laboratory, the system cannot 

be ran for more than 4 hours continuously. Laboratory is opened from 8:30 until 16:30, a lunch 

break is compulsory and no one is allow to stay in the laboratory during that period.  

 

Most pilots and real scale RO systems run at constant recovery and variable pressure, where 

feed pump frequency is increased when recovery decrease outside a certain range. This leads 

into an increase of feed pressure, and as consequence, an increase in permeate flow and 

recovery. Therefore, first five trials, with a total duration of 9 hours, are conducted in order to 

try to achieve certain operational conditions which allow the system to be ran at constant 

pressure or constant recovery, and a bypass flow between 350 to 750 mL/min. Moreover, 

bypass and concentrate valves are tested for different opening angles, to assess their effect on 

the system. Since concentrate and bypass flows are recirculated into the feed vessel, pumped 

feed flow for 10 Hz is assumed as 1060 mL/m, considering results found in trials with demi-

water and membrane performed before (section 5.2.2).  

 

In the first trail, valves positions and effect are analysed. Once the system is started, pressure 

of feed and concentrate lines build up. When bypass valve is closed, smaller bypass flows are 

achieved and as consequence, higher flows through the membrane. Thus, feed and concentrate 

pressures increase, and higher permeate flows can be achieved. On the other hand, if 

concentrate valve is closed while the rest of the system is kept unchanged, higher pressures in 

concentrate and permeate lines are achieved, but also bypass flow increase due to feed pressure. 

Subtle changes in bypass flow have a significant effect on permeate flow and recovery. 

Furthermore, small permeate flow variations have a massive impact on recovery values, 

because these are calculated based on a meter length membrane, while the one used for this 

research has 9 cm of length.  

 

In the second trial, a constant bypass flow of 0.16 gpm (605 mL/m), which corresponds to a 

constant feed flow through the membrane of around 450 mL/min, is established and maintained 

during the whole trial. Net driving pressure increase from 8 to 13 bar, which corresponds to an 

increase of feed pressure from 11 to 16 bar. Differences between feed and concentrate pressure 

is never greater than 2 bars, as shown in Figure 5-25.  
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Figure 5-25: Increase in net driving pressure, permeate and concentrate pressure over time, when ran with AnMBR 

permeate as RO feed, at constant feed flow of 450 mL/min, pump frequency of 10 Hz.  

Recovery increase during the first hour, up to a value of 4.2 % per meter of membrane, and then 

started to decrease until 3.9 % after 2 hours ran. The same happens to flux over membrane, 

which reach a maximum value of 24.3 lmh after one hour ran, as shown in Figure 5-26.  

 

 

Figure 5-26: Flux and recovery over time, when ran with AnMBR permeate as RO feed, at constant feed flow of 450 mL/min, 

pump frequency of 10 Hz. 

 

Fifth trial, performed on 22nd of January is entitled to obtain constant recovery. Thus, a 

peristaltic pump is connected to the permeate line. Pump frequency is established to achieve a 

recovery of 8%, when feed flow through membrane is 685 mL/m (bypass flow of 0.10 gpm). 

Figure 5-27 shows new system setup. 
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Figure 5-27: RO setup with a peristaltic pump in permeate line to achieve constant recovery. 

During 30 minutes, permeate flow is pumped at constant frequency, but no stable recovery is 

achieved. Permeate flow vary from 1.3 to 2.4 mL/m, while feed pressure increased from 6 to 

18 bar. After 30 minutes, pump is disconnected and the system is allowed to run unchanged, 

while parameters mentioned above are further evaluated. After pump is disconnected, permeate 

volume reduced for one minute, associated to a negative pressure build up in the line. Set 

recovery of 8% is never achieved, and once the system is let to run without permeate pump, 

recovery values fluctuate from 2.0 to 1.5 %. Peak recovery of 2.0 % is achieved after 115 

minutes ran, and corresponds to a permeate flow of 2.0 mL/m, as shown in Figure 5-28. After 

system is ran for 90 minutes, feed pressure reached 22 bars and reactor is stopped.  

 

 

Figure 5-28: Feed pressure and permeate flow over time. With a red line is represented the time until permeate pump is 

connected to the system (30 minutes). Additionally, dotted green line indicates when system was stopped at 90 minutes, and 

started again after concentrate and bypass valves were opened around 50°. 
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Recovery values in this trial are below the desire one. Thus, after 3 hours the system is stopped 

and membrane is cleaned. Cleaning procedure and characteristics are explained ahead in this 

section. Final trial is started after membrane cleaning, and it last for 12 hours 15 minutes (4 

days).  

 

When last trial is being started (6th trial), system conditions are kept the same as before, where 

bypass flow is sat at 0.10 gpm (375mL/min) and kept constant. Pressure, bypass flow, volume 

of permeate produced and temperature measurements are taken every 5 minutes and further 

analyse.  

 

While net driving pressure increase from 10 to 21 bars over 12 hours (feed pressure from 12 to 

23 bar), recovery decrease from 2.9% to 1.5% (Figure 5-29). Maximum recoveries are achieved 

minutes after the system is turned on, and corresponds to 2.3%, 2.6%, 2.5%, 2.9%, 2.1% and 

2.3% at 4, 190, 305, 376, 545, and 621 minutes ran (respectively). It is important to highlight 

that system is stopped due to lunch hours (where no one is allow to be in the laboratory) and 

laboratory schedule, but not because system issues.  

 

  

Figure 5-29: Recovery over time, when ran at constant feed flow of 685 mL/min and pump frequency of 10 Hz. Additionally, 

dotted green line indicates when system is stopped (180, 300, 375, 545 and 620 minutes). 

During the 12 hours and 15 minutes trial, system is stopped 5 times. Once the system is started 

up again, around 30 minutes needs to pass in order to achieve previous values of pressure and 

permeate flow. During this time, pressure increase rapidly in the first 5 minutes, but permeate 

flow needs around 30 minutes to reach to previous conditions, as shown in Figure 5-30. 

Therefore, in the minutes after the system is restarted, permeability increase mainly due to the 

fact that pressure is building up faster than the decrease in permeate flow. The apparently 

increase in this latter is reflected in recovery rise between 0.2 to 1.6% from values before shut 

down (right when the system is started), followed by an exponential decrease in the next 30 

minutes. Furthermore, variations of 0.05 mL/m in permeate flow corresponds to differences of 

0.1 % in recovery, thus, recovery values are extremely sensitive to permeate volumes obtained 

over time and membrane feed flow (assume as a constant value of 685 mL/m).  
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Figure 5-30: Increase in feed pressure and net driving pressure while membrane permeability decrease, when ran at 

constant feed flow of 685 mL/min and pump frequency of 10 Hz. Additionally, dotted green line indicates when system is 

stopped. 

Hence, maximum recovery achieved is 2.9 %, value below the one obtained in the second trial 

(4.2%). Furthermore, while NDP increase, membrane permeability decrease from 2 to around 

0.5 lmh/bar, as shown in Figure 5-30. Additionally, permeate and concentrate lines pressure 

differ always less than 2 bars, and osmotic pressure (calculated based on anions and cations) is 

around 1.5 bar, thus, NDP is about 2 bars below feed pressure values. 

 

Flux also decrease over time, from 20 to 15 lmh.  If this value is normalized considering 

temperature, which increase over time, as shown in Figure 5-32, then normalized flux decrease 

from 23.5 to 14.5 lmh (Figure 5-31).  

 

 

Figure 5-31: Differences between flux and normalized flux considering temperature, when ran at constant feed flow of 

685 mL/min and pump frequency of 10 Hz. Dotted green line indicates when system is stopped. 
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Figure 5-32: Temperature variation over time when ran at constant feed flow of 685 mL/min and pump frequency of 10 Hz. 

Dotted green line indicates when system is stopped. 

Temperature variation follows a direct relation with minutes ran, with R2 power law for each 

ran (6 in total) above 0.95. The lowest the starting temperature, the fastest temperature increase.  

 

Membrane fouling and cleaning   

Cleaning of membrane is conducted twice: before the last trials is started and after it is finish 

(when reaching a feed pressure of 23 bars). Cleaning procedure is similar to the cleaning in 

place (CIP) carried out for MBR. In this case, RO membrane is cleaned ex-situ, by submerging 

it in base and then in acid solutions.  

 

According to membrane manufacturer, Dow-Filmtec BW30XFR membranes work at pH range 

from 2-11, but for short term cleaning (around 30 minutes), pH range may vary from 1 to 13 

(DOW FILMTEC BW30XFR Product data sheet in Appendix D). Therefore, as a cleaning 

procedure, membrane is submerged for 15 minutes in a solution of citric acid (1 g of 

monohydrate citric acid per 100 mL solution) with a pH of 2, rinse with demineralized water 

for 5 minutes, and then submerged for 15 minutes in a sodium hypochlorite solution (1 mL of 

sodium hypochlorite per 100 mL solution) with a pH of 10.  

 

When membrane is cleaned for the first time, no visual fouling is found in spacers, but 

membrane has a greyish and blackish colour, as shown in Figure 5-33. 
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Figure 5-33: Membrane fouling before the star- up of the sixth and last trial with AnMBR permeate.  

 

Additionally, once the cleaning procedure started, membrane is visually cleaned after being 

submerged for 10 minutes in citric acid.  Acid cleaning is associated with removal of inorganic 

compounds which precipitate (Wang, et al., 2014), and due to the colour found, it can be 

Manganese or Magnesium. In order to assess this latter, concentration of this compounds is 

measured in concentrate line (results are shown in section 5.3). Furthermore, even though the 

system is kept anaerobic, trials with demineralized water are conducted under aerobic 

conditions. Thus, demi-water can cause stainless steel corrosion and loose its demineralized 

characteristics. Therefore, greyish and blackish colour can be also due to Zinc and Chromium 

deposition.  While demi-water is needed to perform some trials with RO membrane without 

enhancing fouling, it can be corrosive to the cell system used, and therefore, have a negative 

impact on the system operational conditions.  

 

A second membrane cleaning is conducted after the last trial, when pressure reached 23 bars. 

However, membrane fouling is considerable different from the first one, as can be seen in 

Figure 5-34.  

 

   

Figure 5-34: Membrane fouling after the last trial is performed.  
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In this case, biofouling in feed spacers can be visually identify, while in the RO membrane it 

can be perceived deposition of an oily layer. Figure 5-35 shows in detailed the biofouling in the 

feed spacers.  

 

   

Figure 5-35: Visual spacer biofouling. The white arrow is used to indicate flow direction.   

  

Moreover, few changes in membrane are observed after being cleaned with citric acid, but it 

visually looked clean after using sodium hypochlorite, which is linked with organic fouling 

(Wang, et al., 2014). Total cleaning lasted for 40 minutes, 15 minutes soaked in citric acid, 15 

minutes in sodium hypochlorite and around 10 minutes rising the membrane with demi-water. 

 

Since both membrane fouling are completely different, another trial is to be carried out. 

However, when assembling the RO cell, two screws are badly introduce, producing thread 

galling, and tests are stopped. When removing the screws, one gets locked in the cell, as shown 

in Figure 5-36, and it has to be sent to an external repair. 

 

Q 



Results and discussion 67 

 

 

Figure 5-36: Thread galling and broke screws in the RO cell.  

 

Due to the screws issue, no more runs are conducted, even though further analysis must be 

conducted in order to assess system fouling and operational conditions. Total recovery achieved 

during last trial considering feed and permeate volume is 8%, corresponding to an entire 

permeate volume of 876 mL. Since system is not operated at constant feed pressure or constant 

recovery, it is hard to compare operation conditions to literature review. One of the main 

reasons why constant pressure is not achieved is because feed characteristics change over time. 

Thus, recirculating concentrate into feed vessel causes an increase in pollutants concentration, 

which needs higher pressures to pass through RO membrane. Pilot and real scale systems have 

several trains (steps), and high recoveries values of around 75% can be achieved 

(Vrouwenvelder, et al., 2011). Furthermore, Biothane has a pilot scale RO plant located in 

South Africa, fed by AnMBR permeate which is treating dairy industry wastewater. This plant 

operates at variable pressure and average constant recovery of 8%.  

 

Maximum recovery achieved when using AnMBR permeate as feed is 4.3% when system ran 

3 hours and a half. This values is not achieved even after membrane cleaning, where the 

maximum recovery is 2.9%. In any case, maximum recovery is below the one obtained for 

demineralized water. Antiscalants can be used for decreasing fouling and scaling potentials, 

and thus, increase recovery. Even though an antiscalants (HYDREX 4103) is ordered, it did not 

arrive on time when trials are conducted.  
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5.3. Concentrate and permeate characteristics: reuse 
possibilities 

RO permeate and concentrate are evaluated based on measurements done from the 17th until 

24th of February, with AnMBR permeate as feed. As a key aspect, since concentrate is 

recirculated to the feed vessel, feed characteristics change overtime. Furthermore, RO 

membrane is design to achieve a constant rejection of pollutants. Thus, while concentrations 

are increasing over time in feed line, permeate characteristics will also be worst over time. 

Initial feed volume is or around 13 L, pump feed flow is 1062 mL/min, with bypass flow of 

375 mL/min. Therefore, it is needed less than 20 minutes for the whole feed to pass through the 

membrane, and after that time has passed, characteristics of the feed are almost the same as the 

ones from the concentrate.  

 

All samples are taken at the end of the day. TCOD, TS, VS, VFA, TKN, NH4-N, Total P, PO4 

and alkalinity of concentrate are measure daily, while permeate once every other day. Results 

are shown in Tables 5-7 and 5-8 (between the 17th and 20th of February is weekend, and 

Biothane is closed). 

 

Table 5-7: Concentrate parameters measured in Biothane laboratory.   

Parameter Unit 
Concentrate 

17-Feb 20-Feb 21-Feb 22-Feb 23-Feb 24-Feb 

TCOD mg/L 53 57 59 67 91 86 

TS  mg/L 1650 1760 1710 1770 1790 1810 

VS  mg/L 180 290 330 170 270 190 

VFA mg/L 0 0 0 - - - 

TKN mg/L 188 190 193 196 201 203 

NH4-N  mg/L 186 189 186 191 196 199 

Total-P mg/L 29 29 30 31 30 29 

Ortho-P mg/L 30 29 30 30 30 29 

Alkalinity  meq/L 32.8 32.3 34.0 34.0 34.4 32.9 

 

A total of 1305 minutes (around 22 hours) ran, conforming 6 different trials with AnMBR 

permeate as RO feed conducted, and total permeate produced is approximately 1,720 mL 

(corresponding to a total recovery of 13%). Concentrate samples taken the 17th, 22th, 21st, 22nd, 

23rd, and 24th of February correspond to 390, 565, 750, 945, 1190 and 1305 minutes ran 

respectively, and 535, 843, 1078, 1324, 1600 and 1720 mL of permeate produced respectively. 

Overall, TCOD, TS, TKN and NH4-N values in concentrate are more concentrated over time. 

This is align with what is expected for the RO system. While values of NH4-N and TCOD from 

the 21st and 24th respectively are slightly smaller than the ones from the previous day, this can 

be due to errors when measuring samples. On the other hand, neither alkalinity, total 

phosphorus nor orthophosphate concentrations have a representative variation over time. 

Moreover, all phosphorus presented on concentrate is orthophosphate, since measurements of 

this latter are the same as TP. Finally, volatile solids vary from 170 to 330 mg/, but it is not 

related with TS variation. VS values increase until the 21st, and then vary 100 mg/L in a day. 
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Even though this is a considerable difference, total amount of VS is still very low, bearing in 

mind the AnMBR VS feed concentration (around 5,400 mg/L). 

Table 5-8: Permeate parameters measured in Biothane laboratory.   

Parameter Unit 
Permeate  

17-Feb 20-Feb 22-Feb 24-Feb 

TCOD mg/L 3 1 7 9 

TS  mg/L 60 70 70 80 

VS  mg/L 40 40 50 60 

VFA mg/L 0 0 - - 

TKN mg/L 9 7 8 12 

NH4-N  mg/L 9 6 7 12 

Total-P mg/L <2 <2 <2 <2 

Ortho-P mg/L <2 <2 <2 <2 

Alkalinity  meq/L 3.1 0.6 0.4 0.0 

 

Between permeate samples taken the 17th and 20th, RO membrane is cleaned on the 20th 

morning. Thus, permeate parameters may differ from one another, like COD values. However, 

a trend of higher concentrations of pollutants over time can be observed from the 20th of 

February on. VFA is measured only at the beginning to check because there is no VFA in 

concentrate (feed) samples and therefore, it should not be in the permeate either. Total and 

orthophosphate values are below the minimum detectable by the kit available in Biothane. 

Moreover, TS increase from 60 to 80 mg/L, and VS from 40 to 60. Finally, removal efficiencies 

comparing concentrate and permeate from the same day are found and shown in Table 5-9.  

Table 5-9: RO removal efficiencies. 

Parameter 
Removal efficiencies 

17-Feb 20-Feb 22-Feb 24-Feb 

TCOD 94% 99% 90% 89% 

TS  96% 96% 96% 96% 

VS  78% 88% 71% 68% 

VFA - - - - 

TKN 95% 96% 96% 94% 

NH4-N  95% 97% 96% 94% 

Total-P >93% >93% >94% >93% 

Ortho-P >93% >93% >93% >93% 

Alkalinity  91% 98% 99% 100% 

 

High removal efficiencies are achieve with RO, especially regarding nutrients (nitrogen and 

phosphorus). All parameters but VS has a removal efficiency variation of less than 10 %, and 

are above 89%. VS removal is between 68 and 88%, mainly due to concentrations in 

concentrate stream, and is the one with highest variation. Furthermore, anions and cations from 
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permeate and concentrate are analysed twice, and rejection factors (removal efficiencies) are 

shown in Table 5-10.  
 

Table 5-10: Ion composition of permeate and concentrate, and removal efficiencies achieved with RO. 

Parameter Unit 
Concentrate Permeate  Rejection rate 

21-Feb 24-Feb 21-Feb 24-Feb 21-Feb 24-Feb 

NH4
+ mg/L 186 196 6 7 97% 96% 

Na+ mg/L 398 439 11.5 46 97% 90% 

K+ mg/L 97.8 137 27.4 50.8 72% 63% 

Ca2+ mg/L 96.2 104 4 60.1 96% 42% 

Mg2+ mg/L 36.5 41.3 2.5 41.3 93% 0% 

Cl- mg/L 213 209 3.5 3.5 98% 98% 

SO4
- mg/L 67.2 57.6 86.5 183 build up 

NO3
- mg/L 43.4 0 6.2 18.6 86% - 

 

As shown in Table 5-10, higher ions removal efficiencies are obtained from samples of the 21st 

of February. Rejection rates of ammonium and chloride are the uppermost among the ones 

measured, with values above 97%. On the other hand, potassium removal vary from 63 to 72%, 

and is the lowest rejection achieved. Magnesium removal is once 93% and in the other sample 

0%. While Magnesium is one of the ions with the smallest relative radii from the ions measured 

(Figure 5-37), it is not possible that RO membrane does not retain Mg+. Furthermore, since 

concentrations of this parameter are the same on concentrate and permeate for samples of the 

24th of February, it is possible that a typing error occur, and concentration found in concentrate 

line is written for both permeate and concentrate lines. 

 

 

Figure 5-37: Relative radii of some ions in picometers (100pm=1Å). Source: Shannon (1976) 
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 Moreover, sulphate values in concentrate line are particularly peculiar, because the system is 

kept anaerobic. When asked about the measurement of this parameter to the external laboratory, 

it is found that actually the quantity is not of sulphates but of total sulphur in the sample. 

Furthermore, nitrate is not presented in RO original feed, but it reaches a value of 43 mg/L in 

concentrate. Nitrate may be formed from ammonium by nitrification, which is an aerobic 

process, and if this is the case, it means that oxygen may be entering the RO system. Besides 

this possible explanation (even though nitrifying bacteria should grow in order to be able to 

reduce ammonium into nitrate), an error measuring nitrate concentration on the 21st of February 

may also have occur. Nevertheless, values of this parameter are zero in the next sample. System 

is not changed during the whole process, and therefore, same conditions are kept. All 

inconsistencies in anions concentrations measures make the data found not reliable. Hence, a 

sample of concentrate and permeate from 24th is send to UNESCO-IHE to analyse anions, in 

order to compare data obtained. Results are show in Table 5-11.  

Table 5-11: Anions measured in UNESCO-IHE for permeate and concentrate samples taken the 24th of February.  

Parameter Unit 
Concentrate Permeate  

Rejection rate 

24-Feb 24-Feb 

Cl- mg/L 238 7.8 97% 

SO4
- mg/L 41.4 <4 >90% 

NO3
- mg/L <6 <0.6 - 

PO4
- mg/L 31.2 <0.6 >98% 

 

From data obtained at UNESCO-IHE, it can be concluded that actual orthophosphate removal 

is higher than 98%. Furthermore, there is minimal or none presence of nitrate, which means 

that no nitrification is carried out. Chloride concentrations in concentrate and permeate are 

similar to the ones measured by the other laboratory, but sulphate ones are considerably 

different. Permeate sample has less than 4 mg/L of sulphate, and concentrate has a bit more 

than 40 mg/L. Sulphate is an alternative electron acceptor, and in anaerobic processes, sulphate 

reducing bacteria (SBR) competes with methanogenic bacteria and consumes COD, but if this 

is the case, lower quantities of COD will be removed (Henze, 2008). However, SBR should 

grow in order to consume sulphate, and therefore, lower concentrations of sulphate can still be 

present on AnMBR permeate. In RO system, sulphate rejection higher than 90%.  

 

Bearing in mind membrane fouling, magnesium, manganese, and chromium concentrations in 

concentrate line are also analysed. The first one is slightly concentrated than in the initial feed. 

On the other hand, Manganese concentration is reduce into half, from 12 to 6 μg/L. Decrease 

in Mn concentration can be linked with RO scaling, mentioned in section 5.2.3. During the first 

clean of the membrane, deposition of a blackish particles are found, and this may correspond 

to Manganese and Chromium found in the concentrate.   

 

Chromium concentration is measured for the first time, and its value is of 7 mg/L. This latter is 

extremely high considering that is from treated synthetic dairy industry, where Chromium 

should not be present. Thus, high values of Chromium may indicate that when ran with demi-
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water, corrosion of the stainless steel system occurred. Even though after demi-water trials 

system was cleaned with tap water (and no membrane), pressure build up when performing 

trials with membrane may release certain compounds that were stacked in tubes before.   

 

Apart from concentrate and permeate parameters measured and mentioned above, pH and 

conductivity of concentrate is measured hourly, and twice per day in permeate line. Results 

obtained for Trial 6 (last trial performed), are shown in Figures 5-38. 

  

 

 

Figure 5-38: pH and conductivity variation over time, for the last trial conducted with AnMBR permeate as feed, pump 

frequency of 10 Hz, and feed flow of 685 mL/m. Dotted green line indicates when system is stopped. 

Concentrate pH is expected to increase over time, due to the effect of increasing concentrations. 

However, this is not the case for the 6th trial, where little fluctuates of pH are observed. This 

can be due to the fact that actually only 8% of permeate is recover, causing a minimum impact 

on pH. Moreover, there is almost no variation in pH before and after the set-up is turned off and 

started again.  On the other hand, permeate pH vary more than the concentrate one, from 5.9 to 

6.4.  
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In both, permeate and concentrate, conductivity values increase over time, as shown in Figure 

5-38. This is due the fact that total solids concentration increase over time in concentrate line 

(and therefore, total dissolved solids also), leading to an increase of this parameter in permeate 

stream (RO rejection coefficients should remain approximately the same). Furthermore, 

concentrate conductivity rejection rate varies from 95 to 97% as shown in Table 5-12. 

Moreover, conductivity is related with TDS, with a comparison factor between 0.5 to 0.7 

(Walton, 1989).  Table 5-12 shows TDS values considering a 0.5 factor, thus, a conductivity of 

1 mS/cm corresponds to a TDS of 500 mg/L.  
 

Table 5-12: Conductivity variation over time in permeate and concentrate lines of RO system. 

Date 
Time  

Concentrate Permeate 

Rejection rate Cond TDS Cond TDS 

min mS/cm mg/L μS/cm mg/L 

21-Feb 2 3.54 1770       

21-Feb 85     100.2     

21-Feb 175 3.70 1850 103.0 52 97% 

22-Feb 250 3.82 1910       

22-Feb 300 3.85 1925 107.6 54 97% 

22-Feb 370 3.93 1965 110.9 55 97% 

23-Feb 435 3.87 1935       

23-Feb 495 3.92 1960       

23-Feb 540 4.00 2000 154.4 77 96% 

23-Feb 601 4.02 2010       

23-Feb 620     160.0 80   

24-Feb 625 4.02 2010       

24-Feb 685 4.04 2020       

24-Feb 735 4.06 2030 218.0 109 95% 

 

 

Calculated TDS values are close to TS ones. Therefore, as concluded before, most of solids in 

concentrate and permeate are dissolved ones, while suspended solids are almost negligible. In 

concentrate sample taken on the 24th, some particles are visually observed, and there is a clear 

difference between permeate and concentrate turbidity, as shown in Figure 5-39. 
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Figure 5-39: Concentrate and permeate samples from RO system taken on the 24th of February. 

 

Huang, et al. (2015) conducted a research in assessing methods for reverse osmosis membrane 

integrity. Among several studies, TDS after RO system for wastewater reclamation is evaluated, 

and results are around 5 mg/L, value 10 times higher than the ones obtained in this research. 

Furthermore, Huang also counted bacteria and virus in RO feed and permeate samples using 

FCM and BD Accuri™. Feed samples are microfiltration MBR permeate, with total virus count 

around 6.2x106 VLP/mL (VLP corresponds to virus like particles). RO permeate samples has 

values below the detectable limit of 104 and 102 counts per mL, for bacteria and viruses 

respectively. For this research, two more analysis are conducted in permeate and concentrate 

lines: bacteria count and faecal coliforms. Total and intact cell count are measured from samples 

of the 21st of February, while coliforms are analysed from samples taken the 24th. Cell count 

results are shown in Table 5-13.  

Table 5-13: Total and intact bacteria count measured on permeate and concentrate of RO system, the 21st of February.  

Parameter Unit Concentrate Permeate 

Total cell count Events/mL 29,068,667 3,486,000 

Intact cell count Events/mL 25,068,667 2,906,333 

 

Despite the fact that one log removal is obtained with RO system, bacteria and viruses should 

not be present in permeate line due to its size in comparison with RO pores. Values in 

concentrate are according to what is found in original dairy industry AnMBR permeate (section 

5.1.3). RO permeates samples are taken and stored in the fridge at 6°C, and measurements of 

cell count are conducted on the 3rd of March. Permeate accumulation vessel and sample bottles 

are not sterile ones, and it may occur contamination during storage. Furthermore, Van Nevel, 

et al. (2017) found a difference higher than 300,000 cell/mL counted by flow cytometry and 

heterotrophic plate count (HPC), where the latter has a peak of around 2,000 c.f.u/mL (compare 

to 350,000 total cell/mL by FCM) in a spring sample, and correlation between HPC and FCM 

(flow cytometric) is particularly weak (R2 < 0.1).  

 

Faecal and E.Coli are measured the 3rd of March, with samples taken the 24th and stored in the 

fridge. A volume of 1mL of permeate and concentrate are added to chromocult agar plate, and 
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colony formed units are counted. Since bacteria count is high, 10 times dilutions are also 

measured. Results obtained after 24 hours growth at 37°C are shown in Figures 5-40 and 5-41. 

 

 

 

Figure 5-40: Concentrate measurement of Coliforms. Pink dots corresponds to Faecal Coliforms and white dots to other 

Enterobacter. No E. Coli are found in the samples. 

Faecal coliform colonies counted vary from one to three per mL of concentrate sample. No 

E.Coli is found in either samples, but Enterobacter abound. Furthermore, in samples 10 times 

diluted, only the latter can be seen.   

 

   

Figure 5-41: Permeate measurements of Coliforms. Duplicates of the same sample are down and shown in this figure. Pink 

dots corresponds to Faecal Coliforms and white dots to other Enterobacter. No E. Coli are found in the samples. 

Presence of one colony of Faecal coliform per mL of sample is counted in one permeate sample, 

while in the other one only Enterobacter can be seen. Furthermore, there is no E. Coli in any 

sample. In samples 10 times diluted, only Enterobacter can be seen. Bacteria presence is align 

with the results of bacteria count measurements performed on permeate sample.  However, 

considering that feed of AnMBR is synthetic dairy industry wastewater, no presence of 

Coliforms should be found in samples. Moreover, it is recommended that samples are analysed 
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right away after being taken, because presence of F. Coliforms in concentrate and permeate 

does not directly imply that this streams are contaminated, due to the fact that contamination 

could occur while samples are being stored.  

 

Considering all data analysed from permeate and concentrate, average values and standard 

deviation are calculated when corresponds. Results are shown in Table 5-14. Moreover, this 

values will be further scrutinise when considering reuse possibilities of the streams. Regarding 

ions measurements of concentrate and permeate, data given by UNESCO-IHE is accepted as 

reliable. Finally, both stream pollutant concentration increase over time. Thus, characteristics 

will worsen and considering the average between all measurements conducted is not the safest 

assumption. However, permeate is accumulated on the same vessel, and therefore, mixed.  

 

Table 5-14: Average concentrate and permeate of RO system parameters. 

Parameter Unit 

Concentrate Permeate 
Removal 

efficiency Value 
Standard 

deviation 
Value 

Standard 

deviation 

pH - 7.4 0.0 6.1 0.2   

Conductivity mS/cm 3.9 0.16 0.14 0.04 96% 

TCOD mg/L 62.1 15.6 4.9 4.2 92% 

TS mg/L 1,750 60 70 10 96% 

VS mg/L 240 70 40 30 83% 

VFA meq/L 0 0 0 0 - 

TP mg/L 29.7 0.7 <2 - <93% 

PO4-P mg/L 29.7 0.5 <2 - <93% 

TKN mg/L 195 6 9 2 95% 

NH4-N mg/L 191 5 8 3 96% 

Alkalinity meq/L 33.4 0.8 1.0 1.4 97% 

E. Coli CFU/mL 0 - 0 - - 

F. Coliforms CFU/mL 2 - 1 - - 

Intact Bacteria count Events/mL 25,068,667 - 2,906,333 - - 

Na+ mg/L 419 29 29 24 93% 

K+ mg/L 117 28 39 17 67% 

Ca2+ mg/L 100 5 32 40 68% 

Mg2+ mg/L 39 3 2.5 0 94% 

Cr+ mg/L 7 - ND ND - 

Mn2+ μg/L 9 3 ND ND - 

Cl- mg/L 211 2.8 3.5 0 98% 

NO3
- mg/L <6 - <6 - - 
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Given the RO permeate parameters mentioned above, then AnMBR coupled with RO system 

for dairy industry wastewater treatment achieve high removal efficiencies, as shown in Table 

5-15.  

 

Table 5-15: Coupling of AnMBR and RO system for treating dairy industry wastewater removal efficiencies. 

Parameter Unit 
AnMBR + RO removal 

efficiencies  

TCOD mg/L 99.95% 

TS mg/L 98.84% 

VS mg/L 99.25% 

TSS mg/L 100.00% 

VSS mg/L 100.00% 

VFA meq/L 100.00% 

PO4-P mg/L >93% 

TKN mg/L 96.70% 

 

Big differences between nutrient and solids concentrations, between AnMBR and RO permeate, 

lead to considered RO permeate for industrial reuse apart than irrigation. Thus, considering that 

plenty of water is being used by dairy industries, recirculating RO permeate may have a 

significant effect on water consumption and water costs.  

 

5.3.1. Reuse possibilities  
 

According to Uruguayan standards, wastewater for reuse purposes have to comply with 

drinking water standards. Thus, both permeate and concentrate are assess according to the same 

standards stablished by Uruguayan Institute of Technical Standards (UNIT) (2010). Neither 

treated wastewater streams have reuse possibilities when being compare to Uruguayan 

standards, and Table 5-16 shows parameters in both streams that do not cope with the needed 

regulation.  
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Table 5-16: Concentrate and Permeate parameters that do not comply with standards given by Uruguayan Institute of 

Technical Standards (UNIT) (2010) 

Parameter Unit 

UNIT Concentrate Permeate 

Standards Value 
Compliance with 

standards 
Value 

Compliance with 

standards 

pH - 6.5-8.5 7.4 Yes 6.1 No 

Conductivity mS/cm 2 3.9 No 0.14 Yes 

NH4-N mg/L 1.5 191 No 8 No 

Na+ mg/L 200 419 No 29 Yes 

Cr+ mg/L 0.05 7 No ND - 

F. Coliforms CFU/mL 
Absence in 

100 mL 
2 No 1 No 

 

Permeate stream limitations for drinking water are regarding pH, ammonium and pathogens. 

This latter can be avoid by adding a disinfection step, like UV or chloride. However, addition 

of chloride will further decrease pH, which must increase to a minimum of 6.5 to be considered 

as neutral. Maximum allowed ammonium in drinkable water is 1.5 mg/L. Thus, permeate did 

never cope with this standard. To nitrify ammonium a biological process must happen, with 

growth of ammonia oxidizing bacteria (AOB) and nitrate oxidizing bacteria (NOB). Moreover, 

since there is almost none alkalinity in permeate and pH is below 6.5, nitrification processes 

are not likely to happen even if the sample is aerated. Additionally, COD content in permeate 

is not enough to nitrify ammonium up to the standard limits of 1.5 mg/L. According to the 

stoichiometry conversion of ammonium into nitrate, 4 g of COD (as oxygen) are required to 

convert 1 g of ammonium into nitrate (or 4.57 g of O2 are needed to convert 1 g of NH4
--N into 

NO3
—N, as shown in the equations below: 

𝑁𝐻4
+ +

3

2
𝑂2 → 𝑁𝑂2

− + 𝐻2𝑂 + 2𝐻+    (14) 

𝑁𝑂2
− +

1

2
𝑂2 →  𝑁𝑂3

−
      (15) 

 

Furthermore, pre-aeration for ammonium removal before RO treatment is not recommended, 

since as found in section 5.1.3, aeration produce crystallization of several compounds 

incrementing the total amount of particles. Other possibilities for decreasing ammonium 

concentrations are adding alkalinity (which will also increase pH) in order to be able to nitrify 

ammonium, ammonia stripping (where pH must be increase up to values around 10), or dilution.  

 

Chromium content in concentrate line can be avoid by performing prolonged wash of the RO 

system with tap water, after demi-water trials. Besides, as few demineralized water trials as 

possible should be carried out, in order to prevent stainless steel corrosion.  

 

Considering the Guidelines and Standards for Wastewater Reuse , complied by Kramer and 

Post (NY),  and  the Guideline for the safe use of wastewater, excreta and greywater developed 

by World Health Organization (2006) concentrate and permeate have reuse possibilities for 
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irrigation, but depending on the type of crop or final use, which means that case to case 

assessment must be conducted.  

 

To begin with, WHO guidelines for using treated wastewater in agriculture recommends less 

than a 1,000 F. Coliforms per 100 mL for irrigation of crops likely to be consumed raw. Thus, 

both permeate and concentrate streams are in the limits. Pathogens may be an issue and 

disinfection is recommended in any case.   

 

Secondly, WHO gives recommendations on concentrations range base on the degree of 

restriction in use (none, moderate and severe), for conductivity, sodium, chloride, bicarbonate 

and manganese. Table 5-17 shows restriction levels according to WHO for the above mentioned 

parameters, where it can be observed that concentrate have mostly severe restrictions for 

irrigation purposes, but permeate has no limitations. Furthermore, maximum recommended 

concentration of Chromium is 0.10 mg/L, value assume due to lack of knowledge in its level of 

toxicity in plants. Hence, concentrate is not suitable for irrigation purposes. However, if 

chromium concentration is taken care off, by reducing trails with demineralized water and 

properly flushing the RO system, then it is possible to reuse it under severe restrictions.    This 

restrictions allows it use only for localized irrigation of cereal crops, industrial crops, fodder 

crops, pasture and trees (no fruit trees), where there is no exposure to workers or any type of 

public (World Health Organization, 2006). Furthermore, nitrogen concentration in concentrate 

stream must be considered, since excessive amounts of it while irrigating, may lead into 

groundwater contamination.  

 

Table 5-17: Restriction levels for reuse in irrigation of several compounds, according to World Health Organization (2006) 

Parameter Unit 

Concentrate Permeate 

Value Restriction level Value Restriction level 

Conductivity mS/cm 3.9 Severe 0.14 None 

Na+ mg/L 419 Severe 29 None 

Cl- mg/L 211 Moderate 3.5 None 

HCO3
- meq/L 33.4 Severe 1.0 None 

Mn2+ μg/L 9 None ND None 

 

 

Finally, FAO developed guidelines for evaluating suitability of water for irrigation purposes 

(Ayers and Westcot, 1985), where several compounds concentrations range are presented. 

Among others, nitrate concentrations between 5 to 30 mg/L have a moderate restriction. Thus 

concentrate and permeate may have a moderate or none restriction regarding this value.  

 

Bearing in mind WHO and FAO guidelines for irrigation reuse, permeate has almost none 

limitations or reuse. However, pH should be in the range of 6.5 to 8, and therefore, it is 

recommended to increase it. Furthermore, disinfection of both streams is endorsed to reuse 

treated wastewater for irrigation. Permeate can be directly use for irrigation of crops likely to 
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be eaten uncooked, sports fields and public parks. Additionally, low solids concentration in 

permeate made this stream reusable for industrial purposes. One of the main drawbacks of RO 

concentrate is the high amount of calcium in the stream, which may lead (as discuss in section 

5.1.3) into calcium phosphate precipitation. Therefore, concentrate is not recommended for 

industrial reuse since it is prone to bloke pipes. On the other hand, permeate low concentrations 

of calcium, orthophosphate, and other ions make this stream suitable to recycling it into 

industrial processes, such as cooling and boiling towers, cleaning purposes, bathrooms, 

firefighting, etc., where no expected contact with dairy products may occur.  

 

Finally, according to Vourch, et al. (2007), who researched about dairy industry water 

consumption and wastewater production in 11 French companies who consume between 800 

to 3,400 m3 of water per day, boiler make up water consumption may vary from 30 to 

275 m3/day, cooling water from 70 to 370 m3/d, and cleaning and outside washing between 40 

to 950 m3/day. Therefore, replace a share of water used for the previous processes mentioned 

have a significant impact on dairy industry water consumption.  
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CHAPTER 6  

Recommendations 
 

Assessing RO system to treat AnMBR permeate from dairy industry wastewater is a broad 

subject, difficult to be fully analyse in the short time of this research. Furthermore, setup and 

start-up of the system took around 3 months and a half, leading to a short time of trials. Biothane 

is planning to continue operating the system when fed with different types of industrial 

wastewater. Thus, some recommendations for the further studies are mentioned below.   

 

Sterilize permeate line of AnMBR system to prevent bacteria growth. Considering the 

membrane pore size and the bacteria one, this latter should not pass through the membrane. 

However, since AnMBR systems in Biothane work with a full scale length membrane, permeate 

produced is recirculated into the CSTR vessel and passed through the membrane several times. 

This and mesophilic working temperature around 36°C enhance bacteria formation. 

Furthermore, accumulation vessel that will be used as a feed for RO system should be located 

as close as the exit of membrane permeate. In this way, contamination is minimize as much as 

possible. Moreover, all accumulation vessel in RO systems should also be sterilize, and if 

bacteria count and coliforms measurements are going to be carried out, it is recommended to 

have sterile bottles to accumulate samples.  

 

Regarding dairy industry AnMBR permeate characteristics, use of antiscalants is highly 

recommended for further treatment with RO. This will reduce fouling and scaling potential and 

therefore, higher recoveries will be achieved. In case other type of permeate is used as RO feed, 

analysis of antiscalants needed is suggested.  

 

Laboratory scale RO system is useful to assess permeate and concentrate characteristics, but is 

hard to compare operational conditions to real scale plants. Several upgrades of the system 

should be carried out in order to minimize errors and work with reliable data. To begin with, 

given the membrane area and length (42 cm2 and 9 cm respectively) and cross flow velocity 

admissible range (0.1 to 0.5 m/s), RO feed flow should be between 410 and 1,030 mL/min. 

Therefore pump and flowmeter are oversized. Pump bought is able to give flows up to 

6,500 mL/min, corresponding to 6 times higher than the maximum admissible one for the 

membrane, and if no bypass flow is desire, the pump needs to work a low frequencies which 

decrease its efficiency.  Flowmeter measures flows between 0.2 and 2.0 gpm (760 to 

7,600 mL/m), with mark measurements every 0.1 gpm (375 mL/min). If concentrate is 

measured using the actual flowmeter, representative variations which have a significant effect 

on recovery, are not perceptible in the flowmeter. Hence, a more sensitive flowmeter is 

recommended.  

 

Secondly, pressure gauges are also oversized and no less than a difference of one bar can be 

measure. Maximum setup pressure is 69 bars, and bought membrane do not withstand pressures 
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above 45 bar. Digital pressure gauges are recommended for the RO system, since this are able 

to measure small variations.  

 

Thirdly, it is recommended to continuously measure conductivity, pH and temperature on the 

feed vessel of RO system. During trials, samples of around 70 mL are taken to perform the 

above measurements. However, considering that permeate flow achieved were around 

2 mL/min, volume extraction is significant compare to permeate production. Furthermore, 

while volume of permeate produced is measure every 5 minutes on a weight scale, important 

changes can be performed if the weight scale is connected to computer and data is automatically 

recorded. As shown in the research, when the system is turned off and started again, it needs 

around 30 minutes to get to previous conditions. However, if system is connected to PLC and 

data is recorded, it can run continuously for around 8 hours per day, which will help in assess 

better its fouling and biofouling potential.  

 

Considerable deviation in anions and cations concentration make results less reliable. 

Therefore, it is recommended to change the laboratory where ions samples are being analysed, 

or contact them in order to perform more trustworthy measurements.  When working with 

anaerobic systems, it is important that samples and measurements are performed under 

anaerobic conditions, or introducing the less amount of air as possible.     

 

Finally, it is recommended to minimize as much as possible trials with demineralized water, 

since this is corrosive for stainless steel material. Once demi-water has been used, flush the 

system several times with tap water and no membrane, to avoid undesired pollutants in trials 

with AnMBR permeate.  
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CHAPTER 7  

Conclusions 
 
Setting, starting up and running a laboratory scale anaerobic Reverse Osmosis system coupled 

with batch scale AnMBR has its difficulties and challenges. A feasibility assessment of using 

anaerobic RO system as a second step in treatment of synthetic dairy industry wastewater, 

where the first stage is AnMBR treatment, is carried out. Feed, concentrate and permeate 

conditions are studied, focusing on fouling characteristics, and operational conditions of the 

laboratory scale RO are assess. The following conclusions, can be drawn from results and 

discussions of this research: 

 

 Permeate of ultrafiltration AnMBR treating synthetic dairy industry wastewater, has SDI 

around 3 and therefore, can be used as RO feed.  

 Accumulation vessel of AnMBR permeate for RO feed should be avoided, since it is an 

environment rich in nutrients and prone for bacteria growth. Furthermore, permeate flow 

from AnMBR should be directly conducted to RO system to minimize bacteria growth. 

 AnMBR permeate has less particles when kept anaerobic than if it is aerobic, even though 

particles have the same size distribution. When AnMBR is aerated, pH increase and 

particles counted are around 10 time higher than in anaerobic conditions. Furthermore, 

average particle diameter is 6 μm, which is 100 times bigger than the AnMBR pore size 

(0.03 μm). Even though particles in permeate are bigger than the membrane pore size, 

integrity of the AnMBR is ensure.  

 AnMBR permeate is kept under anaerobic conditions, but when samples are being analysed 

it is impossible to ensure anaerobic conditions, even when special considerations are taken. 

Thus, results may deviate from reality. 

 RO laboratory scale ran with Dow Filmtec™ BW30XFR membrane has a maximum 

achievable recovery of 9% per meter of membrane when ran with demineralized water. This 

value is achieved when system is ran at 5 Hz, no bypass and a feed flow of around 

300 mL/min.  

 Maximum recovery of 4.2% is achieved, when RO lab scale system is ran with AnMBR 

permeate as feed.  

 When RO system is turned off and started up again, it needs approximately 30 minutes to 

reach the same operational conditions (regarding pressure and recovery) as before it is 

turned off.  

 Given the RO setup, it is not possible to achieve stable feed pressure or recovery. Thus, 

operational conditions are not comparable with full scale RO plants, which operate 

generally at constant recovery and variable feed pressure, but also in some minor cases the 

other way around.  
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 Pollutants concentrations in RO permeate stream increase over time due to the fact that RO 

feed concentrations are also increasing (RO brine is recirculated to the feed vessel). 

 High removal efficiencies are achieve with RO: 96% of Nitrogen (as ammonium), more 

than 93% of Phosphorus, 92% of TCOD, and 96% of conductivity is removed (same 

removal efficiency as total solids). Moreover, almost all solids found in AnMBR permeate 

and RO permeate are dissolved ones. Finally, coupled system of AnMBR and RO achieved 

extremely high removal efficiencies when treating dairy industry wastewater: TCOD of 

99.95%, TS of 98.84%, VFA of 100%, Phosphorus removal (as orthophosphate) is higher 

than 93%, and Nitrogen (as TKN) 96.70%. Ammonium in RO effluent is around 8 mg/L 

and orthophosphate is below 2 mg/L.  

 According to Uruguayan legislation, neither concentrate nor permeate streams have reuse 

possibilities due to the fact that they do not comply with drinkable water standards. 

Furthermore, values of NH4 found in RO permeate are more than 5 times higher than require 

standard (8 versus 1.5 mg/L). However, when this streams are evaluated bearing in mind 

WHO and FAO recommendations, then permeate flow has almost none restriction in reuse 

for irrigation purpose, but pH should be in the range from 6.5 to 8. On the other hand, 

concentrate stream has severe irrigation restrictions, mainly due to conductivity, 

concentration of sodium and bicarbonate. Furthermore, due to low concentration in 

permeate stream, especially low concentration of solids, calcium and orthophosphate, 

permeate may be used for industrial purposes, such as cooling and boiling towers, cleaning 

and washing, among others, where no contact with dairy industry products is expected.  

 

 

 
 

 

  



References 85 

 

References 
 

Andrade L (2011) Tratamento de efluente de indústria de laticínios por duas configurações de 

biorreator com membranas e nanofiltração visando o reuso [Dairy industry effluent 

treatment with two configurations of membrane bioreactors and nanofiltration aiming 

at reuse].  

APHA APHA, AWWA AWWA, WEF WEF (2005) Standard methods for the examination of 

water and wastewater. American Public Health Association (APHA): Washington, DC, 

USA  

Ayers RS, Westcot DW (1985) Water quality for agriculture Food and Agriculture Organization 

of the United Nations Rome 

Azadeh Rahimpour (2015) Comparison of Mesophilic and Thermophilic Treatment of Pot Ale 

in Anaerobic Membrane Bioreactors UNESCO-IHE  

Bartels CR, Wilf M, Andes K, Iong J (2005) Design considerations for wastewater treatment 

by reverse osmosis. Water science and technology 51: 473-482 

Bucs SS, Radu AI, Lavric V, Vrouwenvelder JS, Picioreanu C (2014) Effect of different 

commercial feed spacers on biofouling of reverse osmosis membrane systems: a 

numerical study. Desalination 343: 26-37 

Caridad Canales, Jouravlev A, Economic Affairs, Division of Natural Resources and 

Infrastructure, ECLAC ECfLAatC, UNW-DPAC U-WDPoAaC (2012) Water and a 

Green Economy in Latin America and the Caribbean (LAC), Chile. 

Chardon Laboratories (2016) http://www.chardonlabs.com/2016/02/17/bulletin-1071-

temporary-hardness-for-the-common-man/. Cited 10 March 2017 

Crystalline Particle Viewer (2017) 

https://www.crystallizationsystems.com/Crystalline/crystalline-particle-viewer. Cited 6 

March 2017 

Dagnew M, Parker W, Seto P, Waldner K, Hong Y, Bayly R, Cumin J (2011) Pilot testing of 

an AnMBR for municipal wastewater treatment. Proceedings of the Water Environment 

Federation 2011: 4931-4941 

Demirel B, Yenigun O, Onay TT (2005) Anaerobic treatment of dairy wastewaters: a review 

DOI 10.1016/j.procbio.2004.12.015 

Dereli RK, Ersahin ME, Ozgun H, Ozturk I, Jeison D, van der Zee F, van Lier JB (2012) 

Potentials of anaerobic membrane bioreactors to overcome treatment limitations 

induced by industrial wastewaters. Bioresource technology 122: 160-170 

DIEA EA (2016) Estadísticas del Sector Lácteo 2014 [StatisticsDairy sector  2014]. 

Dinama.gub.uy (2016) MVOTMA Environmental Information System [Sistema de 

información Ambiental]. 

DOW-FILMTEC: Product information (2017) http://www.dow.com/elibrary. Cited 2 March 

2017 

Water use in industry (2016) http://ec.europa.eu/eurostat/statistics-

explained/index.php/Water_use_in_industry. Cited 24 September 2016 

FAO (2015) World fertilizer trends and outlook to 2018, Rome. 

Farhat NM, Vrouwenvelder JS, Van Loosdrecht MCM, Bucs SS, Staal M (2016) Effect of water 

temperature on biofouling development in reverse osmosis membrane systems. WR 

Water Research 103: 149-159 

http://www.chardonlabs.com/2016/02/17/bulletin-1071-temporary-hardness-for-the-common-man/
http://www.chardonlabs.com/2016/02/17/bulletin-1071-temporary-hardness-for-the-common-man/
https://www.crystallizationsystems.com/Crystalline/crystalline-particle-viewer
http://www.dow.com/elibrary
http://ec.europa.eu/eurostat/statistics-explained/index.php/Water_use_in_industry
http://ec.europa.eu/eurostat/statistics-explained/index.php/Water_use_in_industry


References 86 

 

Fritzmann C, Löwenberg J, Wintgens T, Melin T (2007) State-of-the-art of reverse osmosis 

desalination. Desalination  

Gatza E, Hammes F, Prest E (2013) Assessing Water Quality with the BD Accuri™ C6 Flow 

Cytometer. BD Bioscience  

Grundestam J, Hellström D (2007) Wastewater treatment with anaerobic membrane bioreactor 

and reverse osmosis. Water Science and Technology 56: 211-217 

Henze M (2008) Biological wastewater treatment: principles, modelling and design IWA 

publishing 

Hoinkis J, Deowan SA, Panten V, Figoli A, Huang RR, Drioli E (2012) Membrane Bioreactor 

(MBR) Technology–a promising approach for industrial water reuse. Procedia 

Engineering 33: 234-241 

Huang X, Min JH, Lu W, Jaktar K, Yu C, Jiang SC (2015) Evaluation of methods for reverse 

osmosis membrane integrity monitoring for wastewater reuse. Journal of Water Process 

Engineering 7: 161-168 

Facts & Figures (2014) http://www.fil-idf.org/about-dairy/facts-figures/. Cited 10 October 

2016 

IM-UEI (2015) Industrial effluent monitoring report [Informe monitoreo de efluentes 

industriales]. 

Janczukowicz W, Zieliński M, Dębowski M (2008) Biodegradability evaluation of dairy 

effluents originated in selected sections of dairy production. Bioresource Technology 

99: 4199-4205 

JET / DINAMA (2010) Informe de Situación sobre Fuentes de Contaminación Difusa en la 

Cuenca del Río Santa Lucía [Status report on diffuse pollution sources on Santa Lucía 

River basin]. 

Reverse Osmosis (2016) http://www.kandrwaterservice.com/discussing-some-pros-and-some-

cons-of-reverse-osmosis/. Cited 29 September 2016 

Kramer A, Post J (NY) Guidelines and standards for wastewater reuse, Berlin. 

Li F, Meindersma W, De Haan A, Reith T (2002) Optimization of commercial net spacers in 

spiral wound membrane modules. Journal of Membrane Science 208: 289-302 

Liao B-Q, Kraemer JT, Bagley DM (2006) Anaerobic membrane bioreactors: applications and 

research directions. Critical Reviews in Environmental Science and Technology 36: 

489-530 

Lin H, Peng W, Zhang M, Chen J, Hong H, Zhang Y (2013) A review on anaerobic membrane 

bioreactors: Applications, membrane fouling and future perspectives. Desalination 

Desalination 314: 169-188 

Lousada-Ferreira M, van Lier J, van der Graaf J (2016) Particle counting as surrogate 

measurement of membrane integrity loss and assessment tool for particle growth and 

regrowth in the permeate of membrane bioreactors. Separation and Purification 

Technology 161: 16-24 

Malaeb L, Ayoub GM (2011) Reverse osmosis technology for water treatment: state of the art 

review. Desalination 267: 1-8 

María Cecilia Ceiter Techera (2016) Evaluation of a membrane bioreactor for treating brewery 

wastewater. UNESCO-IHE  

Environmental Guidelines for Dairy Industry (1996) 

https://www.miga.org/documents/DairyIndustry.pdf. Cited 4 October 2016 

MVOTMA-DINAGUA (2016) National Water Plan, proposal [Plan Nacinoal de Aguas, 

Propuesta] 

http://www.fil-idf.org/about-dairy/facts-figures/
http://www.kandrwaterservice.com/discussing-some-pros-and-some-cons-of-reverse-osmosis/
http://www.kandrwaterservice.com/discussing-some-pros-and-some-cons-of-reverse-osmosis/
https://www.miga.org/documents/DairyIndustry.pdf


References 87 

 

MVOTMA-DINAMA (2014) State of the Environment, report 2013 [Informe del Estado del 

Ambiente 2013]. 

MVOTMA (2013) Action Plan to protect water of  Río Santa Lucía basin [Plan de acción para 

la protección de la calidad ambiental y la disponibilidad de las fuentes de agua potable]. 

Drinking water supply - OSE (2015) http://www.ose.com.uy/a_agua.html. Cited 3 October 

2016 

Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: A critical review. 

Critical Reviews in Environmental Control 21: 411-490 

PMMI TAfPaPT (2013) Executive Summary and Industry Perspective: Dairy Production and 

Consumption in: Consumption ESaIPDPa. 

Global dairy top 20 (2016) https://www.rabobank.com/en/images/global-dairy-top-20.pdf. 

Cited 10 October 2016 

Rahaman M, Mavinic D, Bhuiyan M, Koch F (2006) Exploring the determination of struvite 

solubility product from analytical results. Environmental technology 27: 951-961 

Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic 

distances in halides and chalcogenides DOI 10.1107/S056773947600155 

Sterlitech Reverse Osmosis Membrane specifications and operation limits (2017) 

http://www.sterlitech.com/reverse-osmosis-ro-membrane.html. Cited 2 March 2017 

Sustainabledevelopment.un.org (2016) 

https://sustainabledevelopment.un.org/topics/waterandsanitation. Cited 24 September 

2016 

Tanuwidjaja D (2002) Experimental investigation on rejection of sodium sulfate by Reverse 

Osmosis. University of California, Los Angeles  

Toray ROMembrane specifications (2017) 

http://www.toraywater.com/products/ro/ro_002_01.html. Cited 2 March 2017 

Uruguay Government (1979) 253/79. 

Sector lácteo [Dairy Sector] (2015) http://www.uruguayxxi.gub.uy/informacion/wp-

content/uploads/sites/9/2016/01/Informe-Sector-Lacteo-Junio-2015.pdf. Cited 10 

October 2016 

Uruguayan Institute of Technical Standards (UNIT) (2010) UNIT 833:2008 - Agua potable 

requisitos [drinking water standards]. 

Van Lier J, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, Pol LH, Lens P, 

Verstraete W (2001) New perspectives in anaerobic digestion. Water Science and 

Technology 43: 1-18 

Van Lier JB, Mahmoud N, Zeeman G (2008) Anaerobic wastewater treatment 

Van Nevel S, Koetzsch S, Proctor C, Besmer M, Prest E, Vrouwenvelder JS, Knezev A, Boon 

N, Hammes F (2017) Flow cytometric bacterial cell counts challenge conventional 

heterotrophic plate counts for routine microbiological drinking water monitoring. Water 

Research  

Visvanathan C, Abeynayaka A (2012) Developments and future potentials of anaerobic 

membrane bioreactors (AnMBRs). Membr Water Treat 3: 1-23 

Vourch M, Balannec B, Chaufer B, Dorange G (2007) Treatment of dairy industry wastewater 

by reverse osmosis 

for water reuse DOI 10.1016/j.desal.2007.05.013 

Vrouwenvelder J, Van Paassen J, Van Agtmaal J, Van Loosdrecht M, Kruithof J (2009a) A 

critical flux to avoid biofouling of spiral wound nanofiltration and reverse osmosis 

membranes: fact or fiction? Journal of Membrane Science 326: 36-44 

http://www.ose.com.uy/a_agua.html
https://www.rabobank.com/en/images/global-dairy-top-20.pdf
http://www.sterlitech.com/reverse-osmosis-ro-membrane.html
https://sustainabledevelopment.un.org/topics/waterandsanitation
http://www.toraywater.com/products/ro/ro_002_01.html
http://www.uruguayxxi.gub.uy/informacion/wp-content/uploads/sites/9/2016/01/Informe-Sector-Lacteo-Junio-2015.pdf
http://www.uruguayxxi.gub.uy/informacion/wp-content/uploads/sites/9/2016/01/Informe-Sector-Lacteo-Junio-2015.pdf


References 88 

 

Vrouwenvelder JS, Graf von der Schulenburg DA, Kruithof JC, Johns ML, van Loosdrecht MC 

(2009b) Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a 

feed spacer problem. Water research 43: 583-594 

Vrouwenvelder JS, Kruithof J, van Loosdrecht MC (2011) Biofouling of spiral wound 

membrane systems Iwa Publishing 

Walton N (1989) Electrical conductivity and total dissolved solids—What is their precise 

relationship? Desalination 72: 275-292 

Wang Z, Ma J, Tang CY, Kimura K, Wang Q, Han X (2014) Membrane cleaning in membrane 

bioreactors: a review. Journal of Membrane Science 468: 276-307 

Water Environment Federation (2006) Membrane Systems for Wastewater Treatment 

 WEF Press 

World Health Organization (2006) Guideline for the safe use of wastewater, excreta and 

greywater. 

Water scarcity (2016) http://www.un.org/waterforlifedecade/scarcity.shtml. Cited 27 

September 2016 

MemthaneR http://technomaps.veoliawatertechnologies.com/memthane/en/. Cited 5 October 

2016 

Xu P, Bellona C, Drewes JE (2010) Fouling of nanofiltration and reverse osmosis membranes 

during municipal wastewater reclamation: membrane autopsy results from pilot-scale 

investigations. Journal of Membrane Science 353: 111-121 

 

  

http://www.un.org/waterforlifedecade/scarcity.shtml
http://technomaps.veoliawatertechnologies.com/memthane/en/


Appendices 89 

 

Appendices 
 



Appendices 90 

 

  Pump data sheet 

 
 



Appendices 91 

 

 
 

 

 



Appendices 92 

 

 
 

 

 



Appendices 93 

 

 
 

 

 



Appendices 94 

 

 
 

 

 



Appendices 95 

 

 Vithane 
 

 



Appendices 96 

 

 



Appendices 97 

 

 Genesys WB Antiscalant 
 

 



Appendices 98 

 

 DOW FILMTEC™ BW30XFR Data sheet 

 
 



Appendices 99 

 

 
 


