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Abstract

In this study, we focused on the seasonal variation of the determinants of territory size in the

weakly electric fish Gymnotus omarorum. This species is a seasonal breeder that displays

year-round territorial aggression. Female and male dyads exhibit indistinguishable non-

breeding territorial agonistic behavior and body size is the only significant predictor of con-

test outcome. We conducted field surveys across seasons that included the identification of

individual location, measurements of water physico-chemical variables, characterization of

individual morphometric and physiological traits, and their correlation to spatial distribution.

G. omarorum tolerates a wide range of dissolved oxygen concentration, and territory size

correlated positively with dissolved oxygen in both seasons. In the non-breeding season,

territory size was sexually monomorphic and correlated only with body size. In the breeding

season, territory size no longer correlated with body size but differed between sexes: (i) the

overall spatial arrangement was sexually biased, (ii) territory size depended on gonadal hor-

mones in both sexes, which was expected for males, but not previously reported in females,

(iii) female territory size showed a positive relationship with gonadal size, and (iv) females

showed relatively larger territories than males. This study demonstrates seasonal changes

in the determinants of territory size and thus contributes to the understanding of the mecha-

nisms underlying the behavioral plasticity natural territorial behavior.

Introduction

The mechanisms underlying behavioral plasticity, by which animals respond to dynamic envi-

ronmental and social contexts, are not fully understood [1]. The study of the modulation of

territorial behavior in wild species is especially suited for this aim. In territorial behavior, ani-

mals first detect the environmental and social clues that determine territory quality, then
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compare this information to their individual requirements and fighting abilities, and finally

decide whether to compete over an area. Therefore, the distribution of territorial animals in

space provides insights into how animals integrate individual traits with environmental and

social factors. Variation in the ability or motivation to obtain and defend a territory can gener-

ate differences in territory size because traits such as body mass, sex, and reproductive state are

known to influence resource holding potential and resource value [2–6]. Within a population,

body size is associated with territory size in most species, as it directly determines metabolic

requirements. Moreover, body size strongly impacts contest outcome and territory size [7–10].

In species that display territoriality in both sexes, asymmetries in fighting abilities and motiva-

tional factors may cause sex differences in territory size. For example, in red squirrels (Sciurus
vulgaris), males often hold larger territories than females although this species is sexually

monomorphic in body size [11]. In stripped plateau lizards (Sceloporus virgatus), females are

more territorial than males for motivational reasons [12].

Many species show territorial behavior only during the breeding season [13]. On the other

hand, some species show robust territorial aggression all year round even though they are sea-

sonal breeders. Non-breeding territoriality is found in diverse taxa, including birds [14–17],

mammals [18–20], reptiles [21], and fish [22,23]. These species offer a valuable opportunity to

study the seasonality of environmental features and individual traits, and their relation to terri-

tory size in the natural habitat. During the breeding season, male territorial aggression

depends largely on gonadal steroids across vertebrates [24–26] and, in particular, androgen

levels have been related to territory size in the wild [27–30]. By contrast, in breeding females,

there are few studies on the association between circulating estrogen (E2) levels and territorial

aggression in free-living conditions [31–33], and, to our knowledge, there are no studies

reporting the association between circulating E2 and territory size.

The South American weakly electric fish, Gymnotus omarorum [34], is a seasonal breeder

that displays male and female territorial aggression all year and thus is an interesting model

system to study the seasonal control of territoriality and its sex differences [35]. Previous labo-

ratory results showed that this species presents a remarkably robust non-breeding territorial

aggression (described initially in [22]). In these well-characterized agonistic behavioral dis-

plays, fish modulate their electric organ discharge (EOD) to signal a submissive [36–38] or

dominant status that persists for at least 36 hours [39]. Under experimental laboratory condi-

tions, male-male [40] and female-female [41] dyads that display non-breeding territorial

behavior have no differences in contest outcome, temporal dynamics of the agonistic encoun-

ter, levels of aggression, or submissive signaling [35]. Moreover, the only significant predictor

of contest outcome is body size [22], and none of the features of agonistic encounters depend

on circulating gonadal hormones [40].

In this study, we evaluated seasonal variations in the ecological, morphometric, and physio-

logical correlates of territory size in free-living Gymnotus omarorum. Based on previous

results, we predicted that, in the non-breeding season when gonads are regressed and circulat-

ing gonadal hormones are low, territory size would be sexually monomorphic and explained

mostly by body size. For fish in the breeding season, when motivational aspects of territoriality

may be confounded with the reproductive drive, we expected territory size and/or its determi-

nants to be sexually dimorphic.

Materials and methods

Study location and sampling seasons

Fieldwork was performed in the Laguna de los Cisnes, Uruguay (205 ha, 34˚ 480 S, 55˚ 180 W),

which consists of a three-part interconnected shallow system of freshwater (maximum depth 5
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m) with no inputs of salt or brackish water (Fig 1A, [42]). The study species, Gymnotus omar-
orum, is the sole species of weakly electric fish present in the study area. The littoral area of the

lake is blanketed by a dense strip (5–40 m width) of free-floating aquatic macrophytes that

cover the sampling area (Fig 1B), with G. omarorum typically resting among the roots of these

plants [34].

Following Quintana et al. (2004), who identified the breeding season for weakly electric fish

species in this region from December to February (austral summer), we collected field data

during December, corresponding to the early-breeding season before the appearance of off-

spring [43], and from June to August (austral winter), corresponding to the non-breeding

season.

Sampling

Sampling area was homogeneous in depth, distance to shore, and vegetation composition. The

sampling area was divided into adjacent areas referred to as census units (Fig 1B and 1C,

defined below), which were each studied on different days, without repeating sites. Sampling

was performed during the day, which is the resting phase in this species [44], in two periods:

the first one (Survey 1) during the morning (0800-1200h), and the second one (Survey 2) in

the afternoon (1300-1800h).

All research procedures complied with ASAP/ABS Guidelines for the Use of Animals in

Research and were approved by the Institutional Ethical Committee (Facultad de Ciencias,

Universidad de la República, Comisión Honoraria de Experimentación Animal, Exp: 240011-

002308-14).

Field survey 1: Electric census and environmental variables

To achieve an initial estimate of the spatial arrangement of individuals, we performed an elec-

tric census during the resting phase of the animals and measured the distance between each

fish and its nearest neighbor (distance to the nearest neighbor, DNN) in the two seasons. To

calculate DNN, we considered each focal fish distance to the nearest neighbor. DNN was used

as a proxy of territory size. Although this is a simplified approach, animals which present terri-

torial aggression display a decrease in defense as distance increases from center points (10,

Fig 1. Study site and sampling method. A. The study site is located in Maldonado, Uruguay, in Laguna de los Cisnes. B. The shores of the lake have water hyacinths

creating extensive floating mats that constitute the sampling area. C. Census unit illustrating individual spots. Fish location in individual spots was achieved by carrying

out an electric census (Survey 1). Once a fish was located, water dissolved O2 concentration, temperature, and fish EOD rate were measured in each spot. In Survey 2,

individual spots were revisited in sequence, fish were collected, and individual traits measured.

https://doi.org/10.1371/journal.pone.0228976.g001
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reviewed in [45]). This study was carried out during the resting phase of G. omarorum and fish

have been shown to display site fidelity, which suggests they are located in the central parts of

their territory. We performed the electric census by locating individual fish by means of an

audio amplifier connected to a pair of electrodes, as described elsewhere [46] and individual

fish were localized by their EODs when the sound is maximal (detection range is 60 cm). Mon-

itoring the EOD rate allowed us to confirm that fish remain undisturbed during the measure-

ment of parameters since EOD rate increases transiently when fish are alerted by novel stimuli

(reviewed in [47]). To perform the electric census, two experienced researchers waded up to

1.2 m depth in the water, to slowly and carefully access areas 1 m away from individual fish.

Once a fish was located in an individual spot, the plant above it was tagged (Fig 1C). Water

conductivity, dissolved oxygen concentration (O2, mg/l) and temperature (T,˚C) were mea-

sured 30 cm below the surface (using TDSu Testr 3, Cole Parmer for conductivity, and Oxy-

Ward, Handy Polaris for O2 and T). After taking physico-chemical measurements, the EOD of

each fish was recorded in situ for 10 s through two electrodes lowered into the vicinity of the

animal and connected to an amplifier located on the shore of the lake (World Precision Instru-

ments Inc., Sarasota, FL. DAM-50, AC-coupled). After amplification, EOD signals were

recorded on a portable computer, captured by the audio card, and stored for further analysis.

To normalize the potential effect of water temperature on EOD rate, values were corrected to a

constant 20˚C using the Q10 value of 1.5 as calculated for electric fish, from the equation:

Q10 = EOD rate x T / EOD rate x (T + 10) [48,49].

During each sampling day, the measurement of physico-chemical water parameters and

EOD rate was conducted for all the fish located within a census unit. A census unit was defined

as the area with all fish detected by 12 AM, or the area where we detected a group of fish sur-

rounded by at least 6 m of water uninhabited by the species (Fig 1C). Field survey 1 was per-

formed both, during the breeding and non-breeding seasons.

Field survey 2: Quantification of individual traits

In addition to environmental variables, individual morphological and physiological traits can

influence spatial distribution and vary seasonally. Therefore, based on Survey 1, we character-

ized individual traits of captured fish in both seasons, and then analyzed their correlation with

spatial distribution. Individual spots were revisited in sequence, and each fish located under

the tagged plants was collected using a net, without disturbing nearby tagged sites. Netting des-

organize plants, thus if the first netting was unsuccessful no other attempts were made in that

site and fish was reported as “not recovered”. Fish were weighed, measured for length, sacri-

ficed by quick decapitation and their gonads were visually inspected for sex determination. In

the breeding season, fish were anesthetized immediately after netting by immersion in a fast-

acting eugenol solution (1.2 mg/l, first dissolved in alcohol 70%) and blood was collected from

the caudal vein with a heparinized syringe within 3 min of capture, which is the time range

usually used to avoid a stress response due to manipulation [50–52]. Blood was placed in tubes

on ice in the field and later centrifuged (3000rpm, 10 min) in the laboratory and stored at

-80˚C. Dissected gonads were stored in dry ice in the field, and then weighed in the laboratory

for gonadosomatic index (GSI) calculation ([Gonad Weight / Total Tissue Weight] x 100

[53]).

Hormone assays

17-β Estradiol (E2) levels were quantified in breeding females, and 11-Ketotestosterone

(11-KT) in breeding males by enzyme-linked immunosorbent assay (ELISA) using commer-

cial kits (IBL International, Hamburg, Germany for E2 and Cayman Chemical Company, MI,
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USA for 11-KT). The analyses were performed according to the manufacturer’s instructions

and a standard curve was run for each ELISA plate. In all cases, samples were assayed in dupli-

cate and analyses were performed on samples whose coefficients of variation were below 20%

[54]. Intra-assay variation was 3.95% for E2 (detection limit: 25 pg/ml) and 6.2% for 11-KT

(detection limit: 1.56 pg/ml). Pilot assays using three different dilutions of 8 samples (4 sam-

ples per sex) were performed to establish the appropriate working dilutions, which were 1:2

for breeding female E2 and 1:30 for breeding male 11-KT. The assays were validated with stan-

dards provided in the kit, indicating that each assay effectively detects G. omarorum E2 and

11-KT.

Data analysis and statistics

All data were subjected first to D’Agostino & Pearson normality test. If data fit a Gaussian dis-

tribution, they were analyzed with parametric tests; otherwise non-parametric comparisons

were used. Parametric, non-parametric statistical analyses, and simple linear regressions were

carried out with PAST [55], and generalized linear models (GLMs) and Binomial tests with

software R [56] using RStudio interface.

Data analysis was performed in three steps. The first step of analysis used data from Survey

1 to explore environmental heterogeneity. Environmental variables (O2 and T) were compared

between seasons by Mann-Whitney U test. To analyze O2 and T heterogeneity we calculated

the coefficient of variation (CV, SD/mean�100) for each census unit and then the mean CV

and standard deviation per season. Finally, we performed a linear regression between two indi-

vidual traits, DNNs and EOD basal rate, and O2 content, both in the breeding and non-breed-

ing seasons (Fig 2).

The second step of the analysis was based on the dataset obtained in Survey 2, which

entailed fish collection. We explored whether individual morphometric and physiological

traits correlated with DNN in both the non-breeding and breeding seasons. Individual traits

(body size and EOD rate), DNN, and DNN relative to body length were compared between

sexes within each season by Student t-tests (Table 1). Because body weight and body length

were strongly correlated (R = 0.91, N = 47), and because we had more measurements of body

length than of body weight, we used body length as an indicator of body size throughout. Body

length, EOD rate, and DNN were compared seasonally by Student t-test for females and males

together.

To examine the effects of individual traits (see below) on DNN as the dependent variable,

weused GLMs; [57], within each season analyzed separately. For the breeding season, we first

ran a model with body length, EOD rate, and sex as explanatory variables. Because the initial

model was non-significant, we ran one model for females with body length, EOD rate, and cir-

culating E2 as explanatory variables, and a second model for males with body length and EOD

rate as explanatory variables (Table 2). For the non-breeding season, the model included

females and males together, and the explanatory variables were body length, EOD rate, and sex

(Table 3). For each season separately, initial models contained all single effects and pairwise

interactions of the explanatory variables.

To select the most parsimonious GLM, we used the command bestglm [58] for a maximum

of three simultaneous variables, and considered up to second order interactions. Initial models

were simplified by the stepwise deletion of the least significant terms in a model and compared

successive steps of model simplification by the Akaike information criterion (AIC), deleting a

term whenever there was a difference of more than two units between alternative models until

arriving to the most parsimonious model that could be fitted. The selection of the best model

included the AIC criterion as well as the number and statistical significance of the estimated
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parameters, discarding models with improvements in the AIC but non-significant parameters.

All models were subjected to the customary residual analysis [59].

The final step of analysis aimed to address three points. The first point was to further evalu-

ate how sexually dimorphic traits, such as gonad size and sexual hormones, impacted on DNN

particularly during breeding (Fig 3). To do this, we compared DNN relative to body size

between non-breeding and breeding season separately for each sex. In addition, to analyze the

relative importance of gonadal mass on individual spacing, we performed linear regressions of

DNN versus GSI, and body weight–gonad weight, both in breeding females and males. The

second point was to analyze whether oxygen concentration, besides affecting DNN, showed

association with morphological (GSI) and physiological individual traits (EOD rate and E2 lev-

els). The third point was to evaluate whether the sex of the nearest neighbor differed from an

expected random distribution, and for that we used Binomial tests [60]. For the analysis, the

focal fish was only considered if the nearest neighbor was captured and its sex confirmed. The

proportion of sexes expected for a random distribution was deduced from the empirical sex

ratio observed in each season (Fig 4).

Results

In both seasons, individual Gymnotus omarorum were typically located in water depths of ~ 30

cm among the dense roots of extensive floating mats of vegetation along the littoral area across

seasons (Fig 1B; i.e., in the breeding season during the austral summer, and in the non-breed-

ing season during the austral winter). The free-floating water hyacinth Eichhornia crassipes
dominated both surface and underwater areas accounting for 86% of the total subaquatic bio-

mass. Associated vegetation was composed of submerged Egeria densa and Miriophyllum
aquaticum, free-floating Salvinia auriculata, and the rooted but partly emergent Ludwigia ele-
gans, and Hydrocotyle criptocarpa. This vegetation, with the same composition, was present all

year, although overall coverage was lower during the non-breeding season.

As expected in the subtropical region, water temperature and oxygen concentration showed

significant differences across seasons. Water temperature was higher during the breeding than

during the non-breeding season (27.3 ± 0.1˚C, N = 36 vs 11.3 ± 0.5˚C, N = 60; p = 1 exp-4,

Fig 2. Fish spatial distribution based on environmental variables (Survey 1). The breeding season is represented in

green and the non-breeding season in gray; dark green sections implies overlap of both seasons. A. Frequency

distribution versus DNN(in cm). B. Frequency distribution versus O2 concentration (in mg/l) measured at 30 cm from

the surface in each individual spot. C. Linear regression of DNN and O2 concentration in individual spots (Log

transformed). Breeding season: R2 = 0.44, p = 1 exp -4, N = 35; non-breeding season: R2 = 0.21, p = 1 exp-4, N = 50. D.

Linear regression of EOD rate and water oxygen concentration in individual spots. Breeding season: R2 = 0.47, p = 5

exp-4, N = 22; non-breeding season: R2 = 1 exp-3, p = 0.54, N = 39.

https://doi.org/10.1371/journal.pone.0228976.g002

Table 1. Sexual comparison of individual traits and DNN in the breeding season and in the non-breeding season (Survey 2). Individual traits: Body length and EOD

rate corrected by water temperature. Distance to the nearest neighbor (DNN in cm), and relative DNN (DNN/body length). Values are expressed as mean ± standard error

of the mean (SEM), and statistical comparisons were performed by t-test.

Body size (cm) EOD rate temp DNN (cm) DNN / body length

♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂
A- Breeding season 22.4 ± 0.5

n = 13

24.5 ± 0.9

n = 15

41.0 ± 1.1

n = 13

39.3 ± 0.9 n = 17 220 ± 20

n = 13

230 ± 30

n = 18

9.8 ± 0.8

n = 13

9.9 ± 1.4

n = 17

♀ vs ♂ p = 0.2 ♀ vs ♂ p = 0.3 ♀ vs ♂ p = 0.8 ♀ vs ♂ p = 0.9

B- Non-breeding

season

16.9 ± 0.9

n = 26

17.4 ± 0.8

n = 27

20.0 ± 1.2

n = 18

19.3 ± 0.95

n = 18

113 ± 10

n = 23

120 ± 10

n = 23

7.0 ± 0.6

n = 23

7.8 ± 0.7

n = 23

♀ vs ♂ p = 0.7 ♀ vs ♂ p = 0.6 ♀ vs ♂ p = 0.5 ♀ vs ♂ p = 0.4

https://doi.org/10.1371/journal.pone.0228976.t001
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Mann Whitney U test), whereas O2 concentration was significantly lower in the breeding com-

pared to the non-breeding season (5.6 ± 0.9 mg/l, N = 36, vs 8.4 ± 0.4 mg/l, N = 65; p = 4 exp-

3, Mann Whitney U test). By contrast, water conductivity remained consistent (< 150 μS/cm)

throughout the year.

Field survey 1: Fish spatial distribution and environmental variables

Our first step of analysis aimed to relate environmental data to individual spacing and EOD

rates of fish detected by electrical census. Fish occurred under the central area of the floating

mats, and absent from the edge near the open water (Fig 1C). In both seasons, fish were dis-

tributed evenly, and not aggregated with other conspecifics. The distribution of DNNs was

asymmetrical, skewed with a mode at 150 cm (Fig 2A). The DNN mean value was significantly

higher in the breeding season than in the non-breeding season (230 ± 15 cm, t-test, T = 5.9,

p = 1 exp-4, N = 47 vs 140 ± 7 cm, N = 73).

Water temperature showed low variability among individual spots within each census unit

(breeding season mean T CV = 2.0 ± 2.4%, non-breeding season mean T CV = 6.5 ± 5.5%). In

contrast, O2 concentration showed high variability within each census unit (breeding season mean

O2 CV = 20.4 ± 9.3%, non-breeding season mean O2 CV = 25.9 ± 14.6%). Consequently, we

explored whether O2 may contribute to fish spatial patterns. During the breeding season, the dis-

tribution of O2 concentration ranged from 0 to 15 mg/l and was positively skewed (Fig 2B, green),

with a higher frequency of low values (mode at 1 mg/l). However, during the non-breeding season,

O2 distribution was negatively skewed, showing a single mode at 11 mg/l (Fig 2B, gray). Oxygen

concentration and DNN showed a positive and significant association both in the breeding (R2 =

0.44, p = 1 exp -4, N = 31, Fig 2C green) and in the non-breeding season (R2 = 0.21, p = 1 exp -4,

N = 50, Fig 2C gray). Interestingly, O2 showed a positive linear relationship with individual EOD

rate during the breeding but not the non-breeding season (breeding: R2 = 0.47, p = 5 exp -4,

N = 22, Fig 2D green; non-breeding: R2 = 1 exp -3, p = 0.54, N = 39, Fig 2D gray).

Field survey 2: Fish spatial distribution based on individual traits

The second step of analysis explored the impact of individual morphological and physiological

characteristics of fish on DNN in both the non-breeding and breeding seasons. Across census

units, 71 ± 5.8% of fish located under tagged sites in Survey 1 were recovered in Survey 2.

There were no sexual differences in body length, EOD rate, DNN, nor DNN relative to body

length, in both the breeding and the non-breeding seasons (Table 1). During breeding, females

showed mean circulating E2 levels of 293.7 ± 97.7 pg/ml and males had mean circulating

Table 2. GLM models that presented the best adjustment to explain DNN in females during the breeding season with data obtained in Survey 2. Model intercept

and explanatory variables are expressed as Mean (SD). For each parameter, the value is shown in bold if statistically significant (p<0.05), in italic if marginal (p<0.1), and

expressed as NS if non-significant. Model 1 and Model 2 did not present significant differences by the Akaike information criterion (AIC).

Model Intercept Circulating E2 EOD rate N P model Adjusted R2 AIC

M1 452 (141) 0.14 (0.03) -0.51 (2.7) 13 0.02 0.44 20.24

M2 188 (18) 0.1 (0.04) NS 13 0.03 0.31 22.21

https://doi.org/10.1371/journal.pone.0228976.t002

Table 3. GLM model that presented the best adjustment to explain the distance to the nearest neighbor (DNN) in both sexes during the non-breeding season with

data obtained in Survey 2. Model intercept and explanatory variable are expressed as Mean (SD). For each parameter the value is shown in bold if statistically significant

(p<0.05).

Intercept Body size N P model Adjusted R2 AIC

36.4 (34) 5.2 (2) 48 0.01 0.11 79.75

https://doi.org/10.1371/journal.pone.0228976.t003
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11-KT levels of 399.1 ± 140.9 pg/ml. Mean adult body size was significantly larger in the breed-

ing season than in the non-breeding season (t-test, T = 6.6, p = 1 exp-4, N breeding = 28, N

non-breeding = 53). In addition, EOD rate was higher (t-test, T = 18.8, p = 1 exp-4, N breed-

ing = 30, N non-breeding = 36), DNN was larger (t-test, T = 5.6, p = 1 exp-4, N breeding = 31,

N non-breeding = 46) and relative DNN (DNN/body length) was also larger during the breed-

ing season (t-test, T = 2.7, p = 9 exp-3, N breeding = 30, N non-breeding = 46).

We evaluated the determinants of DNN separately in the breeding and non-breeding sea-

sons. Because the first GLM including breeding females and males, with body length, EOD

rate, and sex as explanatory variables was not significant, we separated sexes into two different

models and included circulating E2 levels as an explanatory variable for females. We obtained

two significant models in females, both equivalent according to the AIC criterion (Table 2). In

the model with the best adjustment (model 1), DNN showed a positive correlation with circu-

lating E2, and a marginal negative correlation with EOD rate. In model 2, EOD rate was not a

significant explanatory variable for DNN, and only E2 had a significant positive correlation.

For males, we found no correlation between the independent variables tested and DNN.

Although androgen levels were not included in the model (due to a low number of valid sam-

ples), it is worth mentioning that circulating 11-KT levels showed a positive trend with DNN,

although the dataset was too small for sufficiently powerful statistical analysis. In the non-

breeding season, individual traits were the same for males and females, thus we were able to

include both sexes in a single GLM to test the influence of individual traits on DNN. We

explored if individual sex, body size, and EOD rate correlated with DNN, and found that body

size, but not sex nor EOD rate, correlated positively with DNN (Table 3).

To assess sexual differences in territorial features during breeding, we performed a third

step of analysis. We compared relative territory size between seasons and evaluated the rela-

tionship between individual and environmental traits. Although both absolute and relative

DNN were larger in the breeding season in both sexes, an analysis in which males and females

were separated showed that this seasonal difference is only significant in females (Females:

breeding 9.8 ± 0.8, N = 13 vs non-breeding 7.0 ± 0.6, N = 23; t-test, T = 2.7, p = 0.01, Males:

breeding 9.9 ± 1.4, N = 17 vs non-breeding 7.5 ± 0.7, N = 22; t-test, T = 1.4, p = 0.12, Fig 3A).

In accordance with the breeding GLM results, body size showed no association with DNN in

the breeding season in either sex (Females: p = 0.8, R2 = 7 exp-3, N = 13. Males: p = 0.7, R2 =

0.01, N = 15; Fig 3B). With respect to the relative importance of gonadal maturity on spacing,

we found that GSI was significantly higher in the breeding than in the non-breeding season in

females (Females: 1.1 ± 0.22% N = 9 vs 0.6 ± 0.09% N = 11; t-test, T = 2.3, p = 0.02,. Males:

0.24 ± 0.03% N = 10 vs 0.23 ± 0.03, N = 16; t-test, T = 0.3, p = 0.87); and as expected GSI

showed a positive relationship with E2 in breeding females (p = 2 exp-3, R2 = 0.76, N = 9, data

not shown). In addition, GSI showed a positive relationship with DNN only in breeding

females (Females: p = 1 exp-3, R2 = 0.8, N = 9. Males: p = 0.14, R2 = 0.25, N = 10, Fig 3C); and

DNN showed no relation with body weight after the subtraction of gonad weight in breeding

Fig 3. Emergence of sex dimorphism during the breeding season. The plots show values for females (left panels,

represented as squares) and males (right panels, represented as circles), from data obtained in Survey 2 (Step 3 of

analysis). A- Relative DNN (cm / cm body length). Dots represent individual values, and in A and B horizontal lines

represent mean values, and error bars represent SEM. For each sex, breeding values are shown in the left (green) and

non-breeding values in the right (grey). � indicate statistically significance (p < 0.05) t-test. B- Linear regression

between body size (cm) and DNN (cm) in the breeding season. Females: p = 0.8, R2 = 7 exp-3, N = 13; males p = 0.7, R2

= 0.01, N = 15. C- Linear regression between GSI and DNN (cm) in the breeding season. Females: p = 1 exp-3, R2 =

0.8, N = 9; males: p = 0.14, R2 = 0.25, N = 10. D- Linear regression between body weight–gonad weight (g) and DNN

(cm) in the breeding season. Females: p = 0.7, R2 = 0.02, N = 9; males: p = 0.6, R2 = 0.03, N = 10. E- Linear regression

between water O2 concentration (mg/l) and E2 (pg/ml) in breeding females: p = 0.03, R2 = 0.41, N = 11. The same

relation is shown for 11-KT in breeding males with no statistical test due to small sample size (N = 5).

https://doi.org/10.1371/journal.pone.0228976.g003
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(Females: p = 0.7, R2 = 0.02, N = 9. Males: p = 0.6, R2 = 0.03, N = 10; Fig 3D). Further, water

O2 content showed a positive relationship with circulating E2 in breeding females (p = 0.03, R2

= 0.41, N = 11, Fig 3E) and O2 showed a marginal relationship with female GSI (p = 0.08, R2 =

0.5, N = 7, data not shown); while male 11-KT showed no association with O2, although the

dataset was too small for statistical analysis (N = 5, Fig 3E).

In the breeding season, fish were distributed non-randomly according to sex. The percent-

age of females with a female as the nearest neighbor was significantly lower than the random

distribution (p = 0.03, N = 11; Binomial exact test, Fig 4A), and the percentage of females with a

Fig 4. Seasonality in the spatial distribution of sexes (from data obtained in Survey 2). Sex of the nearest neighbor

(expressed in percentage) when the focal fish is a female or a male, both in the breeding season (A, top), and in the

non-breeding season (B, bottom). Dashed line represents the expected percentage to have a female as nearest neighbor

for a random distribution, according to the empirical sex ratio (41% in the breeding season, and 50.9% in the non-

breeding season). � indicates statistical significance (p< 0.05) according to the binomial exact test.

https://doi.org/10.1371/journal.pone.0228976.g004
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male as the nearest neighbor was significantly higher than random (p = 0.04, N = 16; Binomial

exact test, Fig 4A). By contrast, in the non-breeding season, the spatial configuration of the pop-

ulation was random with respect to sex. The probability of having a female as the nearest neigh-

bor did not differ significantly from the random distribution for both females (p = 0.82, N = 20;

Binomial exact test, Fig 4B) and males (p = 0.12, N = 15; Binomial exact test, Fig 4B).

Discussion

This study examined seasonal and sexual differences in the determinants of territory size in a

teleost species. First, we found that Gymnotus omaroum has a spatial distribution in the natural

habitat consistent with territoriality across seasons and that O2 concentration had a significant

positive correlation with territory size both in the breeding and in the non-breeding season. In

addition, we found that: a) In the non-breeding season, territory size was sexually monomor-

phic and determined partially by individual body size; and b) there was a seasonal emergence

of sexual dimorphism in relative territory size and in its determinants.

In many species, body mass is strongly associated with a variety of physiological and eco-

logical attributes (e.g., home range and metabolic rate) and is key to understanding how ani-

mals use the environment [61–64]. The distribution of differently sized animals can be shaped

by behavioral interactions such as resource defense [65]. These ideas, put forth initially to ana-

lyze interspecific interactions [66], can be also applied to interpret distribution of individuals

of the same species, as in this study. We found that body size predicted DNN in the non-breed-

ing season but not in the breeding season (Tables 2 and 3). This suggests that, during repro-

duction, other physiological, behavioral, and motivational aspects may override body size in

predicting DNN, a proxy for territory size.

Oxygen is a limiting physico-chemical variable in aquatic ecosystems, and hypoxia has been

related to fish mortality [67]. Interestingly, Gymnotus has been shown to tolerate a wide range

of dissolved O2 concentrations and can survive in hypoxic environments [68]. Gymnotus can

breathe air at the water surface and has metabolic adaptations that compensate for any poten-

tial damages hypoxia may cause [69]. In our study, individual locations showed O2 concentra-

tion correlated with territory size in both seasons (Fig 2C). This suggests that higher levels of

dissolved O2 may enable fish to defend large territories because their capacity for aerobic respi-

ration is enhanced. Interestingly, O2 concentration correlated positively with EOD rate only

during the breeding season, when EOD rate was significantly higher and O2 content was sig-

nificantly lower (Fig 2). This is consistent with the metabolic requirement of EOD production

[70], which can be specially demanding when EOD rate is high, in the challenging environ-

ment of summer hypoxia.

Non-breeding spacing: Body size dependent and sex independent

In teleosts, year round territoriality has been examined mostly in populations of coral reef

communities (for example Stegastes fuscus, [71]). Here, we evaluated the seasonal spatial orga-

nization in a subtropical freshwater fish in the field and found that spatial distribution during

winter was consistent with territoriality. Why would Gymnotus defend non-breeding territo-

ries? The acquisition and maintenance of territories are known to be mediated by agonistic

behavior [72]. In particular, previous reports of laboratory experiments demonstrated that

Gymnotus omarorum exhibits non-breeding agonistic behavior that mediates territory access

[39] and that body size is the main determinant of the fight outcome [22].

The generation of the EOD in electric fish imposes a high basal metabolic cost [70], which

requires an additional constant need to forage. In line with this, we found that larger fish hold

larger territories, in both males and females (Table 3). Body size is sexually monomorphic in
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this species and behavioral experiments showed that agonistic behavior is non-sex-biased

[22,35]. Here, we confirmed that non-breeding males and females hold sexually monomorphic

territory sizes in the wild (Table 1), probably to cope with energetic requirements that are not

expected to differ by sex during winter.

Electric fish use electric communication signals as behavioral displays. Since the EOD

encodes information about body size and physiological state [73–77], a fish may maintain ter-

ritory boundaries in the wild by remotely assessing the EOD of neighbors. EOD rate signals

dominant status when fish are kept in close quarters after conflict resolution, but not when

allowed to distance themselves [39]. Thus, we expected no correlation between EOD rate and

territory size in the field, and this was confirmed by our data (Table 3). Dominance status

based on EOD rate may be needed to reinforce submission when a subordinate individual is

unable to escape from the dominant as in confined laboratory conditions. However, under the

population densities observed in this study, dominance status is not expected.

Breeding spacing: The emergence of sexual dimorphism in territory

determinants

While competition for reproductive opportunities is usually sexually dimorphic, competition

over non-sexual resources is usually equal between males and females [78,79]. Moreover,

many species with male and female territoriality are sexually monomorphic in body size and

signal traits [80–82]. Consistent with this pattern, we found that during the breeding season

both absolute and relative territory sizes were sexually monomorphic, which parallels the lack

of sex dimorphism in body size (Table 1). However, during breeding, body size did not corre-

late with territory size (Fig 3B), suggesting that other factors beyond body size influence habi-

tat resource acquisition and maintenance.

Interestingly, a closer analysis (Step 3) showed that although there were no sex differences

in relative territory size in each season (Table 1), they emerged when comparing between sea-

sons. Females seemed to use relatively larger territories in the breeding season compared to

the non-breeding season (Fig 3A). This result can be interpreted in the context of energetic

cost. Female GSI was higher in the breeding season and correlated positively to circulating E2.

Moreover, GSI was also an excellent predictor of female territory size (Fig 3C). This suggests

that females may establish relatively larger territories in the breeding season related to foraging

needs imposed by ovarian maturation. In line with this, circulating E2 positively correlated

with territory size in females (Table 2), a result obtained in both breeding female GLM models.

EOD rate, on the other hand, is less reliable in its influence upon territory size, as it presented

a marginal correlation to territory in only one GLM model.

Steroid hormones are strong modulators of behavioral plasticity [1] as hormones are used

to orchestrate organismal-level physiological and behavioral responses to social cues [83,84].

In females, the fact that both GSI and E2 correlated with territory size, combined with reports

in which E2 promotes female aggression [85–87], suggests that ovarian E2 modulates territorial

behavior in G. omarorum. We hypothesize that E2 secretion integrates female metabolic

requirements with the social environment, through the expression of territorial behavior. A

closer look at the relationship between water O2 concentration and female individual traits,

shows that O2 levels correlate positively with circulating E2 (Fig 3E) and marginally with GSI.

These data allow us to further speculate that breeding females compete for territories with high

O2, which would allow them to better confront energetically expensive processes. In males, we

identified a positive trend between circulating 11-KT and territory size, which, although not

statistically significant, may be expected given the well documented relationship between

androgens and male territoriality [24–26].
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The fact that individual body size was larger in the breeding than in the non-breeding sea-

son, most likely depends on the physical growth inherent to G. omarorum life history. How-

ever, we cannot assume that the non-breeding and breeding population remain

demographically unchanged. Although this study was not conceived to track population sea-

sonal changes, differences in fish size between seasons may reflect demographic changes. For

example, large mature fish may displace smaller adults not only to exploit valuable territories

for their own use, but also to access sites where offspring have higher survival as observed, for

example, in the cichlid Lobochilotes labiatus [88].

Motivation for territory defense in the breeding season may involve not only the value of

the territory per se (territory size, O2 concentration) but also the sex of the nearest neighbor.

The results presented in Fig 4 suggest that G. omarorum can assess territory features and use

this information to shift positions seasonally. In the non-breeding season individual fish had a

closest neighbor that was random with respect to sex, whereas in the breeding season, it was

significantly more likely to have an opposite-sex closest neighbor (Fig 4). This evidence sup-

ports the idea that the sex of the nearest neighbor becomes a relevant factor for territory value,

but only during the breeding season. This can be considered a good example of behavioral

plasticity by which individuals respond differently to the same social stimulus (e.g., sex of the

nearest neighbor), depending on variations in their internal state (sexually dimorphic

hormones).

Concluding remarks

Gymnotus omarorum offers the opportunity to analyze seasonal changes in year-round territo-

riality. We found no differences in absolute nor relative territory size between sexes across the

year. In the non-breeding season, only body size and water O2 concentration influenced terri-

tory size. By contrast, in the breeding season, sex became relevant for territorial behavior: a)

the sex of neighbors became important; b) territory size was related to gonadal hormones in

both sexes, which was expected for males, but not previously reported in females; and c) breed-

ing females used relatively larger territories than non-breeding females, which reflects particu-

lar female metabolic demands related to ovarian maturation. This study helps bridge the gap

between behavioral plasticity of natural territorial behavior and its underlying mechanisms.
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