

Institute of Technologies and Information Systems

CASTILLA-LA MANCHA UNIVERSITY

PhD Thesis

MANDINGA: METHODOLOGY FOR

AUTOMATION TESTING INTEGRATING

FUNCTIONAL AND NON-FUNCTIONAL ASPECTS

PhD Student:

Federico Leonardo Toledo Rodríguez

Supervisors:

PhD. Macario Polo Usaola

PhD. Beatriz Pérez Lamancha

Ciudad Real, Spain, 2014

Dedicado a la persona que me dio la enseñanza más importante de mi vida, y no lo hizo

con palabras sino predicando con el ejemplo, pero intentando llevarlo a papel esta

enseñanza fue: no importa lo adversa que parezca la situación, siempre con mucho

esfuerzo y con absoluta bondad se puede salir adelante. Gracias mamá, ¿qué sería de

mi sin vos?

ACKNOWLEDGMENTS

It is impossible to mention all the people with whom I am grateful, but I will try.

First of all, I would like to thank my advisors, Macario and Beatriz, for their technical and

non-technical advice during the realization the thesis, which would not exist without

their supervision.

I would like to extend my thanks to my research workmates of these years: Pedro,

Ricardo, Laura, Tomás, Beatriz, Ana, Andrea, César, Alberto, María, Alberto, Rubén and

Jesús. We had great time working together.

I am also very grateful to the Alarcos Research Group, head Mario Piattini and all its

members. Their support to carry out this thesis was very valuable too.

Also, I would like to thank the CNR, in Pisa, Italy, and especially Antonia and Francesca

that have allowed me to develop my research stage with them, supporting and

extending the horizons of my research. In this case I would like to extend my thanks to

the colleagues I had there in this period: Breno, Guillielmo, Andrea, Eda and many more.

I would also like to express my gratitude to all the people of the Centro de Ensayos de

Software. My knowledge and passion about testing grew up working with them.

I am also very grateful to the new friends I have made in Spain and Italy. They never let

me feel homesick. Of course, I would like to thank my old friends I am wishing to meet

again. I consider myself very lucky because of the people around me. They are the best

on the world.

My most important thanks go to my family; they are my main motivation, inspiration

and support.

Last but not least, my greatest thanks go to all Abstracta team, especially to my close

friends Matías and Fabián, I am very happy to share the most important projects of my

life with you.

“El Mandinga” is the name of the Devil in South American culture, when he appears as a

normal human being. When strange things happen, “es cosa é Mandinga” means that

something with no rational explanation or supernatural has just occurred.

Testing can be considered a

destructive process. Often,

developers see testers as devils

who break their (already broken)

software. There he is, Mandinga,

trying to find a way to make the

software commit a sin, an

explanation for the weird behavior

that software sometimes has.

CONTENT
Content ... 9

Abstract .. 13

CHAPTER 1. Introduction ... 17

1.1. Motivation .. 17

1.2. Goals ... 18

1.3. An Illustrative Example ... 19

1.4. Expected Contributions .. 27

1.5. Research Methods .. 29

1.5.1. Proof of Concept .. 29

1.5.2. Action-Research with Abstracta ... 30

1.6. Context ... 31

1.7. Structure of the Document ... 32

CHAPTER 2. State of the Art and State of Practice .. 37

2.1. Introduction .. 37

2.2. Models and Metamodels .. 38

2.2.1. Unified Modeling Language (UML) .. 39

2.2.1.1. Tools and Graphical Editors ... 39

2.2.1.2. Extension Mechanisms .. 40

2.2.2. Model Transformations ... 40

2.2.3. State of the Art in Information System Models .. 42

2.2.3.1. Functional Specification .. 42

2.2.3.2. Non-Functional Specification .. 44

2.2.4. State of the Art in Functional Testing Modeling ... 46

2.2.5. State of the Art in Performance Testing Modeling ... 50

2.2.5.1. Model Driven Approaches for Performance Testing ... 50

2.2.5.2. Current Version of UML-TP for Performance Testing .. 56

2.3. Processes, Methodologies and Approaches in the Current Practice ... 60

2.3.1. Reverse Engineering and Reverse Engineering of Databases ... 61

2.3.2. Implementation of Functional Tests .. 62

2.3.3. Implementation of Performance Tests .. 63

2.3.4. Measurement of Test Quality .. 65

2.4. Conclusion of the State of the Art and Practice .. 67

CHAPTER 3. MANDINGA: Methodology for Automation Testing Integrating Functional And Non-Functional Aspects..... 71

3.1. Introduction .. 71

3.2. Methodology .. 72

CHAPTER 4. Information System Model Construction .. 77

4.1. Introduction .. 77

4.2. Information System Metamodel ... 78

4.2.1. Data Model .. 78

4.2.2. Graphic User Interface Model .. 80

4.2.3. Business Rules .. 84

4.3. DBesTest Implementation .. 85

4.3.1. Database Structure Extraction ... 86

4.3.2. Information System Model Generation ... 90

4.4. Conclusion .. 95

CHAPTER 5. Automatic Generation of Functional Test Cases .. 99

5.1. Introduction .. 99

5.2. Test Model Generation ... 100

5.2.1. Test Architecture ... 101

5.2.2. Test Case Generation ... 103

5.2.2.1. Coverage Approximations ... 105

5.2.2.1.1. Coverage on Class Diagrams .. 106

5.2.2.1.2. Coverage on State Machines ... 107

5.2.2.2. Test Patterns ... 107

5.2.2.2.1. One-table Patterns... 108

5.2.2.2.2. Two-table Patterns .. 112

5.2.2.2.3. Three-table Patterns .. 117

5.2.3. Test Data Model Generation .. 120

5.2.3.1. Equivalence Class Partitioning ... 120

5.2.3.2. Structured Test Data ... 122

5.2.3.3. Invalid Data Generation .. 123

5.2.3.3.1. Criteria ... 123

5.2.3.3.2. Example ... 125

5.3. Test Code Generation ... 126

5.3.1.1. Test Behavior .. 126

5.3.1.2. Platform Specific Execution ... 128

5.3.1.3. Parameterization ... 130

5.3.1.4. Test Data Generation .. 131

5.4. Conclusion .. 132

CHAPTER 6. Automatic Generation of Performance Tests .. 137

6.1. Introduction .. 137

6.2. Model-Based Test Cases Design Integrating Functional and Non-Functional Aspects .. 139

6.2.1. Contributions to PMM ... 140

6.2.2. Contributions to UML-TP ... 144

6.2.2.1. Workload Information ... 144

6.2.2.2. Non-Functional Validations ... 146

6.2.3. Workload Generation and PMM Operators Coverage ... 148

6.2.3.1. Test Model Generation Algorithm... 148

6.2.3.2. Example ... 154

6.3. Executable Non-Functional Test Cases Generation .. 157

6.3.1. Background and Motivation ... 158

6.3.2. Automatic Generation of Executable Test Cases.. 159

6.4. Conclusion .. 163

CHAPTER 7. MANDINGA: Implementation, Automation and Application in the Industry .. 167

7.1. Standard and Generalized Approach .. 167

7.1.1. Dealing with Model-Driven Standard Tools ... 168

7.1.1.1. UML and Modeling Tools .. 168

7.1.1.2. Model Transformation Tools ... 170

7.1.2. DBesTest .. 172

7.1.2.1. Description .. 172

7.1.2.2. Limitations .. 176

7.1.3. Generation of Automated Performance Test Cases ... 177

7.1.3.1. Description .. 177

7.1.3.2. Limitations .. 177

7.1.4. Generation of Non-functional Test Scenarios .. 177

7.1.4.1. Description .. 178

7.1.4.2. Limitations .. 178

7.1.5. Conclusions About the Proof of Concept ... 178

7.2. Transfer to Industry: GeneXus and GXtest .. 179

7.2.1. Background: GeneXus and GXtest .. 179

7.2.2. GXtest Generator ... 183

7.2.2.1. Description of the Adaptation to GeneXus .. 184

7.2.2.2. Experiences in industry ... 187

7.2.2.2.1. Study Case: Bancard Paraguay ... 188

7.2.2.3. Analysis of Errors Found .. 189

7.2.2.4. Evaluation of the Case Studies .. 190

7.2.2.5. Limitations .. 191

7.2.3. GXtest for Performance Testing ... 191

7.2.3.1. Description .. 192

7.2.3.2. Experiences in industry ... 192

7.2.3.3. Evaluation of the Case Studies .. 193

7.2.3.4. Limitations .. 195

7.3. Final Discussion ... 195

CHAPTER 8. Conclusions and Future Research Lines ... 199

8.1. Summary... 199

8.2. Contributions .. 200

8.3. Analysis of the Goals Consecution .. 201

8.4. Publications .. 203

8.5. Future Work Lines ... 206

Annex 1. Difficulties Faced with Model-Driven Approaches .. 211

A1.1. Introduction and Motivation ... 211

A1.2. Using UML with Model Transformations ... 212

A1.3. Conclusion ... 219

Bibliography ... 221

ABSTRACT

An Information System (IS) is a software system that allows the manipulation of

structured data for a specific business goal, especially in a database. With the growth of

the internet and web applications, and now with mobile applications, the use of these

systems is embedded in our lives. As a result the importance of testing in the IS

development process has being growing, looking for improvements in functional and

non-functional aspects of quality.

In model-driven testing approaches different models are usually used, with two aims,

some models for functional testing and some other models for non-functional testing.

Our approach moves away from this traditional practice and breaks down the

boundaries between functional and non-functional testing, incorporating both aspects

into a comprehensive testing model which will later be translated into test code and will

be useful for performing functional and non-functional validations.

Commonly, ISs consist of applications which deal with the information saved in

relational databases, storing the data of different entities on the basis of particular

business rules. Thus, there is a correspondence between the visual components (e.g.

web forms), the data structures and the logic in the middle to accomplish the business

rules. The basic operations to manipulate data structures are the CRUD operations

(create, read, update, delete). For example, if values are updated in the user interface,

this will produce the execution of an operation on an object in the middle layer, and

then an update operation on the database.

Taking this into account, the data model can be used as a basis to generate test cases,

verifying the way that application layers manage these structures.

This thesis proposes a methodology to automatically generate test cases from existing

IS, paying special attention on CRUD operations. It takes a UML representation of the

SUT which has been automatically obtained through reverse engineering from the IS

database. A model-driven approach is then applied to obtain executable functional and

non-functional test cases. In the middle, a set of model to model and model to text

transformations are in charge of performing the main stages of MANDINGA. After

reverse-engineering the IS, MANDINGA deals with different models to represent the

aspects of the system which are interesting from the testing point of view:

 A Data Model to represent the database structure, including entities and

relationships.

 A Graphic User Interface model to keep information about the elements with

which the user interacts and the way they navigate on the IS.

 A Non-Functional Properties model to describe other aspects of system

requirements such as dependability, performance, security, etc.

 A standard UML profile for Testing (UML Testing Profile) to represent the test

model generated.

 Model-Implementation Mapping, in order to relate the model elements to the

elements on the SUT, in order to be able to generate completely executable test

cases.

Transformations between models are carried out with ATL, the de facto standard for

model-to-model transformations. The final generation of executable test code is made

with Acceleo scripts, the pragmatic implementation of the standard for model-to-text

transformations.

One of the main contributions of this thesis is the return into the industry of the

proposed methodology. The general framework was adapted for a specific model-driven

environment called GeneXus, and its testing tool GXtest. The same scheme was

developed and used within industry for this environment: test cases are generated from

the data model, and then, with this test model, functional and non-functional

validations can be performed automatically on IS developed with GeneXus. This set of

tools have been used industrially in different real projects providing successful results,

specially reducing costs in the preparation of automated test cases and performance

testing.

Be ready, heart, for parting, new endeavor,

be ready bravely and without remorse

To find new light that old ties cannot give.

In all beginnings dwells a magic force

for guarding us and helping us to live.

 – Herman Hesse

CHAPTER 1. INTRODUCTION

This chapter explains the subject matter and how this thesis attempts
to address it. It covers the motivation and goals of this thesis as well
as the expected contributions. Chapter 1 introduces the illustrative
example to be used in the subsequent chapters and finally outlines
the methodology and the context of the research.

1.1. MOTIVATION
The use of Information Systems (IS) has increased in recent years not only for leisure and

personal use, but also for important tasks, work, company decision making, etc. As an IS

provides information to its users, which is stored in databases represented as a set of

entities and relationships, the quality of the system used to manage the data becomes a

factor in its success, and therefore, a way to ensure that quality is necessary.

Hainaut et al. define information systems or data-oriented applications as the

applications whose central component is the database (or a set of permanent files) [1],

which is composed of entities and relationships.

A study by Grady et al. [2] showed that 10.6% of corrective maintenance requests

presented by users proceed from a wrong manipulation of data structures, and 11.8%

are due to errors in the management of events and data in the user interface. In our

recent experience (several years working in different testing teams, specialized testing

companies and testing consultancy services), the observation has been of a similar or

slightly higher distribution of errors. “Wrong manipulation” entails, for example, the

management of:

 Duplicated values when data is entered for a column with a unique restriction

 Strings longer than expected

 Invalid foreign keys

18 Introduction

 Invalid format: letters instead of numbers, malformed or invalid dates

In fact, in systems that use databases intensively, the right manipulation of data

structures is especially important not only for the need of preserving the integrity and

consistency of data, but also for the strong influence of the data schema on the design

of the remaining layers and components of the applications that use it. Ideally, the

database schema can be seen as the “precursor” of the domain model of the

applications which deal with it.

Although data management is a responsibility assigned to the selected database

management system (usually a third-party system acquired from a vendor, which it can

be assumed deals properly with the defined constraints of the data schema, such as

foreign keys, check constraints, etc.), it is also important to test how the applications

that use the database process this data.

Functionality is not the only important aspect of quality, however. There are many more

properties, considered as “non-functional” (according to the different product quality

characteristics specified in the Software product Quality Requirements and Evaluation

standard - SQuaRE [3]), from which there is a special concern about “performance” and

“availability” when talking about Information Systems, considering that they are

accessed, in most of the cases, by multiple concurrent users.

This is especially interesting for platform migrations, adaptive or perfective

maintenance. When the systems are released to users there are also risks concerning

functional and non-functional properties. It is expected that the functionality,

performance and availability of the system are adequate; otherwise the system is not

going to be adopted by users. Therefore, a preventive workload simulation (to verify

non-functional properties) is crucial to guarantee the success of any implementation

project.

These quality factors, specifically for Information Systems using databases, are the main

concerns of this thesis.

1.2. GOALS
The first goal is to automate the test case design and execution for applications that

make use of databases, in the context of web environments, but with the possibility of

extending the approach to other types of applications, such as mobile applications.

The second goal is then to reduce the costs associated with performance testing,

improving the automation process with more flexibility.

19 Introduction

In addition, both tests are typically performed separately, one after the other. First,

functional testing is executed, then, performance testing. This makes sense because the

automation is done with different kind of tools, and the required skills of the testers are

different for each case.

In order to save costs related to execution time, and help testers to perform these tasks

automatically, the third goal is to propose an integrated view, considering the

verification of functional and non-functional properties. In our approach the objective is

to have a framework and a process that automate both aspects in an integrated, unified

way.

From the beginning the focus is to obtain practical and industrially applicable results.

For all cases, a black-box approach is going to be taken (which implies taking into

consideration the inputs and outputs of the SUT without paying attention to its internal

structure, thus considering it a black box [4]), so that it should be useful for testers with

no access to the source code (to allow outsourcing of testing services for example).

1.3. AN ILLUSTRATIVE EXAMPLE
Consider, as a running example, the AjaxSample as the System Under Test (the SUT),

which is available at http://samples.genexus.com/ajaxsample. It is an open source

demonstration system, developed with GeneXus (a model-driven development tool

developed by Artech): it manages invoices, products and clients through a web interface

and a database to store the data. Figure 1 shows the web interface for creating invoices.

Imagine that the database was inherited from a previous version of the system that was

implemented in an older technology, such as Visual Fox or RPG (green screen). The

database was therefore given to the development team, and they developed a new set

of layers on it: data access, domain logic and web presentation. These layers were

designed to properly deal with the database schema.

One of the aspects of this new version of the system that should be tested is the

interaction between the new layers and the database. So, taking the database metadata

into account, it is possible to design test cases and test data in order to verify boundary

situations, or common errors in the management of the database structures and column

data types.

http://samples.genexus.com/ajaxsample

20 Introduction

FIGURE 1 - AJAXSAMPLE WEB INTERFACE

Therefore, from the database schema, as the diagram in Figure 2 that corresponds to

the AjaxSample, a tester could derive a set of test cases to be executed on the system

interface, thus verifying whether the complete system (the three layers) can or cannot

correctly manage the database structure.

FIGURE 2 - AJAXSAMPLE DATABASE SCHEMA

Associated with this data model, there are a set of business rules, some of them

implemented as database restrictions, and others managed in the logic of the

application. Table 1 shows some examples.

21 Introduction

TABLE 1 - BUSINESS RULES EXAMPLES

Rules

(ClientLastName, ClientFirstName) is unique

CityName is not null

A client cannot buy more products if the balance
(ClientBalance) is less than “-2.000”.

ProductPrice must be greater than 0

ProductStock must be greater than 0

In order to give an idea of the test cases that can be derived from the database schema,

Table 2 shows some examples.

It is therefore possible to derive interesting situations from the data model from a

testing point of view (e.g. the creation of invoices with no associated products or the

introduction of strings with 31 characters in a field corresponding to a varchar(30)

column, applying different test design techniques). Although the DBMS will probably

manage these scenarios in a proper manner, the goal of the test cases is to check how

the application layers deal with them: (1) even though the invoice with no product is not

created, how will the application layer consider this special situation?; and (2) will the

user interface show the complete string, or will the user know that the string has been

truncated?

22 Introduction

TABLE 2 - EXAMPLE TEST CASES

Description Examples

Robustness problems

Entering data into the web user interface that

does not respect the database restrictions.

Duplicated values when you enter data for a column with a unique

restriction, as for instance two clients with the same first name and

last name.

Null values in not-null columns, as for CityName.

Entering data, or executing actions, in the web

user interface, that do not respect the database

structure.

Invalid foreign keys, e.g. creating an invoice with a non-existing

client.

Deleting an instance of Client that is referenced from an instance of

Invoice, because the foreign key is not-null.

Entering data, in the web user interface, that does

not respect the database data types (out of range

of the corresponding column’s data type).

Strings longer than expected, as for instance in table Client, the

column ClientAddress accepts up to 30 characters, but the user

interface input allows the user to enter up to 50 (will the value then

be truncated or will the error be controlled and properly shown in

the user interface?)

Invalid format: letters instead of numbers for the line quantity,

malformed or invalid dates for the InvoiceDate (2013-55-55), etc.

Check rules not respected.

Restrictions that cannot be accomplished. It will not be possible to create an invoice when the client’s table is

empty.

Gotchas

Column defined as unique, but not as NOT-NULL,

it allows insert of different rows with NULL (so,

you cannot distinguish between the created

rows).

It is desirable to distinguish products by their name, but you can

put null values for ProductName (as many as you want).

If null values are inserted in numeric columns (that

do not have a not-null restriction) it could cause a

problem if the column is involved in any kind of

calculus.

For instance, ProductStock accepts null values, and what could

happen when a new invoice is created, and there will be needed to

see if there is enough stock.

Transactions for multiples tables

If the creation of a composed entity is composed

of the creation of instances in different tables, it is

interesting to test with valid data for some tables,

and invalid for others, to verify that the data is

only stored when all the instances are correct.

When creating an Invoice, it is interesting to test with invalid data

for one of the Products of the invoice lines, in order to see if the

header of the invoice was stored and the rest of the elements were

not, i.e., the data of the Invoice table is stored but the data for

InvoiceLine is not because it is invalid.

Cascade

Update or delete instances that have cascade

effects.

If a product is deleted, are all the invoices lines associated deleted

too? Or is it not permitted?

Relationship boundaries

With operations of processing instances, there are

also boundary situations considering the

relationships: if the relationship is 0..1 to 0..n,

then there are some situations to consider as

border: 0:1, 0:N, etc.

Is it possible to create invoices without any product?

Business rules

Boundaries within the rules What happens trying with a ClientBalance under -2.000? Or with a

negative ProductPrice?

Current testing technologies allow testers to automate the execution of test cases in

order to improve the required time in the regression testing activities. Those test cases

23 Introduction

from Table 2 can therefore be automated to reduce execution costs. For this, and

considering that AjaxSample has a web interface, it is possible to automate the test

cases using different tools such as Selenium1 or WatiR2 (examples of popular open

source projects). Figure 3 shows a simple Selenium script that a tester prepared in order

to automate the execution of a test case that inserts invalid data, creating a new

product in AjaxSample.

FIGURE 3 - SELENIUM TEST CASE

Basically, it is an ordered set of commands, which in this case starts opening the home

page of the SUT, goes to the menu (Work With Products), in this page goes to the Insert

option, and in this page inserts data to create a new product (validproductname for the

product name in the input PRODUCTNAME and “-10” for the product stock in

PRODUCTSTOCK) and finally clicks the button (BTN_ENTER) to complete the transaction

(more detail about Selenium tool is presented in Chapter 2).

With an artifact like that it is possible to easily execute the regression tests, but typically

this is exported and integrated with JUnit [5], in a test program as shown in Table 3.

1 Selenium: http://www.seleniumhq.org/

2 WatiR: http://watir.com/

http://www.seleniumhq.org/
http://watir.com/

24 Introduction

TABLE 3 - JUNIT AND SELENIUM INTEGRATION

public class JunitSelenium {
 private WebDriver driver;
 private String baseUrl;
 private boolean acceptNextAlert = true;
 private StringBuffer verificationErrors = new StringBuffer();

 @Before
 public void setUp() throws Exception {
 driver = new FirefoxDriver();
 baseUrl = "http://localhost/AjaxSample/";
 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);
 }

 @Test
 public void testJunitSelenium() throws Exception {
 driver.get(baseUrl + "/home.aspx");
 driver.findElement(By.linkText("Work With Products")).click();
 driver.findElement(By.id("INSERT")).click();
 for (int second = 0;; second++) {
 if (second >= 60) fail("timeout");
 try { if ("".equals(driver.getTitle())) break; } catch (Exception e) {}
 Thread.sleep(1000);
 }

 driver.findElement(By.id("PRODUCTNAME")).clear();
 driver.findElement(By.id("PRODUCTNAME")).sendKeys("validproductname");
 driver.findElement(By.id("PRODUCTSTOCK")).clear();
 driver.findElement(By.id("PRODUCTSTOCK")).sendKeys("-10");
 driver.findElement(By.name("BTN_ENTER")).click();
 }

 @After
 public void tearDown() throws Exception {
 driver.quit();
 String verificationErrorString = verificationErrors.toString();
 if (!"".equals(verificationErrorString)) {
 fail(verificationErrorString);
 }
 }
…

After the functional verification and its automation, and considering that the application

is going to be used by multiple concurrent users (hundreds, maybe thousands), it is also

necessary to perform a load simulation test in order to mitigate the risks related with

the system and infrastructure performance when it is exposed to such workload. For this

purpose, the tester uses tools that simulate the action of multiple users concurrently

accessing the system, verifying the health status of the system under this artificial

workload. In this case, tools such as OpenSTA3 and JMeter4 simulate virtual users

3 OpenSTA: http://opensta.org/

4 JMeter: http://jmeter.apache.org/

http://opensta.org/
http://jmeter.apache.org/

25 Introduction

executing different test cases and measuring their response times. Figure 4 shows an

example of a test case automated with OpenSTA so as to execute it as part of the

workload presented in Figure 5.

The script corresponds to the POST http method for the insertion of a new product (a

special kind of http message to the server invoking a request on the server sending a set

of parameters).

FIGURE 4 - OPENSTA SCRIPT

This kind of tool works at a communication protocol level, thus the automated test case

is an ordered set of commands executing http actions on the server. The workload is a

compound of different scripts, indicating how many users are going to execute each

one. In Figure 5 the load test was configured to execute 200 virtual users (VU) adding

products, 100 VU adding new clients, and 15 VU buying products and therefore creating

new invoices. Executing this workload the team can verify the response times and

resource use among others.

26 Introduction

FIGURE 5 - OPENSTA TEST SCENARIO

Once those tasks are properly finished, the tester can consider that they have

contributed to the functional and non-functional quality of the SUT.

In this traditional approach there are some drawbacks that could be improved:

- The tester requires knowledge of the database schema, and needs access to it.

- The tester requires knowledge in testing techniques.

- The tester requires knowledge in functional testing automation tools. Typically

this is equivalent to a programming language.

- The tester requires knowledge in load simulation testing tools. Typically this

includes not only knowing a programming or scripting language, but also

knowledge about the communication protocol (at least HTTP in web systems).

- If the system is migrated to another platform, or if the test team decides to

change the automation tool, etc., it will be necessary to rebuild all the test

artifacts from the scratch.

Taking these concerns into consideration, a model-based approach could be used to

tackle them. This kind of approaches increases the level of abstraction making the

process more understandable and perdurable: i) understandable because it is easier to

work with models than with code; ii) perdurable because if the models are independent

of the platform, the test knowledge could be preserved even after platform changes.

Later, the models can be transformed and refined to new test code.

If the tester provides information about the functional requirements and design, it is

possible to design a test model covering only the functional quality aspects. If the tester

provides non-functional requirements, it is possible to design test cases that will also

cover them.

As Figure 6 shows, providing models that include functional and non-functional aspects

makes it possible to build a test model to cover those aspects, verifying them against the

27 Introduction

system. The final result should be a set of test artifacts capable of: (1) executing the

desired tests against the SUT and (2) providing a verdict.

FIGURE 6 - GENERAL MODEL-BASED APPROACH

As can be seen in the figure, the functional specification and non-functional properties

are part of the requirements, but also could be instantiated from the SUT using reverse

engineering techniques, helping the user to at least have a first version of these models.

In addition, there are plenty of standards for model based approaches, mainly provided,

organized and validated by the Object Management Group (OMG)5. This thus simplifies

the construction of tools, making use of modeling tools which also complaining to the

standards.

1.4. EXPECTED CONTRIBUTIONS
As Dias Nieto et al. say [6], it is necessary to transmit more model-based testing

practices to the industry, taking advantage of the development models for testing

proposes, in order to augment the productivity of the testing team. There are many

interesting proposals in the academy that are often not transferred to the companies.

Our intention is therefore to institutionalize all our research contributing economic

benefits and an improvement in the product quality to the industry.

5 OMG: http://www.omg.org

http://www.omg.org/

28 Introduction

Since the beginning of the thesis, the focus was to improve the real practice of testing in

the industry. The author of this thesis is a founder partner of Abstracta

(www.abstracta.com.uy), a Uruguayan company dedicated to the provision of software

testing services and the development of testing tools. As a result, an implicit

requirement of this thesis was to use all research in the industry field, in order to

improve effectiveness, performance and cost-benefit and increase the knowledge of the

company in the testing field.

Considering the company’s field of action, the expected contributions were:

 Reduce cost of functional testing for applications that make use of databases

 Reduce cost of performance testing for web applications that make use of

databases

The main product of Abstracta is a tool for automated software testing called GXtest

(gxtest.abstracta.com.uy). GXtest is specifically built for a model-driven development

tool called GeneXus (www.genexus.com), which is developed by Artech

(www.artech.com.uy). Even though the research of the PhD thesis is not limited to this

environment, the idea of Abstracta is to progressively include all the promising results of

the thesis into its product. At the moment, the strongest limitation of GXtest is that it is

specific for GeneXus but, thanks to this, it can automate many more characteristics than

if it were generic. The tool is therefore not going to incorporate all the research results

directly: instead, they are adapted to the specific context of GeneXus and GXtest

environment.

Actually, as will be presented as a conclusion of this thesis, there are some limitations

and complications to the current state of model-driven approaches and standard

technologies. These limitations were determinants of the decision about adaptation of

the generic framework to the GeneXus environment. As it was determined that the

current state of the technologies is not enough to build software, the test case

generator for GeneXus was developed with C# and with a proprietary metamodel stored

in the database.

One of the final goals of this research is also the implementation of a generic framework

to automate functional and non-functional tests in information system contexts, based

(when possible) on OMG standards, the validity of the proposed techniques is, in the

first instance, tested with pilot studies which are controlled by the researcher in the

laboratory, and then tailored to GXtest and included in different versions of the tool.

This tailoring is required to allow the industrial partner to continue their usual business

activity. During the research period, different versions of GXtest were released,

including part of the generated knowledge, and this will be described in the conclusions

(Chapter 8).

http://www.abstracta.com.uy/
file:///D:/Dropbox/federico/TESIS%20Fede/gxtest.abstracta.com.uy
http://www.genexus.com/
http://www.artech.com.uy/

29 Introduction

On the other hand, the main focus is on web platforms. In recent decades web-based

applications that use databases have been one of the most widely used types of

software, and they have become the backbone of many e-commerce and other

businesses, motivating their precise validation. More than 90% of Abstracta’s projects

are involved with this kind of system, which is a very important reason for guiding the

research in that direction.

1.5. RESEARCH METHODS
In this thesis, the different parts of the global methodology and the different

components of the framework were developed using an iterative and incremental

approach. In each iteration the methodology was improved and extended for the next

iteration.

Seven iterations were conducted (see Table 4). The researchers were the author and the

supervisors of this thesis (referenced in the table as Alarcos Group); other researchers

contributed to some of the iterations, as for example Jesús Núñez, who contributed as a

part of his Proyecto de Fin de Carrera (final degree project), Consiglio Nazionale delle

Ricerche (CNR), from Pisa, Italy, where a short research stage was done, and Abstracta,

from Montevideo, Uruguay, where two other short research stages took place. The

different components, the results of the different iterations, will be introduced in the

different chapters of this thesis. The research methods used were Proof of Concept

(PoC) and Research-Action (RA), which will be explained in sections 1.5.1 and 1.5.2.

TABLE 4 - RESEARCH METHODS

Subject Framework
and
methodology

Coverage
criteria

DBesTest UML-TP
extension

PMM
Coverage

GXtest
Generator

GXtest for
Performance

Researcher Alarcos
Group

Alarcos
Group,
Abstracta

Alarcos
Group,
Jesús
Núñez

Alarcos
Group,
CNR

Alarcos
Group,
CNR

Alarcos
Group,
Abstracta

Alarcos
Group,
Abstracta

Method PoC PoC, AR PoC PoC PoC AR AR

Researche
d Object

AjaxSample AjaxSample AjaxSampl
e

Bookstore
system

Bookstore
system

2 industrial
studies

5 industrial
studies

Place Ciudad Real,
Spain

Ciudad Real,
Spain and
Montevideo,
Uruguay

Ciudad
Real, Spain

Pisa, Italy Pisa, Italy Montevideo,
Uruguay

Montevideo,
Uruguay

Year 2011 2011-2012 2011-2013 2013 2013 2011-2013 2012

1.5.1. PROOF OF CONCEPT

A proof of concept is an opportunity to demonstrate the possibilities of a proposal for a

small application environment in a controlled manner in order to demonstrate its

feasibility. It is an excellent risk mitigation strategy for any kind of initiative. It helps to

30 Introduction

determine whether the software/approach/idea/tool, etc., is appropriated for use, to

verify its technical feasibility, how easily it can be configured and to start to determine

the benefits and limitations.

1.5.2. ACTION-RESEARCH WITH ABSTRACTA

Action-Research (AR) is a qualitative research method that brings theory and practice,

and researchers and practitioners, together to solve a problem. AR is an iterative

process oriented towards the progressive addition of new research knowledge entailing

benefit for the research stakeholder [7], [8].

The roles involved in AR are:

 Researcher: person or group of people who actively carry out the research

process

 Researched object: the problem to solve

 Critical reference group: group on which research is performed inasmuch as it

has a problem that needs to be solved

 Stakeholder: anyone else who can benefit from the research but does not

directly participate in it [9].

The author of this thesis belongs to Abstracta and is completely interested in applying

the research results to the commercialized tools. In this sense, the thesis’s author has

undertaken the AR role of Researcher; Abstracta is the Critical Reference Group, received

the research results, adapting them to its specific context, obtaining the researcher’s

assessment and returning feedback about the actual application of techniques. Also, in

this context several stakeholders were identified:

i) Abstracta team: the company provides tools and services related to

software testing. The most common services are functional tests,

automation and performance testing. Developing tools and methodologies

to reduce costs and improve the quality of the services is directly beneficial

for the company.

ii) Artech: the company who develops GeneXus. Their interest in GXtest arises

mainly because it gives their customers the ability to increase the quality of

the applications they develop, so that their customers will be more satisfied

with the GeneXus environment.

31 Introduction

iii) GeneXus Community: there are more than 100.000 developers comprising

the community of users of this tool6, who are going to benefit from the

improvements on the tools and techniques, useful for them when ensuring

quality of the products they develop.

AR is an iterative process with four stages. The first is planning, in which researchers

define research question and goals. The second is action, in which researchers conduct

fieldwork according to their goals and research questions in real environments. The third

stage is observation, in which researchers collect the data obtained in the action stage.

Finally, the last stage is reflection, in which researchers analyze the results observed as a

result of their actions. The reflection stage leads to the generation of new knowledge,

with which the research customers are provided, and which is used to redefine goals in

the next iteration.

1.6. CONTEXT
This thesis was developed in the Alarcos Research Group of Castilla-La Mancha

University, in Ciudad Real, Spain, from February 2011 to December 2013. The researcher

has a grant from the Agencia Nacional de Investigación e Innovación 7 (ANII;

BE_POS_2010_1_2360), from the Uruguayan government, and was involved in a variety

of research projects, as shown in Table 5 and Figure 7.

6 According to the information published by Artech in 2012 there are only 85 thousands
developers (see www.genexus.com/files/genexus-facts-sheet?es), and it was updated during a
presentation at the last GeneXus International Meeting in Montevideo
(www.genexus.com/encuentro2013).

7 ANII: www.anii.org.uy

http://www.genexus.com/files/genexus-facts-sheet?es
http://www.genexus.com/encuentro2013
http://www.anii.org.uy/

32 Introduction

TABLE 5 - RESEARCH PROJECTS

GEODAS

Project Title GEODAS (GEstiÓn para el Desarrollo globAl de Software mediante Ingeniería de Negocio y
Entornos Avanzados de Colaboración)

Financed by Ministerio de Economía y Competitividad (TIN2012-37493-CO3-01)

Participants Universidad de Castilla-La Mancha (Spain), Universidad de Murcia (Spain), Universidad de
Alicante (Spain)

Duration From: 01/01/2013 to: 31/12/2015

Main researcher Mario Piattini Velthuis

PEGASO/MAGO

Project Title PEGASO/MAGO (coordinated projects, PEGASO: Procesos para la mEjora del desarrollo GlobAl
del Software /MAGO: Mejora Avanzada de procesos software GlObales)

Financed by Ministerio de Ciencia e Innovación (TIN2009-13718-C02-01)

Participants Universidad de Castilla-La Mancha (Spain), Universidad de Murcia (Spain)

Duration From: 01/01/2010 to: 31/12/2013

Main researcher Mario Piattini Velthuis

DIMITRI

Project Title DIMITRI (Desarrollo e Implantación de Metodologías y Tecnologías de Testing)

Financed by Ministerio De Ciencia e Innovación (TRACE) (TRA2009_0131)

Participants KYBELE CONSULTING (Spain)

Duration From: 01/03/2010 to: 29/02/2012

Main researcher Macario Polo Usaola

The three research stages shown in Figure 7 are:

 October 2012: Abstracta, Montevideo, Uruguay.

 April 2013: Abstracta, Montevideo, Uruguay.

 July-October 2013: Consiglio Nazionale delle Ricerche, Pisa, Italy.

FIGURE 7 – GRANT, RESEARCH STAGES AND PROJECT PARTICIPATION

1.7. STRUCTURE OF THE DOCUMENT
The document is organized in eight chapters, as Figure 8 depicts.

Chapter 2: State of the Art and State of Practice presents the state of the art in the areas

related to the research topic, as well as the state of the art of the practice of the

corresponding activities.

33 Introduction

Chapter 3: General Methodology introduces the general framework proposed as a

solution in this thesis.

Chapter 4: Information System Model Construction explains the first part of the proposal

corresponding to the reverse engineering applied with the objective of generating a first

version of the Information System Model.

Chapter 5: Automatic Generation of Functional Test Cases presents the approach to

generating the functional test cases and representing them in the test model.

Chapter 6: Automatic Generation of Performance Tests completes the presentation of

the proposal including the non-functional aspects that were taken into account.

Chapter 7: Current State of the Implementation and Automation describes the

implementation of the prototypes and the tools developed in Abstracta which

empirically validate the proposal.

Chapter 8: Conclusions and Future Research Lines summarizes the main contributions of

this thesis and proposes possible future research lines.

FIGURE 8 - THESIS STRUCTURE

Utopía

Ella está en el horizonte.

Me acerco dos pasos, ella se aleja dos pasos más.

Camino diez pasos y el horizonte se corre diez pasos más allá.

Por mucho que yo camine nunca la voy a alcanzar.

¿Para qué sirve la utopía?

Sirve para eso: para caminar.

― Eduardo Galeano

“Utopia lies at the horizon.

When I draw nearer by two steps, it retreats two steps.

If I proceed ten steps forward, it swiftly slips ten steps ahead.

No matter how far I go, I can never reach it.

What, then, is the purpose of Utopia?

This is its purpose: It is to cause us to advance.”

― Eduardo Galeano

http://www.goodreads.com/author/show/5822041.Eduardo_Galeano
http://www.goodreads.com/author/show/5822041.Eduardo_Galeano

CHAPTER 2. STATE OF THE ART AND STATE

OF PRACTICE

This chapter introduces the fundamental concepts of this thesis, and
the state of the art and practice for the different artifacts and
methods involved.

2.1. INTRODUCTION
From the example introduced in Chapter 1 some potentially automatable points were

identified and they are presented in Figure 9.

FIGURE 9 - GENERAL PROCESS

These points are:

 Reverse engineering process (data model and system model)

 Test model generation

 Functional test case execution

38 State of the Art and State of Practice

 Test code generation

 Performance test case generation

 Performance test case execution

This section is structured according to the different artifacts and the different

automation mechanisms of the proposal, making reference to its correspondence to

Figure 9, showing the same figure in order to let the reader clearly visualize the part of

the whole process to which it corresponds.

2.2. MODELS AND METAMODELS
This section presents the different possibilities for the representation of the artifacts

involved, from the Information System models to the representation of tests, both

functional and non-functional. Basic related concepts are presented, as well as model

transformations and extension mechanisms of the metamodels.

Before the OMG standardization efforts related to Model-Driven Architecture (MDA)

[10], researchers were prolific in proposing their own metamodels and different

mechanisms for model transformation, code generation and model generation from

code (reverse engineering). Even though some of the techniques proposed were very

powerful, an important drawback was the impossibility of sharing models between

different tools. In software engineering, standardization enables the definition of a

common language and the possibility of interchanging information between different

platforms. This was, for example, one of the primary goals of web services: the

possibility of invoking remote operations, independently of the technology used in the

implementation of clients and servers. The definition of a standard structure for the

byte strings that should travel from one to another machine was thus required, so

defining the SOAP protocol. In the case of the Model-Driven paradigm, the OMG

proposed the MDA, which was defined based on other OMG standards such as the UML

[11] (explained later in this chapter), the XML Metadata Interchange (XMI) [12] and the

Meta Object Facility (MOF) [13].

The three primary goals of MDA are portability, interoperability and reusability through

architectural separation of concerns. MDA provides an approach for: (i) specifying a

system independently of the platform that supports it, (ii) specifying platforms, (iii)

choosing a particular platform for the system, and (iv) transforming the system

specification into one for a particular platform. For this, MDA specifies three models for

a system [14]:

39 State of the Art and State of Practice

• The Computation Independent Model (CIM) focuses on the environment of the

system and on its requirements. Details about its structure and processing are

hidden or undetermined.

• The Platform Independent Model (PIM), which is a formal specification of the

structure and function of a system that abstracts away technical details. A

platform-independent view of a system shows the parts of the complete

specification that do not change from one platform to another.

• The Platform Specific Model (PSM) completes the PIM with the details required

for obtaining the modeled system for a specific platform.

Setting aside the very high abstraction level of the CIM, in an MDA context, the software

engineer may draw the structure and behavior of a system using UML diagrams in the

form of a PIM: with no details about the final platform where the application will run.

Here there is enough information to derive test cases for any platform, and then, adding

the PSM information, those test cases could be used to generate executable test code

on the specific platform.

2.2.1. UNIFIED MODELING LANGUAGE (UML)

The use of standards is essential to allow the adoption of new technologies by industry.

UML is the most widespread modeling language to represent high-level views of

software systems, used in the software development process. The objective of UML is to

provide the different members of a development team with tools for the analysis,

design, implementation and testing of software systems. Thus, it is a common language

between analysts, designers, developers and testers.

2.2.1.1. TOOLS AND GRAPHICAL EDITORS

There are several tools that allow us to model with UML and its satellite technologies,

both commercial and open. One of the most important projects is the Eclipse Modeling

Project (http://www.eclipse.org/modeling/) which extends the popular and powerful

Eclipse IDE. Eclipse Modeling allows UML and other kind of models to be dealt with. It is

even possible to define your metamodels and build a tool, based on Eclipse, to

manipulate them.

With this set of tools it is also possible to create and manage models programmatically

which is really important when trying to extract information from different sources,

without the necessity of manually writing the XMI.

As a drawback, it is important to mention that in practice UML is excessive and too

complex, and that there are different implementations of the standard that usually

http://www.eclipse.org/modeling/

40 State of the Art and State of Practice

make it impossible to operate between the different tools. In Chapter 7, there is a more

detailed analysis of these issues within the implementation details of the solution.

2.2.1.2. EXTENSION MECHANISMS

The most common and practical way to extend the expressiveness of UML is through the

use of UML Profiles. The UML Profile mechanism includes the ability to tailor the UML

metamodel by defining domain specific languages by means of stereotypes, tagged

values definitions, and constraints which are applied to specific model elements. This

mechanism gives more semantic strength to the UML standard elements. For example,

in a class diagram, it is possible to represent different kinds of classes, according to the

stereotype added to them, or by adding special values to any element with tagged

values.

Recently, Eclipse has a new project to store the most common UML Profiles, accessible

here: http://www.eclipse.org/proposals/modeling.uml2profiles/. For example, there are

(or will be) profiles for data modeling, testing (the UML Testing Profile), service oriented

architecture (SoaML), business processes (BPMN), etc. The main purpose is to provide a

central repository within the Eclipse Modeling project to discover and install UML profile

implementations, promoting interoperability. Regrettably, this is not yet implemented,

and there has been no activity registered since July 2012.

2.2.2. MODEL TRANSFORMATIONS

Model-based Testing (MBT) provides techniques for the automatic generation of test

cases by using models. Model-driven Testing (MDT) is an MBT approach, where the test

cases are automatically generated using models extracted from software artifacts

through model transformations. MBT plays an important role in the software validation

process [15], which contributes to test automation by pushing the application of model

based design techniques to software testing. It involves the development of models that

describe test cases, test data and the test execution environment. It also includes the

application of automated facilities for generating executable test cases from these

models. A key element in MBT is the modeling language used for defining a test model

from the informal system requirements or the design models. For testing purposes, it is

important to have a test model that is easy to verify, modify and manipulate without

losing all the information needed to generate test cases. Miller et al. [6] present a

systematic literature review of MBT. A result of this review is that it was seen that by

using models developed from the analysis of the abstract behavior of the SUT, MBT has

been traditionally used for generating functional test cases, but has missed addressing

non-functional requirements. This thesis especially considers UML models.

http://www.eclipse.org/proposals/modeling.uml2profiles/

41 State of the Art and State of Practice

Standard UML models can be serialized and represented in XMI [12], an XML-based

language that allows the representation of any UML diagram. Any programmer may

write a set of routines in their favorite programming language for reading the XMI code

(maybe making use of a DOM or SAX library) and, so, make any type of manipulation

with the diagrams (for example, to generate a PSM adding information to a PIM).

However, it would be tedious to write such a program and, would probably only be

written for a single functionality. Fortunately, the OMG has also considered this kind of

task and has developed Query/View/Transformation (QVT) [16] and the MOF Model to

Text (MOFM2T) [17], which are two standard languages for: (1) transforming models

into other models; and (2) transforming models into text.

Using QVT, it is possible to throw queries against

models, and of course, to perform model

transformations within models. One of the most

common operations in QVT is pattern-matching. For

any operation, QVT expresses models as search

patterns. Many implementations of the standard can be used, such as MediniQVT [18]

or ATL [19].

QVT uses the following definitions:

• Queries are expressions that are evaluated in a model. They result in one or more

instances of types being defined in the source model (i.e., “give me all the states

in the state machine”), or defined by the query language.

• Views are models derived completely from other base models. A view cannot be

modified separately from the model from which it is derived, and changes to the

base model cause corresponding changes to the view. Typically, the metamodel

of the view is not the same as the metamodel of the source (i.e., a class diagram

is translated into a relational database diagram, or vice versa). Views are

generated via transformations.

• A Transformation generates a target model from a source model. A model

transformation may also have several source models and several target models:

through queries, the transformation obtains the elements of the source model

that must be transformed, and produces views which correspond to that

targeted.

In addition, MOFM2T provides a model-to-text

transformation language [17]. Its goal is to define a

language to facilitate the generation of code or

documentation from models. There are several tools

following this approach, such as MOFScript [20] or

42 State of the Art and State of Practice

Acceleo [21], which are pragmatic implementations of the standard.

The model to text transformation mechanism uses text templates that use placeholders

to represent the interesting data that must be transformed into text. Essentially, these

placeholders are expressions specified over metamodel entities. A query language is the

primary mechanism for selecting and extracting the values from models. These values

are then converted into text fragments using an expression language augmented with a

string manipulation library. Templates can be composed to address complex

transformation requirements. Moreover, the language allows the structuring of large

transformations into modules.

More detailed information about the different tools for both model-to-model and

model-to-text, is presented in Chapter 7 within the implementation details about the

solution. Some of the limitations and difficulties of using these technologies are

depicted, especially in reference to the supporting tools. For instance, MediniQVT,

which is the official implementation of the standard, is no longer maintained, nor is

MOFScript. In the case of model-to-model transformations, ATL became the standard de

facto, and MOFScript has been effectively substituted by Acceleo. Even though these

tools and approaches are very promising, the current state and maturity of the tools

(they are hard to debug, there are many errors and not much support) makes the

adoption of the technology very difficult.

2.2.3. STATE OF THE ART IN INFORMATION SYSTEM MODELS

One of the main goals of this thesis is to generate executable test cases. Thus, an

analysis determined which elements were necessary for inclusion in the system model.

The intention was to keep the model as simple as possible, taking only the necessary

information for the automatic generation of executable test cases. This section is

divided into two parts, one for functional specification and one for non-functional,

because they are typically considered separately.

2.2.3.1. FUNCTIONAL SPECIFICATION

UML is a general purpose language, so there was a

especial interest to find any extension, including

specific concepts for the kind of applications and

components that this thesis addresses, such as the

database structure and the graphic user interface. By

undertaking a first analysis of the test case generation necessities, it was determined

that the functional specification should include: the data model (as the basis of the test

cases design), the graphic user interface model (structure and navigation, in order to

43 State of the Art and State of Practice

have information to generate executable test cases stimulating the SUT at a graphic user

interface level) and the business rules (to know the expected behavior of the SUT). For

each view of the system a review of the state of the art was performed.

Systems Modeling Language (SysML) [22]–[24] seemed to be a good option for the

functional IS specification, being the OMG standard modeling language for specifying,

analyzing, designing and verifying systems. It is a UML Profile, but uses only a subset of

UML capabilities. As it does not provide anything special for representing data models or

graphic user interface models and includes other aspects that are not going to be taken

into account (such as hardware, software, information, personnel, procedures, and

facilities), it is clear that it does not fit with our modeling requirements.

Data Metamodels: Regrettably, there is no standard for data modeling. Researchers

were prolific in proposing their own metamodels to use as an input for MDE techniques.

Many UML vendors and users use UML tools for data modeling and ended up defining

their own UML profiles. In December 2005 the OMG issued a Request for Proposals

(RFP) [25].

According to the experiments presented in [26] and [27], UML class diagrams have the

same expressiveness as Entity-Relational diagrams for data modeling, and they are

better for verification activities.

After having analyzed several models ([28], [29], [30] and [31]) it was decided to use the

one proposed by IBM, the UML Data Modeling Profile (UDMP) [32]. This profile is one of

those presented to the aforementioned Data Modeling RFP. Something very important

for our work is that the proposals are not vastly different: all consider the main aspects

of a database structure, and they represent most of the concepts in a similar way, and

with very similar names. This is probably because database research has existed for

many years, and it is a relatively standardized world.

The UDMP is a UML extension to support the modeling of relational databases with

UML, including extensions to represent schemas, tables, views, columns, keys, triggers

and more. Chapter 4 explains it in a more detailed manner.

GUI Metamodels: as the ultimate utility of the Information System Model is to generate

executable test cases, it was determined that the GUI metamodel should at least be able

to represent: the structure (pages and page elements such as inputs and buttons) and

navigation. This information is required to interact with the SUT at a GUI level.

Most of systems for GUI metamodels have been provided via several methodologies for

application development. Some of these metamodels have been analyzed, such as

Relational Management Data Model (RMDM) [33], the Object Oriented Hypermedia

(OOH) [34] [35], the Web Modeling Language (WEBML) [36] and the UML Profile

44 State of the Art and State of Practice

presented in [37]. Each one is defined for a different focus, they are more complex than

necessary, and none of them is considered standard or well adopted. Taking this into

account, a simpler metamodel is proposed, which is presented in Chapter 4.

Business Rule Metamodels: Even though there some other proposals were analyzed,

none were as tightly integrated to UML as the Object Constraint Language (OCL) [38].

For instance, Halpin [39] proposes the use of Object Role Modeling (ORM) to expand the

expressiveness of UML with business rules. Other authors ([40]–[42]) used Alloy [43] to

express rules for the models with the possibility of using a constraint solver with them.

This rule language is declarative and based on Z notation [44].

2.2.3.2. NON-FUNCTIONAL SPECIFICATION

Several proposals exist for modeling scheduling,

performance, time and other non-functional aspects:

 UML-SPT: Schedulability, Performance and

Time Profile was the first OMG standard for this aim,

modeled as a UML Profile.

 MARTE: Modeling and Analysis of Real-Time and Embedded Systems [45] is an

evolution of UML-SPT, which is now the standard. MARTE [45] extends UML by

providing a rich framework of concepts and constructs to model the non-

functional properties of real-time and embedded systems and defines

annotations to augment models with information required to perform

quantitative predictions and analysis of time-related aspects, such as

schedulability and performance.

 UML4SOA-NFP [46], which is a UML4SOA Profile taking into account non-

functional properties, is used together with the UML MARTE Profile to

represent performance, security and dependability properties for service-

oriented systems.

The main limitation of such profiles is that they do not provide support for testing.

Another proposal to specify non-functional properties is the Property Meta Model

(PMM) [47]–[49]. It is not based on UML, but was specially considered since this aspect

of the proposal was integrated in this thesis in the research stage in CNR, Pisa, Italy,

where they developed this metamodel.

PMM is a generic, comprehensive and flexible metamodel for defining non-functional

properties spanning dependability, performance and security. It is made available to the

45 State of the Art and State of Practice

community for adoption, validation, and possibly for extension8. The metamodel is

implemented as an Ecore model and comes with an associated editor realized as an

Eclipse Plugin.

PMM allows for specifying metrics and provides a machine computable specification

language (included into PMM, but also usable in isolation) that allows for defining

complex events models involved into non-functional properties. The proposed language

improves over existing complex event specification languages (such as GEM and Drools

Fusion) by adding new features not included in the existing languages.

Figure 10 sketches the key concepts and their relationships in this metamodel: Property,

MetricsTemplate, Metrics, EventSet, and EventType.

The definition of properties and metrics is independent from the application domain.

The defined properties represent quantitative and qualitative properties that a generic

software system or its components may expose (descriptive properties), or must provide

(prescriptive properties). The concepts and terms belonging to an application domain

are linked to PMM via the EventType and Action entities, which model a generic

observed event or an atomic action, respectively, of the application domain in which the

system will be used.

Thus, there is a distinction between a generic metrics formula (represented by a

MetricsTemplate) and concrete metrics (i.e., the Metrics) that is instantiated in a specific

application domain by means of the EventSet and EventType concepts. This approach

makes the metamodel more generic, since the same template can be used (instantiated)

in different scenarios.

8 A release of the Property Metamodel and the associated editor is available at
http://labse.isti.cnr.it/tools/pmm.

http://labse.isti.cnr.it/tools/pmm

46 State of the Art and State of Practice

FIGURE 10 - PMM METAMODEL

2.2.4. STATE OF THE ART IN FUNCTIONAL TESTING MODELING

Software testing is a process designed to make sure

computer code does what it was designed to do and

that it does not do anything unintended [4].

In general, testing activities involve planning, test case

generation, test environment set-up, execution, test

result evaluation, test reporting, and defect tracking [50]. The main concepts related to

test case generation are: the test case, test procedure and test oracle.

A test case contains a set of inputs, execution conditions and expected results which are

developed for testing a particular system’s objectives (such as exercising a given path or

verifying the compliance of a specific requirement) [51]. A test procedure contains

instructions for the set-up, execution and evaluation of results for a given test case [51].

The result obtained from the test case is compared with the expected result through an

oracle. A test oracle is any agent (human or mechanical), which decides whether a

47 State of the Art and State of Practice

program behaved correctly in a given test, and accordingly assigns a verdict of “pass” or

“fail” [50].

There are few proposals for test specifications, and the most important and widespread

are UML Testing Profile (UML-TP) and the Testing and Test Control Notation version 3

(TTCN-3).

The UML-TP [52], [53] is the OMG standard for test modeling, implemented as a UML

Profile. Its utility has been proved via application in different MDT contexts [54]. Figure

11 shows an excerpt of the UML-TP metamodel for test architecture and test behavior

concepts (taken from the specification [53]).

UML-TP is a lightweight extension of UML with specific concepts (stereotypes) for

testing, grouped into: i) test architecture; ii) test data; iii) test behavior; and iv) test time.

This extension fills the gap between system design and testing, allowing the users to

have a unified model for both aspects of the development of a software product.

FIGURE 11 - UML-TP METAMODEL

The test architecture provides all the elements that are needed to define the test cases.

Specifically, it includes the set of concepts to specify the structural aspects of the test.

Some of these are: i) the Test Context, which groups the Test Cases; and ii) the Test

Components, which are responsible of the communication with the SUT.

The main constructor is the Test Case, whose behavior can be described by sequence

diagrams, state machines or activity diagrams. In UML-TP, the Test Case is an operation

48 State of the Art and State of Practice

of a Test Context that specifies how a set of Test Components cooperates with the SUT

to achieve the Test Objective, and to provide a Verdict. The behavior can be enriched

with Timer restrictions. Finally, another important aspect of the test specification is the

test data. It is possible to model different Data Partitions that are obtained from a

Datapool through Data Selector methods. It is also possible to enrich these definitions

with the use of Wildcards and Coding Rules.

Generally, a UML-TP model is presented through different diagrams:

 There is a UML package diagram representing the test architecture, and

showing how the test package uses a test data package and includes the SUT

model in order to allow the test elements to access the different elements

under test.

 A class diagram could be used to show the structure of the test package,

showing how the Test Context is related to the different Test Components,

Datapools, and SUT components that are going to be exercised in the test. This

class diagram should also model the Test Cases as methods of the different Test

Contexts, in this way representing the complete test suite.

 There could be also a composite structure diagram of the Test Context class to

show its Test Configuration, describing the relationships between the SUT and

the Test Components for this Test Context.

 Finally, each Test Case behavior is presented through any kind of UML behavior

diagram, such as a State Machine Diagram, Sequence Diagram or Activity

Diagram.

UML-TP provides a mechanism of “default behaviors”, for example those for the Arbiter

and for the Test Scheduler. If the modeler/tester wants a different behavior for them, it

is also necessary to provide an extra behavior diagram, mentioned in the standard as

“user-defined behavior”.

The TTCN-3 [55], [56] is a strongly typed test scripting language for testing reactive

systems. It was developed and standardized by the European Telecommunications

Standards Institute (ETSI9) and the International Telecommunication Union (ITU10).

Although primarily used in telecommunications, TTCN-3 is well accepted by the industry

and its use has spread into new domains including automotive, railway and financial

9 ETSI: http://ww.etsi.org

10 ITU: http://www.itu.int

http://ww.etsi.org/
http://www.itu.int/

49 State of the Art and State of Practice

applications. Figure 12 shows an excerpt from an example script taken from the tutorial,

to specify the test of a coffee machine.

function CoffeeMachineFunction() runs on CoffeeMachineComponentType

 {

 const integer Price := 50;

 var integer Amount, Cents;

 Amount := 0;

 while (true) {

 InputPort.receive(integer:?) -> value Cents;

 Amount := Amount+Cents;

 while (Amount >= Price) {

 OutputPort.send(charstring:"coffee");

 Amount := Amount-Price;

 }

 }

 }

function CoffeeDrinkerFunction() runs on CoffeeDrinkerComponentType

 {

 var integer Count;

 OutputPort.send(100);

 Count := 0;

 timer t;

 t.start(5.0);

 alt {

 [] InputPort.receive(charstring:"coffee") {

 Count := Count+1;

 repeat;

 }

 [] t.timeout {

 }

 }

 log("Received " & int2str(Count) & " cup of coffee.");

 if (Count == 2) {

 setverdict(pass);

 }

 else {

 setverdict(fail);

 }

 }

testcase TwoCoffeesPlease () runs on EmptyComponentType

 {

 var CoffeeMachineComponentType CoffeeMachine;

 var CoffeeDrinkerComponentType CoffeeDrinker;

 CoffeeMachine := CoffeeMachineComponentType.create;

 CoffeeDrinker := CoffeeDrinkerComponentType.create;

 connect(CoffeeDrinker:OutputPort, CoffeeMachine:InputPort);

 connect(CoffeeDrinker:InputPort, CoffeeMachine:OutputPort);

 CoffeeMachine.start(CoffeeMachineFunction());

 CoffeeDrinker.start(CoffeeDrinkerFunction());

 timer t; t.start(6.0); t.timeout;

 CoffeeMachine.stop;

 }

FIGURE 12 - TTCN-3 EXAMPLE SCRIPT

If the tester provides an adaptation layer for connecting the test script commands with

the specific execution method on the SUT, then the test script can be compiled and

executed.

There are some proposals to translate UML-TP models into TTCN-3 scripts ([52], [57],

[58]).

50 State of the Art and State of Practice

2.2.5. STATE OF THE ART IN PERFORMANCE TESTING MODELING

A Performance/Load Test is defined as a research

technique for determining or validating the response

times, dependability, scalability and/or stability of a

system under test. The tester simulates the interaction

of multiple concurrent users running against the SUT

as in the production environment (noted as scenario or workload). Test results allow an

analysis of how the SUT and the infrastructure behave in the presence of this load [59].

Following our experience and a careful analysis of the elements required to model a

performance test, our conclusion was that it is necessary to model the workload (with

all its components), test cases and test data, and the acceptance criteria for each one

based on the non-functional requirements of the SUT.

UML-TP is mainly used to model functional testing whereas its application for specifying

non-functional test cases is limited since it lacks facilities to address specific non-

functional concepts.

This section is divided into two subsections: a study of different model-driven

approaches for performance testing is presented, and then the current support of UML-

TP for modeling this kind of test case, which is necessary to understand why this thesis

proposes an extension.

Both aspects of this topic were developed in the research stage in the CNR, Pisa, Italy

(July-October 2013).

2.2.5.1. MODEL DRIVEN APPROACHES FOR PERFORMANCE TESTING

To be aware of existing model driven approaches for performance testing, a systematic

survey was performed, following the guidelines proposed by Kitchenham [60]. From this

automatic search 411 papers were obtained, reduced to 25 after reading the title,

keywords and abstract, and finally to 24 papers after reading the full text.

Table 6 shows the classification framework adopted in this study. The extracted data

was classified according to different dimensions explained in the following and reported

in the rows of the table.

Type of Non-Functional Property (NFP): Various NFPs are addressed by the different

approaches. Our search string specifically pinpointed performance and dependability

properties, however, the extracted works also relate to other non-functional properties

such as security, usability, etc.

51 State of the Art and State of Practice

Instrument: This refers to the formalism used for expressing the proposal. Some authors

propose UML extensions (UML profile) whilst others design their own metamodel.

Expressiveness: This represents which kinds of elements are modeled in the proposal

(test cases, test environment, properties, etc.).

Testing type: This analyzes whether the proposal gives support only for non-functional

testing or if it is also compatible with functional testing.

Purpose: The approaches aim to support different activities such as testing, performance

prediction (known as Software Performance Engineering, SPE), benchmarking, etc. It

also explains whether the approach addresses a particular technological context such as

Service-Oriented Architecture (SOA), Web Systems, Embedded Software, etc.

Automation: This refers to the support provided by the approaches in terms of tools or

automation facilities such as model based transformations or similar.

TABLE 6 - CLASSIFICATION OF APPROACHES FOR PERFORMANCE TESTING

Name & Ref. Type of NFP Instrument Expressiveness Testing type Purpose Automation

UML-TP [53],

[52] *

Security,

Usability,

Performance,

Dependability

UML Profile Test cases and

SUT, structure

and behavior

Functional

and Non-

Functional

Testing General UML tools.

Mapping between

UML-TP and JUnit

and TTCN3 for

execution

MDAbench

[61], [62]

Performance,

Resource

Usage

UML and

tailored

UML-TP

Workload, test

cases,

architecture of

the SUT

(behavior and

structure)

Non-

Functional

Benchmark

of system’s

architectures

Tool to generate the

simulated

architecture, the load

test and monitoring

collectors (with JMX)

Argo/MTE

[63]*

Performance UML Architecture of

the SUT

(behavior and

structure), load

test parameters

Non-

Functional

Design

Benchmark

(Client/

Server)

ArgoUML for

modeling, generating

the simulated

architecture, the load

test and metrics

collection

Puppet [64] Performance UML, WS-

Agreement

Behavior and

SLA of the

required

components

Functional

and Non-

Functional

Testing with

stubs for SOA

Tool for generation of

test beds for

modeled components

WAGON [65] Performance,

Resource

Usage

Own

metamodel

Workload and

user behavior

Non-

Functional

Benchmark

Web Servers

Simulated traffic

UpperT Tool

[66]*

Performance UML-SPT Performance

requirements

Non-

Functional

Performance

testing Web

Applications

Petri Net Model,

JMeter test scripts

with a results

interpreter

PLeTs Tool

[67] *

Security,

Performance

Own UML

Profile

Workload Functional

and Non-

Functional

Performance

testing Web

Applications

Generates Load

Runner [68] scripts.

52 State of the Art and State of Practice

Name & Ref. Type of NFP Instrument Expressiveness Testing type Purpose Automation

Performance

under

stressed nets

[69]

Performance UML Profiles SUT, users

activity

Non-

Functional

Performance

testing

distributed

systems

Generates load test

under data traffic

stress. Does not

provide a tool

SWAT[70]* Performance Own

metamodel

Workload,

interactions

with data

dependencies

Non-

Functional

Performance

testing Web

Applications

Generates test scripts

and data for httperf

[71]

MBPeT [72],

[73]*[74] *

Performance,

Resource

Usage

Probabilistic

timed

automata

Workload by

user profiles

(probabilistic

models)

Non-

Functional

Performance

testing Web

Applications

Execution tool

WST (Web

Service

Testing tool)

[75]

Performance,

Availability

Own

metamodels

Workload,

scheduling, user

behavior, etc.

Non-

Functional

Performance

testing SOA

Execution tool

Models in

performance

testing [76] *

Performance Own

metamodels

Requirements,

workload, SUT,

measurements

Non-

Functional

Performance

testing Web

Applications

IBM Rational

modeling tools,

proprietary tools

SPT for

prediction

[77]*

Performance SPT- UML Workload, SUT,

performance

requirements

Non-

Functional

Performance

prediction

General UML tools,

their model

transformation and

analysis tools

SPE-ED [78] Performance,

Resource

Usage

Own

metamodel

SUT, resources,

devices

utilization

Non-

Functional

Performance

prediction

Tool for the whole

methodology

PIMF [79]–

[81]

Performance Own

metamodel

Workload, SUT,

resources

Non-

Functional

File format None

Survey on

Performance

Prediction

[82] [83]*

Performance Finite state

automata,

sequence

charts, etc.

Workload,

response

time, resource

usage

Non-

Functional

Performance

prediction

Tools that partially

support performance

prediction in the

software life cycle

Survey on

search-based

approaches

[84] [85]*

Performance,

Resource

Usage,

Security,

Usability,

Safety

None None Functional,

Non-

Functional

Test data

generation

by

metaheuristi

c search

techniques

None

As can be seen, most of the related works in the current state of the art focus on

performance prediction (which is well studied in the survey of Balsamo [82] and Koziolek

[83]), benchmarking (e.g. [61], [63]) and generation of test scripts from non-functional

requirements (e.g. [66]). There is also a systematic review of search-based techniques

and genetic algorithms applied for test input generation, to test non-functional

properties [84].

The complete survey is published in a technical report in the digital library from CNR

[86].

53 State of the Art and State of Practice

In the first column of Table 6 the most relevant approaches for our research topic were

marked with a “*”, and they are further explained in the following in more detail, and

grouped according to four main research directions:

 Benchmark generation

 Performance test generation

 Models to predict performance and Software Performance Engineering (SPE)

 Search-based testing for non-functional properties

Benchmark Generation: There are a large number of code generation techniques that

can be used in benchmark suite generation. The aim of MDABench [61] is to automate

the generation of a complete benchmark suite from a UML-based design description,

along with a load testing suite modeled in the UML-TP.

The output of the proposed approach is a deployable benchmark suite, including the

core benchmark application, load testing suite, utilities to collect performance data and

configuration files for external monitoring and profiling framework. Specifically, a PIM

design is annotated with three types of profiles: a platform specific profile, a

performance profile and a tailored UML-TP. A benchmark suite is then generated using

all the profiles for different platforms.

The load testing suite is modeled in the UML-TP that the authors have tailored to

represent a workload including some tagged values such as the number of processes the

load generator should start, the number of threads that each process spawns, the

maximum length of time in milliseconds that each process should run, the time interval

between starting or stopping new processes, etc.

The main result of the approach is thus the automated generation of the application

under test including a complete test harness with the load to execute and some facilities

to automatically collect monitoring information. However, as opposed to our work, the

effort of the authors is more focused on automated benchmark generation than on test

modeling, hence they are merely concerned with representing load tests using the

tailored profile in order to produce a configuration file containing all the tagged values

and deriving a default implementation of the model including both test logic and test

data.

Argo/MTE [63] proposes a performance test-bed generator for industrial usage. The test

bed is modeled, indicating what interactions between client and server must be

simulated. The model is used to generate the code of a performance test bed able to run

the specified performance tests. In comparison to our proposal, this approach does not

focus on load test modeling, but aims to solve some challenges of performance test bed

generation including: extending an open-source CASE tool, namely ArgoUML, to provide

54 State of the Art and State of Practice

UML-like architecture modeling and XMI derived model representation capabilities;

restructuring and enhancement of the employed XSLT-based code generators; efficient

use of tools and databases for performance test management; and result visualization.

Performance test generation: A recent research direction in performance testing is the

model-based generation of test beds to assess whether the application meets its

performance requirements. In particular, de Olivera et al. [66] take as input a

performance specification using the SPT-UML, and derive a modified Stochastic Petri Net

from which a realistic test scenario in JMeter [87] is generated. It also has a result

interpreter to give a verdict. The main difference with our proposal is that this approach

tries to generate the test code directly from the requirement specification without

having the test model which is the objective of our work.

Puppet [67] is another solution presented in this context. Their authors propose to

include five stereotypes in the system UML models (use cases and activities) to express

performance information that will be used for generating test scripts for a commercial

tool called LoadRunner [68]. Specifically, these stereotypes include: PApopulation

representing the number of users and the host where the application is executed;

PAprob representing the probability of execution for each existing activity; PAtime

representing the expected time to perform a given use case; PAthinktime, which is the

time between two different user actions; and PAparameters representing the input data

to be provided to the application when running the test scripts. The main limitation of

this approach is that it addresses the issues of a specific performance testing tool,

LoadRunner. The information about the proposed stereotypes is not enough to generate

scripts for different tools.

SWAT [70] attempts to model the workload for performance test generation. It provides

a tool for generation of a synthetic workload characterized by sessions of

interdependent requests. From request logs for a system under test, the approach

automatically creates a synthetic workload that has specific characteristics and

maintains the correct inter-request dependencies. The main difference in this approach

with respect to our proposal is that it pays great attention to script generation and the

definition of how to take data (from an external file of from the previous response),

rather than to the workload specification.

MBPeT [72], [74] is another performance tool which aims to evaluate the performance

of a system, and monitor different key performance indicators (KPI) such as the

response time, the mean time between failures, the throughput, etc. The tool accepts as

input a set of models expressed as probabilistic timed automata, the target number of

virtual users, and the duration of the test session, and will provide a test report

55 State of the Art and State of Practice

describing the measured KPIs. The main contribution of the paper is that the load

applied to the system is generated in real time from the models.

Different metamodels related to performance testing were presented by Pozin and

Galakhov [76]. These metamodels are useful for ensuring the adequacy of the results of

performance testing and its parts, namely the statement of the problem, how to collect

the initial data and analysis of the experimental results. Specifically, their authors

propose four metamodels: a metamodel of requirements characterizing the type of the

system under test and the non-functional requirements; a metamodel of the system

describing the structure of the system and the configuration of the resources; a

metamodel of the load describing the number and types of service requests and their

distribution; and a metamodel of measurements indicating the quantities to be

collected, the method of their collection and the criteria for assessing the results. The

use of these metamodels in planning a new load testing experiment ensures that the

resulting models are complete and integral. These models make it possible to automate

the configuration of automated testing tools for the parameters of a specific load

experiment.

Models to predict performance and Software Performance Engineering: An orthogonal

research direction to our work is represented by model based software performance

prediction. Balsamo et al. [82] present an extensive survey on methodological

approaches for integrating performance prediction in the early phases of the software

life cycle. These approaches are classified according to relevant dimensions: software

specification, performance model, evaluation method, and level of automated support

for performance prediction. This survey gives some indications of the software system

specification and performance modeling. For software specification, most of the

approaches analyzed use standard practice software artifacts such as UML diagrams,

whereas the Queuing Network Model and its extensions are candidates for performance

models since they represent an abstract and black box notation allowing easier model

comprehension, especially in a component based software development process.

However, Smith et al. [79] proposed a performance model interchange format (PMIF) as

a common representation of system performance modeling data. The idea is to establish

a standard format to interchange models among different performance prediction tools

that use a Queuing Network Model paradigm, in order to be able to use the same model

for different analyses. Finally, [77] presents a performance engineering methodology

that addresses the early stages of the development process. It is based on UML

sequence diagrams annotated with performance information using the Profile for

Schedulability, Performance and Time. These UML diagrams are then automatically

translated into the stochastic process algebra FSP and are analyzed using existing tools

56 State of the Art and State of Practice

to study both the behavioral and performance properties of the SUT, detecting

bottlenecks.

These approaches to model based software performance prediction are distant from our

proposal since they are conceived for internal analysis of the performance of the system

and not for testing. Indeed, the main purpose of these works is not the test case

modeling as in our proposal, but the representation of the internal structure of the

system and the simulation of its behavior with model analysis, to predict performance

results.

Search-based testing for non-functional properties: Search-based software testing

deals with the application of metaheuristic search techniques to generate software

tests. In recent years these techniques have been also applied to testing non-functional

properties. McMinn [85] provides a comprehensive survey of the application of

metaheuristics in white-box, black-box and gray-box testing. This survey also addresses

non-functional testing, evidencing the application of metaheuristic search techniques for

checking the best-case and worst case execution times of real-time systems, detecting

input situations that break memory or storage requirements or cause an automatic

detection of memory leaks. An extension of this survey [84] focuses on types of

nonfunctional testing, targeted using metaheuristic search techniques. The results of

this survey show that metaheuristic search techniques have been applied for testing of

the execution time, quality of service, security, usability and safety. These techniques

are totally different from those in our proposal since they are mainly based on genetic

algorithms, grammatical evolution, genetic programming and swarm intelligence

methods.

According to Table 6 and to the previous discussion evidence, even though there are

many interesting proposals addressing non-functional aspects of software development

and quality verification, almost none of them present a metamodel for functional and

non-functional test cases representation. The only one that does seems to be UML-TP

that is also the standard proposed by OMG.

2.2.5.2. CURRENT VERSION OF UML-TP FOR PERFORMANCE TESTING

This subsection shows the main limitations of the current UML-TP standard version for

modeling performance and dependability test cases. Specifically, when experimenting

with UML-TP for trying to model some real load testing scenarios, it was observed that:

i) it does not provide support for modeling the workload concept;

ii) it does not include the most common validation facilities for performance and
dependability, mainly based on the average or percentage of the response times
values or the number of pass and fail verdicts.

57 State of the Art and State of Practice

In load testing it is important to model the workload that is usually required from any

load simulation tool. The workload defines how many operations can be concurrently

executed on the SUT in a given interval time. As part of testing design the tester should,

for instance, define how the different test cases can be executed concurrently into a

load testing scenario, what data they use, the delay between different test executions

and how the test is going to reach the simulated load goal, namely the ramp-up of each

test case.

As already noted, there is no workload concept defined in the standard. However, using

the UML-TP concepts provided in the standard and according to the UML-TP examples in

[52], [53], it is possible to derive a partial and complex way to model the workload. The

example in Figure 13 illustrates how a simple workload example composed of one test

case (testcase_1) executed by 150 users during a certain time, can be modeled.

In this example the workload is considered as a test case in the Test Context. The Test

Component concurrently executes the different stimulus on the SUT for a certain time.

As shown in the figure, the Test Context includes a test case testcase_1, and another

special test case testcase_workload which is in charge of the concurrent execution. The

behavior of this special test case (testcase_workload) is modeled with a sequence

diagram where the Test Component executes the testcase_1 inside a loop. To set the

total test execution time a timer (timer1) is added. The number of users participating in

the simulation for the test case is specified in a generic parameter of the Sequence

Diagram (maxUsers), but it is not clear how to set this parameter. In addition, for the

distribution of the executions (think times between executions), it is necessary to store

the values in a Datapool, and give them to the timer (timer2) which establishes a pause

in the loop after the execution of the test case. The main problem of this workload

representation is that it is very complex and incomplete since it does not allow

specification of different and concurrent test cases (it is not clear how to represent more

than one test case in that way) or other important concepts, such as the ramp-up of the

test case.

58 State of the Art and State of Practice

FIGURE 13 - TEST WORKLOAD WITH UML-TP

Other examples presented in the standard specification of UML-TP [53] to represent the

workload include two concepts that are the “background load” (useful for generating a

certain stress on the system) and the “foreground load” (which includes the test cases

that the user is interested in measuring). These examples show that the test cases are

executed in parallel, but there is no way to see clearly how the workload is defined.

Specifically, the limitations of the examples provided are: i) it is not evidenced which

load should be executed against the SUT in order to verify the non-functional properties;

ii) the number of users executing the “background load” is not represented; iii) the

number of executions, the delay between executions (presented as a datapool) and the

ramp-up for each test case of the workload are not clearly defined.

Another attempt to represent a workload with UML-TP is presented in [61]. In this work

the authors use the UML-TP in a nonconventional way in order to model a load test by

specifying in the datapool the percentage of users executing each test case. This

workload representation is also limited since the semantic of the workload

59 State of the Art and State of Practice

representation is not in the model, but in the way they interpret the content of a generic

datapool.

Another important aspect that, in our opinion, is not well-covered by the UML-TP

standard, is related to validation, namely how to define the verdict when a non-

functional property (performance or dependability) related to a set of test cases needs

to be verified. In these situations, the arbiter should be capable of expressing global

validations in a simple way, taking into account, for instance, the average of the

different response times of all the executions of a test case, or considering the verdicts

of all test case executions, in order to compute the percentage of the passed test cases.

The aforementioned book [52] and the UML-TP standard [53] present some examples in

which the global arbiter gives the verdict according to the percentage of “pass” test

cases. However, it is necessary to explain how to calculate this percentage in order to

set the verdict; Figure 14 shows a possible representation of a user defined behavior for

an arbiter (according to the examples of the standard) asking for some percentage of

“pass” responses. Since this kind of validation is much more common in performance

and dependability testing, it is important to have a simple way to represent it.

On the other hand, and still on the lines of non-functional validations, the current UML-

TP standard allows us to determine the minimum and maximum accepted response time

values, specifying that all the response times should be within a certain range of values.

These time restrictions are not enough to represent the most typical validations that are

usually performed in a load simulation test, namely the average or percentage of the

response times under a certain boundary.

60 State of the Art and State of Practice

FIGURE 14 - USER DEFINED BEHAVIOR FOR AN ARBITER

For both cases (performance and dependability validations) a limitation is given by the

default behavior of the arbiter that has an only-gets-worse policy. This means that if one

test case reports a failure, the whole test suite fails. It is desirable to take into account

all the test executions and provide a global verdict for the test suite according to a

different policy.

2.3. PROCESSES, METHODOLOGIES AND APPROACHES IN THE

CURRENT PRACTICE
This section focuses on how the different things are done in current practice (by

companies, in the industry area) related to the activities involved. It therefore includes

an introduction to reverse engineering, functional and performance testing, and to

conclude, some ways to determine the quality of the test cases.

61 State of the Art and State of Practice

2.3.1. REVERSE ENGINEERING AND REVERSE ENGINEERING OF

DATABASES

Following reverse engineering techniques, from the

database schema, different aspects of the SUT could

be inferred or supposed, which are essential for the

test case design, such as the data model, some of the

business rules and even the graphical user interface.

Generally, reverse engineering has been used for software modernization purposes, as

Davis and Aiken [88] or Canfora and di Penta [89] showed. This consists of three main

stages [90]: (i) reverse engineering, which analyzes elements of existing systems and

their relationships and obtains an abstract representation of the system; (ii) the

restructuring stage, which changes some internal features of the abstract representation

of the system (maintainability, understandability, performance, etc.) whilst the external

behavior is preserved; and finally (iii) the forward engineering stage, which obtains the

targeted, modernized system by decreasing the degree of abstraction.

To our knowledge, there are few proposals purporting to take advantage of reverse

engineering to aid the test design tasks.

Memon et al. [91] proposed the application of reverse engineering of a graphic user

interface (for Java and Windows applications) in order to obtain an event-flow model

that could then be used to generate test cases. Bellenttini et al. [92] presented WebUML

to generate test cases using UML Class Diagrams (to describe the components) and UML

State Charts (to describe navigation and behavior), which were extracted with reverse

engineering techniques from the SUT (specifically for web systems). Ricca et al. [93] also

use UML models which are the result of the reverse engineering process of web

systems. They apply white box testing techniques to verify the different flows of the

SUT. Kung et al. [94] take into account the structural and navigational aspects of the

system to extend traditional data flow testing techniques. Di Lucca [95] developed a

complete framework to apply reverse engineering to web systems, representing it with

a model that they use to generate and execute test cases.

None of these consider the database for the design of test cases. As pointed out in

Chapter 1, the database schema is considered a good candidate element for a test-

generation process, since the structure and behavior of the remaining application layers

have a very strong influence on it.

62 State of the Art and State of Practice

2.3.2. IMPLEMENTATION OF FUNCTIONAL TESTS

The test discipline considered in our research is based

on the Unified Process (UP) [96]. Despite being

presented in the UP context, it represents the core

testing activities described by a large number of

works; in particular our terminology is adherent to the

one defined in UML-TP [97]. Typically, the first activity is the test planning. Its purpose is

to plan the testing efforts by describing a testing strategy, estimating the requirements

and scheduling the testing effort. The test cases are then identified and described,

including test data, test procedure and test oracles. Afterwards, the automation of the

test procedures takes place, which is an optional and well adopted strategy due to the

cost savings in the execution activity. Once the test cases are automated in a test

execution tool, they are executed according to the test plan and the defects are

reported to the appropriate person.

In functional testing the specification is used to obtain the test requirements and test

data, without any knowledge of the implementation [98]. It is necessary to use a high

quality specification associated with the customer’s requirements in order to correctly

apply the functional test criteria.

There are mainly four different levels for automation: scripted testing, record and

playback, data-driven and model based testing [99]. In this thesis all are considered, and

they are explained below, as are some tools that can be used to follow them.

Over the last few years, the agile development community has implemented various

frameworks to automate the software testing process, commonly known as xUnit; these

are based on the principle of comparing the obtained with the expected output, and

have quickly reached popularity: in fact, many development environments have ‘plug-

ins’ and ‘wizards’ to facilitate xUnit testing (e.g. Eclipse, Microsoft Visual Studio, etc.)

[100]. The basic idea of xUnit is to have a separate test class, containing test methods

that exercise the services offered by the class under test. The most popular are perhaps

JUnit [5] for Java and NUnit [101] for Microsoft .NET. These tools follow the scripted

testing approach.

Going one step further in testing automation, are the record and playback tools. The

most well-known open source tool for web environments following this strategy is

Selenium [102]. This kind of tool also presents a scripted testing approach, but they have

a special facility to create the test cases, by “recording” them. Through this mechanism

the user simply manually executes a test case while the tool captures all the user actions

63 State of the Art and State of Practice

on the Graphic User Interface. These actions are stored into a script so as to reproduce

them later.

The scripting approach can be improved following data-driven testing (DDT) [99], [103]

in which the test procedure is parameterized so it can be executed with different test

data.

All these approaches always execute the same test path, the one that was written or

recorded into the test script. Model based testing (MBT) is an approach in which test

cases are designed on the basis of a model of the test object [99], generally a state

machine. The model can be read by a tool that handles the creation and execution of

test cases, exploring different paths of the model according to different coverage

criteria. This technique is therefore useful to explore new test paths in addition to the

one initially specified by the tester. There are two main approaches: online MBT and

offline MBT. The former implies the execution of the test case while the model is being

examined. The second implies the examination of the model in order to generate the

test cases that are executed a posteriori. There are different tools supporting both types

of MBT. For example, and only considering open source tools, CTweb 11 supports offline

MBT, while Graph Walker12 and ModelJUnit13, support both.

Another kind of tool and strategy used in software testing for test data design is called

combinatorial testing. As it is impossible to test all data combinations, the approach is

to look for intelligent strategies for combining data from the different variables of the

test case, minimizing the number of combinations and maximizing the possibility of

finding errors. For this, there are combinatorial approaches such as the one presented in

this survey [104]. Alarcos Research Group has developed its own combinatorial testing

tool called CTweb [105], which is being adopted progressively by the industry.

2.3.3. IMPLEMENTATION OF PERFORMANCE TESTS

It is often necessary (and recommended) to simulate

the expected workload in order to verify performance

and dependability properties in a system. This kind of

simulation is known as a Load or Performance Test.

Different load testing methodologies adopted by the

11 CTweb: http://ctweb.abstracta.com.uy/

12 Graph Walker: http://graphwalker.org/

13 ModelJUnit: http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/

http://ctweb.abstracta.com.uy/
http://graphwalker.org/
http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/

64 State of the Art and State of Practice

industry, such as [59], [106], were analyzed, including activities for the definition and

design of the test, for the automation of the test cases using an appropriated load

simulation tool, and for the execution of the load scenarios, simulating the load,

verifying the responses of the SUT and their response times, and the behavior and

performance of the infrastructure.

The main issues to analyze in the test definition and design phase are: the test scenarios

(workload), the test cases that run in the scenarios, the environment in which the tests

will run, the data needed in the tests, and the acceptance criteria.

A scenario specifies the expected use of the SUT, showing how the users will interact

with the SUT, or in other words, the workload to be simulated in the tests. Determining

the scenarios is one of the most complex and critical parts of this phase of a

performance testing project. If the workload is not properly defined, the tests are going

to be verifying something wrong, obtaining only useless results. Generally one scenario

represents one specific time or interval on a day; for example, it is possible to define a

“diurnal scenario” as the total user interaction with the SUT from 13.00 to 14.00 hours.

It is then necessary to determine which test cases are included in the scenario, which

data they use and how many users and with which frequency they use this operation. As

a part of the test design, the tester should then define the way the test is going to reach

the simulated load goal, that is, the ramp-up of each test case.

Finally, it is crucial to define the acceptance criteria based on the non-functional

requirements. In that way the tester defines the expected response time (performance)

and fault tolerance (dependability) for each test case. Typically, these kind of validations

are defined on the average of all the response times, or saying that a certain percentage

of executions would answer correctly, because it is expected that some values fall

outside the acceptable value boundaries, so the restriction cannot be imposed on all the

test cases. This means that if one test case responds in more than the expected time it

does not imply that the test suite failed, because this could be an “outlier”.

Once the test is designed, the testers should use appropriate tools to automate the

execution of the test cases and combine them in a proper test scenario, simulating the

workload and verifying the defined acceptance criteria. There are specific tools to do

this, called load generators or load testing tools, simulating concurrent users accessing

the system. Two of the most popular open source load generators are OpenSTA

(opensta.org) and JMeter (jmeter.apache.org).

Unlike the functional test automation, even though the record and playback approach is

also common in the workload scripts, these tools do not record at a graphic user

interface level. Instead, they do it at the communication protocol level. This happens

http://www.opensta.org/
file:///C:/Users/JN/AppData/Local/Opera/Opera/temporary_downloads/jmeter.apache.org

65 State of the Art and State of Practice

because a functional test script reproduces the user actions on a real browser, whilst

load generators try to “save” resources by doing the simulation at a protocol level: for

the HTTP protocol, for example, the tool will launch multiple processes that simply send

and receive the corresponding byte arrays through a network connection. Since the goal

of these tests is to check the behavior of the server, neither the user interface nor any

other kind of graphic elements are required.

The workload script contains a sequence of commands that manage HTTP requests and

responses according to the protocol. This script is much more complex than the

equivalent functional test script.

2.3.4. MEASUREMENT OF TEST QUALITY

According to Offut et al., a testing criterion is a rule or collection of rules that impose

requirements on a set of test cases. Test engineers measure the extent to which a

criterion is satisfied in terms of coverage, which is the percentage of requirements that

are satisfied [107]. The adequacy criterion can then be used to automatically generate

test cases to satisfy the selected criterion.

The coverage criteria are used: (1) to know which areas of the system the test cases

have exercised; (2) to find unexplored building blocks; (3) to create new test cases to

exercise those unexplored building blocks; (4) in some situations, achieving a predefined

coverage without finding new errors that could be used as a stop testing criteria [108].

Some coverage criteria that are useful for IS with databases are presented, and they will

also be useful to explain and justify our proposal.

Coverage Criteria for Test Data

Equivalence partitioning and boundary values: The input or the output data are divided

into disjoint sets, and it is assumed that the system under test will have the same

behavior as any element of the set, so, any value of the set is a representative of the

entire set. The values in the borders of the equivalence classes are also used [4].

It is a black-box approach, so, when testing an IS the definition of the equivalence

classes is based only on the knowledge of the business and the requirements.

Combinatorial testing: Combinatorial testing is concerned with the construction of test

cases using algorithms that combine the “interesting values” (i.e., the test data)

identified for operation parameters. Grindal et al. [104] present a compilation of several

combination strategies, whose goal is to obtain complete test cases that fulfill some

coverage criterion and, thus, to quantitatively know the degree of use of the test data.

Some of most well-known algorithms they cite are All combinations (which builds all the

66 State of the Art and State of Practice

possible test cases from all the test data), AETG [109] and IPO [110] (which obtain

pairwise coverage: that is they visit all value pairs of any two parameters) and other

deterministic and non-deterministic (genetic algorithms, for example) strategies.

This technique is useful for testing an information system, once test data has been

selected for each input, in order to combine them into test cases.

Coverage Criteria for Class Diagrams: Andrews et al. [111] propose different coverage

criteria for testing UML diagrams. For class diagrams, they propose the following:

 Association-end multiplicity: the test set must include the creation of each

representative pair of multiplicities in the associations that appear in the model.

Thus, if there is an association whose multiplicity is, in one of the extremes, p..n,

the association should be instantiated with p elements (minimum value), n

elements (maximum value) and with one or more values from the range (p+1, n-

1).

 Generalization: the test set must cover every generalization relation of the

model.

 Class attribute: the test set must instantiate representative data sets for the

different attributes of each class.

Coverage Criteria for State Machines and Activity Diagrams: UML State Machines and

Activity Diagrams can be used to express the behavior of part of a system. To validate

this behavior the test set should reach certain coverage criteria. Andrews et al. [111]

have proposed several coverage criteria for activity diagrams, such as:

 Condition Coverage: the test set must cause each condition in each decision to

evaluate both True and False.

 All Messages Paths: the test set must cause each possible message path to be

taken at least once.

For state machines, Offut et al. [107] have defined the following criteria:

 All States: the test set must visit each state in the diagram.

 All Transitions: the test set must cause every transition to be taken.

 Transition-pair: for each state, the test set must cover each pair of adjacent

transitions (considering the ingoing and outgoing transitions in every state).

 Complete sequence: the test set must include those paths in the state machine

that the tester considers interesting, and that are not covered by the previous

criteria.

67 State of the Art and State of Practice

Coverage Criteria for CRUD: The data instances of a system have a life cycle starting

when they are created and finishing when they are deleted; they also go through a set

of updates in between. Koomen et al. [103] have defined a coverage criterion for this life

cycle: test cases could be defined with a regular expression starting with a C, followed by

an R, followed by every operation that performs a U (with an R after that to validate the

result) and finally a D and another R (to validate the deletion). Then, representing with

Ui each operation that updates data (over different attributes for example), the criterion

could be represented with the following regular expression: C·R·(Ui·Ri)*·D·R.

Testing database applications

Regarding test case generation for systems with databases, Tuya et al. [112] define a

coverage criteria based on SQL queries, applying a criterion based on Modified

Condition/Decision Coverage but adapted to the conditions in FROM, WHERE and JOIN

clauses. In other approaches [113][114] the coverage criteria are extended to include

the embedded SQL code, generating database instances that, from the testing point of

view, cover the scenarios which are considered interesting. Arasu et al. [115] propose

specifying in some way the expected results of each SQL included in the test, and then

they generate test data to satisfy this specification. The proposal from Chays et al. [116],

called AGENDA, takes as input the database schema and categorizes test data given by

the user, thereby generating test cases and initial database states, and validating the

outputs and the final database state after the test case execution. By means of a

constraint solver, Neufeld et al. [117] generate database states according to the

integrity constraints of the relational schema.

To the best of our knowledge, there are many proposals for test case generation, but

none focuses on automated test model generation using model transformations based

on the database structure, applicable for external teams (with a black box approach),

using standards, and considering functional and non-functional properties at the same

time.

2.4. CONCLUSION OF THE STATE OF THE ART AND PRACTICE
This chapter has briefly introduced the basic concepts of software testing, including

functional and non-functional testing. It has presented a more detailed explanation of

Model Driven Engineering. The notions of model transformation were provided,

describing in more detail the standard metamodels and model transformations used in

this thesis.

Finally, the main research topics related to this thesis have been explained more

comprehensively: model-driven testing and performance testing. The current state of

68 State of the Art and State of Practice

the art in these topics has been summarized and the open issues in research have been

identified. These open issues give rise to the principle motivation of this work, which is

the provision of a model-driven testing approach based on OMG standards to define test

models and model transformations considering both functional and non-functional

aspects of an Information System using databases. The approach is described as a

methodology to obtain automated test cases from models. This methodology is

presented in Chapter 3.

Quand tu veux construire un bateau, ne commence pas par rassembler du bois, couper

des planches et distribuer du travail, mais reveille au sein des hommes le desir de la mer

grande et large.

– Antoine de Saint-Exupery

If you want to build a ship, don't drum up people to collect wood and don't assign them tasks and work, but

rather teach them to long for the endless immensity of the sea.

 – Antoine de Saint-Exupery

CHAPTER 3. MANDINGA:
METHODOLOGY FOR AUTOMATION TESTING

INTEGRATING FUNCTIONAL AND NON-
FUNCTIONAL ASPECTS

This chapter explains the complete methodology for test case
generation. It includes functional and non-functional aspects in an
integrated way, and summarizes which instruments are used in each
part of the methodology.

3.1. INTRODUCTION
In the traditional view, non-functional testing is performed after completing functional

testing, with the aim of covering non-functional aspects such as performance,

dependability and security. Usually different models are used for the two aims in the

model-driven approaches. Our approach moves away from this traditional practice and

breaks down the boundaries between functional and non-functional testing,

incorporating functional and non-functional aspects into a comprehensive testing model

which will later be translated into the test code and will be useful to perform functional

and non-functional validations.

From our experience in dozens of projects, providing both functional and performance

test services, the same situation has been observed many times: in the first stage the

testers prepare the functional test specification, automate those test cases, and execute

them; later, they prepare the non-functional test specification, automate those test

cases, and execute them. Two different specifications, two different groups of test

scripts, and most of the time, the non-functional test cases are a subset of the functional

test cases, perhaps with some specific elements to measure performance, such as

72 MANDINGA: Methodology for Automation Testing Integrating Functional And
Non-Functional Aspects

timers. Moreover, functional issues are often found during the execution of non-

functional tests, or vice versa. Last but not least, many customers claim not to have the

time (or budget) to execute both test sets, therefore they opt to leave the performance

test to another stage, assuming all the associated risks. The question is: why is an

integrated approach not taken into consideration, designing, modeling and executing

the functional and non-functional tests together?

This section presents MANDINGA, depicted in Figure 15, a methodology to generate

automated test cases for functional and non-functional verification with one single and

integrated model.

FIGURE 15 - MANDINGA METHODOLOGY

3.2. METHODOLOGY
The main characteristic of the methodology is that testing artifacts are obtained through

model transformation from models specifying the SUT, specifically the database

structure. For this reason, the metamodels and models used become particularly

important, as do the tools involved.

The methodology was defined to achieve the following goals:

73 MANDINGA: Methodology for Automation Testing Integrating Functional And
Non-Functional Aspects

• UML notation: the proposal uses standards as much as possible. Thus, the UML

notation is the metamodel of most of the models involved to represent

functional specification of the SUT and testing models. Testing models are also

represented using the UML-TP that is the standard notation for testing.

• Model-driven test case generation: Test cases are automatically generated from

the specification models and evolve with the product up to the test code

generation. System behavior is mainly represented using UML sequence

diagrams that are first transformed into test models and later into test code.

• Functional testing level: the methodology generates test cases at the functional

testing level, i.e., the system is considered as a black box and the stimuli

between the system and the exterior are tested.

• Non-Functional testing: functional test cases are also used to generate a

workload simulation, with the aim of verifying non-functional properties such as

performance and availability.

• Extensible test patterns: test cases are generated based on test patterns; for

certain substructures in the system’s models, some special test scenarios are

taken into consideration.

• Standardized artifact handling: The framework is based mainly on OMG

standards. The standards used are UML, UML-TP as metamodels, and QVT and

MOFM2T as standardized transformation languages.

• UML-TP extension: The UML-TP was extended to improve the description of

non-functional tests.

• Tools for model edition and visualization: Existing UML modeling tools have

improved editors to generate all the UML models. The selected modeling tool

must allow description of UML models and application of UML profiles; it also

should be able to export and import XMI files following the UML metamodel

that represents these models.

• Tools for model transformation: Two kinds of tools are required to execute the

defined transformations: one for model-to-model and another for model-to-text

transformations.

• Tools for automating testing tasks: some well-known tools for test execution

are used to exemplify and demonstrate the possibility of test execution.

The methodology has several steps and involves several actors. Most of the steps fit into

different standards mainly from the OMG, especially UML, in order to use general UML

modeling tools. The most important steps/phases are:

Information System Model Specification: taking a physical database as input, a reverse

engineering process builds a class diagram that is the Information System Model (ISM)

74 MANDINGA: Methodology for Automation Testing Integrating Functional And
Non-Functional Aspects

artifact shown in the figure, and represents the possible conceptual model used when

the database was built. This diagram is UML-compliant and describes different views of

the system, such as the database and the user interface. The tester may review, adapt

and complete the model with any UML-standard tool. In parallel, non-functional

properties are specified in a PMM model. See Chapter 4.

Functional Test Cases Generation: Afterwards, an automated process searches

interesting test situations within the ISM: given a set of entities, an interesting test

situation corresponds with the occurrence of a generic pattern defined as an ATL rule.

These rules are independently defined by the tester and are launched against the ISM

similar to a regular expression which is launched against a plain text. Each time a

substructure of the ISM maps onto a pattern, a set of test cases will be added to the test

model. These test cases are designed taking into account one or more coverage criteria.

Furthermore, the tester may enrich the test model with new test cases (described as

UML sequence diagrams).

Later, functional test cases in the test model are translated into test code. The

generated test cases interact with the SUT through a set of wrappers comprising an

adaptation layer. These wrappers are generated with a semi-automatic mechanism, or

can be provided by the user, in order to have test cases that are completely executable.

See Chapter 5.

Performance Test Cases Generation: After this, functional test cases are used to

generate performance test cases (for workload simulation). The definition of the

workload is taken from PMM models, considering the coverage criterion defined on the

PMM operands. See Chapter 6.

The final result is a set of executable test cases to verify the functional and non-

functional properties of the SUT. See Chapter 7, in order to see how the whole

framework was implemented in a prototype, with the execution of some examples, and

then used into the industry, using the generated knowledge in real projects.

It is important to emphasize that this process can be performed in parts or modules

(applying divide & conquer), applying different risk-based or prioritization criteria. For

example, if the database has fifteen tables, perhaps only five are considered more risky,

therefore the tester can start work by focusing on this subset of tables, generating test

cases for them, and then perform another iteration considering the remaining entities of

the SUT.

The following chapters explain each part of the methodology.

"Without specification, there are no bugs — only surprises"

Brian Kernighan

CHAPTER 4. INFORMATION SYSTEM MODEL

CONSTRUCTION

This chapter explains the metamodel defined to represent the
functional specification of the Information Systems under test, and
how it is instantiated. This chapter also introduces DBesTest, our
framework for the automation of the proposed methodology. An
application to an example is explained to conclude the chapter.

4.1. INTRODUCTION
As shown in Chapter 2, there are different options for modeling functional and non-

functional aspects of an Information System. This chapter presents the metamodel used

in our proposal for the model-driven testing approach used to generate a completely

executable testing framework.

One well-known problem with the Model-Driven Testing approach is the need for two

specifications: one that developers prepare with the system code and another that

testers must design to validate the first. This methodology proposes to help with the

construction of the system model, and with the generation of test cases and test code –

specifically for web applications using databases – by automatically initializing the

system model from the data schema. The tester can then add extra information to the

model to specify the expected behavior to test; this will allow the generation of

Selenium test scripts at a lower cost.

The methodology is supported by a tool which was implemented as an Eclipse Plugin,

called DBesTest. It includes the required metamodels and it is composed of a set of ATL

and Acceleo scripts in order to execute the model-to-model and mode-to-text

transformations respectively. It also integrates a reverse engineering tool, and adapts

the resulting models to be compatible with the selected UML editor (this should not be

necessary, but the different tool providers do not respect the UML standard, thus,

demanding extra effort to interoperate between tools).

78 Information System Model Construction

4.2. INFORMATION SYSTEM METAMODEL
The Information System Model (ISM) is composed of different views of the system, all

proceeding from the database schema. As already mentioned, the ISM is composed of

the Data Model, the Graphic User Interface Model (structure and navigation) and the

Business Rules (see Figure 16).

FIGURE 16 - INFORMATION SYSTEM MODEL COMPONENTS

There are different database reverse-engineering approaches (as mentioned in Chapter

2). Our proposal uses the approach presented by Polo et al. [30], who developed the

Relational Web tool.

The following subsections focus on each part of the ISM.

4.2.1. DATA MODEL

The Data Model is represented using UML Data Modeling Profile (UDMP) [32], which is a

UML model extension developed by IBM to design databases using UML, with the

expressive power of an entity-relationship model. It defines concepts at a physical level

and architecture (Node, Tablespace, Database, etc.), and those concepts required for

the database design (Table, Column, etc.). Several proposals use this profile to model

database structure [118][119][120].

Table 7 shows the different elements of the UDMP, making a correspondence with the

database elements, and indicating which type of UML element is extended to represent

them.

Data model

Graphic
User

Interface
Structure

Graphic
User

Interface
Navigation

Business
Rules

79 Information System Model Construction

TABLE 7 – ELEMENTS IN IBM’S UML DATA MODELING PROFILE

Database

element

Description UML Data Modeling

Profile

Extended UML Element

Database The system for data storage and

controlled access to stored data.

«Database» stereotype. UML Component

Schema The schema is the biggest unit that can be

worked with at any given time.

«Schema» stereotype. UML Package

Table A set of records of the same structure,

also called rows.

«Table» stereotype. UML Class

View A view is a virtual table, referencing

columns of other tables.

«View» stereotype. UML Class

«Derived» stereotype. UML Relationship

Column Set of data values of a particular simple

type.

No stereotype needed.

Property of a “Table” or

“View” stereotyped class.

UML Class Property

Primary key Primary keys uniquely identify a row in a

table.

«PK» stereotype. UML Class Property

UML Operation

Foreign Key Foreign keys access data in other related

tables.

«FK» stereotype. UML Class Property

UML Operation

«Identifying» stereotype.

«Non-Identifying»

stereotype.

UML Relationship

Nullable Indicates whether the column is

mandated to contain data or not.

«Nullable» stereotype. UML Operation

Index Physical data structure that enables faster

data access.

«Index» stereotype. UML Operation

Unique Constraint that defines a column or set of

columns as containing unique data.

«Unique» stereotype. UML Operation

Stored

Procedure

It is a subroutine, stored in the database,

available to applications that access it.

«SP» stereotype. UML Operation

The table and view columns are represented in UDMP as attributes of the corresponding

class.

All the attributes that belong to a primary key, foreign key, index or unique restriction

have a corresponding stereotype, but it is also necessary to add an operation (with the

same stereotype) to show that a primary key, for example, is composed of two

attributes. This operation has all the attributes involved in the restriction as parameters.

Figure 17 shows the representation of the data model for AjaxSample. It is possible to

see different foreign keys and primary keys defined in each table, with stereotypes

applied for that in the columns (attributes of the classes) and in special operations to

represent them. The operation PK_City indicates that there is a primary key in the City

table comprised of two attributes (the parameters of these operations), and all the

attributes corresponding to the parameters and the operation are stereotyped with the

“PK” stereotype. It is easy to see that this model corresponds with the database schema

presented in Chapter 1, where some small changes were made by the user in order to

80 Information System Model Construction

simplify the model, removing columns that were not useful for the test case generation

(for example InvoiceLatestLine in the Invoice table).

FIGURE 17 - ENTITY REPRESENTED WITH UDMP

It was necessary to develop our own implementation of the metamodel in Eclipse as a

UML Profile, in order to use it with the UML SDK [121] and with model transformation

languages. The profile was extended with some aspects that were considered necessary

for our purpose. For example, it was necessary to define primitive types according with

database types (BIGINT, BINARY, BIT, CHAR, DATETIME, DECIMAL, FLOAT, IMAGE, INT,

MONEY, NCHAR, NTEXT, NUMERIC, NVARCHAR, REAL, SMALLDATETIME, SMALLINT,

SMALLMONEY, TEXT, TIMESTAMP, TINYINT, UNIQUEIDENTIFIER, VARBINARY and

VARCHAR). Another stereotype was also defined to represent those attributes that in

the database are defined as auto-generated, because those attributes are not inserted

from the user interface.

4.2.2. GRAPHIC USER INTERFACE MODEL

As the Graphic User Interface metamodels analyzed were considered more complex

than required (as explained in Chapter 2), it was decided to develop a new and simple

metamodel: Graphic User Interface Profile (GUIMP) as a UML Profile. This profile thus

includes the stereotypes necessary to our purpose of executable test case generation

(interacting with the graphic user interface).

Information systems usually provide the user with the necessary interface to perform

the basic operations to manipulate data, which includes CRUD operations (create, read,

update, delete), and typically also a listing of the different instances of the entities. On

81 Information System Model Construction

the other hand, and considering that the focus is to obtain information to generate

executable test cases, it is necessary to have information about how to access to the

different functionalities of the system, representing the execution flows and the

elements with which to interact. There are therefore two main views, structural and

navigational, for the Graphic User Interface model.

The structural part of the Graphic User Interface model stores information about the

different elements that the user interacts with (pages, buttons, combo boxes, etc.) and

will be useful when generating executable test cases commands on those elements,

simulating the user actions.

For example, Selenium can simulate user actions with specific commands. The different

commands interact with the different elements of web pages as inputs, checkboxes,

combo boxes or buttons. For this, Table 8 shows the main stereotypes considered for

the GUIMP and their corresponding Selenium commands to interact with them, simply

in order to show that this categorization is useful for the following step, to generate test

scripts. The metamodel was developed in Eclipse, and also as a UML Profile.

TABLE 8 - GUIMP STEREOTYPES AND THE CORRESPONDING SELENIUM COMMANDS

Stereotype Element Selenium Command

<<Page>> Web pages Open

<<Input>> Input in forms Type

<<Label>> Label Assert Text

<<Combobox>> Combo boxes Select

<<Check>> Checkbox Check, Uncheck

<<Button>> Buttons, Image buttons Click

For the navigational part of the Graphic User Interface model is necessary to generate

different scenarios, covering the flows of the lifecycle of each entity. They are

represented with behavioral UML diagrams, as sequence diagrams or state machines.

For this, it is also necessary to distinguish the actions performed, such as creation,

update or delete, for which the profile also includes special stereotypes to identify them.

With this information the test case generation algorithm will be able to determine the

oracle: after the execution of a test case using valid input data, from a valid state, if it

includes the creation of certain entity, there must be a new instance of that entity with

the data corresponding to the input data. Therefore, the GUIMP also provides the

following stereotypes to apply to the behavior diagrams: “create”, “update”, “read”,

“delete”. There are also some additional stereotypes to indicate the navigation required

to access the application and the menu for each entity.

Figure 18 shows an example of the representation of a page (a class with the “Page”

stereotype). In this case it is for the creation of new instances of City. In the figure it is

82 Information System Model Construction

evident that for each page element (input, combo box, button, etc.) there is a

corresponding attribute in the class.

FIGURE 18 - CORRESPONDENCE BETWEEN STRUCTURE GUI MODEL AND GUI IMPLEMENTATION

For each button there is also a method (with the same name) so as to model the

corresponding event raised for it. This operation has as parameters all the elements of

the form that the user should insert, so that, in this case the signature of the method is:

Confirm (CHAR CountryName, SMALLINT CityId, CHAR CityName)14

The operation verifyPage is an auxiliary method allowing the user to define error

identification. By default the method is designed at least to verify that the current URL is

the expected one. The method is going to be useful in the test cases to show that once

the test navigates to a page it should verify that it reached that expected.

There is also an attribute to reference the corresponding table called sourceTable.

Figure 19 presents all the elements of the structure of the GUI for the City entity.

14 Rational Software Architect does not show the parameters of the operations in class diagrams

83 Information System Model Construction

FIGURE 19 - GUI STRUCTURE MODEL FOR CITY ENTITY

The structure of the GUI also has a corresponding navigational representation

(presented as UML behavior diagrams). To create a new instance of the entity City in

AjaxSample it is necessary to follow the steps presented in the sequence diagram of

Figure 20. The user first goes to the home page, then accesses the corresponding menu,

that takes them to a page with a list of all the cities, where there is a button to create a

new city. If the user clicks this button the system presents the page for the creation of

cities, and after the user has completed the form and clicked the confirmation button

the new city is inserted into the database.

FIGURE 20 - NAVIGATION EXAMPLE FOR CREATION

Figure 21 shows the different steps of the GUI of AjaxSample so as to visualize the

correspondence between the system and the model.

84 Information System Model Construction

FIGURE 21 - CREATION OF INSTANCES OF CITY ENTITY

Each lifeline of the sequence diagram corresponds to a class in the GUI structure model.

The methods invoked by the user are the ones offered for these classes, as for example

the aforementioned confirm in the class city_create, for the creation of cities, with the

corresponding parameters according to the inputs in the form.

In order to promote model reutilization, and to distinguish the different user intentions,

the different parts of the sequence diagram are modeled separately. Thus, there will be

a sequence diagram to represent access to the system (it is not the case, but in this

diagram it will typically be necessary to ingress with credentials, that is, user and

password), and then another for the creation of instances.

Therefore, a sequence diagram representing how to create an instance will be

stereotyped with the “create” stereotype (as already mentioned, there are also

stereotypes for “update”, “delete”, etc.).

4.2.3. BUSINESS RULES

If test case generation is based only on the information provided in the data model and

the graphic user interface, the expected result of the test case cannot be determined.

This is why the business rules are also considered in the Information System Model, and

also to generate test cases and test data considering the boundary situations for those

rules.

The best option for business rules is OCL [38], because of its integration with UML

models.

The rules can be simple (those that apply to one attribute or column) or compound

(defining restrictions on several attributes at the same time). For example, Figure 22

shows an example defining the value of the ProductStock column (amount of products in

stock) cannot be less than 0.

85 Information System Model Construction

FIGURE 22 - OCL BUSINESS RULES EXAMPLE

This information is fundamental for determining valid and invalid data combinations,

and also to test boundary situations. From here, it is evident that there should be a test

using the value “0” or a negative value, with the expected result that the user receives a

notification of the error, and the database does not change.

There are different engines and parsers to work with this kind of rules such as:

 OCL Library (an Eclipse Plugin http://www.cs.kent.ac.uk/projects/ocl)

 Eclipse OCL (the official implementation from the Model Development Tools

Project in Eclipse http://www.eclipse.org/modeling/mdt/?project=ocl)

4.3. DBESTEST IMPLEMENTATION
DBesTest is the tool developed for supporting the

methodology. DBesTest acts as an intermediary

between the tester and external UML tools: (1) it

reverse engineers the database and produces the ISM;

(2) once the tester considers it is ready, it processes

the model and translates it into a test model via a set

of ATL transformation rules; (3) when the tester has

validated the test model, it generates the test code by

means of the execution of Acceleo scripts.

This section presents the use of DBesTest in order to reverse engineer the database and

generate the ISM. For this process, the tool follows the actions presented in Figure 23,

which will be explained in this section.

http://www.cs.kent.ac.uk/projects/ocl/downloadLocation.html
http://www.eclipse.org/modeling/mdt/?project=ocl

86 Information System Model Construction

FIGURE 23 - INFORMATION SYSTEM MODEL GENERATION

In the first step DBesTest extracts the data model from the database schema, then, it

generates the rest of the ISM based on the data model. Typically, there is a

correspondence in Information Systems between the visual components (e.g. web

forms), the data structures (generally in relational database) and the logic in between

that is used to accomplish the business rules. Applying reverse engineering to a

database, it is possible to derive the expected behavior of the system [30], considering

certain patterns. This could be true for certain classes of applications, but in some cases

there may be multiple forms that correspond to a single data structure, and a user

needs to add navigation instructions to access these forms.

The section below presents both parts of the Information System construction, the

database structure extraction to generate the Data Model, and the transformations

applied on this model in order to complete the ISM. The result of the execution of this

step is a single UML-compliant file which contains the four models of the information

system. The tester may modify it with a third-party UML tool.

4.3.1. DATABASE STRUCTURE EXTRACTION

Relational Web[30] (a reengineering tool developed in the ALARCOS Research Group)

has been adapted for loading the data model, in order to make it UML-compliant (since

it uses its own metamodels).

This component is capable of coping with different database management systems

(DBMS), such as MySQL, SQL Server, Oracle and Access, and it is easy to extend to

others. It is simply necessary to extend two functionalities: the connection with the

87 Information System Model Construction

database (the connection parameters or the connection string format may vary for each

DBMS), and the reading of the metadata (tables, columns, data types, foreign keys,

primary keys, indexes, etc.).

The user must provide connection information to DBesTest, which includes the IP of the

machine where the DBMS is allocated, the port to connect it, which DBMS it uses

(MySQL, SQL Server, etc.), user and password with adequate privileges, and the name of

the database (see Figure 24).

FIGURE 24 - CONNECTION CONFIGURATION

DBesTest then reads all the table names in order to allow the user select the tables to

work with (see Figure 25).

88 Information System Model Construction

FIGURE 25 - SELECTION OF TABLE TO WORK WITH

The result of the execution of this step is a UML file (such as the one presented in Figure

26) which is compliant with the UDMP metamodel. This UML file represents the

database conceptual model after applying reverse engineering to the physical schema. It

includes the entities and their relationships, attributes, and constraints.

89 Information System Model Construction

FIGURE 26 - AJAXSAMPLE DATA MODEL VISUALIZED IN ECLIPSE UML MODEL EDITOR

Basically, Relational Web transforms:

 One Table to a UML Class (except for certain cases as relations N to N)

 A Foreign Key to a Class relation with the corresponding characteristics (e.g.

multiplicity).

Afterwards, the user can add more information about the business rules considered by

the SUT in order to be able to generate richer and more accurate test cases. The

business rules determine the equivalence classes for the test data.

These models are later verified and adjusted by the tester, mainly removing or tailoring

the user interface view. The more information the user adds, the more accurate the

generated test cases will be. In order to manage this model in a graphical way, it is

necessary to initialize a Class Diagram including all the generated elements.

90 Information System Model Construction

This model can be graphically represented as a class diagram, resulting in that presented

in Figure 17.

4.3.2. INFORMATION SYSTEM MODEL GENERATION

The Graphic User Interface is generated by considering that for each entity there should

be certain group of pages to provide functionalities such as creation, update, read,

delete and list. According to the data structure it is thus possible to instantiate a possible

version of the user interface structure and of its expected navigational flow. The

semantic of the user interface should be the same as the semantic of the database

[122]. For this task, there is a semi-automatic process where the user has to indicate

which pattern should be applied for each entity. For example, if two entities are related

(with a foreign key, or even with a relationship table), there are different options to

manage the instances of the lifecycle at a user interface level; for example:

 One page for the referencing entity, showing its attributes and the information

referenced (e.g. in the first row of Table 9, there is an entity “Country” and

another entity “City” referencing the former, and in the page to view the city it

is possible to see the country which it belongs to.

 One page for the referenced entity, showing the list of instances that reference

it (e.g. in the second row of Table 9, the entities “Product” and “ProductPrice”

are in the same situation as “Country” and “City”, but in this case there is only

one page to visualize the “Product” information showing the list of

“ProductPrice” instances it has related).

To argue for the validity of this assumption, generation of a simple GUI and a model

from a database schema has also been a part of the Ruby on Rails framework15, or the

GeneXus code generation. These techniques are mostly referred to as "scaffolding":

from a database specification these tools can build an application to manage the defined

entities, using the schema as a scaffold.

15 Ruby on Rails: http://rubyonrails.org/

http://rubyonrails.org/

91 Information System Model Construction

TABLE 9 - EXAMPLES OF GUI AND TABLE STRUCTURE FOR A 1-N RELATIONSHIP

Database substructure GUI for the creation of these
instances

As it is probably impossible to determine this information with pure automatic reverse

engineering techniques, our approach is to follow a semi-automatic mechanism,

assisting the user/tester with a pattern catalog. The user will therefore have to decide

which pattern applies for each set of related entities. It could be necessary to manually

adjust the model afterwards. It is important to note that the goal of this process is to

facilitate the task of building the entire ISM from scratch; it is not the intention to create

a precise model through a new reverse engineering technique, on the contrary, it is

better to use already existent techniques.

Together with the GUI structure, the navigation diagrams are also instantiated. These

diagrams are correlated to the structure, as explained in the previous section, indicating

the user interaction for each CRUD operation.

DBesTest performs this task with a group of model-to-model transformation scripts

implemented with ATL [19]. Figure 27 shows the different inputs and the output of the

ATL transformation executed by DBesTest.

92 Information System Model Construction

FIGURE 27 - ISM GENERATION PROCESS

Basically, the input of the transformation scripts was the data model, previously

extracted from the database and adjusted by the tester, which is a UML model with the

UDMP profile applied (that is why these metamodels are also part of the inputs). As the

output is a UML model with the data model (with the UDMP) and the graphic user

interface, it is also necessary to provide the transformation with the GUIMP metamodel

as input.

The proposed algorithm is iterative and incremental. Firstly, for each table, it asks the

user if there should be a group of pages to manage this entity alone. This is the case for

“Country”, but there are examples where the user can say that there should not be any

page to manage the instances (e.g. a log table), or that it should be considered as a part

of a bigger pattern later.

Apart from the structure of the graphic user interface, the transformations also generate

different sequence diagrams to show how the user navigates through those pages to

create, update, delete, etc. For instance, Figure 28 shows one of the diagrams generated

by ATL rules, which is a sequence diagram for the creation of the Country entity. This is

the simplest pattern, one entity without foreign keys.

FIGURE 28 - CREATE COUNTRY SEQUENCE DIAGRAM

It then looks for groups of two tables related with an FK in a 1-N relationship. In this case

the user has to select the pattern which best fits the graphic user interface structure.

93 Information System Model Construction

This is the cases presented above, between Country and City, and Product and

ProductPrice tables.

To see both cases of a 1-N relationship, Figure 29 shows the sequence diagram for the

creation of Products, and Figure 30 for the creation of Cities.

FIGURE 29 - CREATE PRODUCT SEQUENCE DIAGRAM

It is interesting to note that when the user has to select a value that already exists in the

database (as the CountryName when creating a City) it is represented with an operation

called Select, and when the user has to insert data (that it will be stored in the

associated table, as in the case of ProductPrice) it is represented with an operation

called Insert. This information will be very useful in the generation of test cases and test

data. It is also important to see that for the case of Product, as it is possible to associate

many lines of the pair price and date; the insertion of these values is in a loop block.

FIGURE 30 - CREATE CITY SEQUENCE DIAGRAM

94 Information System Model Construction

After this, it looks for groups of three related tables, one participating as a relation-

table. For example, for Invoices and Products there is an N-N relationship, implemented

with the table InvoiceLine, which has a foreign key pointing to each referenced table,

and with extra information, for instance, where InvoiceLineQty refers to the number of

products selected in the invoice. Actually, the case of Invoice, involves four tables,

because Invoice also references the Client table. The page for creation can be seen in

Figure 31, and the representation of the user interaction and navigation appears in

Figure 32.

FIGURE 31 - INVOICE CREATION WEB INTERFACE

In this example it is also interesting to see that it is easy to distinguish between the data

that has to match with the database (existing clients and existing products) and that

inserted by the user (date and number of products for each invoice line).

95 Information System Model Construction

FIGURE 32 - CREATE INVOICE SEQUENCE DIAGRAM

Of course, more patterns could be considering involving more tables or different

structures with the same number of tables, but the scope for our study will be those

presented in this section.

4.4. CONCLUSION
Figure 33 presents a summary of the results obtained after applying the methodology

explained in this chapter. Basically, from the database schema and with the assistance

of the user, DBesTest generates an Information System Model including a Data Model, a

Graphic User Interface (structure and navigation) and Business Rules defined on that

basis.

DATA MODEL

GUI MODEL STRUCTURE

GUI MODEL NAVIGATION

FIGURE 33 - SUMMARY OF THE CHAPTER

"Quality is value to some person.”

 Jerry Weinberg

"Quality is value to some person who matters."

 Cem Kaner

CHAPTER 5. AUTOMATIC GENERATION OF

FUNCTIONAL TEST CASES

This chapter evidences the utility of the Information System Model in
order to generate, through model transformations, functional test
cases represented in a UML-TP model. MBT is expected to allow more
adequate software testing because it is rooted in automated
procedures, avoiding manual error prone activities [123]. In this
chapter the model-to-code transformation is explained, showing how
the test code is obtained.

5.1. INTRODUCTION
 This part of the MANDINGA methodology consists mainly of two phases:

 Test Model Generation. The Information System Model is processed using

pattern-matching techniques to automatically generate the test model through

model-transformations.

 Test Code Generation. The test models are transformed into test code,

obtaining executable test cases.

In order to take an integrated approach, the model-to-model

and model-to-text transformations were integrated in

DBesTest, allowing the user to execute them in a very easy

way in the Eclipse environment. The remainder of this

chapter explains each part in detail, with an example using

the AjaxSample application, showing how the

transformations can be executed from the plugin. The graphic representations of the

UML models were prepared with Rational Software Architect.

It is important to emphasize that these techniques do not offer all the possible error

situations, only those related to the management of the database (the creation, reading,

100 Automatic Generation of Functional Test Cases

updating and deletion of data, known as CRUD operations). Let us say that the patterns

generate simple test cases but with low cost and high value.

Performing this kind of testing at the outset improves the productivity and morale of

testers when they verify more complex use cases. If someone is trying to test a complex

use case and becomes stuck with this kind of problems then they may lose focus and

time. The focus of our approach is to start with CRUD operations, which are the core

part of most of the SUT, allowing the tester to concentrate on more complex situations

and avoiding them being blocked by simple problems, reducing interaction between

testers and developers.

This is also based on what De Millo et al. [124] call the coupling effect, saying that “test

data that distinguishes all programs differing from a correct one by only simple errors is

so sensitive that it also implicitly distinguishes more complex errors”. As the reader will

see, the framework starts by focusing on simple errors, and then applies more

sophisticated testing techniques in order to dig into better testing coverage.

5.2. TEST MODEL GENERATION
This section presents the functional test model generation. Among other things, it

defines the Test Architecture, the patterns to generate test cases and test data and a set

of black-box coverage criteria for Information Systems considering the lifecycle of their

entities and relationships. The criteria are defined by considering interesting situations

from a testing point of view, and the result is represented in a UML model using the

UML Testing Profile (UML-TP, also referred in some publications as UTP, as presented in

Chapter 2).

It is important to emphasize that the main goal of the test generation strategy is not the

testing of the database schema, instead, the goal is to test the applications that use it.

The transformation of the ISM into the test model is made with ATL transformations and

it is presented in three main stages: one for the test architecture model, one for the

group of test case behavior models (including the oracle) and finally for the test data

model. Figure 34 shows the main inputs and outputs of the ATL transformations.

101 Automatic Generation of Functional Test Cases

FIGURE 34 - INPUTS AND OUTPUTS OF THE TRANSFORMATION

As a result of this execution, a UML-TP compliant file is obtained, holding all the

generated test cases and the remaining required elements. It is the input for the

subsequent step, the test code generation.

5.2.1. TEST ARCHITECTURE

The test architecture offers the structural view of the UML-TP model, showing the

fundamental organization of the test elements, how are they grouped, related and how

they can communicate with each other. Typically, it is represented with a class diagram.

Figure 35 shows how the model-to-model transformation (in our case implemented with

ATL code) processes all the entities in the ISM with the corresponding GUI elements and

the navigation defined, and generates the Test Architecture in the Test Model.

102 Automatic Generation of Functional Test Cases

FIGURE 35 - ATL CODE FOR THE TEST ARCHITECTURE

For each pattern (including a substructure of the data model, its corresponding graphic

user interface elements and its navigation for the CRUD operations) a set of test

elements are created, and included in the test architecture.

Among other things the following components are created for each pattern:

 A Test Context, which contains the generated test cases as operations, defines

the test suite.

 A Datapool for the test data (each Datapool has Data Selectors in order to

provide Data Partitions, specific test data in different tests situations).

 A Test Component to interact with the SUT.

 SUT Classes: wrappers to pages to invoke actions in the test cases and

validations at a graphic user interface level, and tables to invoke validations at a

database level.

The test architecture imposed by the UML-TP defines a clear separation of

responsibilities for the test case behavior, test data access and the interaction with SUT.

103 Automatic Generation of Functional Test Cases

The separation between test behavior and test data allows the same test flow to be

executed with different test data, which will be stored in a separate structure of the test

model called datapool. This approach is known as data-driven testing [103], and the

main advantage is that the tester can add easily new test cases simply by adding new

rows to the datapool, indicating new interesting situations to cover with the data inputs.

The separation between the test flow and the component which executes the actions on

the system allows the user to modify these aspects independently. This architecture fits

well with one of our goals which is the possibility of defining test cases and the test data

to be used/executed in different platforms (e.g. if the same functionality of the system

can be accessed by the web user interface or by a mobile application). The test

knowledge is thus defined once and used many times.

Once the static structure of the test model has been generated, the behavior of each

test case and the test data must be also described in terms of the UML-TP language.

When the test cases are generated, they are added to the corresponding Test Context,

and while the test data is being designed, the test partitions and data selector

operations are added to their corresponding datapools.

5.2.2. TEST CASE GENERATION

Each Test Case that is defined as an operation of a Test Context must have its

corresponding activity diagram, sequence diagram or state machine diagram to

represent the expected behavior. The behavior diagram is specified as the

implementation method of the corresponding test case definition contained in the same

Test Context.

In our case, the test cases behaviors are represented with sequence diagrams such as

the one presented in Figure 36. According to the UML-TP specification, a test case

requires three steps: (1) obtaining the test data, (2) executing the test case against the

SUT and (3) obtaining the test case verdict.

Remember that (as explained in Chapter 4) when the user has to select a value that

already exists in the database (such as the CountryName when creating a City in the

example of Figure 36) it is represented by an operation called “Select”, and when the

user has to insert data (which will be stored in the associated table, as in the case of

ProductPrice) it is represented by an operation called “Insert”.

104 Automatic Generation of Functional Test Cases

FIGURE 36 - SEQUENCE DIAGRAM REPRESENTING THE BEHAVIOR OF THE TEST CASE OF THE CREATION OF CITIES

The test data is obtained from the Datapool, invoking a Data Selector method, which

returns a Data Partition with the test data. When the test executes operations on the

SUT, it uses this data (see the parameters on the invocation to “Confirm” method). The

test case then invokes a Validation Action telling the Arbiter that (if the flow of the

execution reached this point) the Verdict of the execution of the test case is PASS.

Each validation is represented as an UML invariant with the stereotype Validation Action

setting the verdict.

The test case asks for test data to the datapool instance, and then invokes actions into

the different objects that interact with the SUT using this data. The different invocations

are operations of the SUT elements, which are operators of the GUI model from the ISM,

because these are the actions that a user would execute. Therefore, each lifeline with

which the test component interacts corresponds to a class from the graphic user

interface structure. The sequences of invocations are taken from the navigation

specification.

After each transition from one page to another, the test case verifies that it is visiting

the corresponding page according to the navigational model. This is the reason for

105 Automatic Generation of Functional Test Cases

having the “verifyPage” operation on every page element. It will compare, at least, the

current page with the corresponding URL (in the example, when visiting City_Create),

and that the different elements of this page are shown with the correct data (when

visiting City_View, it receives all the data as a parameter in order to verify whether this

data corresponds to the actual data in the page).

The test cases in the test model do not have specific data, they are classified as valid or

invalid (using Data Partitions), and in the following phase (when the model is

transformed into test code), taking this categorization and the data types from the data

model, they are instantiated with representative values.

The operations create, update and delete force a change in the database state only

when they are executed with valid data, otherwise, the state should not change.

Test cases must define the test data to use, the test flow to execute, and with the same

level of importance, they must provide a verdict of the execution, reporting whether the

execution was passed or if a failure was found. The element responsible for giving a

verdict is known as the oracle.

It is important to note that two kinds of test cases are generated:

 Tests for atomic operations: for specific functionalities such as creation, updating

and deletion of the instances.

 Tests for the lifecycle of entities, based on the functional cycles, combining

creation, reading, update and deletion of different entities.

Furthermore, there are two different considerations for the test case generation

strategy. On the one hand, the test case generation is based on well-known coverage

criteria (presented in Chapter 2), and on the other hand, with a pattern-matching

strategy. Both are explained in the following subsections.

Another important aspect to highlight is that, even though different coverage criteria

are reached by the automatic test case generation strategy, one of the most important

things is that after this the tester can easily model new test cases according to their

experience or desires.

5.2.2.1. COVERAGE APPROXIMATIONS

Coverage analysis is used: (1) to know the areas of the system that the test cases have

exercised; (2) to find the unexplored building blocks; (3) to create new test cases to

exercise those unexplored building blocks; (4) in some situations, so that achieving a

predefined coverage without finding new errors could be used as a stop testing criteria

[108].

106 Automatic Generation of Functional Test Cases

Given that, in our case, test cases are generated from the Information System Model,

which is a UML model containing class diagrams and sequence diagrams, there are some

well-known coverage criteria that can be adapted for our situation. These coverage

criteria induced us to define the test patterns then presented.

5.2.2.1.1. COVERAGE ON CLASS DIAGRAMS

Since the central component of the information system model is a class diagram

corresponding to the system’s data model the applicable coverage criteria are some of

those proposed by Andrews et al. [111]:

 Class Attribute (CA): the test suite should make use representative values for

each attribute in each class.

 Association end Multiplicity (AEM): the test suite should make use of every

representative pair of multiplicities for the associations of the model.

These coverage criteria were designed to test UML specifications where an object

oriented model defines the behavior of the system. In our case the criteria were applied

for a data model instead of an object model, so some aspects were adjusted in order to

make it applicable. For example, one of the adjustments was to take it into

consideration that between two entities in the Data Model the relationship has certain

limitations because it is implemented with foreign keys. For instance, if entity A has a

foreign key to entity B then it is not possible that these relationship boundaries were

1..* in A (it will be explained in more detail in the section below) but in class diagrams

these kind of associations are allowed.

Another adjustment, and perhaps the most important consideration, is that the

operations under test are create, read, update and delete of each entity. This is

important for determining the oracle, because the expected results of these operations

are well-known (if a test executes a creation with valid data it should create a new

instance with the corresponding data, etc.). There is another consideration related to

the multiplicity of the associations: according to the definitions given in the foreign keys

it is possible to have different kinds of association multiplicities, and for each one it is

necessary to consider a special situation about the boundaries of the association end

multiplicities.

To apply these criteria the framework will generate test cases to cover such situations

for every substructure of the data model that matches any of the criteria, which means

that for each class it will generate test cases according to CA criterion, and for each

association will generate test cases according to AEM criterion.

107 Automatic Generation of Functional Test Cases

5.2.2.1.2. COVERAGE ON STATE MACHINES

The lifecycle of the entities in our system can be modeled as a State Machine, which is

equivalent to the regular expression: C·R·[U·R]*·D·R.

This representation is suitable for processing with the coverage criteria defined for state

machines [14]: going over all the states, all the transitions or running all the

input/output transition pairs for each state.

Different test cases will be generated for each CRUD operation. Test cases combining

these atomic test cases are then generated in order to test different paths on the

associated state machine.

5.2.2.2. TEST PATTERNS

Our framework includes a test pattern repository/catalog, including some patterns

identified in order to try to reach the test coverage explained in the previous subsection.

Bertolino mentioned that one of the big challenges for testing research [125] is that it

should be possible to systematize test pattern identification, materializing every new

pattern identified though the experience, and allowing testers to reuse this knowledge

in new situations. In that way, it would be possible to identify the most effective

patterns to test our systems, generating a test catalog of well-proved test patterns.

With this idea in mind, the ISM is processed looking for model-pattern occurrences and

automatically generating test cases for them, thus composing a test model.

All the patterns categorize test data as valid and invalid for each parameter of the GUI

(user inputs), according to the data type obtained from the ISM, and from business rules

defined on it. In this way it is possible to design representative test data for each

attribute. This is explained in more detail in section 5.2.3, whilst in this section, only

there will be references to “valid” and “invalid” Data Partitions.

For example, if a test invokes a create or update operation there are two different

situations that determine the expected result:

 If using invalid data for the inputs then the test should check that the instance

was not created or updated (all the attributes in the database keep their original

value).

 If using valid values for all the inputs the test should check that the instance was

created correctly with the corresponding values.

The patterns are expressed as Model-to-Model transformation rules (implemented with

ATL) which explore the Information System model looking for occurrences of the defined

108 Automatic Generation of Functional Test Cases

substructures. The target metamodel in the transformation is UML-TP: for each

occurrence matched by the ATL rules, the transformation will generate different

elements of the UML-TP. The main advantage of using a model-transformation rules

approach for pattern-matching is that it is easier to add new patterns, for example once

a new interesting situation for testing is designed through experimentation, or

whenever a user considers it is important for their domain.

Below, the following subsections show an initial design for patterns with one, two and

three tables, describing the different situations and the test cases that will be generated.

5.2.2.2.1. ONE-TABLE PATTERNS

The most basic pattern designs test cases based on one table. This pattern applies

(generally) for those tables without a foreign key, which present GUI elements for the

CRUD operations. Table 10 shows, as an example, the one-table pattern applied to the

creation of the entity “Country”, Table 11 for the update and Table 12 for the deletion.

Each example presents the behavior diagram (sequence diagram) which originates the

generation of the test case, and then the sequence diagram for the generated test case

using the valid data partition. It can be seen that the pattern generates a test case for

create, update and delete, and it uses read to verify each action (note that the

transformation considers the read operation as is presented in Figure 37).

FIGURE 37 - READ OPERATION FOR COUNTRY

To clarify the intent of each test case, the examples presented in the tables also show

the different screens of the application when the test case is executed.

109 Automatic Generation of Functional Test Cases

TABLE 10 - ONE-TABLE PATTERN – TEST GENERATION TO CREATE COUNTRY

Information System Model – Create Country behavior model

Test Model – Create Country

Execution of the Test Case on the SUT

110 Automatic Generation of Functional Test Cases

TABLE 11 - ONE-TABLE PATTERN – TEST GENERATION TO UPDATE COUNTRY

Information System Model – Update Country behavior model

Test Model – Update Country

Execution of the Test Case on the SUT

111 Automatic Generation of Functional Test Cases

TABLE 12 - ONE-TABLE PATTERN – TEST GENERATION TO DELETE COUNTRY

Information System Model – Delete Country behavior model

Test Model – Delete Country

Execution of the Test Case on the SUT

Having the atomic test cases for the CRUD operations, the test generator also applies

the CRUD coverage [103] to considerate the whole life cycle of an instance, which

implies that the operation is tested in the sequences that can be obtained by expanding

112 Automatic Generation of Functional Test Cases

the regular expression: C · R · (Ui · R)* · D · R, where the Ui represents each operation

that updates a different attribute. Applying this to the example of the entity Country

generates the following test sequence (see Figure 38):

 Create Country and Read Country

 Update Country (each attribute) and Read Country

 Delete Country and Read Country (which should not find it)

These test cases can be combined in different ways, covering different sequences.

FIGURE 38 - TEST CYCLE FOR COUNTRY

Note that the final state of the database is the same one than the initial, what is

convenient in order to have independent test cases: the execution order does not affect

the expected result.

5.2.2.2.2. TWO-TABLE PATTERNS

This pattern is applied (generally) for two tables associated by a foreign key, which

present GUI elements for the CRUD operations, as the example of City–Country and

Product–ProductPrice already presented (see Table 13 where it is presented again).

113 Automatic Generation of Functional Test Cases

TABLE 13 - EXAMPLES OF GUI STRUCTURES FOR THE SAME TWO-TABLE PATTERN

Database substructure GUI for the creation of these
instances

When there are two or more related tables the criterion most considered by our

approach is AEM from Andrews et al. [111], and for this it is necessary to test

associations between entities with representative multiplicities. To do so, the generated

test cases consider to try each instance associated with 0, 1 and 2 instances of the other

table. At this point, it is believed that associating two instances is good enough to test

the multiplicity “*”.

The test set includes test cases to associate instances covering the different

representative multiplicities. The association ends of two tables (a referencing and a

referenced table) could have a multiplicity of 0..1 (if the foreign key allows nulls in the

referenced table, or if the foreign key is unique in the referencing table), 1 (if the foreign

key does not allow nulls in the referenced table) or 0..* (in the referencing table).

Therefore, it is possible to have the combinations presented in Table 14.

114 Automatic Generation of Functional Test Cases

TABLE 14 - COMBINATION OF MULTIPLICITIES IN A FOREIGN KEY

Referencing table Referenced table

0..1 0..1

0..1 1

0..* 0..1

0..* 1

This restriction comes from considering the structures that can be implemented in a

database schema with foreign keys. For example it is not possible to implement a 1:1

relation with foreign keys between two tables (it would be necessary to manage these

association ends limits in the code of the business layer).

THE ABOVEMENTIONED EXAMPLES CITY–COUNTRY AND PRODUCT–PRODUCTPRICE CORRESPOND TO THE LAST

SITUATION: 0..* → 1. IT IS NECESSARY TO CONSIDER BOTH, BECAUSE THEY SHOW TWO DIFFERENT EXAMPLES OF TWO

RELATED TABLES, WITH DIFFERENT PRESENTATION LAYERS FOR THE SAME DATABASE SUBSTRUCTURE. TO EXEMPLIFY

THE GENERATION OF TEST CASES FOR ONE OF THOSE SITUATIONS, TABLE 15 SHOWS THE GENERATED TEST CASES FOR

THE CREATION OF A CITY, AND

Table 16 for the creation of a Product. It includes the behavior model in the ISM which is

processed, the generated sequence diagram specifying the test case behavior, the data

model in the test model architecture, and the screens of the execution of the

corresponding test case specification.

The examples presented in the tables only show the creation, but there will also be test

cases for update and delete, and using valid and invalid data.

115 Automatic Generation of Functional Test Cases

TABLE 15 - TWO-TABLE PATTERN – TEST GENERATION TO CREATE CITY

Information System Model – Create City behavior model

Test Model – Create City behavior and test data models

Execution of the Test Case on
the SUT

List of cities:

Create new city:

List again, open the new one:

View of the new city

116 Automatic Generation of Functional Test Cases

TABLE 16 - TWO-TABLE PATTERN – TEST GENERATION TO CREATE PRODUCT

Information System Model – Create Product behavior model

Test Model – Create Product behavior and test data models Execution of the Test Case

on the SUT

List of products:

Create new product:

List again, open the new one:

View of the new product:

It is interesting to note that in the case of Product, where it is possible to insert different

numbers of ProductPrice rows in the interface because of the relation 1-N, the

generated test case accesses the data from two different data partitions which are

related. The datapool is able to provide the related data. In the data partition with the

information of the Product, there is an extra attribute indicating how many ProductPrice

117 Automatic Generation of Functional Test Cases

rows should be inserted for this test case. This attribute is used in the loop to count the

number of times the data in the data partition for ProductPrice is obtained, and then

used in the GUI by the test.

The Data Partitions for City have the same structure as the associated tables of the

pattern (one for City and one for Country, with the same association), but in this case

each City has only one Country associated. More details about the test data can be

found in Section 5.2.3.2.

In the case of City, which has an input that corresponds to a foreign key, the test for the

create operation considers that the valid data for this input is the existing keys in the

referenced table and invalid data when it does not exist (it is interesting to test the

creation of a City which references a Country that does not exist).

With the atomic operations it is possible to design different test cycles. The following

sequence was designed in order to reach the CRUD and the AEM coverage criteria:

 Create City (without a Country) / should fail (rel.: 1 – 0)

 Create Country

 Create City (with a valid Country) / (rel.: 1 – 1)

 Delete Country (should fail, because it has a reference)

 Update City (for each attribute)

 Create City with same Country (rel.: 2 – 1)

 Delete both Cities

 Delete Country

Note that in this case the original database state is also preserved at the end of the test

case execution.

5.2.2.2.3. THREE-TABLE PATTERNS

The two-table pattern does not include the binary relation many to many because at the

database level it is implemented with three tables: two tables with the data of the

entities, and another auxiliary table to store the relationships, referencing the primary

keys of the entities, and defining its own primary key as the union of the primary key

attributes. There may also be more attributes in the auxiliary table to store data related

to the association.

In AjaxSample there is an example in the relationship between Invoice and Products (see

Figure 39), where the same invoice can have many products, and the same product can

be included in different invoices. The relation table InvoiceLine has some attributes to

118 Automatic Generation of Functional Test Cases

store information about the relationship between the Invoice and Product, for example

InvoiceLineQty indicating the number of products selected for this invoice.

FIGURE 39 - DATA MODEL FOR AN N:N RELATIONSHIP

In this example it is interesting to note that it is possible for the tester to add extra

information to the data model, in order to validate some aspects of the logic that cannot

be represented in the database schema. In the relationship between Invoice and Product

it does not make sense to have an invoice without any product, but this cannot be

implemented in the schema, it must be managed in the logic, therefore, there should be

a business rule with the restriction, or the user should change the model manually

(simply changing the association end multiplicity from “0 – *” to “1 – *”), and there

would be a test to check it.

Table 17 shows the design of the test case for the creation of invoices. It also shows the

data partitions involved.

119 Automatic Generation of Functional Test Cases

TABLE 17 - THREE-TABLE PATTERN TRANSFORMATIONS

Information System Model – Create invoice behavior model Generated Test data model

Test Model – Create Invoice Execution of the Test Case on the SUT

List of invoices:

Create new invoice:

Selects client and inserts quantities for selected

products, inserts date and confirms.

(Go to the list again and open the new one to
validate data that was omitted due to space)

It is possible to see that the test case manages the same strategy as for the two-table

pattern, and actually, in this case, there are more tables involved (Client), which shows

the extensibility of the idea for more complicated structures.

120 Automatic Generation of Functional Test Cases

5.2.3. TEST DATA MODEL GENERATION

Test data design is based on the inputs defined in the GUI and data models, and their

relationships. It is also important to consider the business rules and data types to

determine the equivalence partitions and boundary values. The test data is generated as

a group of datapools, data partitions and data selectors which are used by the generated

test cases. Since the test data is separated from the test flow, it is possible to follow the

data-driven testing approach [103].

5.2.3.1. EQUIVALENCE CLASS PARTITIONING

Each test data is categorized as valid or invalid, according to the defined constraints of

the model. If, for example, there is a business rule stating that a certain attribute must

be greater than zero, it is possible to infer two equivalence classes for this attribute: one

with valid values (greater than zero) and another with invalid values (less than or equal

to zero). Using this classification, the test cases are generated with oracles that use this

information, supported by this procedure: if one of the values of the input data is

invalid, check that the operation failed, and if all the input data are valid, check that the

operation was successful. For example, if the operation is Create, then the test case with

valid data must verify that the instance was created, and the one with invalid data must

verify that the instance was not created. This defines the oracle at a data level, and the

test cases must consider that they must verify the result according to the validity of the

input data.

It is important to note that, in this way, this approach is facing a problem that is often

not pointed out by the automatic test case generation approaches, that is the oracle

generation: determining when the expected result is to pass or to fail. In our research

this approach has been named “data based oracles”.

The procedure is: for each restriction defined in the Information System Model (taken

from the database level structure, data types, business rules, etc.) identify the

equivalence classes for each variable and then generate representative test data

according to the definition of these equivalence classes. Each class could be valid or

invalid.

This thesis suggests that considering the data model it is possible to generate better

class partitioning than by only considering the GUI. In order to test the creation or

update of Products and considering the equivalence partitioning criterion, it is possible

to divide the values of the Stock variable (in Product) in two classes: greater and equal to

zero (valid data), or less than zero (invalid data, it does not make sense to have negative

stock). But, what happens if the value inserted cannot be represented in the

corresponding column of the database? It probably means that the stored value is not

121 Automatic Generation of Functional Test Cases

correct as a result of an overflow. Taking advantage of the metadata of the database it is

thus possible to design another equivalence class: numbers greater than the maximum

representable in the corresponding column. The same idea can be extended to strings

and other data types.

These kinds of test cases are not derived from traditional coverage criteria. In these

cases, our approach is to improve the equivalence partitioning with the information of

the schema. In the section below, a group of different test data selection criteria are

defined, in order to consider these situations. Therefore, our criteria subsumes the

equivalent partition criterion (a coverage criterion subsumes another if every test suite

that satisfies the first also satisfies the second [126]). Subsection 5.2.3.3 shows the

design of invalid classes based on the data model.

Figure 40 shows what is considered a valid behavior of an information system when it is

exercised with test data from (1) a valid class and (2) an invalid class according to the

data model:

 The interface does not allow the invalid test data to be entered (for example, a

combo box with the elements of a foreign key: you cannot enter an invalid

element).

 The interface correctly indicates that the error is due to invalid input data that

does not conform the business rules represented in the data model.

 In both cases, the database remains unchanged and the user realizes the

problem.

If the test data is valid for the database and for the business rules, then, the IS should

allow the data to be entered, and it must be stored in the database.

Thus, the generated test model has two types of test cases: (1) test cases which use

valid data (asking the Datapool for valid Data Partitions through the valid Data Selector

operation) and verifying whether the operation tested was successful, and (2) test cases

which use invalid test data (asking the Datapool for invalid Data Partitions through the

invalid Data Selector operation) and verifying whether the operation tested avoided the

insertion of invalid data or correctly notified the user.

122 Automatic Generation of Functional Test Cases

FIGURE 40 – DATA-BASED TEST ORACLE

5.2.3.2. STRUCTURED TEST DATA

Typically, when a form is stored in the database in a structure compound by different

tables in the database, the input data must also be modeled as a similar structure. In the

examples presented in this chapter, (i) for the creation of a City it is necessary to insert

data for city and for the related country; (ii) to create a Product it is necessary to insert

data for the product and for the different prices that it has; (iii) to create an Invoice it is

necessary to select different products, and indicate their amounts for inclusion in the

invoice, and it is also necessary to select a client.

There are two cases to differentiate between in these situations: data which it is filled in

by the user on the form and goes to the database, and data that the user has to “select”,

or fill in on the form according to previous information existing in the database.

In Information Systems it is very common that the inputs have to be related to the data

in the database, presented many times in a list or combo box, or autocompleted with

Ajax in an input. For example, the entity “City” has a foreign key to “Country” and the

creation of cities requires a valid country name as input to set this relationship.

In the information system model, these situations are differentiated in the sequence

diagrams, because, as already explained, when the user has to select a reference, there

is a method called “select” and when the user inserts new data the invocation is to a

method called “insert”. The test case and test data generator use this information in

order to decide whether it is necessary to take data from the database or if it is

necessary to design new test data.

In both cases, the generated test case will use a datapool that has different data

partitions with the same structure as the related tables, as in the example in Figure 41.

123 Automatic Generation of Functional Test Cases

FIGURE 41 - STRUCTURED TEST DATA EXAMPLE

Then, when DBesTest generates code and specific test data, the transformation will take

into account the structure of the data partitions and the kind of method that is being

used by the test case, if it is a “select” or an “insert”, deciding whether the test data file

is going to be filled with generated test data or with existing test data from the

database.

5.2.3.3. INVALID DATA GENERATION

Possible errors that can be found in the AjaxSample application, and that are not

considered for the coverage criteria, were summarized in Chapter 1, in the section An

Illustrative Example. Sometimes these situations generate an exception, and in other

cases do not throw exceptions, but persisting different values in the database than the

one given as parameters, without notification for the user. Most of these situations are

causes of error because the database designer and the developers (who coded the

layers above the database) did not consider the same business rules and restrictions.

The examples presented are not completely covered by the different coverage criteria

presented earlier. For example, some cases could be derived by applying equivalence

partition and looking for invalid classes, but some of these partitions could only be

guessed based on the database structure and restrictions. Using our approach, the

equivalence partition method can be improved because of the extra information

provided.

5.2.3.3.1. CRITERIA

Our goal is to generate test inputs and test sequences to identify faults in the system

when managing the database, not only by testing with valid data and verifying the

correct result, but also by testing with invalid data and verifying that the system can

correctly manage the error situation.

124 Automatic Generation of Functional Test Cases

Below, some criteria are defined to design invalid test data according to the information

provided in the ISM in order to exercise all the violations of the database structure, to

verify that the IS can manage it appropriately.

Primary Key Violation (PKV). If the primary key (PK) of a table is provided by the user in

the GUI there should be a test case trying to violate the PK by trying to insert an element

with a duplicated value.

Foreign Key Violation (FKV). If an input in the GUI corresponds to a value from another

table through a foreign key (FK), there should be a test case trying to violate the FK by

trying to reference an element that does not exist. Moreover, there should be a test

case trying to delete a referenced element.

Unique Restriction Violation (URV). If there is a unique restriction (UR) defined in the

DB for a field inserted by the user from the GUI there should be a test case trying to

violate the UR by trying to insert an element with a duplicated value for the columns

involved.

Not-Null Violation (NNV). For each input in the GUI stored in a column in the database

with a not-null restriction (NN), there should be a test case trying to violate the NN

restriction.

The test case tc1 can violate the restriction by trying to insert an element with a null

value for the column with the restriction.

Data Types Violation (DTV). For each input in the GUI stored in a column in the DB,

there should be a test case trying to insert an invalid value according to the

corresponding column’s data type, i.e., a not numeric value in a numeric column, a bad

formatted date in a date time column, an out of range number for the numeric type

defined, a string longer than accepted, etc.

Table 18 shows an analysis of which criterion can be applied to each CRUD operation.

TABLE 18 - APPLICABILITY OF THE CRITERIA

Operation PKV FKV URV NNV DTV

Create X X X X X

Update X X X X X

Delete X

For example, it is not possible to violate the PK restriction in terms of a delete operation,

but it could be possible to violate a FK restriction with this operation, trying to delete a

referenced register. Therefore, each coverage criterion applies to certain operations in

the tables.

125 Automatic Generation of Functional Test Cases

5.2.3.3.2. EXAMPLE

Let us consider the example of the creation of the entity Invoice, as already presented in

previous examples (the GUI structure, navigation and data model). It is important to

recall that for the creation of clients the test data generated corresponds to the

different inputs of the different methods invoked in the sequence diagram indicating the

interaction between the user and the SUT, and that the structure of the data partitions

is the same as the structure of the corresponding elements in the database (see Table

17). Table 19 presents the design of the test data, i.e., the data partitions. For each

attribute it shows the list of restrictions identified for those inputs by considering the

corresponding database structure for them. It then also presents some examples of test

data that can be generated for those parameters.

TABLE 19 - TEST DATA DESIGN EXAMPLE

Invoice Data Partition

Attribute Columns involved Restriction type Test action Valid data Invalid data

InvoiceDate Invoice.InvoiceDate DTV (datetime) Confirm 12/03/2013 30/02/2000

numInvoiceLine Relation N-N Loop 1, 2, … 0

Business rule that

says that each

invoice should

have at least 1 line

Client Data Partition

Attribute Columns involved Restriction type Test action Valid data Invalid data

clientFirstName Invoice.ClientId,

Client.ClientFirstName

FKV, NNV Select Existing

client

Incorrect

client

reference,

null

InvoiceLine Data Partition

Attribute Columns involved Restriction type Test action Valid data Invalid data

ProductName InvoiceLine.ProductId,

Product.ProductName

FKV, NNV Select_ProductName Existing

product

Incorrect

product

reference,

null

InvoiceLineQty InvoiceLine.InvoiceLineQty DTV (smallint) Insert_InvoiceLineQty 1, 2, 3 0, -1, AA

Business rule that

says that the

amount must be

greater than 0

Note that not all the criteria are applicable. For example, the PKV is not applicable

because the primary key is not an input but is autogenerated, thus, it cannot be tested

from the user interface.

126 Automatic Generation of Functional Test Cases

These kinds of test cases could not be designed without the information of the

database, and managing this information with models allows a model-transformation

designer to easily add new rules in order to produce more test cases automatically.

5.3. TEST CODE GENERATION
Finally, the test code is generated from the generated test cases (represented with UML-

TP). Test models and ISM are transformed into test code with MOFM2T transformations,

implemented with the Acceleo tool [8], which is compliant with the OMG specification.

To transform this test case specification into executable code, this proposal continues

the work presented by Pérez et al. [127], which uses UML-TP test cases automatically

generated from UML sequence diagrams taken from the design of the SUT. The UML-TP

test cases are transformed into JUnit or NUnit code using MOFM2T (specifically,

MOFscript). In our case, as MOFscript is not supported any longer, and it presented

some blocking difficulties, so DBesTest uses Acceleo.

Figure 42 shows the main inputs and outputs of the Acceleo transformations.

FIGURE 42 - INPUTS AND OUTPUTS OF THE ACCELEO TRANSFORMATIONS

Three actions are performed in this phase: generation of test data, generation of test

cases (test behavior with the corresponding validations) and generation of the

adaptations layer.

The last step is the transformation of the test model to test code, using model-to-text

scripts. Three actions are performed in this phase: generation of test data, generation of

test cases and generation of the adaptations layer. They are explained in the following

subsections.

5.3.1.1. TEST BEHAVIOR

Test cases are generated in JUnit considering the test behaviors presented in the

different sequence diagrams stereotyped as “Test Cases” (those automatically

generated and, potentially, all the sequence diagrams added by the tester).

127 Automatic Generation of Functional Test Cases

JUnit is probably the most popular automation framework specific to Java code, but it

can be integrated with any kind of automation tool in order to execute tests on web

systems, web services, mobile, etc., and JUnit will manage the executions and store the

execution results. Figure 43 shows an example of generated code for the test case

Create Country presented in the sequence diagram in Table 10.

@RunWith(value = Parameterized.class)
public class test_valid_country{

 private String countryName;

 public test_valid_country (String countryName) {

 this.countryName = countryName;

 }
 @Parameters

 public static Collection<Object[]> data() throws Exception {

 country_datapool dp = new country_datapool();
 return dp.getValidData();

 }

 I_home home;
 I_country_list country_list;

 I_country_create country_create;

 I_country_view country_view;

 @Before

 public void setUp() throws Exception {
 home = FactoryAdaptationLayer.get_home();

 country_list = FactoryAdaptationLayer.get_country_list();

 country_create = FactoryAdaptationLayer.get_country_create();
 country_view = FactoryAdaptationLayer.get_country_view();

 home.goHomeAndLogin();
 home.VerifyPage();

 home.goCountryMenu();

 country_list.VerifyPage();

 }

 @Test
 public void tc01_create_valid_country() throws Exception {

 country_list.New();

 country_create.VerifyPage();
 country_create.Confirm(countryName);

 country_list.VerifyPage();

 country_list.Open(countryName);
 country_view.VerifyPage(countryName);

 }

}
FIGURE 43 - GENERATED TEST CODE

There is a special object home to manage the access to the SUT (including login if it is

necessary) and to access the different menus, as in this case for example, to access the

Country’s menu.

The generated test case (“tc01_create_valid_country”) executes the steps indicated in

the sequence diagram, taking the data from datapools (in this case, the country names).

In the generated code, the datapools are transformed into classes which access CSV

(comma separated values) files and give the data to the test cases using the

“@parameterized” annotation of JUnit 4 (explained below, under parameterization).

128 Automatic Generation of Functional Test Cases

Each message in the sequence diagram to the SUT is translated into a call to a set of

classes considered as adaptation layers. The idea behind this is to follow a keyword-

driven testing approach [103], so as to have the possibility of testing different

components of the system that manage the same data model (i.e., a web component

and a mobile phone component). Note that in the test case code there is not any

reference to Selenium. The specific platform code is encapsulated in order to have a

separation of the test steps from the specific execution. More detail about this is given

below in the following subsection.

5.3.1.2. PLATFORM SPECIFIC EXECUTION

The different test sequences are in a certain way abstract; they cannot be executed on

any platform, they only describe the intended test. In order to be able to execute these

test sequences on a specific platform, it is necessary to add two things:

 Adaptation layer: the execution of the actions on each specific element of the

GUI, working as wrappers of the SUT in order to control the access to it.

 Model-Implementation Mapping (MIM): the localization of every element of the

GUI model on the current GUI of the SUT. This approach was presented by Xu

[128].

The adaptation layer is generated with Acceleo scripts, and there are special scripts for

each execution platform. For example, DBesTest includes specific scripts to generate

Selenium code for web systems, but it could include another group of scripts to

generate Robotium16 code for mobile applications. It generates code depending on the

elements of the GUI that are used. For example, if the test has to insert data into an

element tagged as “Input”, the generated code will be a “type” command, which is the

corresponding Selenium command to insert data into an input of a web page.

The Model-Implementation Mapping is generated with the assistance of the tester,

indicating how to locate each element of the model in the web page. This is done only

once for each page, not for each test case, because the different test cases use the same

pages. This is a well-known strategy in automation testing, called page object pattern17,

reducing the duplication of test code, and making the test cases more maintainable and

readable.

16 Robotium: https://code.google.com/p/robotium/

17 Page object pattern: http://martinfowler.com/bliki/PageObject.html

https://code.google.com/p/robotium/
http://martinfowler.com/bliki/PageObject.html

129 Automatic Generation of Functional Test Cases

In this way, the user is adding platform specific information to the model, which until

now was in the Platform Independent level.

The left side of Figure 44 shows an example of the MIM, where a page object is defined

for one of the web pages of the ISM. In that way, the relationship between the elements

in this model and the elements in the SUT is established, making the JUnit test cases

executable on the web system. This information is read by the test cases and loaded to a

hash map, accessed by keywords (see how it is used in Figure 46).

<<page>>

Country_Create

PAGE_NAME /ajaxsample/country.aspx?INS,0

CountryName id=”COUNTRYNAME”

Confirm name=BTN_ENTER

Cancel name=BTN_CANCEL

FIGURE 44 - ADAPTATION LAYER EXAMPLE AND STRUCTURE

To generalize the management of this schema, DBesTest generates a hierarchy with a

Factory, as seen on the right hand side of Figure 45, in order to make it possible to have

different implementations of the adaptation layer in the same project in a simple way.

This allows the implementation of different adaptation layers, and different page

objects for different technologies.

FIGURE 45 - FACTORY FOR ADAPTATION LAYERS

In the example, FactoryAdaptationLayer returns (in the corresponding getter) different

interfaces implemented by specific classes using Selenium code:

 The interface I_country_list implemented by the class country_list_selenium

 The interface I_country_create implemented by the class

country_create_selenium

 The interface I_country_view implemented by the class country_view_selenium

Figure 46 shows some generated code for the wrapper to access the page

Country_Create. The method Confirm of the wrapper country_create_selenium executes

the Selenium commands necessary to insert the parameters into the web page (in this

case, fill the input CountryName) and execute the action confirm (click the button). The

code for the method was generated considering the page elements in the user interface

130 Automatic Generation of Functional Test Cases

model, executing a “type” Selenium command on each input, and a click on the submit

button. The HTML identifiers are obtained from the corresponding MIM.

public class country_create_selenium extends SeleneseTestBase implements I_country_create{

 HashMap<String, String> mim = MIM.getHashMap();

 public void confirm(String CountryName) throws Exception {

 selenium.type(mim.get("Country_create.CountryName"), CountryName);

 //click on Confirm

 selenium.click("Country_create.Confirm");

 selenium.waitForPageToLoad("30000");

 }

 public void verifyPage() throws Exception{

 verifyEquals(selenium.getLocation(), mim.get("homePage.URL") +

mim.get("Country_create.PAGE_NAME"));

 }

}
FIGURE 46 - ADAPTATION LAYER USING SELENIUM

In this way, DBesTest generates a set of test cases that can be executed against SUT,

according to the test specification provided in the UML-TP model.

5.3.1.3. PARAMETERIZATION

DBesTest generates test cases in JUnit. The most recent version of JUnit (the version

number 4) has introduced the concept of Parameterized tests. Parameterized tests allow

the developer to run the same test over and over again using different values. In that

way, it gives support to data-driven testing.

There are five steps that must be followed to create parameterized tests:

 Annotate the test class with @RunWith(Parameterized.class)

 Add a public static method and annotate it with @Parameters, returning a

Collection of Objects as test data set.

 Create a public constructor of the test class that takes in what is equivalent to

one "row" of test data.

 Create an instance variable for each "column" of test data.

 Use the instance variables as the source of the test data.

 When running with the JUnit engine, the test case will be invoked once per each

row of data.

In our case, paying attention to the test code presented in Figure 43, the method

annotated with “@Parameters” corresponds to the Data Selector, and it will access the

CSV files with corresponding test data. In this way, the test case is easier to read, and

131 Automatic Generation of Functional Test Cases

the test data remains separate from the test behavior allowing the tester to add new

data to test other situations simply by adding rows to the CVS file.

5.3.1.4. TEST DATA GENERATION

Test data is generated from the data model structure and the business rules, and

considering the relationship between inputs and columns. This proposal deals with input

data but not with the preparation of the states of the database as in some other

proposals ([113], [115], [117], [129]), considering that it is possible to use the different

test cases to generate different initial states. For instance, to create a city it is necessary

to have information about countries; therefore, the test sequence first executes the

creation of a country and then the creation of the city with this generated country.

DBesTest considers the Data Partitions in the test model to generate data according to

the structure and data types. The result is a set of CSV files which will be read by the test

cases using special classes that were generated from the Datapools, though the Data

Selector methods.

As was explained in section 5.2.3, DBesTest generates valid and invalid data partitions.

For the valid data partitions random data is generated according to the data types. In

order to generate valid data considering all the business rules, Constraint Solvers should

also be used, but this was out of the scope of this work, and many proposals already

presented research results in this direction ([42], [130], [131]). On the other hand, in

order to generate invalid data, there is a special consideration for each data type and for

each business rule, as was explained in subsection 5.2.3.3.

Apart from the valid/invalid classification, the test data generator applies the boundary

values technique [4] and combinatorial testing.

As an example of boundary values, considering the integer attribute InvoiceLineQty

(amount of a selected product in an invoice line), and the business rule indicating that

the value must be greater than zero, then a set of interesting values could be: {-100, -1,

0, 1, 100}.

Once the valid and invalid values are generated for each input field, it is necessary to

combine them to generate the different data rows for the CSV files. For this, it is

possible to combine the values with pair-wise algorithms, using our own tool called

CTWeb (ctweb.abstracta.com.uy). In this way it is possible to obtain a reduced set of

tuples with a higher probability of finding errors in comparison to the proposal

suggested by Andrews et al. for the CA criteria [111], who proposed to use the Cartesian

product of the different interesting values.

ctweb.abstracta.com.uy

132 Automatic Generation of Functional Test Cases

This combination of values should not use two invalid classes simultaneously. This is

done not to hide errors, because if two invalid values are used at the same time, two

error notifications are expected, and perhaps one error will not be flagged because of

the other.

Figure 47 shows the correlation between the elements in the test model and the

generated test data (considering the example presented in Table 19 for the test data to

test the creation of invoices). The equivalence classes which correspond to a data

partition, and the corresponding generated test data are also shown, which were

combined with a pair-wise algorithm and stored in different CSV files.

Note that the invalid data is not combined, as previously explained.

FIGURE 47 - CORRELATION BETWEEN DATA IN THE TEST MODEL AND GENERATED TEST DATA

5.4. CONCLUSION
By considering the example presented at the end of Chapter 4, Figure 48 presents a

summary of the results obtained after applying the methodology explained in this

chapter.

TEST ARCHITECTURE AND TEST DATA MODEL

TEST CASE BEHAVIOR

TEST CODE, ADAPTATION LAYER, MIM AND TEST DATA

FIGURE 48 – SUMMARY OF THE CHAPTER

“Only performance testing at the conclusion of system or functional testing is like

ordering a diagnostic blood test after the patient is dead.”

Scott Barber

CHAPTER 6. AUTOMATIC GENERATION OF

PERFORMANCE TESTS

This chapter introduces the consideration of non-functional aspects
in the framework, specifically for workload simulation (known as load
or performance testing). On the one hand, our proposal is to
generate performance test cases from the functional ones; on the
other hand, a non-functional requirements model is used to generate
a complete test scenario. This is an integrated approach, considering
functional and non-functional verification in a single model.

6.1. INTRODUCTION
In the traditional view, non-functional testing is performed after completing the

functional test with the aim of covering non-functional aspects such as performance,

dependability and security. In both traditional software development and in model-

driven development, the construction of functional and non-functional test cases is

carried out in two separated steps, with almost no relationship.

From our experience in dozens of projects, providing functional and performance testing

services, the same situation has been observed many times: in the first stage the testers

prepare the functional test specification, automate those test cases, and execute them;

later, they prepare the non-functional test specification, automate those test cases, and

execute them. Two different specifications, two different groups of test scripts, and

most of the times, the non-functional test cases are a subset of the functional test cases,

perhaps with some specific elements to measure performance, such as timers.

Moreover, it is very common to find functional issues when looking for non-functional

ones, or vice versa. Last but not least, many customers claim not to have the time (or

budget) to execute both test sets, therefore, they opt to leave the performance test for

another stage, assuming all the associated risks. The question is: why not to consider an

integrated approach, designing, modeling and executing the functional and non-

functional tests together?

138 Automatic Generation of Performance Tests

Our first step towards the integrated execution and analysis is presented in this Chapter,

showing how it is possible to derive an integrated test model from two requirement

models: one for the functional specification of the system, and another for the non-

functional properties. To simulate a workload three things are required:

 The test cases automated for a specific workload simulation tool.

 The workload specification to be simulated, which basically indicates how the

test cases are combined to represent the expected load of the system.

 The oracle information, how the verdict of an execution can be determined.

This proposal unifies different research lines in order to solve these issues (see Figure

49, which shows the general approach already presented in previous chapters):

 Representation of functional and non-functional test model with UML-TP. This

model is generated from the ISM (UML) for the functional specification and a

PMM18 model for the non-functional specification (explained below in section

6.2).

 Generation of automated test cases for workload simulation platforms. This is

done adapting the functional automated test cases to the workload tools

(explained below in section 6.3).

The acceptance criteria are also different; in performance testing, the test criteria are

defined based on the average of all the response times, or considering a percentage of

pass/fail results.

FIGURE 49 - SCHEMA FOR INTEGRATED TEST GENERATION

18 This research topic was developed during a research stage in Pisa, Italy, in the Consiglio
Nazionalle delle Ricerche (CNR), where PMM was developed. Our proposal uses this metamodel,
but it may be possible to change this.

139 Automatic Generation of Performance Tests

This chapter follows the example applied to AjaxSample in order to present both parts

of our proposal. In this scenario after a market analysis and sales forecast, it has been

defined that, in a peak hour, it is possible to continuously have approximately 50 users

registering products (Create Product operation), while 100 users are buying products

where the buying process includes registration on the site (Create Client operation),

adding items to their invoice, confirming the purchase and payment (Create Invoice

operation).

It is desirable to ensure that when the system is under this load situation, it is able to

retain good response times and low error rates. To do so, the following non-functional

requirements were defined:

 The average of the duration of the Create Product operation should be less than

15 seconds (only considering server time being defined as the time the system

takes to answer, excluding user time).

 At least the 90% of the total amount of the buying process should be correctly

processed by the system.

In order to prepare the test for these operations, it is therefore necessary to cover the

non-functional properties, and generate the executable components. Section 6.2 shows

the model-driven approach to generating the workload scenario, combining the

executable test cases, and adding non-functional validations, covering the non-

functional properties, and Section 6.3 shows how the workload simulation scripts

(executable test cases) are generated from the functional test cases already generated.

6.2. MODEL-BASED TEST CASES DESIGN INTEGRATING

FUNCTIONAL AND NON-FUNCTIONAL ASPECTS
MANDINGA proposes

to generate a

functional test model

from a functional

specification of the

SUT. In order to be

able to extend the test model with non-functional considerations, it is also necessary to

consider non-functional requirements. Towards this aim, MANDINGA uses PMM, which

lets the user specify non-functional properties of the system, particularly performance

and dependability, under certain workload conditions. With this information, our

framework generates specific test components for the verification of those properties,

covering the non-functional specification.

140 Automatic Generation of Performance Tests

As evidenced in Chapter 2, UML-TP has some shortfalls related to the inclusion of non-

functional properties.

This section presents some contributions made into PMM in order to improve its

expressiveness for concurrent operations of web systems, as well as the contributions to

UML-TP in order to improve its expressiveness for non-functional test modeling. It then

also presents the non-functional test model generation, covering the specification

provided by the user in the PMM model.

6.2.1. CONTRIBUTIONS TO PMM

PMM, presented in Chapter 2, is a generic metamodel for defining non-functional

properties. In this thesis, PMM is used for defining performance and dependability

property models that will be the input for the proposed test model generation

approach. Specifically, the elements of the PMM models, such as the operators of the

MetricsTemplate, the simple and complex events, the workload and the properties

constraints, will be used to automatically generate a non-functional test specification.

Moreover, to better specify the workload associated with performance and

dependability properties, an extension is proposed for PMM, introducing the

WorkloadModel element which can include more than one workload and can be

associated with a set of properties (see the frame of the Figure 50 with continuous

lines). This extension allows the inclusion of different workloads for the same set of

properties.

141 Automatic Generation of Performance Tests

FIGURE 50 - PMM METAMODEL

Figure 51 shows an example of a PMM model of performance and dependability

properties. The subsections following will show how these models are used for deriving

the associated test model.

To represent the non-functional requirements of the operations of the SUT it is

necessary to map them into PMM event type models. In the example, a simple event

type was defined, called CreateProduct corresponding to the Create Product operation

(see Figure 51 (a)), and a more complex event type named BuyingProducts showed in

Figure 51 (b).

142 Automatic Generation of Performance Tests

FIGURE 51 - PMM EXAMPLE

The BuyingProducts complex event model defines a CreateClient operation followed by a

sequence of CreateInvoice operations. Specifically, it has a Before operator, with

minDistance and maxDistance parameters equal to 10 and 15 seconds respectively, and

it is applied to the simple event CreateClient (corresponding to the Create Client

operation) and to another complex event that is named SeqCreateInvoice with Seq

operator applied to the CreateInvoice simple event, representing a sequence (with

minimum length of three) of Create Invoice operations. Finally, the BuyingProducts

event has a parameter named response which has the OK value if the Create Client

operation, followed by a sequence of Create Invoice operations, is successful.

The PMM non-functional properties involving the defined events models were then

defined. Specifically, the PropertyModel, shown in Figure 52, is comprised of two

properties. The former is a quantitative latency property with a performance class. It is a

prescriptive property since it specifies a required average time response less than or

equal to 15 seconds for the Create Product operation.

143 Automatic Generation of Performance Tests

FIGURE 52 - MODEL OF THE COVERAGE AND LATENCY PROPERTIES

To this property is associated a metric (latencyMetric) linking the set of CreateProduct

events involved in the property to a metric formula (metrictemplate) which specifies

how to compute the performance measure specified in the property. This template

applies the average operator to the duration of the CreateProduct events.

The latter is a quantitative dependability property (coverage property). It is also a

prescriptive property, specifying that at least the 90% of the total number of

BuyingProducts operations must be successful in an IntervalTime of 60 seconds.

144 Automatic Generation of Performance Tests

To this property is associated a metric (coverageMetric) that links two sets of events

(the total set of BuyingProducts events and the set of BuyingProducts events having the

response value equal to OK) to a metric template which defines the mathematical

expression for computing the dependability measure specified in the property, as the

division of the cardinalities of the two sets.

Finally, this PropertyModel has an associated WorkloadModel that includes two

workloads (CreateProductWorkload and BuyingWorkload) each of them specifying the

values for population, thinkTime and timeUnit. This can be modeled as such only thanks

to our extension, otherwise it could not be possible to associate more than one

operation with a workload, which is the most common situation modeling the workload

of a web system for example.

6.2.2. CONTRIBUTIONS TO UML-TP

In order to integrate non-functional aspects into MANDINGA, it is necessary to enrich

the functional specification (metamodels and methodology presented in Chapter 4 and

5) with non-functional properties.

A systematic survey of MBT approaches for non-functional requirements evidenced that

a standard and common language for designing non-functional test cases is lacking. The

only contribution in this direction is the UML-TP. However, UML-TP provides only limited

support for non-functional testing and it does not allow some important concepts of

performance testing to be specified, such as the workload and the definition of a global

verdict for concurrent executions. This section explains the aims to overcome this

limitation, specifically, two aspects: the workload specification and the verdict definition

involved in non-functional validations. The proposed extension allows for modeling a

wider variety of test cases with different test goals in one single UML model19.

6.2.2.1. WORKLOAD INFORMATION

An important shortfall of the UML-TP standard is the representation of the workload,

which is one of the most important aspects of the performance testing activity.

Designing a performance workload model very similar to the SUT environment is one of

the core activities in performance testing. The test case design should define the

workload by including a list of parameters (load distribution, number of concurrent

19 The need for extension of the UML-TP to design non-functional tests and the ideas proposed in
this section have undergone detailed and useful discussions with some members of the UML-TP
development team by private electronic correspondence.

145 Automatic Generation of Performance Tests

users, etc.) that are necessary for an accurate simulation in order to reach the test

objective. In order to model all the parameters of performance testing, our proposal is

to introduce the concept of WORKLOAD into UML-TP as a new stereotype with some

tagged values. The stereotype would be applicable to Test Cases (to operations of a Test

Context that already have a Test Case stereotype applied). With this new stereotype it is

possible, for instance, to specify test suites (or Test Context) with an associated

workload that indicates the number of concurrent users.

Conceptually, the “workload” stereotype applies to the relationship between the Test

Context and the Test Case (see Figure 53).

FIGURE 53 - WORKLOAD STEREOTYPE

The different tagged values (stereotype properties) proposed for modeling the workload

are:

 concurrentExecutions: also known as virtual users, refers to the number of

concurrent executions of the test case that are going to be considered in the

load simulation;

 executionTime: represents the total execution time, that is how long the test

case is going to be executed;

 thinkTime: represents the delay between iterations, also known as think

times, which determines the pause between each execution of the test case

for each virtual user;

 rampupTime: determines the initial time required to reach the expected load,

when the virtual users are entering to the system progressively;

 startUpDelay: defines the time when the virtual users executing the test case

are going to be started, relative to the beginning of the whole test suite;

146 Automatic Generation of Performance Tests

 expectedDependability: represents the expected percentage of executions

that should pass in order to consider the test case as passed. More details

about this property in the next subsection.

The Test Scheduler is in charge of taking into account (in its default behavior) the above

parameters specified in the workload.

6.2.2.2. NON-FUNCTIONAL VALIDATIONS

With the time restrictions provided by the UML-TP standard it is only possible to define

a local verdict, namely if the test case takes more time than the defined restrictions, it is

considered a failure. On the other hand, the default behavior of the arbiter has an only-

gets-worse policy, which means that once it receives a fail result it can never improve on

that.

Two typical situations in performance and dependability testing that are not covered by

the above time restrictions and verdict definition are: i) it is necessary to give the verdict

according to the average of the execution times; and ii) it is necessary to verify that a

certain number of the executions pass, thus taking into account a policy different from

the only-gets-worse policy.

In the current UML-TP standard version it is only possible to model the maximum and

minimum acceptable values. It is not possible to report a failure according to the

average, or a percentage of the response times of all executions of the test case in the

test context. To address this issue and improve the UML-TP time restrictions, the

addition of new constructors, average and percentage, is proposed. The former gives a

verdict considering the average of the response times, and the latter gives a verdict

according to the percentage of the response times under the expected value.

Figure 54 shows an example of the new UML-TP Time Restrictions. In this figure

“average” has a range as a parameter (0..10), and “percentage” has an extra parameter

(95) indicating which percentage of the times should be in the range (it is necessary in

this case to validate that at least the 95% of the response times are in the range 0..10).

147 Automatic Generation of Performance Tests

FIGURE 54 - EXTENDED TIME RESTRICTIONS

On the other hand, it is desirable to provide the tester with the ability to model

performance test criterion (for example, a test case passes when a percentage of the

responses give a pass verdict). For this, two changes to the standard profile were

necessary. An extra property was added to the “Workload” stereotype, indicating the

expected percentage of executions that should pass in order to consider the test case as

passed. This attribute was called “expected dependability” (namely the failure

tolerance). Secondly, it is necessary to change the default behavior of the arbiter. The

test execution has only one arbiter associated with the Test Context, which has the only-

get-worse policy. Adding one “partial” arbiter to each test case was proposed, in order

to give a verdict for each test case considering all its executions. Those arbiters should

not have only-gets-worse behavior; instead, they should give a verdict considering the

level of tolerance for the corresponding test case. The main arbiter associated with the

Test Context is then notified of each verdict and provides the final verdict as pass only if

all partial arbiters returned a pass. It is important to note that the UML-TP user would

only need to model the “expected dependability” value, and let the default arbiter be in

charge of giving the final verdict.

This representation is enough to model the most common performance test scenarios

and their typical validations. If it is necessary to calculate the verdict another way, it is

always possible to describe this behavior with another UML diagram. It is evident that

the proposed extension allows representation in a simpler way, and with more

information. Including these extensions in the standard UML-TP increases the

expressiveness of the metamodel, consequently the resulting models are easier to

develop and understand.

In the next subsection a UML-TP model is generated, using this extension, and some

examples are presented.

148 Automatic Generation of Performance Tests

6.2.3. WORKLOAD GENERATION AND PMM OPERATORS COVERAGE

This section presents our proposal for the generation of an integrated test model

starting from functional and non-functional requirement specifications (the ISM and the

PMM models).

6.2.3.1. TEST MODEL GENERATION ALGORITHM

Taking into account the requirements specified in both input models, there is a model

transformation script to automatically generate a test model addressing both aspects

together, verifying functional behavior and non-functional properties. This model will be

used to automatically generate a set of executable test artifacts and give a verdict about

the functional and non-functional behavior of the system.

As a part of our proposal, a prototype was developed with ATL [19]. It receives two input

models: the ISM (a UML model with the functional specification of the system) and a

PMM model (with the non-functional properties). The output of this transformation is

an integrated test model represented with the extended UML-TP. The transformation

also needs the related metamodels as input, i.e. the UML metamodel, PMM

metamodels and the UML-TP metamodel.

Using DBesTest, the functional test model includes the following components:

 One or more test cases for each functionality;

 A Test Context, containing the generated test cases as methods;

 Datapools;

 Test Components to interact with the SUT;

 Behavior Diagrams showing the different steps of the execution of each test

method.

The test model is then enriched based on the information provided in the PMM models.

First, the workload information defined in the PMM model is considered in order to

enrich the already generated Test Context. Specifically, the event specified in each

workload is mapped into a test case with a workload stereotype in the Test Context. The

information from the PMM workload model (population, thinkTime, timeUnit) is

mapped into the concurrentExecutions and thinkTime parameters, of the workload of

the test model, indicating the number of concurrent users and the wait time between

executions respectively. These two parameters are the most important for defining a

test load. The remaining parameters of the Workload stereotypes are defined by the

tester according to their testing experience.

Our approach assumes that the events specified in PMM are expressions

(manifestations) of the operations (functionalities) of the system. These events can be

149 Automatic Generation of Performance Tests

simple or complex and the complex events are represented as a composition of other

simple or complex events by means of operators. The functional test cases generated in

our approach cover simple operations or functionalities. The functional test cases are

then combined according to the operators specified in the PMM complex events, in

order to generate a test model able to cover more complex functionalities expressed by

complex events.

Table 20 presents an overview of the main complex event operators of PMM and the

corresponding test cases generated, specified with UML-TP. For example, if there is a

property with the “Before” operator relating “ev01” and “ev02”, meaning that the

property should be checked every time that the ev01 happens before the ev02, then the

idea is to force this situation in order to be able to test whether the property is

respected by the SUT. Thus, the generated test case executes ev01 and then ev02. In

this case, the operator has two parameters: minDistance and maxDistance, indicating

the minimum and maximum time distance between the occurrences of both events. The

generated test case will therefore execute a pause between both invocations, in order

to respect this restriction. The rest of the examples presented in Table 20 follow the

same idea: generating a test case to force the situation indicated by the operand, in

order to be able to verify the associated property.

TABLE 20 - GENERATED TEST CASES FOR THE MOST COMMON PMM OPERATORS

Event Operator Generated Test Case

 After: involves two events indicating that the first
event (ev02) occurs after the second event (ev01).

 Before: involves two events indicating that the first
event (ev01) occurs before the second event (ev02).

 minDistance (x) and maxDistance (y) represent the
min and max time distance between the first event
finishing and the second event starting.

 AfterT: involves one event and occurs when the
event (ev01) happens after the specified time
period (x).

150 Automatic Generation of Performance Tests

 BeforeT: involves one event and occurs when the
event (ev01) happens before the specified time
period (x).

 Concurrent: involves two concurrent events and
occurs when both events happen irrespective of
their order.

 FollowOut: involves three events and occurs when
the first event (ev01) is followed by the second
event (ev02) and without the occurrence of the
third event (ev03)

151 Automatic Generation of Performance Tests

 Meets: occurs when the first event (ev01) finishes
when the second event (ev02) starts.

 MetBy: occurs when the current event (ev02) starts
when the correlated event (ev01) finishes.

 maxDistance (x) represents the max time distance
between the first event finishing and the second
event starting

 Or: involves two events and occurs when one of the
two events happens.

 Not: indicates that the specified event (ev01)
doesn't happen.

 Seq: involves one event (ev01) and occurs when
there is a sequence of occurrences.

 minLenght (x) represents the min length of the
sequence

152 Automatic Generation of Performance Tests

The PMM model also specifies a set of properties associated with a workload model.

Each property refers to a metric template modeling how to compute the performance

measure specified in the property. Every metric is related to an event set, which refers

to a certain operation of the user on the SUT (let us say that these are the methods

under test).

The metrics are defined on the same kind of events as the workload, because generally

it is desirable to measure the latency or dependability of the actions that are part of the

workload.

Also, and independently of the coverage based on the operators, there are some

elements inserted in the test cases in order to provide a verdict. If the metric is related

to time duration, it is necessary to add a time restriction for the referenced event.

Generally, the time restrictions are defined on average or over a percentage of the

executions, and thanks to the proposed UML-TP extension, it is possible to add these

kinds of time restrictions to the test model.

The main steps of the test model generation strategy are summarized in the following:

1. Generate functional test cases from the functional specification. In this step, a

set of test cases are generated for each method being tested.

2. For each workload of the workloadModel (in the Test Context) a Test Case is

generated with a workload stereotype (specifying the workload information).

Those Test Cases have a sequence diagram specifying their behavior.

3. If the event associated with the workload is a simple event, then the sequence

diagram of the Test Case invokes (within an alternative combined fragment) all

the functional test cases generated in the first step for the functionality

corresponding to this event. If the event associated with the workload is a

complex event then the test case is generated taking into consideration the

coverage criterion explained before and presented in Table 20.

4. If a performance property is defined for this event then the generated test case

includes a time constraint according to the property specified (considering the

operators taken from the metricsTemplate).

5. If a dependability property is defined for this event, then the tagged value

named "expected availability" of the stereotype "workload" is set as equal to

the value specified in the property.

Figure 55 represents this algorithm for the generation of test cases (it is a graphical and

simple representation in order to explain the algorithm). Three functionalities are

represented (A, C and D) as the basis for the example.

153 Automatic Generation of Performance Tests

FIGURE 55 - TEST CASES GENERATION PROCEDURE

The algorithm has as input a PMM model specifying that the time response of event A

corresponding to functionality A must be less than 10 seconds. This requirement is

associated with a workload model composed of two workloads, one for simple event A

with 100 users and one for complex event B with 200 users. The complex event B is

specified as C before a sequence of D.

Applying the first step a functional test set is generated, which is composed of two test

cases for functionality A, specifically TC1_A and TC2_A (one with valid data and one with

invalid data). For functionalities C and D there are two test cases, one each (TC_C, TC_D).

These test cases are grouped in a Test Context called “Test Suite”.

Applying the second step the Test Context is enriched with two test cases specifying the

two workloads (TW_A, TW_B). The stereotype “workload” of the extended UML-TP is

applied to specify the number of concurrent users for each workload (100 for TW_A and

200 for TW_B).

Applying the third step the behavior of TW_A and TW_B is specified. As two test cases

were generated for Functionality A, then the TW_A invokes both alternatively. As the

event B is complex, TW_B was generated, applying the coverage to the operators

(specifically, for the before and sequence operators).

154 Automatic Generation of Performance Tests

Finally, applying step 4, and considering that there is a performance property in the

PMM model, a time restriction was added to TW_A.

Thanks to this strategy, it is possible to generate the appropriated situations to verify

the non-functional properties while executing the functional test cases.

6.2.3.2. EXAMPLE

Table 21 presents part of the resulting UML-TP model generated for the PMM model

previously presented as an example. First of all, paying attention to Figure (d) of Table

21, the Test Context will include information about the workload, and thus to everything

related to the concurrent user execution. For this, there are new Test Cases which also

include the application of the stereotype “Workload” (i.e. TestWorkload_CreateProduct

and TestWorkload_BuyingProducts) where there are different tagged values storing the

important information taken from the workload defined in PMM. For example, it is also

possible to see the representation of the workload stereotype and its properties for the

application on TestWorkload_BuyingProducts. The workload information is either

directly taken from the non-functional requirements (the PMM model), such as the

number of concurrent executions and the delay between executions (also known as

think time), or designed by the tester, as the ramp-up time, for example, the execution

time and the start-up time, according to their past experience. For those values, the

transformation generates default values based on typical values, for example, 60

minutes for the execution time, and 10 minutes for the ramp-up, but they can be

adjusted as desired.

Figures (b) and (c) of Table 21 show the behavior of the test cases included in the

workload. Figure (c) shows that the test cases were generated according to the coverage

criteria on the PMM operands. First, the test executes the test case for Create Client,

after a pause according to the minDistance parameter of the before operand of 10

seconds, then executes the test case for the creation of an invoice three times. To

simplify the example, in (c) only one test case for the creation of clients and invoices was

considered, but if there are more test cases they should be included in the diagram with

different alternatives (using combined fragments). This can be seen in (b), where

different alternatives were used to include the creation of products with valid and

invalid situations.

155 Automatic Generation of Performance Tests

TABLE 21 - GENERATED TEST MODEL WITH THE EXTENDED UML-TP

(a)

(b) (c)

(d)

The example presented in Table 21, Figure (a) shows that the functional data, flow and

verifications are performed as usual, but at the same time there is a time restriction for

156 Automatic Generation of Performance Tests

verifying non-functional properties for the creation of products. As explained before,

thanks to the proposed extension to UML-TP, the Arbiter can give a verdict summarizing

all the response times, verifying the average of the response times obtained from the

different executions of the test case, and verifying that the constraints expressed in the

requirements model are reached. In this case it can be seen in the use of the constructor

average {0..15} to give a verdict considering the average of all the response times,

returning pass only if it is between 0 and 15 seconds.

Related to the dependability property, the expected number of correct responses (that

is, our tolerance to failures) is indicated in the workload stereotype. This can be seen

represented in Figure (d) of Table 21 in the expectedDependability attribute of the

stereotype workload applied to the test case. The arbiter can then give a global verdict

according to this expected value.

The information in the resulting model is enough to configure (manually or

automatically through model-to-text transformations) a workload simulation tool

combining the workload simulation scripts (Section 6.3 will explain how they are

generated automatically).

Figure 56 shows the OpenSTA’s user interface with the workload configuration

represented in the test model. It is possible to see that it includes the two executable

test cases (TestWorkload_CreateProduct and TestWorkload_BuyingProducts) with the

corresponding configurations. In the figure it is possible to see the configuration of the

virtual users for TestWorkload_BuyingProducts, where 100 virtual users are reproduced,

introducing them in batches as represented in the ramp up (all users in 10 minutes).

With this tool and the artifacts generated, it is possible to simulate the workload and

analyze the results to give a verdict that considers the functional and non-functional

aspects together.

157 Automatic Generation of Performance Tests

FIGURE 56 - WORKLOAD SCENARIO IN OPENSTA

6.3. EXECUTABLE NON-FUNCTIONAL TEST CASES

GENERATION
Different tools are

available to automate

the execution of

functional test cases

[132]. They simulate

interactions of the user against the system and are usually implemented and executed

by “capture and replay tools”. Non-functional tests also consist of test scripts that are

launched against the SUT, but they are described at a much lower level, which includes

details on the communication protocol. Load simulation tools are used to concurrently

generate multiple users connected to the SUT [59]. When the load is simulated, the

infrastructure experts analyze the health status of the system, looking for bottlenecks

and improvement opportunities.

Traditional workload simulation approaches have important drawbacks that make its

automation very costly and demanding. The resulting testing artifacts are also very

fragile, in the sense that they are very susceptible to changes in the SUT: modifications

in the SUT (even bug fixes) often require the adaptation and maintenance of test cases

for the next stage of regression testing.

158 Automatic Generation of Performance Tests

Since functional test automation is much easier than automation for workload

simulation (which includes ease of maintenance and comprehension), our proposal here

is to take advantage of the functional test scripts to automatically generate workload

simulation scripts. Focused on web systems, the idea involves automatically executing

the functional test scripts while the HTTP traffic is captured. Later, the HTTP trace is

analyzed to generate a workload simulation script model which is finally used to

generate the script code to be executed by a load generator.

6.3.1. BACKGROUND AND MOTIVATION

Technically speaking, there is a big difference between test scripts for functional and

performance testing (workload simulation). For example in AjaxSample, a Selenium

script with only four lines was equivalent to a performance test script with 848 lines

using OpenSTA. Those lines in OpenSTA correspond to each HTTP request sent to the

server: taking into account that each request triggers a sequence of secondary requests,

which correspond to images included in the webpage, CSS files, Javascripts, etc. Each

request (primary or secondary) is composed of a header and a body, as shown in the

example of Figure 57. The http message includes parameters, cookies, session variables

and any kind of elements used in communication with the server. The example in this

figure corresponds to the primary HTTP request as a result of the invocation of a search

(filling an input and pressing the button “Search”). It includes the value “computer” in

the parameter “vSEARCHQUERY” (the searched string inserted in the input).

Once the script is recorded, a number of adjustments must be performed in order to

make it completely reproducible and representative of real users: for example, there is

no sense in executing all the test cases with the same user name and password, the

same search key (because of caches), etc. These scripts will be executed by concurrent

processes (known as virtual users). The cost of the adjustments necessary depends on

the automation tool and the SUT. In most cases, it is necessary to adjust the

management of cookies and session variables (many of them must be unique or fulfill

other restrictions). Adjustment of parameters in the header and body will also be

required.

159 Automatic Generation of Performance Tests

FIGURE 57 - EXAMPLE OF SOME LINES OF AN OPENSTA SCRIPT FOR A PERFORMANCE TEST

According to more than 20 workload simulation projects analyzed, the scripting phase

takes between 30% and 50% of the total invested effort. On the other hand, the

maintenance of these scripts (when the SUT changes) tends to be so complex that it is

better to rebuild a script from scratch instead of trying to adjust it. As a result, the

process becomes pragmatically inflexible. The test will generally identify improvement

opportunities, which implies modifications to the system; however, our scripts will stop

working if changes are introduced to the system.

There are some research lines that try to solve these problems. A summary analysis of

these, and a comparison with our proposal was published in [133].

6.3.2. AUTOMATIC GENERATION OF EXECUTABLE TEST CASES

MANDINGA proposes an extension to the automation phase of the process that the

author of this thesis presented in Vázquez et al. [106]. Instead of building the workload

simulation scripts from scratch, the user has to provide a set of automated functional

tests.

In this case, the prototype of this proposal was implemented as a GXtest module rather

than part of DBesTest, taking advantage of some of the useful services it provides for

these tasks and due to external requirements.

As shown in Figure 58, this tool builds a model of the HTTP traffic captured from the

execution of a functional test script. The tool generates the script code for the preferred

load testing tool with this input.

160 Automatic Generation of Performance Tests

FIGURE 58 - PERFORMANCE TEST SCRIPT GENERATION APPROACH

GXtest executes Selenium and WatiN scripts, but it can be easily extended to more

automated testing tools. According to the proposed methodology, during the execution

of the functional test scripts, the HTTP traffic between the browser and the SUT is

captured by an HTTP sniffer (a tool capable of capturing the network traffic) called

Fiddler (fiddler2.com). With this information it builds a model that is used to generate

the scripts for OpenSTA or JMeter. It is easily extensible to generate scripts for other

load simulation tools.

Figure 59 shows the main elements of the HTTP traffic model designed to collect the

necessary information. This model is useful to generate the workload simulation scripts.

It is built using the information obtained by the sniffer (all the HTTP requests and

responses) and by the functional test scripts, correlating the user actions with the

corresponding HTTP traffic. It is therefore composed of an ordered sequence of actions,

including invocations to the application through HTTP (requests), or validations of the

response to verify that it is as expected. Each HTTP request is composed of a header and

a message body. Both parts of the message are composed of parameters with their

corresponding values. The header also has a set of fields that includes, among other

things, cookies and session data. Each value can be hardcoded or can be taken from a

data pool. It is important to keep the references between each HTTP request and its

response, and with the corresponding functional test script command that generated

them.

http://www.fiddler2.com/

161 Automatic Generation of Performance Tests

FIGURE 59 - HTTP TEST CASE METAMODEL

This model is used to generate code according to the language provided by the load

generation tool. The generated code is specifically for OpenSTA or JMeter, according

with the user’s preferences for the workload simulation. To perform this code

generation the tool uses an approach similar to that proposed in model-driven

environments for the model-to-text transformations [17], where the code generation is

defined by code templates for each element of the model. Table 22 includes some

examples of those templates for OpenSTA; the first is for the general structure of the

script, used for each test case of the model, and the second corresponds to an HTTP

request, according to the specification of the HTTP protocol.

162 Automatic Generation of Performance Tests

TABLE 22 - TEMPLATES FOR TEST CODE GENERATION

[template public generateScript(s: Session)]
[file (s.testcase_name().concat('.scl'), false, 'UTF-8')]
Definitions
 Timer T_TestCase_[s.testcase_name/]
 [s.variableDeclarations()/]
 CONSTANT DEFAULT_HEADERS = "Host: [s.getBaseURL()/]
 User-Agent: Mozilla/4.0"
Code
 Entry USER_AGENT,USE_PAGE_TIMERS
 Start Timer T_TestCase_[s.testcase_name/]
 [s.processActions()/]
 End Timer T_TestCase_[s.testcase_name/]
Exit
[/file]

[/template]
[template public processRequest(r: Request)]
Start Timer [r.name/]
[if ([r.isPrimary/])]PRIMARY [/if] [r.header.method/] URI [r.header.url/] HTTP/1.1" ON
[r.header.connection_id/] &
 HEADER DEFAULT_HEADERS, WITH [r.header.processFields()/]}
 [r.processBody()/]
[r.response.processLoadCookies()/]
End Timer [r.name/]
[/template]

As mentioned, in the traditional approach the resulting script must be adjusted after the

recording. Many of these adjustments are very repetitive tasks. Our tool makes this kind

of task automatic, using the templates mechanism. Some of these tasks are:

 Adding timers to each user action in order to measure the response time when
executing the test scenarios, considering the type of actions performed in the
functional test script and the corresponding HTTP requests for each one.

 Taking advantage of different design aspects of the functional test script, in the
performance test scripts: (1) the data is taken from the same data pools; (2) the
same validations are performed; (3) the same structure and modularization in
different files promote the readability of the test script.

In this way the generated scripts are even better than when recording them with the

OpenSTA or JMeter recorders and it helps avoid mistakes during the codification of the

test scripts.

Once the scripts are finished, effort can be invested in the most important (and the most

interesting and beneficial) part of a performance testing project: the execution of the

load scenario and the system’s behavior analysis.

For the example, only by providing the test cases tc_create_product, tc_create_invoice

and tc_create_invoice (generated as it was shown in previous Chapters) is it possible to

obtain the workload simulation scripts for OpenSTA or JMeter. It is necessary to

combine them appropriately to simulate the expected workload and provide a verdict

according to the non-functional requirements.

163 Automatic Generation of Performance Tests

6.4. CONCLUSION
This section presented a novel and unified approach to model-based testing considering

functional and non-functional aspects together. It particularly focused on model-based

testing for non-functional requirements, integrating it with the results of previous

chapters, specifically on the modeling languages used for defining a test model, and

generating them from the non-functional requirements model. It also presented an

improved methodology for the generation of workload simulation scripts, which is faster

and more flexible than the traditional approach because it does not start from scratch,

but from the functional automated test cases.

In this section an extension of PMM and another for UML-TP were proposed. The

extension of UML-TP gives it more expressiveness for non-functional validations, and the

extension of PMM enables it to associate different properties to the same workload,

which can be compounded by different concurrent operations.

Another important aspect of this approach was the coverage criteria of PMM

specifications, generating a test model able to test all the non-functional properties

under the workload conditions specified in the model.

The traditional approach indicates performing functional test cases first, and then the

non-functional ones if there is still enough budget to afford it. Our paradigm addresses

this problem by modeling both kinds of test cases in one model, and then using these

models to generate executable test cases able to verify all the quality aspects of the SUT

at the same time.

Some threats to validity were identified in our proposal. First, only simple workloads are

being considered. It is necessary for future work to improve representation by

considering different necessities, such as allowing users to represent pikes, and different

expected values (response times for example) according to the current workload.

Finally, the proposal is valid under an important assumption: the test data and test cases

must be independent; otherwise, the result of concurrent execution could be

unpredictable.

Despite the identified limitations and assumptions, the proposal promises to bring

solutions to our customers for validating different aspects of the quality of their

systems.

Figure 60 shows a summary of all the artifacts that are obtained by applying the

presented methodology.

164 Automatic Generation of Performance Tests

NON-FUNCTIONAL PROPERTIES WITH PMM

TEST MODEL WITH UML-TP CONSIDERING FUNCTIONAL AND NON-FUNCTIONAL ASPECTS

EXECUTABLE TEST CASES FOR A WORKLOAD SIMULATION PLATFORM

FIGURE 60 - SUMMARY OF THE CHAPTER

Istruitevi perché abbiamo bisogno di tutta la vostra intelligenza.

Agitatevi perché avremo bisogno di tutto il vostro entusiasmo.

Organizzatevi perché abbiamo bisogno di tutta la vostra forza”

– Antonio Gramsci

“Educate yourselves because we’ll need all your intelligence.

 Agitate yourselves because we’ll need all your enthusiasm.

Organize yourselves because we’ll need all your strength.”

– Antonio Gramsci

CHAPTER 7. MANDINGA:
IMPLEMENTATION, AUTOMATION AND

APPLICATION IN THE INDUSTRY

As a result of this thesis, a set of prototypes was implemented,
covering, to different extents, almost all the presented approaches.
For each of them, different proof of concepts and some case studies
in the industry were carried out. This Chapter shows the current state
of the prototypes implemented to validate the proposed ideas. It also
shows how all these proposals were transferred to the industry, as a
part of our Action-Research plan.

7.1. STANDARD AND GENERALIZED APPROACH
DBesTest, the tool implemented to give support to the MANDINGA methodology, has

been presented in previous chapters. It was implemented as an Eclipse plugin,

integrating the extraction of database metadata with the execution of ATL and Acceleo

transformation scripts. The idea is that, as Eclipse is a generic IDE with lots of extensions,

it may be possible to manage the whole process from a single working environment.

Along the same lines, PMM models are managed by a specific Eclipse plugin, as are UML

models, transformation languages and different test execution tools.

The truth is that some of the process is not completely integrated in the same

framework. In the majority of situations it was because of limitations imposed by base

technology. Annex 1 - Difficulties Faced with Model-Driven Approaches, presents some

of the difficulties faced during the implementation of the different prototypes.

Figure 61 depicts the current implementation of the framework, and the following

subsections explain the current state and limitations of each part.

168 MANDINGA: Implementation, Automation and Application in the Industry

FIGURE 61 - PROTOTYPES IMPLEMENTATION

7.1.1. DEALING WITH MODEL-DRIVEN STANDARD TOOLS

The complete framework follows a model-driven approach from the beginning with the

data model, to the last step with the test model. The test code is then necessary for the

execution, but it should not be necessary to read, understand or maintain this code.

There is only one area where it is necessary to correlate the model elements with the

elements of the web pages, and this is also automatable.

The goal was to build an integrated framework, where it was possible to manage the

whole process: the data model extraction, transformation execution, model edition, and

test execution. Because of the current state of the different tools that are necessary to

carry out this work, there are some limitations related to the maintenance of models

and to model transformation. This subsection presents a summary of these.

7.1.1.1. UML AND MODELING TOOLS

If the tester decides to modify any model (data, information system or testing model) it

is necessary to do so with an appropriated UML tool. Even though UML is a standard and

one of the benefits of being a standard is that the different tools support the same

metamodel, each tool has small differences in its implementation of the standard. UML

tools are, in our humble opinion, not mature enough. Many different tools were tested

(commercial and open source) to verify whether they can read a UML file and generate

the corresponding diagrams.

Other researchers and practitioners have also observed this. Recently, Garzás20 pointed

out: “However, UML specification is not still very clear, and tool vendors are still not

interested in that the models created with their tools could be exported and used in any

other tool without information lost.”

20 Dr. Javier Garzas - http://www.javiergarzas.com/2013/11/uml-2-5.html

http://www.javiergarzas.com/2013/11/uml-2-5.html

169 MANDINGA: Implementation, Automation and Application in the Industry

There are many tools which support the UML standard, but some also claim to give

support to the UML standard, or even to some UML Profiles, but if they cannot store or

export the models to the correct XMI file format, the obtained standard is not the actual

standard. This is why it is necessary to verify if the tool to use supports what is

necessary. Table 23 lists the modeling tools that have been analyzed, indicating the main

problems/limitations found.

TABLE 23 - UML TOOLS THAT HAVE BEEN TESTED

Tool name License Limitations

Papyrus Open source It was not possible to generate a diagram from a generated UML file. It is not
possible to define reply messages in sequence diagrams, and to instantiate
diagrams from UML/XMI files.
Many errors, very immature.

Eclipse
UML2tools

Open source The tool has not been maintained since 2009.

Obeo UML
Designer

Open source Problems creating certain kind of diagrams. Not very mature.

Rational Software
Architect

Commercial Many bugs when editing models. The UML metamodel has some differences from
the one in Eclipse UML SDK. Little support for UML 2.4.

Rational Rose Commercial It is not possible to export to UML standard XMI format.

Enterprise
Architect

Commercial The UML format is not compatible with the UML SDK. It was not possible to load a
model with a profile.

Argo UML Open source It does not support the UML version required to work with ATL and Acceleo in
order to process UML profiles.

Magic Draw Commercial Works reasonably well with UML models based on Ecore, even with profiles, but it
was not possible to generate Sequence Diagrams from a generated UML file. The
development team told us that this is not yet implemented.

Modelio Open source Very new and immature. Not complete.

Visual Paradigm Commercial It does not support UML 2.4 for importing and exporting UML files with Eclipse.

These were the only tools considered that claim to be respecting the standard, rather

than just the graphical notation (as for example Creately21).

The former idea was to use a modeling tool integrated with Eclipse, so, DBesTest would

allow the tester to work in a unified way, with everything in the same repository and

managed with the same tool. For this, Papyrus [134] should be a good option (after 2009

Eclipse UML2tools was no longer maintained), because it is the modeling tool used in

the Eclipse Modeling Project (http://www.eclipse.org/modeling/).

During the development of the thesis it was decided to use Rational Software Architect

(RSA) [135]. This was the only tested tool capable of reading a UML file and generating

the corresponding visualization diagram for the Sequence Diagrams in the model, as

these diagrams were a key piece of the proposal.

21 Creately: www.creately.com

http://www.eclipse.org/modeling/
http://www.creately.com/

170 MANDINGA: Implementation, Automation and Application in the Industry

DBesTest uses UML SDK [121] to manage UML elements and to store the models as XMI

files according to the standard. RSA can import and export diagrams to this format, so it

is capable of interoperating with Ecore-based models and generating different diagrams

starting from the imported models. Despite this it was necessary to program an import

and export feature into DBesTest, specifically for RSA, because the UML model

generated with UML SDK has some differences with the expected format of RSA and vice

versa.

The process for working with the models is depicted in Figure 62, from the extraction of

the database schema to the test model. It is necessary to export and import in each tool

for each interaction between the different tools.

FIGURE 62 - MODEL DRIVEN PROCESS

It is expected that in the near future the tools will be able to interoperate completely

respecting the standard, allowing us and the rest of the researchers, to use the different

UML modeling tools and extensions, making the whole process easier.

7.1.1.2. MODEL TRANSFORMATION TOOLS

Similar problems appeared when working with model transformation tools. There are

several proposals to work with model-to-model and model-to-text transformations, and

although there are standards defined by OMG, none of the languages and tools seems

to have the enough maturity to develop the transformations. Having worked with

171 MANDINGA: Implementation, Automation and Application in the Industry

different tools, even though the model-driven approaches are very promising, it is

difficult to think of using them industrially.

Table 24 shows the model-to-model and model-to-text environments that were

considered during the development of this thesis.

TABLE 24 - MODEL TRANSFORMATION TOOLS

Model-to-Model
Engine

Description

MediniQVT A tool set (editor, debugger, engine) that implements the OMG QVT Relations Standard (the
declarative part). It is integrated in Eclipse as a plug-in, and it is freely available under Eclipse
Public License.
http://projects.ikv.de/qvt
Last release: 2011-April

QVTo A partial implementation of the Operational Mappings Language from the OMG QVT Standard
(the imperative part). It is integrated in Eclipse as a plug-in, and it is freely available under
Eclipse Public License.
http://www.eclipse.org/mmt/?project=qvto#qvto
Last release: 2013-January

ATL A model transformation language and toolkit (editor, debugger, engine), also integrated into
Eclipse as a plug-in. ATL is a hybrid transformation language, combining declarative and
imperative constructors, based on the QVT Standard.
http://www.eclipse.org/atl/
Last release: 2013-March

Model-to-Text Engine Description

JET A code generator, transforming abstract models into code. It is an Eclipse plug-in, freely
available under Eclipse Public License.
http://www.eclipse.org/modeling/m2t/?project=jet#jet
Last release: 2011-February

Acceleo A pragmatic implementation of the OMG MOF Model to Text Language. It is integrated to
Eclipse as a Plugin, freely available under Eclipse Public License.
http://www.eclipse.org/acceleo/
Last release: 2013-March

MOFscript A tool and language to generate code, according to the OMG MOF Model to Text standard. The
project is no longer available.
http://marketplace.eclipse.org/content/mofscript-model-transformation-tool

MediniQVT was originally used for model-to-model transformations (mainly because it

was the only official implementation of the QVT relations standard), but ATL substituted

it because it does not have support for UML Profiles. MediniQVT has no longer been

supported since 2011 (it cannot be installed in the newest Eclipse releases). On the

other hand, ATL is the de facto standard, with better community support. It follows the

guidelines of the QVT RFP, and is probably the most used. ATL supports any kind of

model represented under the MOF metamodel. ATL is a hybrid transformation language,

combining declarative and imperative constructors. The preferred transformation style

is the declarative one, expressing mappings between the source and target model

elements. However, imperative constructs make it easy to specify mappings that can

hardly be expressed declaratively. There are many examples to show the usefulness of

the tool, in a public repository called the ATL Transformations Zoo, where it is possible

http://projects.ikv.de/qvt
http://www.eclipse.org/mmt/?project=qvto#qvto
http://www.eclipse.org/atl/
http://www.eclipse.org/modeling/m2t/?project=jet#jet
http://www.eclipse.org/acceleo/
http://marketplace.eclipse.org/content/mofscript-model-transformation-tool

172 MANDINGA: Implementation, Automation and Application in the Industry

to find more than hundred scenarios in which to use ATL, with documentation and the

transformation code. Table 25 shows an excerpt as examples.

TABLE 25 - EXAMPLES TAKEN FROM ATL TRANSFORMATIONS ZOO

Input Output Description

UML class diagram Relational model To generate a database schema from a class diagram.

MySQL
KM3 (Kernel
MetaMetaModel)

It translates data structure description from the database
schema to the modeling space.

RSS ATOM It transforms from one syndication XML format to another.

UML OWL (ontology format)
This transformation is used to produce an OWL ontology
and OWL Individuals from a UML Model and UML Instances.

UML sequence diagram UML State chart
The script transforms a set of UML sequence diagrams into
a (hierarchical) UML state chart.

It is also expected that the tools supporting model transformations will continue

growing and reaching the level of any modern development environment, which is a

primordial requisite to be adopted, or even considered, by industry. Nowadays, the

support of the tools is very limited, comparing mainly with modern development

environments such as Eclipse for Java or Microsoft Visual Studio for C#. The limitations

are not only in the development, but also in the debugging capabilities. The

environment does not work properly when debugs, exceptions and problems received

are not well described or documented. Annex I describes in more detail the problems

experienced when working with ATL and UML, presenting their limitations.

7.1.2. DBESTEST

As already explained, an Eclipse plugin called DBesTest was

implemented to automate the execution of different steps of

the proposal. This tool was able to perform the complete

process from the extraction of the metadata of the database,

to the generation of the test code using JUnit [5] and

Selenium [102]. It uses ATL for model-to-model

transformations and Acceleo for model-to-text transformations.

7.1.2.1. DESCRIPTION

One of the main characteristics of DBesTest is the possibility of dealing with models for

test case generation using well-known standards along the whole process, mainly from

the OMG, and especially UML [11]. This opens up the possibility of using our method

and its supporting framework with any UML modeling tool. For this, and considering

that Eclipse is a very important and extended project, all the metamodels used are

based on EMF and on the UML SDK [121] (an implementation of the UML 2.4

metamodel based on EMF).

173 MANDINGA: Implementation, Automation and Application in the Industry

Figure 63 shows a representation of the different components with which DBesTest

interacts, explained below.

After the user configures DBesTest with the database connection information, it applies

reverse engineering to load the database schema into a UML model representing the

data model with a class diagram. For this task it uses RelationalWeb [30], which reads

the database metadata, and gives an output in a proprietary XML format. This tool

supports several database management systems (DBMS) such as Oracle, MS SQL Server,

MySQL, etc., and can be easily extended to others. It was adapted in order to generate

an output that was completely UML compliant, using the UML SDK [121]. The output can

be displayed as an XML or tree structure or, using an appropriated UML modeling tool, it

is possible to generate a graphic representation with diagrams (see section 7.1.1). For

more details of the reverse engineering process refer to Chapter 4.

FIGURE 63 - DBESTEST ECLIPSE PLUGIN ENVIRONMENT

The tool allows the creation of a new type of project which is initialized with the folder

structure shown in Figure 64. The Data Model is stored in the folder “datamodels”.

The tester is supposed to provide more information about the SUT through the

Information System Model. In order to make this task easier for the tester, DBesTest has

a set of ATL rules to generate a first version of this model, based on the data model that

174 MANDINGA: Implementation, Automation and Application in the Industry

was generated from the database structure. The Information System Model includes the

data model, the GUI model (structure and navigation) and business rules in OCL. For

more details refer to Chapter 4. For the generation of the Test Model, DBesTest also

executes a set of ATL scripts. The current implementation of those scripts includes some

test patterns, showing the feasibility of the approach. The ATL scripts are managed in

such a way that it is possible for the tester to modify the rules and add new rules, in that

way adding new generation strategies without changes in the tool. If the user wants to

implement more UI or test patterns, it is thus enough to extend these ATL

transformations. There is a folder in the DBesTest project for each group of ATL scripts:

“Scripts/UI_Patterns” and “Scripts/Test_Patterns” respectively. Refer to Chapter 4 for

the generation of the Information System Model, and to Chapter 5 for the generation of

the Test Model.

FIGURE 64 - FOLDER STRUCTURE OF A DBESTEST PROJECT

After the execution of the transformations, the models are stored in the corresponding

folder of the project structure: in the “informationSystemModels” and “testModels”

folders.

175 MANDINGA: Implementation, Automation and Application in the Industry

DBesTest implements the code generation with Acceleo scripts. The scripts provided

generate code using JUnit and Selenium and are stored under the folder “testCode”.

Under this folder (included in the project build path in order to make Eclipse compile it)

there are different packages: “tests” includes the test classes with the test cases,

according to the sequence diagram specifying its behavior; “datapools” contains classes

to access the test data, which is stored in the folder “data” as “.csv” files; the

“adaptationLayer” has classes responsible to resolve the relationship between the

models and the SUT, using the information stored under the folder “mim”.

The Acceleo scripts (under the folder “Scripts/Acceleo”) are easily extendable or

interchangeable, with the goal of having the ability to use a tool other than Selenium if

the tester has different preferences. The code generation was also explained in Chapter

5.

Under the project’s structure there is also a folder to store the metamodels (UML-TP,

UDMP and GUIMP).

Some common bugs have been found thanks to the use of our approach, such as:

 It is common to define the maximum size of a string column and its

corresponding field in the web page with a different size. Depending on the

implementations, sometimes an exception is thrown, or an error message is

displayed, and sometimes the input is truncated to the length of the input,

meaning a loss of information. Errors of this kind are discovered because the

test data generator considers the sizes of fields and columns, generating

valid and invalid data.

 As the maximum value that can also be stored for numeric values is known,

an overflow was found, calculating the subtotal when creating invoices

selecting products with the highest price representable in the column where

it is stored.

 During the process, the tester is guided to verify the lifecycles of the entities,

and the relationship between tables and pages. This process was useful to

detect inconsistencies and obsolete attributes (columns that remain in the

tables, but were not used in the logic and user interface).

As can be seen, the approach is able to find different kinds of errors. The test cases were

generated using the information extracted with reverse engineering methods, which

shows that this information is useful for designing and identifying interesting test

scenarios.

176 MANDINGA: Implementation, Automation and Application in the Industry

7.1.2.2. LIMITATIONS

Some limitations were identified during the implementation of the prototypes. Some

were time-related, the focus is not on them but on others more associated with the

approach itself. They are listed below, grouped by the process stages.

Information System Model construction: Reverse engineering does not have a single

solution for all the platforms, technologies, etc. DBesTest was implemented with one

particular solution, and in any case, this module could easily be changed by any other

able to generate a UML model.

There is more information in the database metadata that is not currently read and that

could be exploited in order to generate test cases: check rules, store procedures,

triggers, cascade updates and deletes, etc. By analyzing these it could be possible to

generate more and more precise Business Rules. Since this requires the syntactic

analysis of the SQL code (which varies among vendors), this aspect has not yet been

addressed.

Test Case Generation: The main problem with this approach is that the quality of the

generated test cases and test data depends on the information added by the user. Some

tests could therefore give false positives: they report an error where they should not.

This happens when the user does not add certain business rules that mark some input

data as invalid; the test cases will then report an error in the SUT when the error is in

the input test data.

Test Code Generation: The tester has to provide the MIM (model-to-implementation

matching) as a properties file. Although there is a utility implemented in order to

simplify the task of selecting the HTML identifier and associate it with the model

element, it is still a demanding task affecting the scalability of the solution.

Modeling: Evidently, it would be better to work in a framework able to integrate test

case modeling and execution, but this was not possible because of the existing gap

between the promises of the standards and the current state of the tools supporting

them.

Model-transformation approach: the implementation of the prototype showed us that

the design and developing of model-transformation rules is not as mature as modern

programming environments and languages. It is not easy to build transformations that

are easy to maintain and extend, and there is little research about the topic. Finally,

declarative language is not synonymous with easy and clear, or user-oriented. Actually,

many transformations are much more difficult to code when trying to build them in a

declarative way. One of the bases of our framework is to be extensible, allowing the

177 MANDINGA: Implementation, Automation and Application in the Industry

user to introduce new test patterns in a declarative way because this approach is always

sold as “closer to the user” or “with a higher abstraction level”, but for us the reality is

that it is not easy to generate new rules for this aim.

7.1.3. GENERATION OF AUTOMATED PERFORMANCE TEST CASES

This was implemented directly on GXtest because the benefits of the idea were

visualized as positive before its proof of concept, and there were specific projects which

required the tool and paid for it. Moreover, the implementation of a prototype for a

proof of concept would have been very expensive, because it is necessary to deal with

the HTTP protocol, and it would have been a disposable prototype (without the ability to

evolve) because GXtest is implemented in C# Dot NET environment, and DBesTest is in

Java and holds model-transformation languages.

7.1.3.1. DESCRIPTION

Figure 65 shows a feature of GXtest thanks to which it is possible to import and

integrate Selenium scripts in a GXtest project (GXtest has its own test case modeling tool

and format). The Selenium scripts generated with DBesTest can therefore be imported

in GXtest in order to use the functionality described in Chapter 6, to generate scripts for

workload simulation in OpenSTA or JMeter.

FIGURE 65 - WORKLOAD SIMULATION SCRIPTS GENERATION

7.1.3.2. LIMITATIONS

The limitations are presented in section 7.2.3.4, after showing how the tool was applied

in different real projects.

7.1.4. GENERATION OF NON-FUNCTIONAL TEST SCENARIOS

The PMM2UML-TP prototype was developed during the research stage in the CNR, Pisa,

Italy. The implementation is not complete; it was focused on verifying the feasibility of

the transformation approach for the coverage criteria defined for PMM event operators,

considering only some them and only some non-functional properties and metrics.

178 MANDINGA: Implementation, Automation and Application in the Industry

7.1.4.1. DESCRIPTION

Our main goal in this phase is to provide a unified framework to allow testers to verify

functional and non-functional requirements of a system following a black box and

model-driven approach. Our proposal assumes that the functional design of the system

is given by UML models, and the non-functional specification of the system is modeled

with PMM.

This proposal therefore extends the DBesTest framework with the specification of non-

functional properties: in this case, given as a PMM model. The test model generated

with DBesTest is extended with time restrictions and with a workload definition, in order

to represent a test suite where the test cases are executed concurrently.

Taking into account the functional test cases generated with DBesTest and the non-

functional requirements specified in PMM model, PMM2UML-TP automatically

generates a test model (represented with our extension of UML-TP) addressing both

aspects together, verifying functional behavior and non-functional properties. This

model will be used to automatically generate a set of executable test artifacts and

obtain a verdict about the functional and non-functional behavior of the system.

7.1.4.2. LIMITATIONS

One of the limitations evidenced with this approach is that PMM is not standard or well-

known, and the modeling of properties, metrics and workload is not simple. Therefore,

there is an extra effort required for the modeling of these requirements in order to take

advantage of the workload model generation. It is necessary to evaluate whether this

approach is better than allowing the user to model the workload in the test model using

the extended UML-TP.

7.1.5. CONCLUSIONS ABOUT THE PROOF OF CONCEPT

In the examples presented in Chapters 4, 5 and 6, it was possible to see how the

different tasks previously performed manually were executed with the assistance of the

different prototypes in a semi-automatic way, with an integrated approach considering

functional and non-functional aspects of the SUT.

Even though there were some limitations identified with the approach, and there is a

lack of empirical validation, the prototype was very useful for its purpose: to

demonstrate the feasibility of the approach, and identify the most important risks and

limitations of the approach. The implementation of the prototype gave us confidence to

translate these ideas to the industry, applying them to the specific context of Abstracta,

and successfully extending the power of GXtest tooling.

179 MANDINGA: Implementation, Automation and Application in the Industry

7.2. TRANSFER TO INDUSTRY: GENEXUS AND GXTEST
Most of the research in this thesis was directly transferred and experimented with in the

industry. In the specific context of the GeneXus community, it was implemented directly

in GXtest.

This section presents our most important empirical validation, explaining how the

equivalent tools were implemented in Abstracta and used in real projects, either by the

Abstracta team or by some of its customers.

Figure 66 shows the different tools and extensions that were implemented or used for

each equivalent part of the thesis proposal. In this case, the functional requirements are

not provided by UML but in GeneXus models. These models are used to automatically

generate test cases that are stored in a test model implemented in GXtest instead of

UML-TP. In GXtest, the test model is executable by the same tool, it is not necessary to

translate it to test code in order to execute it. Finally, the test model is used to generate

scripts for performance testing using OpenSTA.

FIGURE 66 - IMPLEMENTATION IN GXTEST

In the figure it is possible to see that the last part of our research was not yet

implemented in GXtest. It corresponds with the part related to PMM models, and non-

functional workload generation.

This section presents the case studies performed in the industry with these

implementations. Therefore, below is a deeper introduction to GeneXus and GXtest (for

a better understanding of the reader) and then the functional test cases generation and

performance test cases generation case studies are presented.

7.2.1. BACKGROUND: GENEXUS AND GXTEST

GeneXus is a tool which has been

developed and maintained since 1988 by

the Uruguayan company Artech. The tool

180 MANDINGA: Implementation, Automation and Application in the Industry

is nowadays spread out through Latin America, United States, Canada, China, Japan,

Spain and Italy, counting with more than 100.000 users within 7.000 companies.

The tool enables the automatic creation, development and maintenance of Information

Systems, mainly to manage the information stored in a database. GeneXus permits users

to represent the application, regardless of the technology involved, in a model called

Knowledge Base (KB), from which it generates applications in multiple environments

(servers, PCs, mobile devices and the Cloud) and languages (Ruby, Java, C#, Objective-C,

Cobol, RPG, Visual FoxPro, among others).

From the specification of the data model, it generates tables for the database, and the

logic and presentation layers for the creation, reading, updating and deletion

operations, allowing the user to extend data processing with business rules definition

and a high level programming language. For example, Table 26 shows some business

rules extracted from the Client entity from AjaxSample.

TABLE 26 - GENEXUS BUSINESS RULES EXAMPLES

error(“You must enter a name for the client.”) if ClientFirstName.IsEmpty();

error(“The initial balance cannot be negative.”) if ClientBalance < 0;

noaccept(ClientLastUpdated);

ClientLastUpdated = servernow() if after(confirm);

The first two lines work by verifying the user inputs, the first ensures that the client

name is not empty, and the second that the initial balance is not negative. The last two

lines show an example where an attribute ClientLastUpdated is maintained, registering

the last modification timestamp of each registry. The system does not allow the user to

insert data (the noaccept rule) and inserts the server time automatically after any

submission of the related form. Any of these rules are executed every time the entity is

accessed, whether it is through the user interface, or via the system’s logic through a

managing data procedure.

It is also important to note that GeneXus generates system code for several platforms,

including green screen, client server, web, mobile, and in different languages (for the

web for example, it is possible to generate Java, C# and Ruby).

In Model-Driven Development (MDD) environments, such as that offered by GeneXus,

models are used to generate the source code of the application, based on the

specification given through those models. The traditional automation testing tools are

prepared to work at a source code level, but do not do so with the models with which

the development team is used to working, which brings certain difficulties:

181 MANDINGA: Implementation, Automation and Application in the Industry

 Necessity to understand/manage the source code generated, while the goal of

MDD is to avoid such a thing.

 High maintenance cost of the testing artifacts while regenerating the source

code.

 The same model can be used to generate code for different platforms, but the

automated test cases must be built for each platform, and thus increase the cost

of maintenance.

To address this problem a new tool was proposed that manages the testing artifacts

with models at the same level as the development models. In this way those artifacts

will be easier to maintain, and they can be used to perform the testing of the different

platforms for which the application has been generated.

That motivation brings us to GXtest, which is

a tool that was developed by the Uruguayan

company Abstracta in 2007. After 2009,

Artech decided to start distributing and

commercializing the tool, integrating it to the

GeneXus suite, since they visualized the benefits that GXtest offers to the GeneXus

users. GXtest then became a commercial tool, having started as an innovation project.

GXtest allows the test automation for web systems developed with GeneXus, at the

same abstraction level of GeneXus, i.e., associating test artefacts with the KB elements

instead of with the system’s generated code elements as in the traditional approach

(Selenium, WatiR, etc.). The test cases are represented with models, in order to follow

the GeneXus philosophy and for the sake of ease of use, in order to allow domain

experts to develop test cases, and not just technical users with programming skills.

Firstly, the user creates a new test project indicating the KB to test. This is equivalent to

the Information System Model, including the data model and the different elements

with which the user interacts (pages, inputs, buttons, etc.), and its navigation.

The test cases are related to the elements of the KB, and GXtest knows how to map

these elements with the correspondingly generated HTML element when it executes the

test cases. This means that the MIM (model-implementation matching) is not necessary,

it is built automatically. Figure 67 has a representation of a simple example in order to

show how the test model actions reference the KB elements. GeneXus will generate the

system’s code according to the KB specification. GXtest will then find the generated

elements (it does not matter whether the application is generated in Java, C# or Ruby)

because a detailed analysis of the code generation performed by GeneXus is realized to

each web platform.

182 MANDINGA: Implementation, Automation and Application in the Industry

FIGURE 67 - GXTEST CASE EXAMPLE

Test data are stored in datapools, which are equivalent to the UML-TP concepts. The

test flow is represented by something similar to an activity diagram that can be

considered equivalent to a behavior diagram in UML.

It is possible to see that GXtest manages the test case behavior with a graph which is

more similar to a state machine or activity diagram. It is also important to see here that

the test flow in GXtest is executable on the SUT, because it automatically does the

mapping between the model elements and the HTML elements. Comparatively, in the

UML model it is necessary to solve this gap with extra information provided by the user.

In order to ease the creation of the test cases, GXtest follows the “record & playback”

approach [6]. It offers a component (called GXtest Recorder) which is installed as an

extension of Internet Explorer, able to capture all the user actions and generate from

that the test model to play them back later. This component is able to associate the

HTML element with which the user interacted, with the corresponding KB element. In

that way, the test model only keeps references to the KB and not to the platform

specific elements. For more detail about GXtest refer to its online user manual [136].

Table 27 shows the GXtest versions releases, which depict the correspondence between

the research on the prototype and the research in Abstracta on their product.

183 MANDINGA: Implementation, Automation and Application in the Industry

TABLE 27 - GXTEST VERSIONS

Version
number

New Features Released Thesis contributions

1.0  Record and playback

 Adaptation layer for GeneXus
applications

 Data driven testing

 Test management

2009

1.1  Generation of test cases (GXtest
Generator) – beta version

 Multiples browsers execution
(Internet Explorer, FireFox, Chrome)

 Improved commands

 Bug fixes

2012  Generation of functional test cases with
the same strategy as DBesTest (based on
the data model)

2.0  GXtest Generator complete

 Mobile testing

 Generation of OpenSTA scripts

 VerifyResponseTime command in
functional test cases

 Bug fixes

2013  Generation of performance test scripts
from functional test scripts

 Non-functional validations in functional
test cases

2.1  Generation of JMeter scripts

 Performance testing for mobile

 Bug fixes

Not
released

yet

 Generation of JMeter scripts

Two different satellite tools were developed for GXtest, one for the automatic

generation of test cases based on the data model (KB GeneXus), and another to

generate performance tests from a functional test case. The first corresponds to the

DBesTest research, and the second has already been explained, and was directly

implemented on GXtest, without the implementation of a previous prototype. Of all the

research presented in this thesis, there is only one aspect that has not yet been

transferred to the industry, which corresponds to the last period of research, and

involves the generation of non-functional workloads (from the PMM models). Only the

command verifyResponseTime was added to the GXtest test cases in order to manage

non-functional validations in the functional test model, as presented in the extension of

UML-TP.

Below is explained how each topic researched in this thesis was translated to an

improvement or a new feature in GXtest. Our first experiences using both components

in the industry are detailed and analyzed.

7.2.2. GXTEST GENERATOR

GXtest Generator is basically the adaptation of DBesTest to GeneXus and GXtest. It

follows an MDT approach to generate a test model (conforming the GXtest metamodel)

from a data model designed with GeneXus (conforming to the KB metamodel). The

generated test model can verify whether the application correctly manages the data

structure. The test model will therefore include test cases for the CRUD operations of

184 MANDINGA: Implementation, Automation and Application in the Industry

the SUT. These test cases are also useful for the tester as building blocks in order to

develop other test cases.

7.2.2.1. DESCRIPTION OF THE ADAPTATION TO GENEXUS

Table 28 shows a mapping between the research for DBesTest and what and how it was

implemented in GXtest Generator.

TABLE 28 - RELATIONSHIP BETWEEN DBESTEST AND GXTEST GENERATOR

DBesTest
Information System Model. It is composed of the data model, GUI
model (structure and navigation) and business rules. It is
generated from the database schema with assistance of the tester.

GXtest directly uses the KB, which is the source
model for the applications generated with
GeneXus. It includes the data model, GUI and
business rules. GeneXus provides a library to
manage those elements directly.

Test Cases Generation. The test cases are generated based on
patterns identified on the ISM, by executing model-to-model
transformations. The test cases are generated in UML-TP.

The test cases are generated based on patterns
identified in the KB, using the library provided by
GeneXus, and generating the test cases in the
GXtest model. The algorithm is implemented in C#.

Test Model Representation. The test model is represented with
UML-TP. The main concepts are: Test Context, Test Case,
Datapool, Data Partition, Data Selector, etc.

GXtest has its own and proprietary metamodel to
represent and store the test cases. However, there
is a direct correspondence between its elements
and UML-TP presented in Table 29.

Test code. The test code is generated from the test model in order
to be able to execute it on the SUT. This generation is made with
model-to-text transformations.

The test model is executable. It has enough
information to allow the test engine reproduce the
user actions of the test case.

Adaptation Layer and MIM. The generated code is not completely
executable on a specific platform unless the tester provides the
MIM information, and the model-to-text transformations
generated the adaptation layer for a specific tool such as
Selenium.

As the test model is executable, it is not necessary
to provide MIM information, and the adaptation
layer is automatically provided by GXtest.

Test data. The test data is generated considering different
coverage criteria such as AEM from Andrews et al. [111], and the
violations of the database schema, as presented in Chapter 5.

The test data generation strategy was implemented
with the same approaches.

Data-based oracles. According to the validity of the selected data
for a test case, it verifies whether the entities are created or not,
updated or not, deleted or not, or viewed with the corresponding
data.

The oracles were designed with exactly the same
strategy.

Table 29 shows the correspondence between UML-TP concepts and the artifacts in

GXtest.

185 MANDINGA: Implementation, Automation and Application in the Industry

TABLE 29 - CORRESPONDENCE BETWEEN GXTEST ARTIFACTS AND UML-TP CONCEPTS

UML-TP Concept Corresponding GXtest
Artefact

Description

Test Context Test Suite Group test cases.

Test Case Test Case Ordered set of actions and validations. In every action and
validation it is possible to use static test data or take it from
datapools.

Datapools Datapool Tables storing test data.

Data Partition Data Scope It is possible to divide the test data into datapools for different
purposes, different test cases, etc.

Data Selector Command DPnext() It initializes the variables with data from the datapool according
to the Data Scope selected.

Test Components Executors The test cases can include different actions or events in order to
interact with the SUT. There are special components called
“Executors” able to read this test specification and initialize the
test, reproducing all the actions and validations in the test cases.

SUT KB GXtest keeps a copy of the KB of the system under test, in order
to have information about the different elements that the test
cases will be interacting. This information is useful for the test
engine and for the test oracle.

Behavior Diagrams Test Models (directed graphs) Instead of sequence diagrams, only directed graphs (similar to
activity diagrams) are used. They represent pages and
transitions, and in every element there are commands to
simulate the user actions.

Validation Action Validation commands There are specific commands to make validations, in the GUI or
at a database level.

GeneXus is able to generate system code for CRUD operations for each entity defined in

the data model. In the same way, GXtest Generator is able to generate executable test

cases for CRUD operations for each entity of the data model, and then combines these

test cases to test the whole life cycles.

The generation algorithm basically follows these steps:

 For each entity on the KB, the generator determines whether it is possible to

generate tests (which means, if the entity has a table, whether it is persistent),

and in this case it generates the test flows for each test case and to invoke the

actions.

 For each attribute in the entity it is determined whether it is necessary generate

data (if the attribute is editable) and how to do it.

 The same test pattern strategy presented for DBesTest is applied to generate a

test model.

 After generating the test model (test cases and test data) the user can manage,

edit and execute it with GXtest.

In order to correlate a test case represented in UML-TP with those in GXtest, Figure 68

shows a sequence diagram for the creation of an Invoice at the top (as it is generated by

the DBesTest approach), and at the bottom the same operations, on the same system

186 MANDINGA: Implementation, Automation and Application in the Industry

(AjaxSample) according to the graphical representation of a test case model in GXtest

(generated with GXtest Generator).

FIGURE 68 - COMPARISON OF A UML-TP TEST CASE FLOW AND THE SAME ONE IN GXTEST

In the figure it is also possible to see the representation of test cases in GXtest as

directed graphs, where the circled nodes represent pages, boxed nodes represent the

inclusion of another test case (equivalent to interaction use and combined fragments in

UML sequence diagrams), and the edges connect them, indicating the flow. Each

element has a set of commands which simulate the user actions and verifications.

187 MANDINGA: Implementation, Automation and Application in the Industry

There are some improvements over the test generation strategy of DBesTest. On the

one hand, the user has the possibility of defining dictionaries for the different attributes

or for a data type. In that way, to fill the datapool for “Products”, the product names can

be taken from a file provided by the user with real product names. On the other hand,

the business rules are loaded directly from the KB, such as those presented in Table 26.

The user does not therefore need to provide the business rules model, and the test

cases and test data are going to be generated taking them into consideration. The test

data is also generated testing the boundaries of the conditions defined for these

business rules, improving the coverage of the test set.

The main advantage of GXtest Generator over DBesTest is that the adaptation layer is

not necessary, because GXtest deals with it. One of the identified limitations of DBesTest

was scalability due to the fact that the user had to provide the Model-Implementation

Mapping (MIM), indicating the association of each element in the model with the

element in the GUI of the SUT. In GXtest this is done automatically, reducing costs and

ensuring the scalability of the approach.

GXtest Generator has been used in different scenarios22:

 To initialize the testing environment (One Click Start-up). The tester can

generate automatically and with zero cost, a set of test cases for all the entities

of the SUT. Then, they combine them and generate more complex ones.

 To reduce risks in the migration from one platform to another (generating test

cases and comparing both executions).

 To minimize risk and costs, executing smoke tests with low cost (by executing

simple test cases generated completely automatically, verifying that the SUT

was generated correctly, and executing basic functionality, trying with different

browsers, environments, configurations, at almost no extra cost).

7.2.2.2. EXPERIENCES IN INDUSTRY

The tool has already been sold to more than 65 customers, as an optional feature of the

GXtest framework. The Abstracta team has used the tool in example applications in

order to validate the implementation, and in a real project that is reported below,

validating its scalability.

22 More information:
http://gxtest.abstracta.com.uy/wiki/index.php?title=GXtest_Generator_Tutorial

http://gxtest.abstracta.com.uy/wiki/index.php?title=GXtest_Generator_Tutorial

188 MANDINGA: Implementation, Automation and Application in the Industry

7.2.2.2.1. STUDY CASE: BANCARD PARAGUAY

This case study corresponds to the first real project in which the automatic generation of

a test with GXtest was used. This project was useful for finding important errors in the

SUT at low cost, validating the approach and giving the confidence to continue the

research to improve and extend it.

The SUT was one of the main systems of a financial company from Paraguay called

Bancard23, which is responsible of most of the financial transactions by credit card and

POS (point of sale) in this country.

The company decided to migrate the platform of their system, which was the main

cause of the necessity for execution of a complete regression testing. The development

team did not know how the new system would behave on this new platform.

Thanks to GeneXus the migration from one platform to the other is very simple, but the

test case execution would have cost a lot; it is a big system developed for many years

(more than one thousand entities). The manual execution of the test cases therefore

implied a very important cost in time, effort and money, making these factors a good

opportunity for the validation of our proposal.

The system was migrated to Java/Web on IBM infrastructure, including WebSphere

application servers and a DB2 database on an AS400 machine. The system was

developed in five separated KBs, which can be seen as five different modules, in order to

simplify the management of the entities. The scope of the test project focused on four

of these five KBs: Access Control, General, Authorization and Switch. The fifth module

was not yet released.

Table 30 shows an overview of the project results. The test team, which included the

main developer of GXtest, was involved in the project for one month. There were four

test cycles defined, one for each module. Between each test cycle different

improvements were included in the tool based on the experience obtained in the

previous test cycle. They were executed in the order of the table rows, starting with the

smallest entities to test.

The table shows, grouping by module, the number of test cases that were executed. The

numbers refers to tests that verify the complete life cycle of the entities involved:

creation, update, list (and search) and deletion. Many entities do not have a graphic user

interface, or else one page in the user interface stores the information in different

23 Bancard: https://www.bancard.com.py

https://www.bancard.com.py/

189 MANDINGA: Implementation, Automation and Application in the Industry

entities (as the example presented in AjaxSample for invoices, which has four tables

associated with the creation of this entity). The test team defined the scope with a team

from Bancard, deciding which entities consider for this first project.

For each test case different test data was also generated, according to the strategies

already presented in this thesis, as for example equivalence classes and boundary

values, taking into account the metadata of the data types and business rules.

TABLE 30 - SUMMARY OF GENERATED TEST CASES

KB Number of Entities Executed Test Cases OK Error Warning

Access Control 155 16 10 2 4

General 415 81 38 15 28

Authorization 423 29 18 6 5

Switch 604 81 33 33 15

The time invested by the tester was mainly to verify the test execution reports, and

corroborate whether it was a bug (reporting it to the development team) or whether it

was a problem with the test case generation strategy. The “warnings” column in the

table corresponds to those test cases which mistakenly reported error. Generally, this

implied a correction to the test generation strategy. In some other cases, the error was

originated because the test case tried to delete an object that it did not have a “delete”

operation available from the GUI. This is not an error, but it is important to verify the

absence of this functionality with a domain application expert. In other circumstances,

the warning corresponded to test cases which failed because the tester did not have the

required permissions on the system.

7.2.2.3. ANALYSIS OF ERRORS FOUND

Within the incidents detected in the project and in some example applications, there

were some error types that should be highlighted:

 Inconsistencies between database and logic layer: every time the development

team make changes in the KB (development model) then GeneXus prepares

programs to propagate those changes in the database schema automatically,

including data migration. Due to environment management, there were

problems identified in the migrated application where the logic layer of the

application did not correspond with the database schema. It is possible to see

these kinds of errors when a user accesses the corresponding entity pages, but

others are not that evident. Some tests revealed that the database accepted 40

characters in one column, but in the logic and presentation layers this field was

changed in order to support longer strings. The test case using a longer string

therefore provoked a not captured exception. This test case was designed based

on the column data type.

190 MANDINGA: Implementation, Automation and Application in the Industry

 Non-existent resources: due to problems of various kinds, mainly in the

generated code or in the final platform environment, certain elements were not

present in the application (images, CSS files, or programs that were not

compiled successfully after the migration).

 Non-editable fields in the update page: because of problems in the migration of

the KB, the generated programs did not allow editing of some attributes of

entities in their update pages.

 Derived attributes could be edited: in some entities, attributes defined as

derived from other tables, or as calculated, were also defined as editable. The

generated test cases inserted data in these inputs but when the new tuples

were inserted in the database the inserted values were substituted by the

derived values. Therefore, the error was discovered when executing the

complete lifecycle of the entity, after the creation of the read operation was

executed, verifying the values inserted against the values stored in the database,

identifying the difference and reporting the error.

 Entities invoked in an unexpected way: some objects were designed to be

invoked in a specific way, and the generated test case executed them out of

context (directly invoking the CRUD operations of the entity) causing an

unexpected behavior because some session variables were not present.

 As a corollary, some test situations also helped to detect errors in the data

model. For example, if the PK of an element is a numeric value (this is a common

practice in database design) and the name of the entity, or the field used to

select the foreign key from another entity is not required to be unique or not-

null, it could be a problem, and the database design should control this.

As can be seen, it was possible to find errors, not only in the SUT, but also in the

environment, and even in the code generator. Some were basic and evident errors, but

most were not easily found by conventional testing.

The testers have an initial group of test cases that can be used to generate more

complex cases by combining them.

7.2.2.4. EVALUATION OF THE CASE STUDIES

The main conclusion and achievement for the team is that the customer is satisfied.

They were very thankful and evaluated the contributions of the test project positively,

as to the stability of the system, and to the risk control before the release with a

reduced cost for test execution than that planned.

Bancard now also has a test set that can continue to be used for regression testing for

future releases, thus improving the obtained benefits for the same work.

191 MANDINGA: Implementation, Automation and Application in the Industry

The test generator was also tested and improved, verifying its scalability and

applicability for big KBs.

7.2.2.5. LIMITATIONS

The generated test cases were completely executable on the SUT. The main limitation

identified was that not all the tests are valid, resulting in false positives (a test reporting

an error where it should not). This happens because not all the business rules are taken

into account, which generates invalid test data and an oracle which tries to verify a

positive execution. The oracle reports an error, but the error is in the test data.

The development team from Abstracta is still working on the implementation,

prioritizing the most common business rules according to the case studies and sample

applications under test. Basically, it is necessary to interpret the new business rules and

consider them when the data is generated.

Some of the identified situations are:

 When selecting a random value for a primary key where the values universe is

limited (for example NUMERIC(2), has a total of one hundred possible values) it

is probable that repeated values will be selected (already existent in the

database).

 When the entity has more than one foreign key, and the valid values for one

depends on the other. If this information is in the data model or business rules

there is no problem, but sometimes this is managed in the application code, and

it is more difficult to obtain this information.

Even though there are some limitations that force the tester to adjust or verify the

errors reported by the tool, the result has been evaluated as very positive for the

company.

7.2.3. GXTEST FOR PERFORMANCE TESTING

One of the main services provided by Abstracta is outsourced performance testing.

Working on different projects the team realized that:

 The most common scenario to test is found in web environments

 Between 30% and 50% of the working hours are dedicated to test automation

 The automated test cases require a great deal of maintenance because they are

very susceptible to changes in the application.

The main goal was therefore to take a new approach in order to reduce costs and obtain

flexibility. For this, the proposed approach was implemented as an extension module of

192 MANDINGA: Implementation, Automation and Application in the Industry

GXtest. In this case, it was not necessary to show the relationship between the

implementation in DBesTest and GXtest because it was directly implemented on

GXtest.

7.2.3.1. DESCRIPTION

GXtest executes Selenium and WatiN scripts, but it can easily be extended for more

automated testing tools. During the execution of the functional test scripts, it captures

the HTTP traffic between the browser and the SUT with an HTTP sniffer (a tool capable

of capturing the network traffic) called Fiddler (fiddler2.com). With this information it

builds a model that is used to generate the scripts for OpenSTA or JMeter. It is also

easily extended to generate scripts for other load simulation tools.

The tester must open the automated functional test case. This is a GXtest model, and it

can contain, for example, Selenium commands. The tester decides to generate an

OpenSTA script of a JMeter script. GXtest then executes the functional test case,

captures the traffic, and generates the performance testing script for the corresponding

tool. The rest of the test is done in the load simulation tool as usual, but the most

demanding task had already been automatically performed by GXtest.

7.2.3.2. EXPERIENCES IN INDUSTRY

At the moment of writing these lines, the presented tool has been used in five different

projects by five different customers of Abstracta. One of the most common services

provided by Abstracta is performance testing, and for this kind of project the

methodology is that explained in Chapter 2. Below there is a description of each case

study and then the summarized analysis.

 Case Study 1: Logistics System: This project was executed from Uruguay for a

Chilean company, which is one of the biggest beer distributors in Latin America.

They have to process more than 70 thousand invoices during the night, in order

to allow the operators and truck drivers to prepare the delivery in time the

following morning. The SUT was developed with GeneXus, which raises a special

complication, because even small modifications to the development models (KB)

could mean many modifications to the generated code and therefore to the

HTTP traffic. The process was the same as in the other systems that were tested:

first it was necessary to adjust the functional test scripts to regenerate the

workload simulation scripts with our tool. It is in this kind of system, where the

SUT suffers many modifications during the testing project, that our approach

reports the best benefits, because it was necessary to regenerate the scripts

several times, and this would have required a major effort if manually executed.

http://www.fiddler2.com/

193 MANDINGA: Implementation, Automation and Application in the Industry

 Case Study 2: Production Management System: The peculiarity of this project

was that there were no previous functional test scripts, so it was necessary to

automate functional test scripts to use the tool. These functional test scripts

were developed by a user (without knowledge of regression testing) which is

almost impossible with any load generator. Once the project ended, the testing

team started to manage a regression testing environment, using the scripts that

were developed in the performance test project. In a way, the performance

quality control favored the functionality quality control.

 Case Study 3: Courts Management System: The SUT, also developed with

GeneXus, was destined for the Uruguayan government. The system was already

in the production environment and had some identified issues. The goal was to

study solutions to those problems in a controlled environment, and try to see

how many users could be supported by the system with the current

infrastructure.

 Case Study 4: Auction System: This system was developed by a Uruguayan

company for a Chinese customer. It is important to highlight that only one script

was required, which was defined based on statistical analysis of the normal use

of the system, which revealed that 80% of the load is generated with only a few

use cases. However, the combination of this test script with the test values from

datapool leads to different execution flows in the SUT.

 Case Study 5: Human Resources System: This project was a migration from one

version of GeneXus to another. The tool had important changes even in the

code generator, thus making the migration very risky in terms of functionality

and performance. Moreover, the generation platform also changed from a

Windows, Client/server application, to a full web environment. The team

already had regression tests, and our participation was in the performance

testing. The system allows the users, among others, to mark the working times,

check the salary and payments, share announcements, etc. It is therefore very

important for the daily operations of the company and it could not have

problems after the release.

7.2.3.3. EVALUATION OF THE CASE STUDIES

There were two testers working on all the projects, both with strong knowledge of

GXtest, Selenium and OpenSTA. The SUTs were web systems from different domains,

developed with different technologies, and very good results were obtained in all of

them. Table 31 shows the number of generated scripts for each project, the number of

simulated virtual users concurrently accessing the SUT, and the number of PCs required

for the execution of the workload simulation.

194 MANDINGA: Implementation, Automation and Application in the Industry

TABLE 31 - USE OF THE TOOL IN PERFORMANCE TESTING PROJECTS

Project SUT # Scripts # VU # PCs

Production Management System AS400 database, C# Web system on Internet

Information Services

5 55 1

Courts Management System Java Web system on Tomcat with Oracle

database

5 144 1

Auction System Java Web system on Tomcat with MySQL

database

1 2000 4

Logistics System Java Web system on Weblogic with Oracle

database

9 117 1

Human Resources System AS400 database, Java Web system on

Websphere

14 317 1

The table also shows the number of PCs required for the execution of the workload

simulation in order to highlight that, with our approach, it is possible to execute the

simulation with a reduced test infrastructure.

Even considering the limitations, the time invested in the preparation of the scripts was

reduced from an average of between 6 to 10 hours in the traditional approach (in our

previous projects) to 1 to 5 hours with our tool in these five case studies. This implies an

important cost saving for the automation phase. In addition, as it is easier to regenerate

the scripts, it also gave us more flexibility for the maintenance of the scripts.

The different problems that these performance testing projects helped to prevent and

identify can be summarized to include, among other things:

 Maximum concurrent connections: most of the time, when executing a certain

number of concurrent users, it is typical to find a bottle neck in the number of

the connections between the web server and the database server. This is only

detected and optimized by simulating concurrent users.

 Required memory: it was possible to determine the required memory for the

Java Virtual Machine of the web servers. This is a key factor in the performance

of any web system running on a Java platform.

 Cache: by executing the expected load, and varying the input data executed by

the virtual users, it is possible to detect whether the database cache is being

used efficiently or if it can be optimized.

 Indexes: by using a test database with a similar volume to the production

environment it was possible to detect the absence of certain indexes in very

large tables for certain queries. With specific database analysis tools it is

possible to identify those situations and optimize the indexes for a better

performance in the database responses.

 SQL queries not optimized: simulating the real use of the system with

concurrent access it is possible to see which are the most resource-demanding

195 MANDINGA: Implementation, Automation and Application in the Industry

SQL and optimize their execution plan. That could be done with the aid of

specific tools.

These kinds of improvements are very expensive to make when the system is already

released to the final users, and any issue may have a very negative impact. These

projects therefore gave our customers a high return for their investment, avoiding many

problems, and reducing risks before the release of their systems.

To summarize, the case studies have shown promising results in the performance

testing, demonstrating that performance testing can be made in a more flexible way and

with less effort, according to what the testers involved in the projects reported. These

results are also aligned with those reported in the case study of [137].

7.2.3.4. LIMITATIONS

The main limitation identified when working with the tool was related to the wide range

of uses of the HTTP protocol. The different systems tested have shown us that each new

technology implies some adaptations to our templates to generate the workload

simulation scripts (for example, it is not the same a simple PHP system than one that

makes use of Ajax) mainly in the parameterization of the HTTP requests. However, once

the template is adjusted for specific technology, it can be used for any system

implemented with it.

Even though this technique has been used recently for mobile applications, it is only

useful for HTTP traffic. It is necessary to make a big effort to extend it to other protocols,

and there is no such a way to be independent of the protocol when working with

workload generators.

At the moment the tool only helps with the generation of test case scripts, then the

tester needs to prepare the workload combination in the corresponding load testing tool

(which is generally easy if the scenario is defined) and validate the results (which is

already automated with spreadsheets).

7.3. FINAL DISCUSSION
As explained in Chapter 1, one of the main goals was to obtain useful research results to

be applied and adopted directly in Abstracta. This chapter showed how the research

performed using standards, model driven transformations, etc., was adapted to the

GeneXus environment in order to make this knowledge available to this specific

community.

Although there is not much empirical validation of DBesTest, the results obtained were

useful for delineating the research and development of the corresponding features in

196 MANDINGA: Implementation, Automation and Application in the Industry

GXtest. It was thus possible to obtain very successful results allowing the test team to

obtain automatic test cases with low cost to test functional and performance aspects of

different applications under test.

Algunas cosas del pasado desaparecieron pero otras abren una brecha al futuro y son las

que quiero rescatar.

― Mario Benedetti

“Some things from the past disappeared, but others open a gap into the future and those are the ones I wish

to highlight”

― Mario Benedetti

CHAPTER 8. CONCLUSIONS AND FUTURE

RESEARCH LINES

This chapter presents the summary of our research and the analysis
of the achievements of the proposed goals. It also shows the
publications obtained and to conclude, it presents some future lines
of research.

8.1. SUMMARY
This thesis proposed a methodology based on model-driven testing, in order to verify

functional and non-functional aspects of Information Systems in an integrated way. The

functional aspects are based on the Information System Model, initialized from the data

model obtained from the database schema, and completed by the tester in a semi-

automatic way. The non-functional properties are provided with a PMM model

specifying the expected behavior under certain workload situations. From these

artifacts, the thesis has proved that it is possible to generate a set of executable

components to verify the requirements of the SUT.

Table 32 shows a summary of all the prototypes and tools developed for each

contribution of this thesis. It also indicates which kind of SUTs are tested, the interface

through which the SUT is stimulated, the type of testing (functional, performance, non-

functional), the metamodels involved and the programming language in which it is

implemented.

200 Conclusions and Future Research Lines

TABLE 32 - SUMMARY OF THE CONTRIBUTIONS AND THEIR IMPLEMENTATIONS

Criteria DBesTest PMM2UML-TP GXtest Generator GXtest for
Performance

Kind of System Under
Test

Web based
application with
databases

Web based
application

GeneXus
application

Web based
application, GeneXus
application

Interface to Access to
the SUT

Graphical User
Interface

Graphical User
Interface

Graphical User
Interface

http protocol

Test Level Functional test Non-functional test Functional test Performance test

Generated Artifacts UML-TP model and
test code with JUnit
and Selenium Scripts

UML-TP model GXtest Test Cases Test code with
OpenSTA or JMeter

Metamodels UML, UDMP, GUIMP,
OCL, UML-TP

PMM, UML-TP Proprietary (KB
GeneXus and
GXtest)

Proprietary (GXtest)
and HTTP

Implementation of
the Solution

ATL, Acceleo ATL C# C#

Using the proposed approach it is possible to work on test specifications before the SUT

is completely developed. When it is available, the user must provide the MIM (model-

implementation mapping) in order to make the generated test cases completely

executable.

In the rest of this section a complete analysis of the results is presented.

8.2. CONTRIBUTIONS
It is possible to differentiate between two groups of contributions: academic and

industrial.

The academic focus was on model-based testing for information systems, mainly based

on standards, specifically on UML. In that sense the main contributions presented in this

thesis, were:

 A functional test model generated from a representation of the SUT, which is

generated in a semi-automatic way using reverse engineering techniques.

 A PMM extension to model typical workloads in web systems. The usefulness of

the metamodel in a new area of application was proved, modeling non-

functional properties for information systems.

 A UML-TP extension with the ability to model workloads and non-functional

validations such as global time restrictions and dependability metrics.

 A non-functional coverage criterion on PMM models, in order to generate a test

model to verify all the properties defined.

 An algorithm for the generation of a test model integrating functional and non-

functional requirements.

201 Conclusions and Future Research Lines

 A new approach for the generation of executable performance tests. This

approach is faster and more flexible than the traditional one, basing the

generation of simulation scripts on the functional automated test cases.

 An Eclipse plug-in integrating model-to-model and model-to-text executions to

support the complete methodology in an integrated environment.

Considering the contributions from an Action-Research point of view, it should be

mentioned all the new components of GXtest were implemented based on the thesis

research:

 A test case generation algorithm based on the data model of GeneXus

applications (the Knowledge Base). From a data model it is possible to

completely generate automatically a set of test cases to test the CRUD

operations of each entity.

 From the test cases modeled in GXtest it is possible to generate performance

test cases to be executed with different load simulation tools and verify non-

functional aspects of the applications developed with GeneXus.

8.3. ANALYSIS OF THE GOALS CONSECUTION
The goals of this thesis were presented in Chapter 1.

The first goal is to automate the test case design and execution for applications that

make use of databases, in the context of web environments, but with the possibility of

extending the approach to other types of applications, such as mobile.

This goal was achieved by:

 Studying the state of the art in test cases and test data generation for

information systems. Depicting the gaps and unexplored research areas for this

goal.

 Defining a model-driven testing methodology using UML to work with

Information Systems. The final result is a set of executable test cases capable of

giving a verdict.

 Identifying interesting test situations based on data model substructures,

defining test cases to cover them.

Part of this analysis was presented in Chapter 2, 3, 4 and 5.

The second goal is to reduce the costs associated with performance testing, improving

the automation process with more flexibility.

202 Conclusions and Future Research Lines

This goal was achieved by:

 Analyzing tools and methodologies for workload simulation

 Implementing a tool to automatically generate the performance test cases for

different workload simulation tools, taking a set of functional test cases as input.

Part of this analysis was presented in Chapter 2 and Chapter 6.

In order to save costs related to execution time, and help testers to perform these tasks

automatically, the third goal is to propose an integrated view, considering functional

and non-functional properties verification.

 This goal was achieved by:

 Studying the literature for model-driven proposals addressing non-functional

aspects, and analyzing whether they were also applicable to functional testing

or vice-versa.

 Extending PMM and UML-TP in order to form an integrated framework for

testing the functional and non-functional properties of a system.

 Designing a coverage criterion and an algorithm to generate a test model from

the requirements, considering in the whole process the specification and

verification of functional and non-functional properties.

Part of this analysis was presented in Chapter 2 and Chapter 6.

From the beginning the focus was to obtain practical and industrially applicable results.

The results obtained in DBesTest were all translated to GXtest and were tested in real

projects with satisfactory and promising results. This was presented in Chapter 7.

In Chapter 1 a set of drawbacks was also identified. Table 33 summarizes them and

shows the improvements in these directions that were part of the contribution of this

thesis, which in turn were part of the original goals proposed.

203 Conclusions and Future Research Lines

TABLE 33 - DRAWBACKS AND THEIR IMPROVEMENTS

Identified drawback Improvement and contribution in that direction

The tester requires knowledge in the database schema,
and needs access to it.

DBesTest presents the information from the database with
UML models. Chapter 4.

The tester requires knowledge in testing techniques. DBesTest generates test cases automatically. The testing
knowledge can be stored in test patterns, developed by a
testing expert, and used any time. Chapter 5.

The tester requires knowledge in functional testing
automation tools. Typically this is equivalent to a
programming language.

DBesTest generates executable test cases, allowing the user
to concentrate on the Test Model without necessarily having
to cope with the code or automation tools. Chapter 5.

The tester requires knowledge in load simulation testing
tools. Typically this includes not only knowing a
programming or scripting language, but also knowledge
about the communication protocol (at least HTTP in web
systems).

From the previously generated functional automated test, it
is possible to generate executable workload simulation test
scripts to be used in a load simulator. Thus, the tester only
has to cope with the test model. Chapter 6.

If the system is migrated to another platform, or if the
test team decides to change the automation tool, etc., it
is necessary to rebuild all the test artifacts from scratch.

With DBesTest it is necessary to change the model-to-text
transformations in order to manage a different syntax. If this
is done once, then it can be easily generated at any time
from the test model to this new testing platform execution.
Chapter 5.

As presented in Chapter 7, these aspects were also addressed with GXtest.

It is also necessary to consider that the expected contributions were:

 Reduce cost of functional testing for applications that make use of databases

 Reduce cost of performance testing for web applications that make use of

databases

In the different studies in real projects the company considered that both goals have

been reached successfully.

In this way, it is considered that this thesis fulfilled the various objectives and expected

contributions.

8.4. PUBLICATIONS
Most of the results of the research performed in this thesis have been published in

different peer-reviewed forums (see Table 34).

204 Conclusions and Future Research Lines

TABLE 34 - PUBLICATIONS

Title Authors Date Type Published in

Journals under revision

Model-based test cases
design integrating
Functional and Non-
Functional aspects.

Federico Toledo,
Francesca
Lonetti, Antonia
Bertolino,
Macario Polo
Usaola, Beatriz
Pérez Lamancha

To be sent
in the first
quarter of
2014

International
Journal

To be sent to IET Software

A language for the
automated addition of
oracle to combinatorial
test cases [138]

Macario Polo,
Federico Toledo,
Beatriz Pérez
Lamancha

Sent
December
2013

International
Magazine

IEEE Software

Generación de Pruebas a
Partir de Modelos de Datos
en Entornos Generadores
de Código [139]

Federico Toledo,
Matías Reina,
Fabián Baptista,
Sebastián
Grattarola,
Beatriz Pérez
Lamancha,
Macario Polo

Sent May
7th 2013

Spanish
American
Journal

Sent to IEEE Latin America

National Journals (Spain)

Utilización de MDE para la
Prueba de Sistemas de
Información Web [140]

Federico Toledo,
Beatriz Pérez
Lamancha,
Macario Polo

July-August
2013

Magazine Novatica, Revista de la Asociación de
Técnicos de Informática.
Number 224, pp 33-39

Books Articles

Automated Generation of
Performance Test Cases
from Functional Tests for
Web Applications [141]

Federico Toledo,
Matías Reina,
Fabián Baptista,
Beatriz Pérez
Lamancha,
Macario Polo

2013 Article in
book

Evaluation of Novel Approaches to
Software Engineering (Best papers
book from ENASE conference)

International

Extended UML Testing
Profile for Improving Non-
Functional Test Modeling.
[142]

Federico Toledo,
Francesca
Lonetti, Antonia
Bertolino,
Macario Polo
Usaola, Beatriz
Pérez Lamancha

January
7th/9th 2014

Conference 2nd International Conference on
Model-Driven Engineering and
Software Development
(MODELSWARD’14)
Lisbon, Portugal
ISBN: 978-989-758-007-9

Towards a Framework for
Information System
Testing – A model-driven
approach [143]

Federico Toledo,
Beatriz Pérez
Lamancha,
Macario Polo

July
24th/27th
2012

Conference
CORE B

7th International Conference on
Software Paradigm Trends (ICSOFT).
Rome, Italy.
ISSN: 978-989-8565-19-8 pp. 172-177

From Functional Test
Scripts to Performance
Test Scripts for Web
Systems [133]

Federico Toledo,
Matías Reina,
Fabián Baptista,
Beatriz Pérez
Lamancha,
Macario Polo

July 5th
2013

Workshop The 1st International Workshop in
Software Evolution and
Modernization (SEM).
Angers, France
ISSN: 978-989-8565-66-2, pp. 12-20

Data Model Centered Test
Case Design – Model-
driven Information System
Testing [144]

Federico Toledo,
Beatriz Pérez
Lamancha,
Macario Polo

November
18th/23rd
2012

Conference The 4th International Conference on
Advances in System Testing and
Validation Lifecycles (VALID).
Lisbon, Portugal.
ISSN: 978-1-61208-233-2, pp. 127-
132

205 Conclusions and Future Research Lines

Spanish American

Metodología de Pruebas
de Performance [106]

Gustavo Vázquez,
Horacio López,
Matías Reina,
Federico Toledo,
Simón de
Uvarow, Edgardo
Greising

November
10th/15th
2008

Conference
CORE C

XX Encuentro Chileno de
Computación - Jornadas Chilenas de
Computación.
Punta Arenas, Chile.
ISBN: 978-956-319-507-1

Test case generation for
information systems using
reverse engineering
techniques [145]

Federico Toledo,
Beatriz Pérez
Lamancha,
Macario Polo

June
20th/23rd
2012

Conference 7ª Conferencia Ibérica de Sistemas y
Tecnologías de Información (CISTI).
IEEE Xplore digital library.
Madrid, Spain.
ISSN: 978-989-96247-7-1, pp. 1-6

Metodología para Testing
de Performance [146]

Gustavo Vázquez,
Horacio López,
Matías Reina,
Federico Toledo,
Simón de
Uvarow, Edgardo
Greising

November
12th/14th
2008

Conference 5ta Edición del SEPGLA (Software
Engineering Process Group Latin
America).
Mar del Plata, Argentina.

National (Spain)

Generación de Pruebas de
Rendimiento a partir de
Pruebas Funcionales para
Sistemas Web [147]

Federico Toledo,
Matías Reina,
Fabián Baptista,
Beatriz Pérez
Lamancha,
Macario Polo

September
18th/20th
2013

Conference Jornadas de Ingeniería del Software y
Bases de Datos (JISBD).
Madrid, Spain.
ISBN: 978-84-695-8310-4

Enfoque dirigido por
modelos para probar
Sistemas de Información
con Bases de Datos [148]

Federico Toledo,
Beatriz Pérez
Lamancha,
Macario Polo

September
17th/19th
2012

Conference Jornadas de Ingeniería del Software y
Bases de Datos (JISBD).
Almería, Spain.
ISSN: 978-84-15487-28-9, pp. 315-
328

Técnicas de pruebas
basadas en modelos para
procesos de negocio [149]

Federico Toledo,
Beatriz Pérez
Lamancha,
Macario Polo

September
5th/7th 2011

Conference Jornadas de Ingeniería del Software y
Bases de Datos (JISBD).
La Coruña, Spain.
ISSN: 978-84-9749-486-1 pp. 549-554

National (Uruguay)

Metodología para Pruebas
de Performance [150]

Gustavo Vázquez,
Horacio López,
Matías Reina,
Federico Toledo,
Simón de
Uvarow, Edgardo
Greising

December
2008

Technical
Report

PEDECIBA (Programa de Desarrollo
de las Ciencias Básicas), Facultad de
Ingeniería, Universidad de la
República.
Montevideo, Uruguay.
ISSN: 0797–6410-RT 08-20

National (Italy)

Extending the Non-
Functional Modeling of
UML-TP [86]

Federico Toledo,
Francesca
Lonetti, Antonia
Bertolino,
Macario Polo
Usaola, Beatriz
Pérez Lamancha

December
2013

Technical
Report

PuMa – Digital Library at CNR. ID:
2013-TR-040

Tutorials

Tutorial de Pruebas de
Rendimiento [151]

Federico Toledo,
Beatriz Pérez
Lamancha,
Macario Polo

September
17th/19th
2012

Tutorial Jornadas de Ingeniería del Software y
Bases de Datos (JISBD).
Almería, Spain.

Curso de pruebas de
Rendimiento [152]

Federico Toledo June
4th/7th
2012

Tutorial 8 th Jornadas de Calidad y Testing de
Software, expoQA.
Madrid, Spain.

206 Conclusions and Future Research Lines

Posters

Generating test cases with
the same abstraction level
of 4th generation
environments. [153]

Federico Toledo,
Matías Reina,
Fabián Baptista,
Sebastián
Grattarola.

October
22nd/24th
2013

Poster in
conference.

User Conference on Advanced
Automated Testing.
http://ucaat.etsi.org/2013/
Paris, France

Table 35 shows the contribution of each publication to the research topics covered in

the thesis.

TABLE 35 - RELATIONSHIP BETWEEN THE PUBLICATIONS AND THE RESEARCH SUBJECTS

Chapter Main research topic Specific research topic Reference

3 Methodology Functional test model generation [140] [143] [144] [145]
[148] [149]

Integrated approach Not sent yet.

4 Information System Metamodel Reverse engineering [140] [143] [144] [145]
[148]

5 Functional Testing Test model design [140] [143] [144] [145]
[148] [138]

Test code generation [140] [143] [144] [145]
[148]

6 Performance Testing Performance testing methodology [106] [146] [150] [151]
[152]

Performance test modeling [142] [86]

Performance test model generation Not sent yet.

7 Transfer to industry Test cases generation (GXtest) [139] [153]

Performance tests generation [141] [133] [147]

8.5. FUTURE WORK LINES
This thesis focused on developing and testing different approaches with the aim of

making them available for the industry. Along these lines, some interesting topics are

identified for future research.

MANDINGA in Practice

From now on the MANDINGA project will continue growing by experimentation on

different industrial projects. In this way it will be possible to improve it and make it more

usable. Our main goal for the tool is for it to become part of the developing

methodology of any developer using GeneXus, helping them to improve the quality of

their products.

UML-TP Request for Proposals

Apart from the extensions to UML-TP presented, there are more improvements

required. More non-functional aspects such as security and usability need to be

considered before its completion. On the other hand, the expressiveness of the

workloads defined in the tests should be improved, and it should be possible to

represent different expected values for different levels of workloads.

207 Conclusions and Future Research Lines

By continuing work with the team of CNR, and coordinating with the team responsible

for UML-TP who showed us to be open to changes, the extension could be presented as

an alternative to the RFP planned for next June, making these changes accessible to

every user of the profile.

Monkey Testing

Abstracta began a new research project 24on the area known as Monkey Testing (low

cost programs which interacts automatically with the SUT with random inputs trying to

make it crash). Literature distinguishes two types of monkeys [154]:

1. Dumb monkeys: without knowledge of the SUT and generating completely

random interactions;

2. Smart monkeys: which have an understanding of the SUT through the use of

models to guide the execution and compare the actual with expected behavior.

The goal of Abstracta is to build a web platform (based on Cloud services) in order to

simplify the preparation of the test environment for final users, and provide them with

different algorithms to test their systems. Each algorithm will ask for different inputs,

the more the user gives the more the monkey can test. So, one of the ways visualized to

continue the research on DBesTest and make it available for the testing community, is

by integrating it as one of the modules of this new project.

In that way, the user will have to provide access to the database of the SUT, and then in

a guided process will have to complete the Information System Model (UML and PMM

models) in order to generate the test model and the executable test cases, which will

also be executed from the cloud platform. In that way, the user will have a report for

functional and non-functional requirements.

As a part of this research, the author of this thesis started to mentor a student on the

master’s degree at the University of Pereira, in Colombia, working on the subject of

“Smart monkey testing techniques for web and mobile systems”.

24 The project was approved and a subvention was given by Agencia Nacional de Investigación e
Innovación from the Uruguayan government. Reference: PPI_X_2013_1_10390 Smart Monkey
Testing (www.anii.org.uy)

http://www.anii.org.uy/

"If debugging is the process of removing bugs, then programming must be the process of

putting them in"

– Edsger W. Dijkstra

Annex 1. DIFFICULTIES FACED WITH MODEL-
DRIVEN APPROACHES

This thesis used a model-driven approach, adopting standards as
much as possible. These decisions were taken because of all the
benefits of using standards, and because of all the proven advantages
of model-driven approaches. This chapter shows that it is not all a
bed of roses, presenting the different problems of the model-driven
approaches based on our experience and on the current state of the
tools and platforms that give support to model-driven approaches.

A1.1. INTRODUCTION AND MOTIVATION
Even though it is possible to start working with model-driven approaches, it is a long

way from reaching utopia. Not only through the academy, but also through some

companies, it can be seen that new efforts have been made to accomplish the dream,

providing new tools and different approaches, and sharing experiences around MDE.

However, not all the tested platforms were complete, or stable, and some lacked

important aspects related to software engineering tasks, such as version control,

modularization, debugging facilities, etc.

Often the reasons for these kinds of problems are well-known: tools are not completely

compliant to the standards. This is why it is not always possible to work with different

tools with the same models. It is necessary to prepare a model and then use a different

tool to apply model-to-model transformations, and then it is necessary to visualize the

resulting model, and even modify it, and finish the process using another tool to

translate those models to code. It is necessary that vendors and tool developers work

together and ensure that the complete tooling chain, IDEs and languages, work without

losing information, in a transparent way, setting aside the compatibility problems, or

more technical aspects.

On the other hand, it is also necessary to improve the usability of the different

frameworks, to reduce the steep learning curve. This must be done not only for the

212 Difficulties Faced with Model-Driven Approaches

creation of diagrams, but also for the rest of the process, including testing, debugging,

version management, etc.

During the thesis many problems were addressed. The most important are described

below. The complications presented were determinants for the decision about the

implementation of GXtest Generator. As it was determined that the current state of the

technologies was not enough to build software, GXtest Generator was developed with

C# and with a proprietary metamodel stored in the database.

A1.2. USING UML WITH MODEL TRANSFORMATIONS
As Marian Petre says in her article “UML in Practice” [155] UML has been described by

some as “the lingua franca of software engineering” but evidence from industry does not

necessarily support such endorsements.

When selecting UML and model-transformations languages there are some

expectations, such as:

 Graphical notation should be easy to use by different members of a team, with

and without programming skills.

 As they are standard, it is supposed that one can work with different tools,

exporting and importing XMI files to share the information (completely, without

any loss).

 A complete set of graphical editors for the different diagrams offered by UML.

 Ease of extensibility, allowing users to add more semantics to their models.

 Easy management of models to apply model-to-model and model-to-text

transformations, without requiring programming skills.

 A transformation language is a programming language; therefore it provides the

appropriate tools to manage the entire development cycle (source versioning,

debugging, testing, etc.).

In our experience, none of these promises were fulfilled.

Technical difficulties for interoperability: Chapter 7 presented many problems

regarding portability and interoperability, which were addressed. Even though one of

the main advantages of using standards is that it should be easy to use different tools to

work with the same format, language and notation, the situation seems to be the

opposite. As already noted, it is not possible to manipulate a model with one tool and

continue working with another without information loss.

Technical difficulties to initialize the graphical representation: Our approach generates

different models and diagrams. It is expected (and necessary) that the UML modelers

213 Difficulties Faced with Model-Driven Approaches

are able to read these files and generate the graphical representation for the generated

models. It was very hard to find one tool to accomplish this task. Rational Software

Architect (RSA) was the only tool (of many) capable of generating a sequence diagram

from the UML file. However, it is not completely direct. It was necessary to implement

specific code in order to process the generated UML file and adapt it to the format

expected by RSA.

Technical difficulties with UML Profiles: The standard extensibility mechanism of UML is

not well-supported by all the tools. Reviewing forums of ATL, Acceleo, MOFscript,

MediniQVT and other tools, it is easy to find dozens of messages with questions and

reporting incidences in the use of UML Profiles. UML is mostly useful when its semantic

is extended with domain specific concepts, defining stereotypes and tagged values, but

after that, it is not easy to work with it. For example, it is common to face unexpected

behaviors, exceptions, and more problems exporting and importing XMI files in different

tools, etc. The same problem was identified in many UML modeling tools, such as

Enterprise Architect.

Performance: What happens when the transformation takes so much time? It is not

clear how a model transformation rule can be optimized because the processing is

completely obscure and hidden.

Development Environment: The development environment has serious limitations. For

example, a typical feature of modern environments for offering the accessible methods

in a class, helping with autocompleting using the “CTRL” key plus the space bar, does not

work. Instead, different methods are shown, even when they do not belong to the

corresponding class or type. Debugging is impossible and exceptions are not very

descriptive.

Complexity: UML is too complex. Also Petre remarked [155] that UML is considered

“unnecessarily complex”. From our humble point of view, it is not only complex in its

notation, but even more in its internal representation. For instance, representing a

sequence diagram with two lifelines and one message from one to another requires

defining at least the following elements:

 a Collaboration

 an Interaction

 two Lifelines

 one property for each Lifeline in the Interaction

 a Message

 a Message reply

 Parameters

214 Difficulties Faced with Model-Driven Approaches

 an Assembly Connector

 two Connector Ends nested in the Assembly Connector

 a Behavior Execution Specification

 four Message Occurrence Specification

 four Events.

This is the most simple sequence diagram. Figure 69 shows the tree representation on

the left and the graphical representation on the right.

For someone trying to process a UML model with a model-transformation language, the

meaning of each element and how to connect them properly in order to represent the

intention should be clear.

If this diagram includes more elements of different kinds, it is easy to imagine that a

transformation so as to build a diagram like this will be very complicated to design and

develop. Another important aspect to considerate is the code maintenance.

FIGURE 69 - EXAMPLE OF A SEQUENCE DIAGRAM

To show how much code is necessary to build a simple model like this one, Figure 70

shows an excerpt of an ATL transformation. The code is explained on the right side of

each section.

215 Difficulties Faced with Model-Driven Approaches

-- @nsURI UML=http://www.eclipse.org/uml2/4.0.0/UML

module example;
create OUT : UML from IN : UML;

lazy rule createSequenceDiagram {
 from ...
 to
 ...
 colaboration : UML!Collaboration(
 name <- 'Collaboration1',
 --package <- ,
 ownedAttribute <- getlinea1,
 ownedAttribute <- getlinea2,
 ownedBehavior <- sequenceD
),
 sequenceD : UML!Interaction(
 name <- 'Interaction1'
),
 getlinea1 : UML!Property(
 name <- 'component_A',
 type <- getType1
),
 getType1 : UML!Class(
 name <- 'component_A'
),
 getlinea2 : UML!Property(
 name <- 'component_B',
 type <- getType2
),
 getType2 : UML!Class(
 name <- 'component_B'
),
 conector1 : UML!Connector(
 end <- conectorEnd1,
 end <- conectorEnd2
),
 conectorEnd1 : UML!ConnectorEnd(
 role <- getlinea1
),
 conectorEnd2 : UML!ConnectorEnd(
 role <- getlinea2
),
 A_lifeline : UML!Lifeline(
 name <- 'component_A',
 interaction <- sequenceD
),
 B_lifeline : UML!Lifeline(
 name <- 'component_B',
 interaction <- sequenceD
),
 bes1 : UML!BehaviorExecutionSpecification(
 covered <- A_lifeline,
 start <- msg1Receive,
 finish <- msgReplySend
),
 msg1Send : UML!MessageOccurrenceSpecification(
 covered <- A_lifeline,
 message <- msg1
),
 msg1Receive : UML!MessageOccurrenceSpecification(
 covered <- A_lifeline,
 message <- msg1reply

Reference to the UML metamodel.

Header of the ATL module
indicating that the input and the
output are UML models.

Collaboration element with the
lifelines as attributes (properties).

Interaction element.

The abovementioned properties to
relate the Collaboration to the
Lifelines.

The connector and the ends.

Lifelines.

Behavior Execution Specification.
This is graphically represented as a
box in the lifeline, to represent the
life of an invocation.

Four message occurrence
specifications. They connect the
messages with the life line in each
extreme.

216 Difficulties Faced with Model-Driven Approaches

),
 msgReplySend : UML!MessageOccurrenceSpecification(
 covered <- B_lifeline,
 message <- msg1reply
),
 msgReplyReceive:UML!MessageOccurrenceSpecification(
 covered <- B_lifeline,
 message <- msg1
),
 bes2 : UML!BehaviorExecutionSpecification(
 covered <- B_lifeline,
 start <- msg1Receive,
 finish <- msg2Ocurr
),
 msg1: UML!Message(
 name <- 'message_1',
 receiveEvent <- msg1Receive,
 sendEvent <- msg1Send,
 connector <- conector1,
-- signature <- operation
)
 msg1reply: UML!Message(
 name <- 'message_1',
 receiveEvent <- msgReplyReceive,
 sendEvent <- msgReplySend,
 connector <- conector1,
 messageSort <- #reply
-- signature <- operation
)
 do {
 sequenceD.lifeline <- A_lifeline;
 sequenceD.lifeline <- B_lifeline;
 A_lifeline.represents <- getlinea1;
 B_lifeline.represents <- getlinea2;
 sequenceD.ownedConnector <- conector1;
 sequenceD.ownedConnector <- conector2;
 sequenceD.fragment <- bes1;
 sequenceD.fragment <- bes2;
 sequenceD.message <- msg1;
 sequenceD.message <- msg1reply;
 sequenceD.nestedClassifier <- getType1;
 sequenceD.nestedClassifier <- getType2;
 }
}

The Message elements, first the
invocation and then the response.
It is connected with the
corresponding message occurrence
specifications and the connector. It
should be linked to the
represented operation.

These lines in the “do” section
were required to be there because
(and it is difficult to find out why) if
they are in the declarative section
they just do not work as supposed.
The main problem with this kind of
things is that the debugger does
not help, and these kinds of
solutions are found by trying
something without explanation.

FIGURE 70 - ATL CODE TO GENERATE A SIMPLE SEQUENCE DIAGRAM

The code in the “do” section is imperative, and in the “form” and “to” sections is

declarative. In the “do” section there is typically code for operations that are too

complicated to be declarative, giving the language more power. This also indicates that

the declarative approach is not considered the best even for the providers of the model-

to-model transformation engine. Do not forget that the presented example corresponds

to the simplest possible diagram, and it required two pages of code.

In addition, Table 36 shows some common transformations that from our point of view

are not easy to understand, maintain and develop.

217 Difficulties Faced with Model-Driven Approaches

TABLE 36 - COMMON ATL TRANSFORMATIONS

Code Explanation

operation:UML!Operation(
 name <- 'confirm',
 ownedParameter <- source.attribute-
>iterate(p;
 r : Sequence(UML!Property)=Sequence{} |
 if not p.type.oclIsTypeOf(UML!Class)
 and not p.hasStereotype('X')
 then
 r->including(thisModule.attr2Param(p))
 else r
 endif
)
),
lazy rule attr2Param {
 from source : UML!Property
 to
 dest : UML!Parameter (
 name <- source.name,
 type <- source.type,
 lower <- source.lower,
 upper <- source.upper
 ...
)
}

A new Operation is created with certain
parameters, according to the attributes in a
class. For this there is an iteration that it is
initialized empty and then the parameters are
included only for those attributes that are not
a type of “Class” and do not have the
stereotype “X”. There is then a method to
generate a Parameter for each Attribute.
The code is very complex and not easy to
understand.

helper def : var1: UML!Lifeline = OclUndefined;
helper def : counter: Integer = 0;

Many times it is necessary to define
something equivalent to global variables in
order to share information between different
rules that are executed in a non-deterministic
order. This is considered bad practice in any
programming language.

helper def : getStereotype(name : String) :
UML!Stereotype = UML!Stereotype.allInstances() ->
select(p | p.name = name)->first();
helper def : getVerdictType() :
UML!Enumeration = UML!Enumeration.allInstances()->
select(p | p.name = 'Verdict')->first();

It is necessary to use this kind of method in
order to add specific semantics to the
elements of the model. So, the types used in
the transformation are given as strings.
Something similar happens with “Verdict”
which is a literal from an enumeration. This
manipulation is not safe and is error prone.

helper def : getCollectionFrom1to(i:Integer) :
Collection(Integer) =
 if i>1 then
 thisModule.getCollectionFrom1to(i-1)-
>including(i)
 else
 Sequence{1}
 endif;

Some basic functionality like the creation of a
collection of integers in a certain rage is not
provided by the engine. So, it was necessary
to build this helper to return a collection of
integers from one to the number given as a
parameter.

For us, these tasks are not easier than programming the code in Java or C#, storing the

model in an XML file or even in a database model. Also, programming skills are required

for this kind of task. Allowing the programmer to work in a popular and well-known

environment is perhaps a better option.

Graphical Representation: One of the motivations for users selecting these approaches

instead of starting from scratch is that there are modeling tools to edit the models

graphically, and the semantic of UML models can be extended using UML Profiles. The

218 Difficulties Faced with Model-Driven Approaches

problem is that the time saved in these tasks is perhaps lost in dealing with the above

issues.

Advantages of using UML and ATL over programming and modeling in a database:

 Graphical notation and representation (UML tools)

Advantages of programming and modeling in a database over UML and ATL:

 Well-known by programmers

 Better understanding of the code

 Better maintainability of the code

 Better control of integrity

 Easy to share the model with other tools (more implementation required, but it

can work)

Some common problems: Below, some of the most common problems also addressed

in the development of this thesis are listed.

 Modularized metamodel: if the metamodel is defined in different

sections/modules (such as PMM) it is not possible to use ATL. Reported here

http://www.eclipse.org/forums/index.php/m/1100682/

 It is not possible to load a UML and all its characteristics in a graphical model

editor. Here are some of the places where it is reported:

o http://www.eclipse.org/forums/index.php/m/1064693/

o http://www.eclipse.org/forums/index.php/m/1064257/

 In certain circumstances executing a transformation from the Eclipse plug-in

gives different results than executing it from Java code.

 Loading metamodels and profiles in Java code in order to execute a

transformation using them does not always work properly.

 Problems using UML Profiles (specially, applying profiles). See Figure 71.

http://www.eclipse.org/forums/index.php/m/1100682/
http://www.eclipse.org/forums/index.php/m/1064693/
http://www.eclipse.org/forums/index.php/m/1064257/

219 Difficulties Faced with Model-Driven Approaches

Java Stack:

org.eclipse.m2m.atl.engine.emfvm.VMException: Exception during invocation of

operation applyStereotype on org.eclipse.uml2.uml.internal.impl.ClassImpl@1bc1cae

(name: Table, visibility: <unset>) (isLeaf: false, isAbstract: false) (isActive:

false)

...

FIGURE 71 - ONE OF THE MOST COMMON EXCEPTIONS THROWN BY ATL USING UML PROFILES

A1.3. CONCLUSION
To summarize, the author of this thesis is now convinced that it is better to design a

metamodel and its representation, and develop graphical notations and editors, than

model-driven tendencies, at least, until the platform, tools and languages reach a better,

and more mature state. The goal of allowing users without programming skills to

prepare their transformations is still far away.

In the last twenty or thirty years, modeling in software development has been

continuously evolving from non-formal graphic notations (Jackson, OMT, EER, UML),

sometimes computable with author’s metamodels, to the complete representations of

almost any aspect of systems that the most recent versions of UML (and their extension

possibilities) provide. However, the actual practice and use of MD tools is still a little

tedious for the common developer: difficult configuration tasks, a continuing lack of

technical documentation and user manuals, and difficulties in getting valid metamodels

and problems for tool interoperability are the main obstacles for adopting this

technology. However, hopefully soon all research and development efforts will be

reflected in a better and more efficient way to develop software systems.

BIBLIOGRAPHY
[1] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, and D. Roland, “Database reverse

engineering: From requirements to CARE tools,” Autom. Softw. Eng., vol. 3, no. 1–2, pp.

9–45, 1996.

[2] R. B. Grady, “Successfully applying software metrics,” Computer, vol. 27, no. 9, pp. 18 –

25, Sep. 1994.

[3] W. Suryn, A. Abran, and A. April, “ISO/IEC SQuaRE: The second generation of standards

for software product quality,” in 7th IASTED International Conference on Software

Engineering and Applications, 2003.

[4] G. Myers, The Art of Software Testing. John Wiley & Son. Inc., 2004.

[5] E. G. Kent Beck, “JUnit,” 1997. [Online]. Available: http://www.junit.org.

[6] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A survey on model-

based testing approaches: a systematic review,” 2007, pp. 31–36.

[7] R. McTaggart, “Principles for participatory action research,” Adult Educ. Q., vol. 41, no. 3,

pp. 168–187, 1991.

[8] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen, “Action research,” Commun. ACM,

vol. 42, no. 1, pp. 94–97, 1999.

[9] Y. Wadsworth, What is participatory action research? Action Research Issues

Association, 1993.

[10] OMG, “Model Driven Architecture (MDA).” [Online]. Available:

http://www.omg.org/mda/.

[11] OMG, “Unified Modeling Language,” 1997. [Online]. Available: http://www.uml.org/.

[12] OMG, “XMI.” [Online]. Available: http://www.omg.org/spec/XMI/.

[13] OMG, “Meta object facility (MOF).” [Online]. Available: http://www.omg.org/mof/.

[14] J. Miller, J. Mukerji, and others, “MDA Guide Version 1.0. 1,” Object Manag. Group, vol.

234, p. 51, 2003.

[15] M. Utting and B. Legeard, Practical model-based testing: a tools approach. Morgan

Kaufmann, 2010.

[16] OMG, “Meta Object Facility 2.0 Query/View/Transformation Specification,” 2005.

[17] OMG, “MOF Model to Text Transformation Language (MOFM2T), 1.0,” 2008.

[18] “MediniQVT.” [Online]. Available: http://projects.ikv.de/qvt. [Accessed: 19-Jan-2013].

[19] OBEO and AtlanMod, “ATL: ATLAS Transformation Language,” 2012. [Online].

Available: http://www.eclipse.org/atl/.

[20] “MOFScript.” [Online]. Available: http://www.eclipse.org/gmt/mofscript/.

[21] “Acceleo.” [Online]. Available: http://www.eclipse.org/acceleo/. [Accessed: 15-Jan-2013].

[22] OMG, “SysML specification,” 2006. [Online]. Available: http://www.omgsysml.org/.

[23] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the systems

modeling language. Access Online via Elsevier, 2011.

222 Bibliography

[24] T. Weilkiens, Systems engineering with SysML/UML: modeling, analysis, design. Morgan

Kaufmann, 2011.

[25] “ab/05-12-02 - Information Management Metamodel (IMM) RFP.” OMG, 2005.

[26] A. De Lucia, C. Gravino, R. Oliveto, and G. Tortora, “An experimental comparison of ER

and UML class diagrams for data modelling,” Empir. Softw. Eng., vol. 15, pp. 455–492,

2010.

[27] G. Bavota, C. Gravino, R. Oliveto, A. D. Lucia, G. Tortora, M. Genero, and J. A. Cruz-

Lemus, “Identifying the Weaknesses of UML Class Diagrams during Data Model

Comprehension.,” presented at the MoDELS, 2011, pp. 168–182.

[28] E. Marcos, B. Vela, and J. M. Cavero, “A methodological approach for object-relational

database design using UML,” Softw. Syst. Model., vol. 2, pp. 59–72, 2003.

[29] S. W. Ambler, “A UML profile for data modeling,” 2009.

[30] M. Polo, I. García-Rodríguez, and M. Piattini, “An MDA-based approach for database re-

engineering,” J. Softw. Maint. Evol. Res. Pract., vol. 19, pp. 383–417, 2007.

[31] G. Sparks, “Database modeling in UML,” Methods & Tools, pp. 10–22, 2001.

[32] D. Gornik, “UML Data Modeling Profile,” IBM, Rational Software, 2002.

[33] T. Isakowitz, A. Kamis, and M. Koufaris, “Extending the capabilities of RMM: Russian

Dolls and Hypertext,” in System Sciences, 1997, Proceedings of the Thirtieth Hawaii

International Conference on, 1997, vol. 6, pp. 177–186.

[34] J. Gómez, C. Cachero, and O. Pastor, “Conceptual modeling of device-independent web

applications,” Multimed. IEEE, vol. 8, no. 2, pp. 26–39, 2001.

[35] D. Schwabe, R. Mattos Guimaraes, and G. Rossi, “Cohesive design of personalized web

applications,” Internet Comput. IEEE, vol. 6, no. 2, pp. 34–43, 2002.

[36] S. Ceri, P. Fraternali, and A. Bongio, “Web Modeling Language (WebML): a modeling

language for designing Web sites,” Comput. Netw., vol. 33, no. 1, pp. 137–157, 2000.

[37] J. Conallen, Building Web applications with UML. Addison-Wesley Longman Publishing

Co., Inc., 2002.

[38] OMG, “Object Constraint Language,” 2000. [Online]. Available:

http://www.omg.org/spec/OCL/2.0/.

[39] T. Halpin, “Augmenting UML with Fact-orientation,” 2001, p. 10 pp.

[40] S. Shah, K. Anastasakis, and B. Bordbar, “From UML to Alloy and back again,” Models

Softw. Eng., pp. 158–171, 2010.

[41] S. Khurshid and D. Marinov, “TestEra: Specification-based testing of Java programs using

SAT,” Autom. Softw. Eng., vol. 11, no. 4, pp. 403–434, 2004.

[42] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid, “Query-aware test generation

using a relational constraint solver,” 2008, pp. 238–247.

[43] D. Jackson, I. Schechter, and I. Shlyakhter, “ALCOA: The Alloy constraint analyzer,”

2000, pp. 730–733.

[44] J. M. Spivey, The Z notation: a reference manual. Prentice Hall International (UK) Ltd.,

1992.

[45] OMG, “MARTE Specification,” 2004. [Online]. Available: http://www.omgmarte.org/.

223 Bibliography

[46] S. Gilmore, L. Gönczy, N. Koch, P. Mayer, M. Tribastone, and D. Varró, “Non-functional

properties in the model-driven development of service-oriented systems,” Softw. Syst.

Model., vol. 10, no. 3, pp. 287–311, 2011.

[47] A. Bertolino, A. Calabrò, F. Lonetti, and A. Sabetta, “GLIMPSE: a generic and flexible

monitoring infrastructure,” in Proceedings of the 13th European Workshop on Dependable

Computing, 2011, pp. 73–78.

[48] A. Di Marco, C. Pompilio, A. Bertolino, A. Calabrò, F. Lonetti, and A. Sabetta, “Yet

another meta-model to specify non-functional properties,” in Proceedings of the

International Workshop on Quality Assurance for Service-Based Applications, 2011, pp.

9–16.

[49] A. Bertolino, A. Calabrò, F. Lonetti, A. Di Marco, and A. Sabetta, “Towards a model-

driven infrastructure for runtime monitoring,” in Software Engineering for Resilient

Systems, Springer, 2011, pp. 130–144.

[50] A. Abran and P. Bourque, SWEBOK: Guide to the software engineering Body of

Knowledge. IEEE Computer Society, 2004.

[51] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,” 1990.

[52] P. Baker, Z. R. Dai, J. Grabowski, O. Haugen, I. Schieferdecker, and C. Williams, Model-

Driven Testing: Using the UML Testing Profile. Springer-Verlag New York, Inc., 2007.

[53] OMG, “UML 2.0 Testing Profile Specification,” 2004. [Online]. Available:

http://utp.omg.org/.

[54] S. Bukhari and T. Waheed, “Model driven transformation between design models to

system test models using UML: a survey,” in Proceedings of the 2010 National Software

Engineering Conference, 2010, p. 8.

[55] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker, A. Wiles, and C. Willcock, “An

introduction to the testing and test control notation (TTCN-3),” Comput. Netw., vol. 42, no.

3, pp. 375–403, 2003.

[56] J. Grabowski, A. Wiles, C. Willcock, and D. Hogrefe, “On the Design of the New Testing

Language TTCN-3.,” in TestCom, 2000, pp. 161–176.

[57] I. Schieferdecker, Z. R. Dai, J. Grabowski, and A. Rennoch, “The UML 2.0 testing profile

and its relation to TTCN-3,” in Testing of Communicating Systems, Springer, 2003, pp.

79–94.

[58] J. Zander, Z. R. Dai, I. Schieferdecker, and G. Din, “From U2TP models to executable

tests with TTCN-3-an approach to model driven testing,” in Testing of Communicating

Systems, Springer, 2005, pp. 289–303.

[59] J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea, Performance testing guidance for

web applications: patterns & practices. Microsoft Press, 2007.

[60] B. C. Kitchenham, “Guidelines for performing systematic literature reviews in software

engineering,” Sch. Softw. Eng. Group, vol. 2, p. 1051, 2007.

[61] L. Zhu, N. B. Bui, Y. Liu, and I. Gorton, “MDABench: Customized benchmark generation

using {MDA},” J. Syst. Softw., vol. 80, no. 2, pp. 265 – 282, 2007.

[62] L. Zhu, Y. Liu, I. Gorton, and N. B. Bui, “MDAbench: a tool for customized benchmark

generation using MDA,” in Companion to the 20th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, 2005, pp. 171–172.

224 Bibliography

[63] Y. Cai, J. Grundy, and J. Hosking, “Experiences Integrating and Scaling a Performance

Test Bed Generator with an Open Source CASE Tool,” presented at the ASE, 2004, pp.

36–45.

[64] A. Bertolino, G. De Angelis, L. Frantzen, and A. Polini, “Model-based generation of

testbeds for web services,” in Testing of Software and Communicating Systems, Springer,

2008, pp. 266–282.

[65] Z. Liu, N. Niclausse, and C. Jalpa-Villanueva, “Traffic model and performance evaluation

of web servers,” Perform. Eval., vol. 46, no. 2, pp. 77–100, 2001.

[66] F. M. de Oliveira, R. da S. Menna, H. V. Vieira, and D. Ruiz, “Performance testing from

UML models with resource descriptions,” in 1st Brazilian Workshop on Systematic and

Automated Software Testing, 2007.

[67] M. da Silveira, E. Rodrigues, A. Zorzo, L. Costa, H. Vieira, and F. Oliveira, “Generation

of Scripts for Performance Testing Based on UML Models,” in SEKE, 2011, pp. 258–263.

[68] HP Mercury, “LoadRunner,” 2001. [Online]. Available:

http://www8.hp.com/us/en/software-solutions/software.html?compURI=1175451.

[69] V. Garousi, L. C. Briand, and Y. Labiche, “Traffic-aware stress testing of distributed

systems based on UML models,” in ICSE, New York, NY, USA, 2006, pp. 391–400.

[70] D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A synthetic workload generation

technique for stress testing session-based systems,” Softw. Eng. IEEE Trans. On, vol. 32,

no. 11, pp. 868–882, 2006.

[71] HP, “httperf,” 2005. [Online]. Available: http://www.hpl.hp.com/research/linux/httperf/.

[72] F. Abbors, T. Ahmad, D. Truscan, and I. Porres, “MBPeT: A Model-Based Performance

Testing Tool,” in VALID 2012, The Fourth International Conference on Advances in

System Testing and Validation Lifecycle, 2012, pp. 1–8.

[73] F. Abbors, T. Ahmad, D. Truscan, and I. Porres, “Model-based performance testing in the

cloud using the mbpet tool,” in Proceedings of the ACM/SPEC international conference on

International conference on performance engineering, 2013, pp. 423–424.

[74] T. Ahmad, F. Abbors, D. Truscan, and I. Porres, Model-Based Performance Testing Using

the MBPeT Tool. Turku Centre for Computer Science, 2013.

[75] X. Guo, X. Qiu, Y. Chen, and F. Tang, “Design and implementation of performance

testing model for web services,” in Informatics in Control, Automation and Robotics

(CAR), 2010 2nd International Asia Conference on, 2010, vol. 1, pp. 353–356.

[76] B. A. Pozin and I. V. Galakhov, “Models in performance testing,” Program. Comput.

Softw., vol. 37, no. 1, pp. 15–25, 2011.

[77] A. J. Bennett and A. J. Field, “Performance engineering with the UML profile for

schedulability, performance and time: a case study,” in Modeling, Analysis, and Simulation

of Computer and Telecommunications Systems, 2004.(MASCOTS 2004). Proceedings. The

IEEE Computer Society’s 12th Annual International Symposium on, 2004, pp. 67–75.

[78] C. U. Smith and L. G. Williams, “Performance engineering evaluation of object-oriented

systems with SPE· ED TM,” in Computer Performance Evaluation Modelling Techniques

and Tools, Springer, 1997, pp. 135–154.

225 Bibliography

[79] C. U. Smith, C. M. Lladó, and R. Puigjaner, “Performance Model Interchange Format

(PMIF 2): A comprehensive approach to Queueing Network Model interoperability,”

Perform. Eval., vol. 67, no. 7, pp. 548 – 568, 2010.

[80] C. U. Smith and C. M. Llado, “Performance model interchange format (PMIF 2.0): XML

definition and implementation,” in Quantitative Evaluation of Systems, 2004. QEST 2004.

Proceedings. First International Conference on the, 2004, pp. 38–47.

[81] C. U. Smith and L. G. Williams, “A performance model interchange format,” J. Syst.

Softw., vol. 49, no. 1, pp. 63–80, 1999.

[82] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-based performance

prediction in software development: A survey,” Softw. Eng. IEEE Trans. On, vol. 30, no.

5, pp. 295–310, 2004.

[83] H. Koziolek, “Performance evaluation of component-based software systems: A survey,”

Perform. Eval., vol. 67, no. 8, pp. 634–658, 2010.

[84] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based testing for non-

functional system properties,” Inf. Softw. Technol., vol. 51, no. 6, pp. 957–976, 2009.

[85] P. McMinn, “Search based software test data generation: a survey,” Softw. Test.

Verification Reliab., vol. 14, pp. 105–156, 2004.

[86] F. Toledo, F. Lonetti, A. Bertolino, M. Polo Usaola, and B. Pérez Lamancha, “Extending

the Non-Functional Modeling of UML-TP,” Pisa, Italy, Dec. 2013.

[87] Apache, “JMeter,” 2001. [Online]. Available: http://jmeter.apache.org/. [Accessed: 06-

Mar-2013].

[88] K. H. Davis and P. H. Aiken, “Data Reverse Engineering: A Historical Survey,” in

Proceedings of the Seventh Working Conference on Reverse Engineering (WCRE’00),

Washington, DC, USA, 2000, p. 70–.

[89] G. CanforaHarman and M. Di Penta, “New frontiers of reverse engineering,” in 2007

Future of Software Engineering, 2007, pp. 326–341.

[90] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design recovery: A taxonomy,”

Softw. IEEE, vol. 7, no. 1, pp. 13–17, 1990.

[91] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse engineering of graphical

user interfaces for testing,” in Proceedings of the 10th Working Conference on Reverse

Engineering, 2003, pp. 260–269.

[92] C. Bellettini, A. Marchetto, and A. Trentini, “WebUml: reverse engineering of web

applications,” in Proceedings of the 2004 ACM symposium on Applied computing, 2004,

pp. 1662–1669.

[93] F. Ricca and P. Tonella, “Building a tool for the analysis and testing of web applications:

Problems and solutions,” in Tools and Algorithms for the Construction and Analysis of

Systems, Springer, 2001, pp. 373–388.

[94] D. C. Kung, C.-H. Liu, and P. Hsia, “An object-oriented web test model for testing web

applications,” in Quality Software, 2000. Proceedings. First Asia-Pacific Conference on,

2000, pp. 111–120.

[95] G. A. Di Lucca, A. R. Fasolino, F. Faralli, and U. De Carlini, “Testing web applications,”

in Software Maintenance, 2002. Proceedings. International Conference on, 2002, pp. 310–

319.

226 Bibliography

[96] I. Jacobson, G. Booch, and J. E. Rumbaugh, The unified software development process-the

complete guide to the unified process from the original designers. Addison-Wesley, 1999.

[97] P. Baker, Z. R. Dai, J. Grabowski, O. Haugen, S. Lucio, E. Samuelsson, I. Schieferdecker,

and C. E. Williams, “The UML 2.0 testing profile,” 2004, pp. 181–189.

[98] R. S. Pressman, Software Engineering: A Practitionerʼs Approach, 7/e. 2009.

[99] M. Fewster and D. Graham, Software test automation: effective use of test execution tools.

ACM Press/Addison-Wesley Publishing Co., 1999.

[100] M. Polo, S. Tendero, and M. Piattini, “Integrating techniques and tools for testing

automation,” Softw. Test. Verification Reliab., vol. 17, pp. 3–39, 2007.

[101] C. Poole, “Nunit,” 2002. [Online]. Available: http://www.nunit.org. [Accessed: 01-Jan-

2003].

[102] J. Huggins, “Selenium,” 2004. [Online]. Available: http://seleniumhq.org/. [Accessed: 06-

Mar-2013].

[103] T. Koomen, L. van der Aalst, B. Broekman, and M. Vroon, TMap Next, for result-driven

testing. UTN Publishers, 2006.

[104] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies: A survey,” Softw.

Test. Verification Reliab., vol. 15, pp. 167–199, 2005.

[105] M. Polo Usaola and B. Pérez Lamancha, “A framework and a web implementation for

combinatorial testing.”

[106] G. Vázquez, M. Reina, F. Toledo, S. de Uvarow, E. Greisin, and H. López, “Metodología

de Pruebas de Performance,” presented at the JCC, 2008.

[107] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test data from state‐based

specifications,” Softw. Test. Verification Reliab., vol. 13, pp. 25–53, 2003.

[108] Cornett, “Code Coverage Analysis,” 2004. [Online]. Available:

www.bullseye.com/coverage.html. [Accessed: 01-Jan-2012].

[109] D. Cohen, I. C. Society, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG

System: An Approach to Testing Based on Combinatorial Design,” IEEE Trans. Softw.

Eng., vol. 23, pp. 437–444, 1997.

[110] Y. Lei and K. C. Tai, “In-parameter-order: a test generation strategy for pairwise testing,”

in High-Assurance Systems Engineering Symposium, 1998. Proceedings. Third IEEE

International, 1998, pp. 254 –261.

[111] A. Andrews, R. France, S. Ghosh, and G. Craig, “Test adequacy criteria for UML design

models,” Softw. Test. Verification Reliab., vol. 13, pp. 95–127, 2003.

[112] J. Tuya, M. J. Suárez-Cabal, and C. De La Riva, “Full predicate coverage for testing SQL

database queries,” Softw. Test. Verification Reliab., vol. 20, pp. 237–288, 2010.

[113] K. Haller, “White-box testing for database-driven applications: A requirements analysis,”

2009, p. 13.

[114] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation for database

applications,” presented at the ISSTA’07: Software Testing and Analysis, 2007, pp. 151–

162.

[115] A. Arasu, R. Kaushik, and J. Li, “Data generation using declarative constraints,” presented

at the International conference on Management of data, 2011, pp. 685–696.

227 Bibliography

[116] D. Chays and Y. Deng, “Demonstration of AGENDA tool set for testing relational

database applications,” 2003, pp. 802–803.

[117] A. Neufeld, G. Moerkotte, and P. C. Loekemann, “Generating consistent test data:

Restricting the search space by a generator formula,” VLDB J., vol. 2, pp. 173–213, 1993.

[118] E. Song, S. Yin, and I. Ray, “Using UML to model relational database operations,”

Comput. Stand. Interfaces, vol. 29, pp. 343–354, 2007.

[119] E. J. Naiburg and R. A. Maksimchuck, UML for database design. Addison-Wesley

Professional, 2001.

[120] K. Zieliński and T. Szmuc, Software engineering: evolution and emerging technologies,

vol. 130. IOS Press, 2005.

[121] “UML SDK.” [Online]. Available: http://www.eclipse.org/modeling/mdt/?project=uml2.

[122] J. F. Terwilliger, L. M. Delcambre, and J. Logan, “Querying through a user interface,”

Data Knowl. Eng., vol. 63, no. 3, pp. 774–794, 2007.

[123] P. Santos-Neto, R. Resende, and C. Pádua, “Requirements for information systems model-

based testing,” in Proceedings of the 2007 ACM symposium on Applied computing, 2007,

pp. 1409–1415.

[124] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the

practicing programmer,” Computer, vol. 11, pp. 34–41, 1978.

[125] A. Bertolino, “Software Testing Research: Achievements, Challenges, Dreams,” presented

at the Future of Software Engineering, 2007. FOSE ’07, 23, pp. 85–103.

[126] G. M. Kapfhammer and M. L. Soffa, “A family of test adequacy criteria for database-

driven applications,” presented at the ESEC/FSE-11: European Software Engineering

Conference, 2003, vol. 28, pp. 98–107.

[127] B. Pérez Lamancha, P. Reales Mateo, M. Polo Usaola, and D. Caivano, “Model-driven

Testing - Transformations from Test Models to Test Code,” presented at the ENASE,

conf/enase/LamanchaMPC11, 2011, pp. 121–130.

[128] D. Xu, “A tool for automated test code generation from high-level Petri nets,” Appl.

Theory Petri Nets, pp. 308–317, 2011.

[129] M. J. Suárez-Cabal, C. De La Riva, and J. Tuya, “Populating test databases for testing SQL

queries,” IEEE Lat. Am. Trans., vol. 8, pp. 164–171, 2010.

[130] S. A. Khalek and S. Khurshid, “Systematic testing of database engines using a relational

constraint solver,” 2011, pp. 50–59.

[131] C. Tadros and L. Wiese, Using SAT-solvers to compute inference-proof database

instances, vol. 5939 LNCS. 2010.

[132] D. Graham and M. Fewster, Experiences of Test Automation: Case Studies of Software

Test Automation. Addison-Wesley Professional, 2012.

[133] F. Toledo, M. Reina, F. Baptista, M. Polo Usaola, and B. Pérez Lamancha, “From

Functional Test Scripts to Performance Test Scripts for Web Systems,” in SEM 2013,

Angers, France, 2013, pp. 12–20.

[134] “Papyrus,” 2010. [Online]. Available: http://www.eclipse.org/papyrus/.

[135] IBM, “Rational Software Architect,” 1990. [Online]. Available: http://www-

03.ibm.com/software/products/es/es/ratisoftarch/.

228 Bibliography

[136] F. Toledo, M. Reina, F. Baptista, and S. Grattarola, “GXtest online user manual.” [Online].

Available: http://gxtest.abstracta.com.uy.

[137] I. de S. Santos, A. R. Santos, and P. de A. dos S. Neto, “Reusing Functional Testing in

order to Decrease Performance and Stress Testing Costs,” in SEKE, 2011, pp. 470–474.

[138] M. Polo Usaola, F. Toledo, and B. Pérez Lamancha, “A language for the automated

addition of oracle to combinatorial test cases,” IEEE Software (sent).

[139] F. Toledo, M. Reina, F. Baptista, S. Grattarola, M. Polo Usaola, and B. Pérez Lamancha,

“Generación de Pruebas a Partir de Modelos de Datos en Entornos Generadores de

Código,” submitted.

[140] F. Toledo, B. Pérez Lamancha, and M. Polo Usaola, “Utilización de MDE para la Prueba

de Sistemas de Información Web,” Novatica Rev. Asoc. Téc. Informática, vol. 224, pp. 33–

39, Jul. 2013.

[141] F. Toledo, M. Reina, F. Baptista, B. Pérez Lamancha, and M. Polo Usaola, “Automated

Generation of Performance Test Cases from Functional Tests for Web Applications,” in

Evaluation of Novel Approaches to Software Engineering, Springer-Verlag, 2013.

[142] F. Toledo, F. Lonetti, A. Bertolino, M. Polo Usaola, and B. Pérez Lamancha, “Extended

UML Testing Profile for Improving Non-Functional Test Modeling,” presented at the 2nd

International Conference on Model-Driven Engineering and Software Development

(MODELSWARD’14), Lisbon, Portugal, 2014.

[143] F. Toledo, B. Pérez Lamancha, and M. Polo Usaola, “Towards a Framework for

Information System Testing - A model-driven testing approach,” presented at the ICSOFT,

2012.

[144] F. Toledo, B. Pérez Lamancha, and M. Polo Usaola, “Data model centered test case

desing. A model-driven approach,” presented at the VALID, 2012.

[145] F. Toledo, B. Pérez Lamancha, and M. Polo Usaola, “Test case generation for information

systems using reverse engineering techniques,” presented at the Information Systems and

Technologies (CISTI), 2012 7th Iberian Conference on, 20, pp. 354–359.

[146] G. Vázquez, M. Reina, F. Toledo, S. de Uvarow, E. Greisin, and H. López, “Metodología

de Testing de Performance,” presented at the 5ta Edición del SEPGLA (Software

Engineering Process Group Latin America)., Mar del Plata, Argentina, 2008.

[147] F. Toledo, M. Reina, F. Baptista, M. Polo Usaola, and B. Pérez Lamancha, “Generación de

Pruebas de Rendimiento a partir de Pruebas Funcionales para Sistemas Web,” presented at

the Jornadas de Ingeniería del Software y Bases de Datos (JISBD)., Madrid, Spain, 2013.

[148] F. Toledo, M. Polo Usaola, and B. Pérez Lamancha, “Enfoque dirigido por modelos para

probar Sistemas de Información con Bases de Datos,” presented at the Jornadas de

Ingeniería del Software y Bases de Datos (JISBD)., Almería, Spain, 2012, pp. 315–328.

[149] F. Toledo, B. Pérez Lamancha, and M. Polo Usaola, “Técnicas de prueba basadas en

modelos para Procesos de Negocio,” 2011.

[150] F. Toledo, M. Reina, S. de Uvarow, H. López, G. Vazquez, and E. Greisin, “Metodología

para Pruebas de Performance (Reporte Técnico),” Universidad de la República,

Montevideo, Uruguay, 0797–6410-RT 08-20.

[151] F. Toledo, M. Polo Usaola, and B. Pérez Lamancha, “Tutorial de Pruebas de

Rendimiento,” presented at the Jornadas de Ingeniería del Software y Bases de Datos

(JISBD)., Almería, Spain, 17-Sep-2012.

229 Bibliography

[152] F. Toledo, “Curso de Pruebas de Rendimiento,” presented at the 8 th Jornadas de Calidad y

Testing de Software, expoQA., Madrid, Spain, 04-Jun-2012.

[153] F. Toledo, M. Reina, and F. Baptista, “Generating test cases with the same abstraction

level of 4th generation environments,” presented at the User Conference on Advanced

Automated Testing, Paris, France, 22-Oct-2013.

[154] S. Bauersfeld and T. E. Vos, “Advanced Monkey Testing for Real-World Applications.”

[155] M. Petre, “UML in practice,” in Proceedings of the 2013 International Conference on

Software Engineering, 2013, pp. 722–731.

