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Abstract Espanol

El presente trabajo realiza una discusién y comparacion de diferentes enfoques
y redes neuronales para la clasificacién de secuencias, en un contexto de deteccion
de ataques en servicios web.

El primer enfoque para la deteccion de ataques mediante clasificacién de logs
es la creacion de modelos de clasificacion basados en caracteres. El segundo en-
foque parte de la creacion de modelos de lenguaje que predicen la probabilidad del
siguiente caracter en una secuencia, que en conjunto con una técnica de calculo de
umbrales para las probabilidades, clasifican los logs para detectar ataques.

Estos enfoques fueron trabajados con redes neuronales de tipo LSTM, comunes
en el procesamiento de secuencias, asi también como con redes neuronales Trans-
former. Las redes Transformer han tenido muy buenos resultados en sistemas
de traduccion de maquina y problemas similares en cuanto a procesamiento de
lenguaje natural, pero no ha sido explorado su uso en detecciéon de ataques en
base a logs.

Para presentar las comparaciones de enfoques y redes neuronales, se realizé
un analisis del estado del arte, de los enfoques a aplicar y se realizaron multi-
ples experimentos. Estos experimentos implicaron el desarrollo de codigos para el
analisis, transformacion y preparacion de los data sets, asi como el entrenamiento
y evaluacion de los modelos y clasificaciones.

Finalmente se plantean conclusiones sobre el uso de cada enfoque y red neu-
ronal, asi como el planteo de futuros trabajos que puedan mejorar y responder
cuestiones encontradas en el proyecto.



Abstract

This work discusses and compares different approaches and neural networks
for sequence classification, in a context of attack detection in web services.

The first approach to attack detection with log classification is to create character-
based classification models. The second approach is based on the creation of lan-
guage models that predict the probability of the next character in a sequence,
which, together with a probability threshold calculation technique, classify the
logs to detect attacks.

These approaches were worked with LSTM neural networks, common in se-
quence processing, as well as with Transformer neural networks. Transformer
networks have had very good results on machine translation systems and similar
natural language processing problems, but their use in weblogs attack detection
has not been explored.

To present the comparisons of approaches and neural networks, an analysis of
the state of the art and the approaches to be applied was carried out, in addition
to multiple experiments. These experiments involved the development of codes
for the analysis, transformation and preparation of the data sets, as well as the
training and evaluation of the models and classifications.

Finally, conclusions are drawn about the use of each approach and neural
network, as well as the proposal of future works that can improve and answer
questions found in the project.
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1 Introduction

Sequence classification is a common technique used in information security to
classify logs and detect attacks or unusual behaviours. Nowadays it is common
to implement sequence classification with machine learning systems that can be
updated and improved throughout time with new data.

There are some works, like [1] and [2], that use Recurrent Neural Networks
[B] and, in particular, Long short-term memory [4] (LSTM) like in the second
case, to implement intrusion detection systems based on classifying sequences.
These neural network implementations have proven to be better than traditional
machine learning models in most cases. There are other works, like [5], that use
Convolutional Neural Networks [6] at character-level with the same purpose of
classifying sequences as malicious web requests with good results.

In this thesis we will be discussing and evaluating different methods relying on
character-level sequence classification using neural networks models, as the state
of the art suggests that they perform better than other techniques. These methods
involve two approaches to classifying sequences. The first one consists in training
a classifier, that is, a network that outputs the probability of a sequence to be an
attack. The second one seeks training a language model [[7] which produces next-
character probabilities. In this case, the classification is done by comparing the
probability of the whole sequence (product of next-symbol probabilities) with an
appropriate threshold. For each approach, the models are built using two different
kinds of neural networks: LSTM and Transformer [8]. In order to experiment
and evaluate, these methods will be applied to detecting attacks to web services
by analyzing weblogs. For this, two known data sets will be used. Each line of a
weblog will be treated as a character sequence and classified as attack or no-attack.

It is worth to mention that the language model approach has not been previ-
ously applied for attack detection, as well as the use of LSTM at character level.



The same observation holds for Transformers. These methods and neural networks
will be compared in terms of classification performance, complexity, training time
and ease of tuning.

The work carried out in this thesis is also motivated by data privacy, an area
of worldwide interest, where the Al research team at the University is indeed
working on in the context of two research projects funded by ANII. In such projects,
there is a need of reference models trained on non-privatized data to compare
against the performance of other models built on privatized sequences. In this
setting, because of the nature of the ideas explored in those projects that seek
generating privatized data from non-privatized one, it is important to evaluate
language models as they are the basis for building sequence privatizers. That
approach is thoroughly explored in [9], which studied several methods based on
generative sequence-to-sequence neural networks, such as, for example, training
a language model with a differential privacy mechanism to privatize the output
sequence.

The rest of this thesis is organized as follows.

Chapter E Neural networks, presents basic concepts on neural networks that
are brought into discussion on this thesis. It is an introduction to Recurrent Neural
Networks, Long short-term memory and Transformers.

In Chapter B Weblogs Attack Detection, there’s a study of the state of the art
in the context of attack detection. Then, the approaches studied in this thesis are
presented.

Chapter @ Data preparation, describes the data sets and processes needed to
prepare data for experiments.

Chapter B Experimental results, contains the experiments carried on in this
project, as the discussions on the results.

Finally, Chapter B Conclusion and future work, presents the conclusion on the
analysis of the experiments and results. It also provides the basis of future work.



2 Neural networks

2.1 Recurrent neural networks

Recurrent Neural Networks are a family of neural networks specialized in process-
ing sequences of values, as described in [3]. This is not the only way of processing
sequential data, but this specialized neural networks can scale to longer sequences
than non-specialized neural networks.

As the name of this type of network suggests, there are concepts of recurrent
and recursive computation. The idea is to share a state across the layers of the
network, in this case, as the hidden units of the network. This is defined in [3] as
follows:

W = (R, 20;0), (2.1)

The function in equation Ell defines the state recursively (h® depends on
R=1) and with input 2, being ¢ the time or positional index of the sequence.
0 represents the network coefficients (or parameters). This can be visualized in
figure R.1I:

Figure 2.1: Simple unfolded RNN obtained from [3] and describes equation El!
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This recurrent neural network takes the data from input x into the state h, but
it processes it for each time step and feeds the next step until the whole sequence
is processed. This is done for a finite number of steps 7. In this example there is
no output, which in practice it should have some output layer that uses the last
state h to make predictions.

In [3], they propose three main design patterns for recurrent neural networks:

1. RNN with ouputs at each time step and connected hidden units like it is
shown in figure

2. RNN with outputs at each time step that are used as the only input for the
next hidden unit as it can be seen in figure

3. RNN with connected hidden units but with only a single output at the end
like the one in figure P.4.

In figures @, @ and @, o is the output mapped from input x, y is the target
value for input x, L is the loss that measures how different is o from target y.

Figure 2.2: Unfolded RNN with hidden units connected at each step. Figure
obtained from [B].
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Figure 2.3: Unfolded RNN with each step output as the input for the next step
hidden unit. Figure obtained from []

Figure 2.4: Unfolded RNN that only calculates output and loss after the last step.
Figure obtained from [@]
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2.1.1 Long short-term memory

Long short-term memory, or LSTM, is a type of RNN that was first introduced in
[4] as a solution to some issues common RNN have, like gradient vanishing on many
stages. It is explained in [3], that LSTM implements self-loops to produce paths
so that the gradient can prevail for long duration and because of that, it has been
used successfully in applications like handwriting recognition, speech recognition,
machine translation and parsing, between many others. LSTM networks are better
than ordinary RNN in learning long-term dependencies.

outpat

self-loop

input input gate forget gate utput gate

\ /NN

Figure 2.5: LSTM cell. Figure obtained from [3].

Figure @ shows what is commonly named “LSTM cell” or “LSTM unit”.
This cells can be compared to normal RNN hidden state units, with the addition
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that they have an internal recurrence, the self-loop, that with a gate unit system
control the flow of information. On the outer recurrence, this cells are connected
recurrently in the same RNN hidden units are [3].

2.2 Transformers

The Transformer network architecture was presented in 2017 in [§], as a new
simple architecture for sequence modeling and transduction problemas, like lan-
guage modeling and machine translation, that were commonly based on complex
recurrent or convolutional neural networks. They defined it based on attention
mechanisms, without the need of convolutional or recurrent networks.

Output
Probabilities

g )

Add & Norm

Feed
Forward

™\ I Add & Norm |<_:

e 1
SRR Multi-Head
Feed Attention
Forward J) J) Nx
_L
Nx Add & Norm
f—>-| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
L 1t
e J . — )
Positional @_@ 4 Positional
Encoding y Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 2.6: Transformer model architecture. Figure obtained from [g].
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The model architecture can be visualized in figure @ Because it was original
intended for sequence transduction models, it’s architecture is based on an encoder-
decoder structure. The block on the left is the encoder and the block on the right
the decoder. Both of them are composed of the same sub-layers: multi-head
self-attention mechanism and simple, position-wise fully connected feed-forward
network [§].

Attention mechanisms are meant to process sequences focusing on specific parts
of the input at each step [L0]. The multi-head attention proposed in [§] linearly
projects the computations multiple times and perform the attention function in
parallel. The fully connected feed-forward network is applied to each position and
consists of two linear transformations with ReLU activation in between. Because
the model is not based on recurrent or convolutional networks, the information
about positions and order of the tokens in the sequence is given using a positional
encoding in the embedding before the Transformer block.
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3 Weblogs Attack Detection

3.1 State of the art

Throughout the initial investigation, multiple papers and projects related to at-
tack, anomaly or intrusion detection using neural network methods were analyzed.

In “A deep learning approach for intrusion detection using recurrent neural
networks” [[], they explore deep learning based systems for intrusion detection,
proposing one built with RNNs. Intrusion detection is used to identify attacks
in networks and they studied binary classification to detect if there is or isn’t an
attack, as well as multiclass classification. In this case, the input data is in form
of a network record that contains tens of attributes. After some experimental
results they conclude that RNNs perform better than traditional machine learning
classification methods.

Similar to [1], in “Long short term memory recurrent neural network classifier
for intrusion detection” [2], they confirm that the deep learning approach is effec-
tive for this kind of situations using LSTM RNN, by doing performance tests with
optimal hyper-parameters.

LSTM networks were also used in “One-class Collective Anomaly Detection
based on LSTM-RNNs” [[11], in which they treat it as an anomaly detection prob-
lem in networks to distinguish between normal behavior and illegal or malicious
events in network systems. They focus on detecting an anomaly event by con-
sidering data as time-series and at a collective level observing prediction errors
for a sequence of time-steps. Their RNN architecture is principally defined by an
LSTM and the experiments results indicate that the model is capable of detecting
anomalies in an efficient way.
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On all those projects mentioned above, RNNs, and particularly LSTMs, solve
the problem with good performance. They also have in common the way input
data is treated: each register is a matrix of numeric features.

Another anomaly detection project is presented in [12], “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning”, in which they
propose a deep neural network model utilizing a LSTM to model a system log
as a natural language sequence. The objective was to learn patterns from normal
executions and to detect when data deviate from what the model learned from these
patterns. What’s interesting of this work is that log data is viewed as elements of a
sequence that follows patterns and grammar rules. The anomaly detection is done
at a per log entry level instead of usual session level. After an extensive evaluation
on large system logs (HDFS, OpenStack and others), results demonstrated a better
effectiveness compared to previous methods.

A different approach is given in [5], “Malicious web request detection using
character-level CNN”, where data is treated as character-level and instead of using
RNNs, they present a Convolution Neural Network solution for detecting malicious
HTTP web requests. This kind of neural network is commonly used for image
processing, but on this work they build a character-level embedding layer before
the convolution layer to process web requests. They found that this solution has
a better false positive rate than some traditional machine learning models. This
can be attributed to the way the model pays more attention to the relationship
between the characters of a request.

On the same line of character-level processing, there’s CECoR-Net [13]. This
solution for web attack detection combines CNN with LSTM techniques. The
input data are HTTP requests processed by character-level simplifying the pre-
processing. Convolution and pooling operations of CNN record some local features
of the web requests and are then provided to the LSTM. CECoR-Net provides
better results than other CNN models, detecting known featured attacks and also
unknown attacks with higher precision.

All of the works discussed above conclude that neural network solutions perform
better than other traditional machine learning techniques used for this type of
situations. Inspired by that, this project focus on continuing the experimental
investigations on RNN, particularly LSTM, but also comparing with Transformer
neural networks. This kind of network is commonly used for natural language
processing, but not for attack or anomaly detection. The experiments, described
in chapter ff, are done by building LSTM and Transformer architectures in a
character-level way, using them in two approaches that will be described next,
and are different from the ones analyzed in this section.
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One of those approaches was taken into account because of university colleagues
work “Property Checking with Interpretable Error Characterization for Recurrent
Neural Networks” [14]. This paper is about sequence classification using RNNs
but with main focus on property-checking for verifying requirements, using a tool
for learning probably approximately correct deterministic finite automata. One
of the experiments they executed involved an RNN for classifying Hadoop File
System Logs, using the Deeplog dataset of [12]. This RNN was built to predict
the probability distribution of symbols at each position in the sentence of the log.
For a sentence of length L, for every position ¢ € [0, L — 1], the network computes
a probability vector of size equal to the number of symbols in the whole symbols
set. This probability vector contains the predicted probability of each symbol
to be the t-th symbol in the sequence. This kind of RNN can be used together
with a threshold to build a classifier. This inspired the language model approach
described in the next section.

3.2 Approaches

The experiments can be categorized in two approaches:

1. Using classification models. This means that a neural network is trained to
directly classify weblogs.

2. Using Language Models. This means building a language model and finding
thresholds to classify weblogs.

On both approaches, processing is done at a character level on each line of a
weblog. In this way, the models are trained by learning how characters relate with
each other inside a log entry. Every line of a log is parsed to a URI path including
query parameters:

/uri/.../...7paraml=valuel&param2=value?. ..
For example:
/tiendal/publico/pagar. jsp?modo=insertar&precio=4110&B1A=Confirmar

An other aspect on both approaches is that the neural network architecture
is either implemented with LSTM or Transformer on each test. This gives the
opportunity to compare these architectures.

18



The main focus of this work is to compare all these different techniques an
approaches in terms of classification performance, parameters needed, training
time and ease of tuning.

3.2.1 Using classification models

This approach involves training a neural network whose outcome is a probability
vector of size 2, as the classification is either attack or no-attack.

trainedModel (input) -> [prabilityOfNoAttack, probabilityOfAttack]

This probability vector is then used with an argmax function to determine the
class.

argmax ([prability0fNoAttack, probabilityOfAttack]) -> 0 or 1

The architecture of the neural network model is based on LSTM or Transformer
and can be described on a high level with the following layers:

1. Embedding layer

2. LSTM or Transformer related layers

3. Dense layer of output size 2 with a softmax activation function

The input for training is each log line labeled as attack or no-attack.

Note that “LSTM or Transformer related layers” is expanded on each case and
can vary from one experiment to another. Besides the layers, models are trained
with categorical cross-entropy loss function, Adam optimizer as the optimization
algorithm and early stopping as a form of regularization.

Experimental tests for classification models are based on this architecture.

3.2.2 Using language models

This approach is more complex compared to the previous one, because this involves
not only training a model but also finding the best threshold to classify with the
language model.
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The language model built with the neural network training can be seen as a
function that calculates the probability of all other characters in vocabulary as the
next token of each sub-sequence of input log.

For example, if input log is “/example”; the output is a probability vector of
vocabulary size for each sub-sequence:

Sub-sequence “/” -> [probability vector of vocabulary size]

Sub-sequence “/e” -> [probability vector of vocabulary size]

Sub-sequence “/examp” -> [probability vector of vocabulary size]

Sub-sequence “/exampl” -> [probability vector of vocabulary size]

Each probability vector can be queried for the next symbol probability. In the
example above, the second vector is queried by position of character x: having
“/e”, what’s the probability of character ‘c’?.

This function can be named p(s, c), the probability of character ¢ after se-
quence s.

p(s,c) = Plsy = ¢|sg...841] (3.1)

To calculate a single probability for a log line, this function needs to be called
for all sub-sequences. The sub-sequence function can be defined as subseq(1,1),
the sub-sequence of line [ starting at position 0 to position ¢ included.

There are two options to calculate this single probability:
1. Product:

length(line)—2
probability(line) = p(subseq(line, i), + 1) (3.2)

@
Il
o

2. Sum of logarithms:

length(line)—2
probability(line) = Z log(p(subseq(line,i),i+ 1)) (3.3)

=0
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Due to probability vectors being of vocabulary size, each probability value tend
to be small. There’s also the fact that iterations of the sum or the product depend
on the length of the sequence. This makes the probability of option 1, using
product, to be smaller on each multiplication. The threshold search becomes
more difficult and this is improved by using option 2 instead. Option 2, sum of
logarithms, is used in language model experiments.

The architecture of the neural network model is based on LSTM or Transformer
and can be described on a high level with the following layers:

1. Embedding layer
2. LSTM or Transformer related layers

3. Time distributed layer composed of a Dense layer of output size equal to
vocabulary size with a softmax activation function

The input for training is each log line (windowed and padded) and the target
is the same line but shifted one position. For example, for input a b ¢ d, target
isb c d e.

Note that “LSTM or Transformer related layers” is expanded on each case and
can vary from one experiment to another. Besides the layers, models are trained
with categorical cross-entropy loss function, Adam optimizer as the optimization
algorithm and early stopping as a form of regularization.

Experimental tests for language models classification are based on this archi-
tecture.

Because the language model behaviour is to learn if a sequence belongs to the
language, the model must be trained only with one class of data. In this work,
attack logs were used to train the language models.

3.2.2.1 Threshold calculation

The purpose of the threshold is to determine if given the probability of the language
model for some input, it is classified as attack or no-attack.

To find this value, the probabilities of all test inputs are calculated first. With
these probabilities and the correct class of each input, ROC curve is built. ROC
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curve computes true positive rates (TPR) and false positive rates (FPR) for each
threshold that is used to determine one class or the other. In this scenario, what
matters is the threshold that generates the best TPR and FPR, i.e, the TPR that
is closest to 1 and the FPR that is closest to 0.

If 7 is the index of a threshold, this can be represented as the following distance
function:

threshold_distance(i) = \/(fpr[i] — 0)2 + (tpr[i] — 1)2 (3.4)

The previous function must be used with all thresholds 7 and the best threshold
is the one that has the minimum distance. Once the threshold with the minimum
distance is found, it can be used to classify inputs in attack or no-attack.

Because probabilities that language model calculates depend on the sequence
length, as described in equation @, a single threshold for every input might not
be the best solution. To improve this algorithm, the minimum distance and best
threshold is calculated for each input sequence length. This results in a key-value
list, in which each sequence size has a threshold to decide whether an input of that
size is classified as attack or no-attack.

22



4 Data preparation

As stated in section @, two approaches were taken to classify weblogs in attack
or no-attack. Independently of the approach, it was necessary to prepare the data
first, including cleaning, transforming and managing text encoding.

4.1 Data sets

Two data sets were chosen to carry out the experiments:

1. A data set used in [15], which we will refer as “Good and bad queries data
set”.

Attack example:

/javascript/mod.exe

No-attack (normal query) example:

/javascript/forums.xml

This data set contains a total of 1342657 access logs, being 1294531 non-
attack and 48126 attack.

2. A data set used in [16], which we will refer as “CSIC data set”.
Attack example:

GET
http://localhost:8080/tiendal/publico/pagar. jsp?
modo=insertar&precio=4110&B1A=Confirmar HTTP/1.1
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No-attack (normal query) example:

GET
http://localhost:8080/tiendal/publico/carrito.jsp HTTP/1.1

This data set contains a total of 1339776 access logs, being 984000 non-attack
and 355776 attack.

On all of them, the data preparation process removes parts of the weblogs like
host names, http protocol, http verbs and version.

This results in clean data sets containing only the URL path and query param-
eters, e.g., “/tiendal /publico/carrito.jsp”. This helps the rest of the data prepa-
ration process and other processes that come after to remain agnostic to the data
set.

4.2 Text encoding

Before reading and processing the data sets, it was necessary to decide how the
text was going to be encoded. The two approaches to build the weblogs classifiers
are character-based, so, the encoding defines the vocabulary size for our models.

After exploring common alternatives like UTF-8 and ASCII, the most conve-
nient solution was to use ASCII with backslash replace for errors.

The extended ASCII encoding supports 256 values, while UTF-8 supports more
than 1 million values. For the simplicity of experiments and model building, 256 is
a more adequate size for the vocabulary. It also adds the simplicity of converting
character to indices (0-255), and vice versa, using simple Python functions like ord
and chr.

>>> ord('A')
65
>>> chr(65)
IAI

In case the text contains characters that can not be represented by ASCII
characters, the data preparation process replaces them with the backslash repre-
sentation.
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The next simple code gives an example of this transformation.

with open('non-ascii.txt',
mode='r"',
encoding="ascii",
errors="backslashreplace") as f:
for line in f:
print(line)

If a non-ASCII character is present in the file non-ascii.txt, it will fallback to
the backslashreplace handler.

Given the following example that contains an emoji & (non-ASCII character),
the output contains \xf0\x9f\x98\xaf that is the literal UTF-8 backslash repre-
sentation of that non-ASCII character.

Input:

<img class="emoji" alt="®" src="x" />

<svg onload=prompt(document.domain)>

Output:

<img class="emoji" alt="\xfO0\x9f\x98\xaf" src="x" />
<svg onload=prompt(document.domain)>

Using this backslashreplace error handler, the result text in the data set can
be processed in a character-level with the 256 maximum ASCII values. The above
example was taken from “Good and bad queries” data set presented in {.1l.
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4.3 Data sets log lines length

For testing time performance, it was necessary to decrease data sets size and log
lines length. For that purpose, it was convenient to remove the longest lines.

In the figures Ell and @ it is shown that less than 7% of the data for CSIC and
Good and bad queries was longer than 200 characters, resulting in an acceptable
threshold to start filtering long data.

80000 -

60000 -

40000 -

20000

<=200
>200

Figure 4.1: CSIC data length histogram

1e6

14

124

104

0.8 1

0.6 1

0.4

024

00 -

<=200
>200 4

Figure 4.2: Good and bad queries data length histogram

With that filter, the data used in the experiments were lines of logs with less
than 200 characters.
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4.4 Windowing

Using the approach that classifies a web log with a Language Model and a thresh-
old, more information can be added to the model training using windows.

For example, given a sequence “a b ¢ d e £ g” with a window size of 4, it
can be converted to the following 7 sequences:

a
ab
abc
abcd
bcde
cdef
defg

As it can be seen in the example above, there are new sequences that add
information of the relationship of the symbols that form the whole sequence.

This technique is useful, for example, to calculate the probability of the next
symbol given a sequence: “What’s the probability of d given a b ¢?” and “What’s
the probability of e given b ¢ d?”

4.5 Padding

Training neural network models needs that every input has the same length. The
padding technique can be used in case of sequence processing, where inputs are
of different lengths. Zero padding adds the necessary amount of zeroes to make
every input be of a specified length. This is mostly done in two ways, pre-padding
or post-padding.

Pre-padding was used in the experiments, because, as stated in [17], it shows
better results in RNN models.

In the experiments developed in this project, padding was applied with different
lengths depending on the approach. In case of directly classifying a web log in
attack or no-attack, padding was made to the maximum size described in 4.3. On
the other hand, to build the Language Model where windows were applied to the
inputs, padding is done to the windows size.
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For example, the sequence “a b ¢ d e £ g”, would be converted to 7 windows
of size 4 and then padded to length 4 as follows:

Qa0 T M O oo
® & 0 T P OO
Hh 0O Q& 0 T M O
g Hh O Q& O T P
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5 Experimental results

This chapter presents a discussion on how the experiments were built and what
were the results obtained.

5.1 Technical aspects

The experiments were carried out with the following technical characteristics:
o Code was developed with Python 3.7.6 and Keras 2.4.0 in Jupyter Note-
books.
» Weights & Biases [18] was used to track and visualize experiments metrics.

o Jupyter Notebooks were executed in a JupyterHub cluster providede by the
University.

o JupyterHub Notebook instances are based on Ubuntu 18.04.4 .

» JupyterHub Notebook instances run on nodes with 36 CPUs, 512GB of RAM
and powered by NVIDIA RTX 2080 TI GPUs.

o JupyterHub cluster is shared with other students.

5.2 Experiments

This section discusses some of the experiments done and their outcomes. In order
to keep the amount of experiments adequate to the size of this project, some pa-
rameters and variables were fixed for all experiments. All models were trained with
categorical cross-entropy loss function, Adam optimizer as the optimization algo-
rithm, early stopping and dropout as forms of regularization. The early stopping
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patience was fixed at 20 epochs and the dropout rate at 0.1. Because the purpose
of the experiments was to compare approaches and architectures, and not to build
models with the highest performance, there was no automated hyper-parameters
tuning performed.

All the experiments were based on the approaches and models described in @,
with variations in neural networks layers and parameters configuration.

This section describes experiments in terms of:

o Approach: using classification models or language models + threshold.
¢ Neural network base architecture: LSTM or Transformer.

» Configuration: Common configuration like learning rate, windows size in case
of LM, number of layers (LSTM or Transformer blocks) and embedding size.
For LSTM layers, LSTM units. For Transformer layers, hidden layer size in
feed forward network inside transformer (ff-dim) and number of attention
heads.

o Number of trainable parameters: The configuration and complexity of the
neural network impacts in the amount of trainable parameters.

e Results:

— Training duration: hours required to train the neural networks.

— Accuracy: it is a measure of how correctly sequences were classified. It
is calculated as number of correctly classified sequences / total number
of sequences [19].

— Recall: it is defined es total number of documents retrieved that are
relevant / total number of relevant documents in the database [20]. In
this case, it is the total number of attack sequences classified as attack
/ total number of attack sequences. It is also known as sensitivity or
true positive rate. In attack detection this is an adequate metric to take
into account because it is more important to correctly detect attacks
than no-attacks.

Both accuracy and recall are common measures in classification problems. Ac-
curacy gives a general picture of the performance of the classifier, but in some
cases like attack detection, correctly classifying attacks is more important than
classifying non attacks. So, recall is also a practical measure to take into account.
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5.2.1 Classification models

Table l5:1| shows a comparison of experiments done with good and bad queries data
set using the classification model approach.

Training
duration
(hours)

Neural Configuration 7 of
network params

Classification| Classification
Accuracy Recall

learning-
rate=0.001
layers=2
LSTM Istm- 4133502 | 17.9 0.99 0.99
units=500
embedding-
size=500
learning-
rate=0.001
layers=1
Transformer fi-dim=32 21790 4.1 0.99 0.98

num-
heads=2
embedding-
size=32

Table 5.1: Comparison of experiments for good and bad queries data set using a
classification model approach.

It can be observed that the accuracy is the same between LSTM and Trans-
former and the recall has a difference of 1 point in favour of LSTM. This difference
will probably not be noticeable in practice. The main differences between these
two experiments are in training time and number of trainable parameters. Both
of them can be explained looking at the complexity of the LSTM. To get to those
results, the LSTM needed some tuning and testing the Transformer experiment
did not. This involved increasing units, embedding size and adding a second layer,
resulting in more than 4 million of trainable parameters and a training time more
than 4 times the Transformer training time. In the case of the Transformer ex-
periment, it was easier to build a model with almost the same accuracy and recall
performance, as non parameters tuning was necessary.
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Figure 5.1: Training and validation accuracy with an LSTM classifier for good and
bad queries data set
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Figure 5.2: Training and validation loss with an LSTM classifier for good and bad
queries data set

Comparing figures Iill and @, with and @, it can be seen that LSTM
stopped after 25 epochs approximately and Transfomers after 120 epochs. Despite
that difference, because the Transformer experiment was less complex, each epoch

was faster and that is why LSTM still needed more time to finish training.

Training accuracy Training validation accuracy
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0.998
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Step Step
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Figure 5.3: Training and validation accuracy with a Transformer classifier for good
and bad queries data set
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Figure 5.4: Training and validation loss with a Transformer classifier for good and
bad queries data set

Moving on to CSIC data set, with classification models, table @ shows inter-
esting results on the experiments with LSTM and Transformer. The accuracy and
recall obtained are almost the same, but the situation of the number of parame-
ters and training duration is also the same to the one with “good and bad queries”
data set. Transformer model is less complex and in less than 1 hour got the same
performance as the LSTM model in almost 3 hours.

Training
duration

(hours)

Classification| Classification
Accuracy Recall

Neural Configuration i of
network params

learning-
rate=0.001
layers=3
LSTM Istm- 15576802 | 2.9 0.81 0.99
units=800
embedding-
size=800
learning-
rate=0.001
layers=1
Transformer] - UM=128 60570 |06 0.82 0.99

num-
heads=8
embedding-
size=128

Table 5.2: Comparison of experiments for CSIC data set using a classification
model approach.
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Despite that 81% and 82% of accuracy might not be considered an acceptable
result, the 99% of recall surely is. This behaviour of getting almost the same
results, but with easier tuning and less training time with the Transformer neural
network is consistent in both data sets using the classification model approach.

5.2.2 Language models

Making a similar analysis to the one made with the classification model approach,
table @ shows a comparison of experiments done with good and bad queries data
set using the language model approach with the threshold calculation technique
for classification.

Neural
network

Configuration

+# of

params

Training
duration

(hours)

Classification
Accuracy

Classification
Recall

LSTM

learning-
rate=0.001
window-
size=10
layers=2
Istm-
units=500
embedding-
size=500

4261257

0.89

0.83

Transformer|

learning-
rate=0.001
window-
size=10
layers=1
ff-dim=128
num-
heads=8
embedding-
size=512

1434025

6.7

0.63

0.61

Table 5.3: Comparison of experiments for good and bad queries data set using
language models and thresholds for classification.

The behaviour on this approach is different from the one analyzed before. The
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LSTM experiment, with a more complex neural network with more than 4 million
trainable parameters, took 5 hours and got 89% of accuracy and 83% of recall. It
is much better than the Transformer experiment, with 26 and 22 points over in
accuracy and recall respectively. This experiment trained 1.4 million parameters
in almost 7 hours. The duration may be explained because of the early stopping
technique, but the interesting fact is how low accuracy and recall were.

Training
duration
(hours)

Classification| Classification
Accuracy Recall

Neural Configuration * of
network params

learning-
rate=0.001
window-
size=10
LSTM layers=2 10657857 | 3 0.78 0.84
Istm-
units=800
embedding-
size=800
learning-
rate=0.001
window-
size=10
layers=1
fi-dim=128
num-
heads=8
embedding-
size=128

Transformer| 165929 1.4 0.82 0.62

Table 5.4: Comparison of experiments for CSIC data set using language models
and thresholds for classification.

Comparing LSTM and Transformer language model approach for CISC data
set in table @ shows similar aspects. In this case the low score for Transformer
was on recall, with 62% vs. 84% for LSTM.

The expectations on Transformer performance with language model approach
were higher than what it was expected from LSTM experiment, because of the
how it outperformed other recurrent or convolutional based neural networks in [§].
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This situation, why language model together with threshold calculation are not
performing as expected, specially with Transformer, is analyzed further in section
-12

5.2.3 Comparing approaches

The discussion above was about comparing LSTM and Transformer within each
approach, but, looking at tables and , for “good and bad queries”, each
approach can be compared with each other. At a performance level, using a
classification model is better than using language model approach according to
the experiments done on this data set.

In the case of CSIC data set, that difference is not that big from the accuracy
perspective. But the 62% and 84% of recall in language model approach are far
from the 99% of recall in classification approach. Therefore, if one solution needs
to be chosen, classification models performed better on this data set.

Throughout the experiments execution, it was easier to use and tune the clas-
sification models to get to comparable performance values. It might be possible to
improve the language model approach results, but it surely will need more tuning
and training hours.

5.2.4 More on language models with Transformer

The goal of this project was not to build the best performing solutions. Neverthe-
less, as discussed previously, language model approach, mainly with Transformer,
did not perform as expected.

This section describes some experiments done, making changes on the com-
plexity of the neural network configuration in order to improve language model
performance and understand why it did not perform as expected. Table con-
tains those experiments, using the approach of language models in combination
with thresholds calculation and Transformer neural network on “good and bad
queries” data set. To distinguish each experiment, the column “Experiment name”
was added using the auto-generated name from Weights and Biases tool.
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Experiment 4 of Training | Classifi- | Classifi-
Ao Configuration params duration | cation cation
(hours) | Accuracy | Recall
learning-rate=0.001
window-size=10
restful- layers=1 1434025 | 6.7 0.63 0.61
disco-8 ff-dim=128 ’ ' '
num-heads=8
embedding-size=512
learning-rate=0.001
window-size=30
clear- layers=1
droam.9 F-dim—198 1434025 | 1.4 0.6 0.67
num-heads=8
embedding-size=512
learning-rate=0.001
window-size=30
effortless- | layers=1
wave12 F-dim—1024 2352425 | 9.9 0.55 0.62
num-heads=64
embedding-size=512
learning-rate=0.001
window-size=30
stoic-snow- | layers=2
15 F-dim—1024 4455209 | 174 0.65 0.63
num-heads=64
embedding-size=512
learning-rate=0.0001
window-size=30
treasured- | layers=3 6557993 | 11.3 0.5 0.68
vortex-21 ff-dim=1024 ' ' ’
num-heads=64
embedding-size=512
learning-rate=0.0001
window-size=10
divine- layers=3
rain.22 F-dim—1024 6557993 | 12.8 0.61 0.58
num-heads=64
embedding-size=512

Table 5.5: Comparison of experiments for good and bad queries data set using LM
+ threshold approach in combination with Transformer.
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The first experiment in the table, restful-disco-8, as well as the other experi-
ments done with language models in different data sets, is based on windows of size
10. This size is common between sequence processing solutions, but thinking in a
character-level situation, this size could be increased to improve the data obtained
from the relationship of the characters in a sequence.

The experiment clear-dream-9 was done with that purpose, having the same
configuration from restful-disco-8, but with a window size increased to 30. The
first difference in the output is the training time, improving from 5.1 hours to 1.4.
This is due to the amount of sub-sequences (windows) that the model is trained
with. Increasing the windows size, decreases the total amount of sub-sequences.
Looking at the accuracy and recall, it can be seen that accuracy slightly decreased,
63% to 60%, but recall improved from 61% to 67%.

Keeping the windows size at 30, because of the improve at the recall, the
experiment effortless-wave-12 is done with more complexity at the Transformer
block, increasing ff-dim and number of heads. This new complexity can be seen in
the number of trainable parameters. This variation resulted in worse performance,
mainly seen at the 55% accuracy.

On the other hand, with stoic-snow-15, adding only one extra transformer
block layer, accuracy and recall improved, but there is no big difference with the
first experiment, restful-disco-8. In terms of training duration, it is more than
three times compared to that experiment.

The experiment treasured-vortex-21 added a third transformer block layer
and decreased the learning rate. This resulted in the worst accuracy (50%) and
the best recall (68%) of all these experiments. Training duration was 11.3 hours,
less than the previous experiment, due to early stopping finding the best epoch
earlier, but 10 times the duration of clear-dream-9, which has better accuracy
and almost the same recall.

The last experiment, divine-rain-22, took the same configuration as treasured-
vortex-21, but went back to a windows size of 10, to have a second test on this
windows size difference. Again, the experiment with windows size 10 performed
better in terms of accuracy, 61%, but worse in terms of recall with 58%.

Despite the efforts to improve this language model classifier, none of the exper-
iments performed better than 65% of accuracy and 68% of recall. If one of these
classifiers needs to be chosen, clear-dream-9 seems to have the best combination
of accuracy, recall and low training duration.
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Figure 5.5: Experiments language model (next symbol predictor) training duration
with LM + threshold and Transformer for good and bad queries data set

Figure @ shows that the more complex the neural network becomes, the longer
it needs to be trained. But, as it can be seen in figures and p.7, accuracy and
recall of the classifiers did not improve significantly, and in some cases are worse.

Accuracy
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Figure 5.6: Experiments classification accuracy with LM + threshold and Trans-
former for good and bad queries data set
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Figure 5.7: Experiments classification recall with LM + threshold and Transformer

for good and bad queries data set

In order to keep investigating this behaviour, let’s recall that this classification

approach has two main components:

1. The language model based on a neural network (next symbol predictor).

2. The thresholds calculated to classify based on the language model probabil-

ities, as described in B.2.2.1l.

Digging in the first one, figures @ and @, that show the language model train-
ing validation accuracy and validation loss respectively, indicate that the neural

network models behind the classifiers seems to be performing well.
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Figure 5.8: Experiments training validation accuracy with LM + threshold and
Transformer for good and bad queries data set

All the experiments reached values over 97% of accuracy and even four of them
over 99%. In the case of loss, those four experiments were lower than 0.04.

Validation loss
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Figure 5.9: Experiments training validation loss with LM + threshold and Trans-
former for good and bad queries data set
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Taking into account the order in which the experiments appear in @ and @,
they can be ranked from worst to best as follows:

1. restful-disco-8
2. divine-rain-22
3. clear-dream-9
4. stoic-snow-15
5. effortless-wave-12

6. treasured-vortex-21

If we recall that divine-rain-22 was the most complex configured model, but
with windows size of 10, it makes sense that it is the second on the list, because the
tests indicated that longer windows performed better. Taking out that experiment,
the rest are mostly in the order of improvement they would have been expected to
be. stoic-snow-15 and effortless-wave-12 should be swapped, but their values
in the figures are close, so it is an understandable difference.

According to the values seen on the figures, this could indicate that the first
component of this approach, the neural network language model that predicts the
next symbol, is performing well. Hence, all the efforts on improving the classifier
did not improve it at a whole, but it did improve the neural network model behind
it.

In summary, according to validation metrics, the neural network language
model makes next symbol predictions with high accuracy, but when the threshold
component is added to use it in a classification problem, it does not perform well.

This is not the case with LSTM, if we recall the values in @, a language model
with threshold for classification got 89% of accuracy and 83% of recall, 20% higher
than the Transformer version. Analyzing the LSTM language model training val-
idation accuracy figure, p.10, it reached approximately 75% in validation, a lower
performance than the Transformer language model.

42



Training accuracy Training validation accuracy

0.69 Step 0.726 Step

0 5 10 15 20 25 0 5 10 15 20 25

Figure 5.10: Training and validation accuracy with an LSTM language model for
good and bad queries data set

This could indicate that the LSTM language model is not an excellent predictor
of the next symbol, nevertheless, using it with thresholds to classify gets a 89%
of accuracy and 83% of recall. On an other point of view, it might be that the
Transformer language model is such an excellent predictor of the next symbol that
when it is used with the threshold technique, it can not find a suitable threshold
for each sequence length to make classifications properly.

Apart from that, let’s not rule out that the way the thresholds are being cal-
culated, using minimum distances and ROC curve values, might be improved or
it could even be changed to a different technique.

This investigation and testing to improve Transformers language model for the
classification problem, or also checking other possible techniques, needs further
investigation and can be addressed in future work.
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6 Conclusions and future work

This project contributes an analysis and comparison of approaches and neural
networks in the context of weblogs attack detection. In addition, it presents first
applications of language models approach, LSTM at character level and the use of
Transformers in a weblogs attack detection problem.

This also involved developing the code that prepared the data sets, trained
and test the classification systems to execute the experiments. To compare the
two approaches (language model and classification model) and the neural networks
(Transformers and LSTM), experiments were done on two weblogs data sets. The
output of the experiments were performance metrics (accuracy and recall) and
training duration, but it was also used in the comparison the complexity and ease
of tuning of the neural networks.

In the case of classification models, there were no major differences in accuracy
or recall between LSTM and Transformer. But, in order to get to those values,
LSTM needed more tuning and a more complex configuration, that led to more
training time.

On the other hand, in language model approach, the LSTM performed better
on the tests done. Regarding complexity and tuning, Transformers were simpler to
train, but they did not obtained good performance metrics. As to training hours,
there were no clear differences.

In respect of comparing the classification model and the language model ap-
proaches, there are no doubts that classification models did the job better in terms
of performance. Concerning complexity, tuning and training time, it depends on
the neural network used, but as language model approach did not get high accu-
racy or recall, it will probably need more tuning and training to get something
comparable to the 98-99% classification models got in recall.

If the only important aspect is the classification of weblogs to detect an attack,
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then the classification model with Transformer neural network should be the best
option to start. It reached high performance metric values, needed little tuning,
low complexity and low training time.

The low training time characteristic is important in the context of costs. For
example, 100 experiments like the ones described in table p.1|, in a virtual machine
in Amazon Web Services with 16 vCPUs, 64 GB of memory and 1 GPU, would
cost approximately 350 USD for the Transformer experiments and approximately
1570 USD for the LSTM experiments.

In the case a language model is needed to fulfill some requirements, for ex-
ample, to use the next symbol prediction probabilities, then LSTM should be the
choice. On the experiments done, it obtained higher accuracy and recall than
the Transformer’s experiments. Nevertheless, this values were not that high as
classification models experiments.

That last conclusion motivates some of the future work described next, to
keep investigating on language models for classification and to give another try to
Transformers to increase the performance of this approach.

On the experiments with language model approach and Transformers it could
be seen that this combination could not perform like the LSTM based language
model or the classification approach with either neural network. Looking at the
experiment of language model approach and LSTM, the language model neural net-
work performance on predicting next symbol was not as good as the Transformer
language model performance on that same prediction. The theory proposed is that
in order to make more accurate classifications with thresholds, the language model
neural network should not be highly accurate on the next symbol prediction. This
needs to be analyzed and tested to validate the behaviour.

In addition, finding and analyzing alternatives to the threshold calculation
method could lead to better results and new insights on the comparison of ap-
proaches and neural networks.

An other topic to be addressed in future work is including other modern neural
network architectures besides LSTM and Transformer to the analysis. Transformer
can be categorized as a modern neural network, but in order to keep the comparison
updated, other types of neural network can be added to the comparison.

Finally, the language model approach taken in this project stated that the
neural networks were trained with attack-class weblogs, aiming to model the at-
tack domain. This could be implemented on the opposite direction, training the
language models with non-attack weblogs and modeling normal access logs. The
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results of that investigation could be compared with the ones obtained in this
project to determine which method is more adequate. If results are acceptable,
both methods could even be used together, using the two predictions to make the
classification.
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