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Abstract 32 

The Río de la Plata Grasslands (RPG) region is the largest area of the temperate humid and sub-humid 33 

grasslands biome in South America and one of the largest in the world. The region is located on 34 

fertile soils, generally very suitable for agricultural development, so it is undergoing an intense land      35 

cover change process. Our knowledge of these changes remains incomplete.  Most regional-scale 36 

studies have been conducted over specific periods, limited subsets of the RGP, coarse resolution and, 37 

in general, used land cover classes that are not readily compatible.  In this work we described and 38 

analyzed the land cover changes in the entire RPG region for the first two decades of the 21st 39 

century, especially those related to grasslands loss. We generated annual land cover maps with 30-40 

meter resolution that discriminate between 8 categories: native woody formation, forest plantation, 41 

swampy areas and flooded grassland, grassland, farming, non-vegetated area, water and non-42 

observed. The map series was evaluated for the years 2001 and 2018 using a completely 43 

independent dataset, selected by stratified randomized sampling. Overall accuracy was 73.5% and 44 
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77.8% for 2001 and 2018, respectively, with user and producer accuracies that varied between 45 

classes and years. In 20 years, RPG region lost, at least, 2.4 million ha of grassland (9% of the 46 

remaining grassland area in 2001). Most of these losses are concentrated in Brazil and Uruguay and 47 

are associated with new agricultural or forestry areas that increased by 5% and 100%, respectively. 48 

Our maps allow a comprehensive understanding of the transformation processes that RPG are 49 

undergoing and provide the context on which to explore a large set of hypotheses related to 50 

ecosystem structure and functioning. It will also contribute to improving decision-making at both the 51 

regional and national levels.   52 

Keywords: Land use change, Landsat, Time series, Grasslands, Classification 53 

1. Introduction 54 

The disruption of ecosystem structure and functioning is a ubiquitous feature of the 55 

interaction between people and nature and it is generally referred to as land use or land cover 56 

change. An increasing number of studies show that human transformative land cover practices have 57 

impacted on carbon, nitrogen and hydrologic balance, biodiversity and climate (Hansen et al. 2013, 58 

Steffen et al. 2015) across multiple spatio-temporal scales (Ellis et al. 2021). In addition, land cover 59 

changes are triggered by a complex and bundled set of driving forces –from population increase, 60 

social inequality, market forces, infrastructure development, and individual responses to economic 61 

or technological opportunities which are in turn mediated by institutional factors (Lambin et al. 62 

2001)-, which defy simplifications and require local or regional approaches to improve our 63 

understanding and assist decision making. 64 

The RPG, also known as "Campos" or "Pampas"", is the largest temperate grassland region in 65 

South America and one of the largest in the world, with an area of more than 70 million hectares, 66 

covering the great plain of central-eastern Argentina, Uruguay and the south of Brazil (Soriano, 67 
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1991). They are renowned for their rich and productive vegetation mainly composed of grasses and 68 

herbs (Andrade et al. 2018; Lezama et al. 2019) and for providing habitat to a diverse and specific 69 

biota, including 109 species of grassland birds (Azpiroz et al. 2012). However, these grasslands are 70 

among the most altered ecoregions of the world as less than 1% of their area is subject to any kind of 71 

use restriction (Henwood 1998, Hoekstra et al. 2005, Watson et al. 2016). Thus, over the last 200 72 

years large tracts of native grasslands have been mainly replaced by sown pastures, crops, and tree 73 

plantations (Baeza & Paruelo, 2018; Hall et al. 1992; Viglizzo et al. 2001). Together with the economic 74 

benefits brought about by the international trade of grain, meat, and other primary goods, public 75 

concerns on the sustainability and conservation of the RPG have intensified (Rotolo et al. 2015). The 76 

expansion of agriculture has significant impact on biodiversity (Staude et al. 2018), biological 77 

invasions (Guido et al. 2016), and carbon (Caride et al. 2012; Guershman et al. 2003), nitrogen 78 

(Austin et al. 2006) and hydrologic cycles (Noseto et al. 2012). The replacement of grasslands by 79 

Eucalyptus plantations have been documented to reduce soil pH, increase evapotranspiration, and 80 

may cause soil salinization (Jobbagy & Jackson, 2003; Nosetto et al. 2005). Moreover, cattle and 81 

sheep grazing have been shown to increase or decrease grasslands aboveground net primary 82 

production (Altesor et al. 2005; Rusch & Oesterheld, 1997) depending on the effects of changing 83 

species, plant functional type composition, biomass, and vertical distribution upon water and 84 

nutrient availability (Altesor et al. 2005). 85 

 Despite its importance, our understanding of the land cover changes and grassland 86 

conservation status in the RPG remains incomplete, coarse and fragmented. Most regional-scale 87 

studies have focused on the portion of the RPG limited to a given country and generally use official 88 

agricultural statistics aggregated at county level to characterize land cover changes (Baeza et al. 89 

2014,      Paruelo et al. 2006, Viglizzo et al. 2011). In turn, detailed studies have been conducted over 90 

specific periods, limited subsets of the RGP, coarse resolution and, in general, used land cover classes 91 

that are not readily compatible (Baeza & Paruelo, 2018, 2020; Baldi et al. 2008; Cordeiro & Hasenack, 92 

2009; Graesser et al. 2015, Souza et al. 2020; Volante et al. 2015). Thus, while these studies have 93 
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been instrumental to highlight the magnitude of the anthropogenic alteration of the RPG 94 

ecosystems, information on what remains and where, at what rates and over which type of land 95 

cover changes have been actively occurring is still lacking. 96 

 Our knowledge of the Earth’s surface dynamics has increased in pace with remote sensing 97 

technological advances. Compared to conventional ground-based approaches, remote sensing is 98 

particularly advantageous to monitor large areas due to its synoptic and repetitive observations. The 99 

recent advent of Google Earth Engine (GEE) (Gorelick et al. 2017), together with easy access of global 100 

very high-spatial resolution images, the increased availability of digital tools to create and edit 101 

geographical data and crowdsourcing data collection protocols have opened the door for 102 

customized, periodic, and accurate land cover monitoring (Azzari & Lobell 2017). Indeed, the 103 

availability of long term (>20 years) annual time series of land cover maps over national, continental 104 

or global extents produced with an objective and reproducible methodology and consistent legends 105 

represents a giant step forward in our ability to characterize past, and predict future, land cover 106 

changes, its environmental and social impacts and enhance territorial planning (Souza et al. 2020). 107 

 The MapBiomas initiative (https://mapbiomas.org) was created to develop a methodology 108 

capable of generating annual land cover maps based on Landsat satellite imagery collection, in a 109 

concept of progressively evolving land cover map collections. Data is processed using machine 110 

learning algorithms at GEE and both, land cover maps and the algorithms used, are publicly available. 111 

The work is carried out by a network of interdisciplinary teams linked to universities, NGOs, 112 

technology companies and startups, operating in a collaborative environment. It involves 113 

methodological development as well as incorporates local knowledge on land cover to improve 114 

results. Started in Brazil (see Souza et al. 2020), the initiative has recently expanded to map land 115 

cover and its changes over time in different biomes, such as the Gran Chaco Americano 116 

(https://chaco.mapbiomas.org/; Banchero et al. 2020), Pan Amazonia 117 

https://mapbiomas.org/
https://chaco.mapbiomas.org/
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(https://amazonia.mapbiomas.org/) or the Atlantic Forest 118 

(https://bosqueatlantico.mapbiomas.org/es).  119 

Here we describe and analyze the land cover changes that occurred between 2000 and 2019 120 

in the RPG using satellite based annual time series of land cover maps at 30 m resolution. To achieve 121 

this goal, we first developed and implemented a mapping framework – based on Landsat imagery 122 

and a GEE random forest classifier trained with visually interpreted samples- to produce a consistent 123 

land cover maps time series from the RPG biome. We then characterized the spatio-temporal pattern 124 

of land cover in the RPG focusing on the following questions: i) which is the present status of land 125 

cover types and how did they change in the last 20 years, ii) where have the rates of grassland –or 126 

other land cover conversion been highest, and iii) which have been the most frequent land cover 127 

transitions?   128 

2 Materials and Methods  129 

2.1 Study Area and land cover mapping approach 130 

The RPG occupies ca. 700000 km2 (28°S–38°S, 50°W–61°W) (Soriano, 1991) and it ranges 131 

over 3 countries, central-eastern Argentina, Uruguay and part of southern Brazil. The mean annual 132 

temperature decreases from 20°C in the north to 13°C in the south, and the annual precipitation 133 

ranges from 1500 mm in the northeast to 400 mm in the southwest (Oyarzabal et al. 2020).  134 

Grasslands, formed by different combinations of C3 and C4 grasses and a broad set of herbs are the 135 

dominant vegetation (Andrade et al. 2018; Soriano 1991). 136 

In this work, we focus only on the changes that have occurred within the RPG region. 137 

However, the total area mapped within the scope of the trinational MapBiomas Pampa initiative 138 

includes most of the RPG and also, parts of the neighboring phytogeographic regions of the Espinal 139 

and the Parana delta (Figure 1     ) to keep internal spatial continuity in the maps and with other 140 

https://amazonia.mapbiomas.org/
https://bosqueatlantico.mapbiomas.org/es
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MapBiomas network initiatives. Results for the entire area covered by MapBiomas Pampa Collection 141 

1 can be found on the project website (https://pampa.mapbiomas.org/). 142 

 143 

Figure 1: Region of interest mapped in the MapBiomas Pampa initiative, including the typical areas of 144 

the Pampa, Espinal, and Paraná river Delta. 145 

 The workflow of the classification process of Collection 1 in the MapBiomas Pampa initiative 146 

is shown in Figure 2. Having the study area defined, a legend with nine classes, a zonification of the 147 

area, with the definition of homogeneous sub-regions, and annual Landsat mosaics were generated. 148 

Visual interpretation samples for each class were obtained within each zone. The samples were 149 

generated using spectral data, vegetation indices and their temporal metrics. These were divided 150 

into training samples and testing samples and used only to perform a pre-classification with the 151 

random forest algorithm. From the pre-classification maps, then a new set of training stable samples 152 

(i.e. samples obtained from sites with the same class along the study period) was established and 153 

https://pampa.mapbiomas.org/
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used as a basis for the final classification using the random forest algorithm again. To improve the 154 

classification within each sub-region, a set of complementary training stable samples was collected 155 

ad hoc and through visual interpretation. The post-processing of the classification consisted of a set 156 

of spatial, temporal and frequency filters. The results of this methodology were annual maps of the 157 

study area together with statistics regarding area and annual land cover transitions. The 158 

classifications were validated through a review process for the years 2001 and 2018, with a set of 159 

independent samples. 160 

 161 

Figure 2: Workflow implemented for the classification process of Collection 1 of the MapBiomas 162 

Pampa initiative. 163 

2.2 Inputs 164 

2.2.1 Zonification 165 

The classification process was carried out in 23 homogeneous sub-regions, nine in Argentina, 166 

seven in Brazil and seven in Uruguay (Figure S1, Supplementary material). These units correspond to 167 

relatively homogeneous areas established to perform the classifications independently, avoiding the 168 

use of samples from other sub-regions. Thus, each subregion is a geographical classification unit. 169 
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Zonification was based on different sources of information depending on each country: in Argentina, 170 

were included vegetation indices, cropland, rivers and water bodies density maps and climate 171 

information.  In Uruguay, zonification was based on geomorphology criteria (Panario et al. 2014) and 172 

in Brazil, through a combination of soils, geomorphology and vegetation (Hasenack 2017). 173 

 174 

2.2.2 Imagery 175 

The imagery dataset used was obtained from the Landsat sensors Thematic Mapper (TM), 176 

Enhanced Thematic Mapper Plus (ETM+) and the Operational Land Imager and Thermal Infrared 177 

Sensor (OLI-TIRS), on board of Landsat 5, Landsat 7 and Landsat 8, respectively. The Landsat imagery 178 

collections with 30 m pixel resolution were accessible via Google Earth Engine, and were provided by 179 

National Aeronautics and Space Administration (NASA) and United States Geological Survey (USGS). 180 

The imagery dataset used had Tier 1 from USGS and surface reflectance (SR), also had radiometric 181 

calibration and orthorectification correction based on ground control points and digital elevation 182 

model to account for pixel co-registration and correction of displacement errors. For the selection of 183 

Landsat scenes a threshold of 90% of cloud cover was applied (i.e., any available scene with up to 184 

90% of cloud cover was accepted). This limit was established based on a visual analysis, after many 185 

trials observing the results of the cloud removing/masking algorithm.  186 

Selected Landsat scenes were merged and clipped within standardized cells for data 187 

processing, hereafter called ‘charts’, based on the grid of the World International Chart to the 188 

Millionth, at the 1:250,000 scale level. Each chart sets the geographical limits (2° x 1.5° size) to build 189 

up the temporal and spatial Landsat annual mosaics These mosaics were generated by the 190 

composition of pixels in each set of images , based on the median pixel value over a given period (a 191 

growing season or a year). These medians are constructed with all valid pixels, i.e.: without error 192 

(e.g.: data gaps on Landsat 7 SLC-off images) or cloud masked values.  The periods of the year in 193 

which the images were selected varied by country and resulted from the balance between the 194 
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probability of maximizing the differences in classes’ spectral behavior and the availability of cloud-195 

free images. In Uruguay and Brazil, the considered period was from September to November of each 196 

year while in Argentina from May to July. The three-months periods were extended for some years 197 

and charts when the availability of cloud-free images was low. To proceed with digital classification, 198 

all charts from the same year were merged and clipped by the boundary of the corresponding sub-199 

region.  200 

2.2.3 Legend 201 

The legend of the MapBiomas Pampa initiative included nine land cover classes (see Table 202 

S1-Supplementary material for a detailed description of each class): native woody formation, forest 203 

plantation, swampy areas and flooded grassland, grassland, farming, non-vegetated area, water, and 204 

non-observed. Native woody vegetation can be divided only in Argentina into two classes, closed 205 

forest and open forest. To maintain internal consistency, this division is not taken into account in this 206 

work and the maps and statistics reported reflect what happened with the entire native woody 207 

vegetation class. 208 

2.2.4 Training data for Pre-Classification 209 

Training samples of each class were obtained by visual interpretation of images and time 210 

series of vegetation indices. For this, backdrops of false-color Landsat mosaics for all the 20 years as 211 

well as graphs showing the temporal behavior of spectral indices per pixel were used to create stable 212 

land cover class samples (i.e. areas where the class was the same during the 20-year period). The 213 

sampling was done drawing small polygons (less than 200 pixels)  using GEE Code Editor. On average, 214 

10 polygons per chart and per class were digitized. A total of 4,189 polygons were digitized for 215 

Argentina and 1,703 for Uruguay. These samples were used for the pre-classification process. In the 216 

Brazilian portion there was no sample collection once the pre-classification process followed an 217 

alternative approach (see below).  218 
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2.3 Data integration 219 

Landsat imagery was used to generate the feature space (i.e. variables) used as input of the 220 

random forest classifier. For each chart we calculated different aggregation metrics to reduce all 221 

observations within the selected period and produce temporal annual mosaics. Each mosaic has 222 

spectral bands and index, fractions and index from spectral mixture analysis, temporal index (based 223 

on median, minimum, amplitude and standard deviation reducers), and textural index. Each year was 224 

divided into quartiles by the Normalized Difference Vegetation Index values to define the higher and 225 

lower periods of photosynthetic activity. The median values of the highest quartile were defined as 226 

the high activity image and the lowest ones as the low activity image. This criterion was applied over 227 

spectral bands and indices to generate the high and low version of the descriptor (Table S2-228 

Supplementary material). We obtained a total of 107 bands that allow us to describe the temporal 229 

and spectral dynamics between 2000 and 2019. 230 

Training samples were used to generate the training and calibration sets to fit a random 231 

forest classifier. We extracted the values from the mosaics and shuffled the samples following a 232 

holdout strategy, with 70% and 30% to train and validate respectively.  233 

2.4 Model fitting 234 

2.4.1 Pre-classification 235 

A subset between 200 and 700 pixels per class and per zone were randomly selected from 236 

the pixels of the on-screen-digitized polygons (randomly selected too) and used as training areas for 237 

the classification algorithm. Classification was performed zone by zone, year by year, using the Smile 238 

Random Forest algorithm (Breiman, 2001) available in Google Earth Engine, running 40 iterations 239 

(random forest trees) with 4 variables per split and minimum leaf size of 25. For Argentina and 240 

Uruguay, a total of 20 yearly preliminary classifications were obtained and the frequency with which 241 

a pixel was classified to the same land cover class was calculated to define the temporal stable areas. 242 
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In Brazil, an existing classification for these 20 years (results of MapBiomas Brazil collection 4.1, 243 

launched in 2019) was used to define the temporal stable areas for each class, making it unnecessary 244 

to produce a pre-classification. The first map collections for this specific region were made using 245 

decision trees based on Spectral Mixture Modeling (MME) variables as is described in Souza Jr. et al. 246 

(2005).  247 

2.4.2 Stable areas samples 248 

Each pixel classified with the same land cover class for at least a minimum number of years in 249 

the period 2000-2019 is considered as stable. The frequency thresholds depend on the class and the 250 

subregion (e. g. forest plantations for pulp mills usually have a 12-year cycle in Uruguay and a 18-year 251 

cycle in Argentina). The layer of stable areas was generated by those thresholds from which pixels 252 

were extracted for the classification (2,000 samples for each subregion). The selection was random 253 

and stratified based on the class cover percentage. The data set was balanced, rare classes that did 254 

not reach a land cover of at least 10% of the region area had a minimum of 200 samples. The data set 255 

was divided in two categories, training and testing. 60% of the subset, labeled as training pixels, were 256 

used as training samples for the classification algorithm. 257 

2.4.3 Complementary data 258 

The need for complementary training samples was evaluated by visual inspection comparing 259 

the output of the preliminary classification with both Landsat and high-resolution (< 1m) images 260 

available as base maps in GEE (typically WorldView, GeoEyes or Ikonos imagery) . Complementary 261 

samples were obtained by checking the false-color composites of the Landsat mosaics for all the 20 262 

years during the polygon drawing to ensure class stability. Complementary samples were a minority 263 

(1.4 % of the total samples) and were used in some categories to solve specific classification 264 

problems. For example, wet lowlands grasslands classified as agricultural areas or confusion between 265 

Forest plantations and native woody vegetation in hilly areas, etc. 266 
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2.4.4 Classification 267 

The final classification was performed for all subregions and years with stable and 268 

complementary samples with the algorithm used in the pre-classification (Random Forest, with 40 269 

trees, 4 variables per split and minimum leaf size of 25). All years used the same subset of samples, 270 

but trained using the specific mosaic of the year being classified. 271 

2.5 Post-processing 272 

The results of the final classification were improved through a sequence of filters, to correct 273 

missing data, “salt-and-pepper” classification errors and, specially, cases of misclassification. 274 

The “gap” filter was applied to fill the no-data pixels. The no-data values are replaced by the 275 

temporally nearest valid classification. In this procedure, if no “future” valid position was available, 276 

then the no-data value was replaced by its previous valid class. Therefore, gaps should only exist if a 277 

given pixel has been permanently classified as no-data throughout the entire temporal domain. 278 

The spatial filter avoids unwanted modifications to the edges of the pixel groups, a spatial 279 

filter was built based on the "connectedPixelCount" function. Native to the GEE platform, this 280 

function locates connected components (neighbors) that share the same pixel value. Thus, only pixels 281 

that did not share connections to a predefined number of identical neighbors were considered 282 

isolated. In this filter, at least six connected pixels were needed to reach the minimum connection 283 

value. Consequently, the minimum mapping unit is directly affected by the spatial filter applied, and 284 

it was defined as 6 pixels (~0,5 ha). 285 

The temporal filter uses the information from the previous year and the later year to identify 286 

and correct a pixel misclassification, considered as cases of invalid transitions. In the first step, the 287 

filter looks at any natural cover (3, 4, 11, 12, 33) that is not this class in 2000 and was kept unchanged 288 

in 2001 and 2002 and then corrects the 2000’s value to avoid any regeneration in the first year. In 289 

the second step, the filter looks at a pixel value in 2019 that is not 14 (Farming) but is equal to 14 in 290 

2017 and 2018. The value in 2019 is then converted to 14 to avoid any regeneration in the last year. 291 
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The third process looks in a 3-year moving window to correct any value that changed in the middle 292 

year and returns to the same class next year. 293 

To correct classification problems associated with some classes in specific regions, frequency 294 

filters were applied to use the temporal information available for each pixel to correct cases of false 295 

positives. The general logic of the frequency filter is to search for each pixel a specific combination of 296 

classes throughout the 20 years producing a subset of pixels considered eligible for correction. Then 297 

the filter detects and overwrites only those years where cases of false positives are present using a 298 

fixed class value, that usually is the mode of classifications detected along the temporal range. 299 

2.6 Accuracy assessment 300 

We used an independent validation dataset to assess the accuracy of our land cover maps. 301 

To avoid temporal filter effects at the beginning and end of the study period (see above) we selected 302 

for the accuracy analysis the years 2001 and 2018. We followed the sampling scheme proposed by 303 

Olofsson et al. (2014) whereas 2,330 pixels were selected by means of a stratified random design. 304 

Thus, the common accuracy assessment sample consisted of seven strata (one per class) based on 305 

the 2010 land cover map for the entire area covered by MapBiomas Pampa Collection 1. The 306 

allocation of samples to each stratum was slightly shifted from proportional as we fixed a minimum 307 

and maximum number of samples for the rarest and for the most frequent classes. Each of the 2330 308 

samples was evaluated by at least 2 different interpreters (and a third evaluation was required when 309 

initial interpretations disagreed) involving up to 16 interpreters from 3 countries. Interpreters could 310 

access an RGB visualization of a Landsat composite from 2001 and from 2018, a NDVI time-series 311 

plot, and the catalog of very high-resolution images available in Google Earth Pro. 312 

Accuracy assessment was performed by comparing the land cover maps with the 313 

independent reference points and calculating non-normalized and normalized error matrices 314 

(Congalton 1991, 2009). From them, we computed a set of commonly used accuracy measures, 315 

comprising producer’s and user’s accuracy, omission and commission errors, and overall accuracy. 316 
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Additionally, we computed quantity disagreement (QD) and allocation disagreement (AD), which 317 

decompose the overall disagreement in its components of quantity and allocation (Pontius and 318 

Millones, 2011). 319 

These measures were preferred instead of kappa taking into account criticisms about the 320 

meaning and usefulness of the latter in the literature (Foody, 2020; Olofsson et al. 2014; Pontius & 321 

Millones 2011; Stehman et al. 2021). While kappa measures how much the agreement is better than 322 

random, quantity disagreement and allocation disagreement measure how much the agreement is 323 

less than perfect, providing additional information that helps to explain the error. Allocation 324 

disagreement and quantity disagreement provide measures of discordance due to the imperfect 325 

spatial allocation of class pixels and due to the incorrect extent of classes, respectively. Quantity 326 

disagreement measures the amount of difference between the reference data and the classification 327 

map that is due to the less than perfect match in the proportions of the categories. Allocation 328 

disagreement measures the amount of difference between the reference map and the estimated 329 

map that is due to the less-than-optimal match in the spatial allocation of the categories, given the 330 

proportions of the categories in the reference data and in the classification (Pontius & Millones 331 

2011). 332 

2.7 Outputs 333 

The area for each class in the annual maps was calculated from the number of pixels. The 334 

statistics were made for different spatial units: biomes, countries, and, in the website, for provinces 335 

and districts. Also, land cover changes occurring in a given period were calculated. In the same way 336 

as in the accuracy analysis, land cover transition for each pixel was calculated for 2001 and 2018, in 337 

order to avoid temporal filter effects. This data is available as spreadsheets, maps and Sankey 338 

diagrams respectively, in the MapBiomas Pampa web-platform. All GEE codes used in the 339 

classification process are available on GitHub https://github.com/schirmbeckj/mapbiomas-pampa-340 

trinacional). 341 
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 342 

3 Results 343 

Farming and grassland were the most abundant land cover classes in 2001 and 2018 for the 344 

whole region. Native woody vegetation was the third more abundant class, and swampy and flooded 345 

grassland the fourth one. The rest of the classes were relatively scarce (Figures 3 and 4). This general 346 

pattern integrated different individual patterns at country level in 2001 and 2018. In Argentina, 347 

farming was three times more abundant than grassland (Figures 3 and 4). In contrast, in Uruguay, 348 

grassland was three times more abundant than farming (Figures 3 and 4). In Brazil, farming and 349 

grassland were equally abundant, and native woody vegetation was more abundant than in 350 

Argentina and Uruguay (Figures 3 and 4).  351 

Forest plantation class relatively increased 100% for the whole region between 2001 and 352 

2018, while farming increased 5% and grassland and native woody vegetation decreased 8-9% 353 

(Figure 4). These general relative changes between 2001 and 2018 integrated different individual 354 

changes at country level. In Argentina, native forest decreased 30%, while forest plantation and 355 

swampy and flooded grassland decreased 7% (Figure 4). In Brazil, forest plantation increased 200%, 356 

farming 25% and native forest 5%, while grassland decreased 25% and swampy and flooded 357 

grassland 3% (Figure 4). In Uruguay, forest plantation increased 100%, swampy and flooded grassland 358 

12% and farming 3%, while grassland area decreased 10% (Figure 4).  359 

For the whole region the net loss of grassland was approximately 2.4 million hectares (Mha). 360 

This change includes the loss of 6.2 Mha (21% relative to grassland area in 2001), mainly due to 361 

replacement with farming, and the gain of 4.5 Mha of new grassland areas, mostly from farming. The 362 

transitions between the other classes were smaller and involved less than 0.9 Mha (Figure 5). At 363 

country level, Argentina has a net gain of grassland of 0.3 Mha, resulting for the transition from 364 

grassland to farming (2.8 Mha), from farming to grassland (2.7 Mha) and, to a lesser extent, from 365 

native woody vegetation and swampy area/flooded vegetation to grassland. Loss of native woody 366 
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vegetation was around 0.6 Mha mainly for conversion to farming. In Brazil, net grassland loss was 1.9 367 

Mha resulting for the transition from grassland to farming (2.1 Mha) and native woody vegetation 368 

(0.4 Mha) and the transition from farming to grassland (0.6 Mha). Uruguay has a net grassland loss of 369 

0.9 Mha resulting for the transition from grassland to farming (1.4 Mha) and forest plantation (0.6 370 

Mha) and the transition from farming to grassland (1.1 Mha). The rest of the transitions were less 371 

important and involved, all together, the change of category of 0.4, 0.2 and 0.2 Mha in Argentina, 372 

Brazil and Uruguay, respectively (Figure 5). 373 
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  Figure 3: Land cover map for Rio de la Plata Grasslands during 2001 (top) and 2018 (bottom). Black 376 

lines indicate international boundaries. 377 

 378 
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 Figure 4: Relative area (%) of land cover main vegetated classes for the whole RPG region and each 379 

country between 2001 and 2018 (left), and relative change area (%; right). Relative change area was 380 

calculated as: (area 2018 - area 2001)/area 2001. For better readability, only two labels are shown in 381 

the first top left graphic. 382 

 383 

 384 
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     Figure 5: Transitions of land cover classes for the whole RPG region and each country between 385 

2001 (left) and 2018 (right). Transitions with less than 0.5% of the total area were removed for visual 386 

purposes. In each panel, numbers indicate the area of each class (in million ha). 387 

3.1 Accuracy Assessment 388 

Overall accuracy (OA) was 74% for 2001 and 78% for 2018. In 2001, user and producer´s 389 

accuracies were maximum for farming and water, and minimum for forest plantations.  In 2018, both 390 

accuracies were also maximum for farming and water, user's accuracy was minimum for non-391 

vegetated area while producer´s one was minimum for swampy area/flooded vegetation (Figure 6). 392 

Regarding the nature of disagreements, in both land cover maps, allocation disagreement (AD) was 393 

the major component of discordance with 24.3% in 2001 and 13.1% in 2018. Quantity disagreement 394 

(QD) in 2001 was 2.3% and in 2018, 1.31% (Table S3, Supplementary material). Summing overall 395 

agreement and allocation disagreement gives an indicator of area agreement which equals 97.7% in 396 

2001 and 90.9% in 2018. 397 

 398 



22 
 

399 
Figure 6: User´s (empty bars) and producer´s (scratched) accuracy of land cover maps in 2001 and 400 

2018. 401 

4 Discussion 402 

Our work reports land cover and its changes over time for the entire RPG region with 403 

unprecedented spatial and temporal resolutions (20 years of 30 m annual maps). The MapBiomas 404 

Pampa initiative summarizes the collaborative effort of three countries and several public and private 405 

institutions incorporating local knowledge in the construction of maps. RPG region has lost at least 8 406 

% of its natural grassland area in the last 20 years mainly due to farming and forest plantation 407 

expansion. These losses were greatest in the Brazilian portion of the study area, where grasslands 408 

lost almost 30% of their area. Wall to wall (entire region) maps allow a global understanding of the 409 

transformation processes that RPG are undergoing and provide the context in which to explore a 410 

large set of hypotheses related to the distribution of plant and animal species, effects of habitat loss 411 
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and fragmentation on biodiversity, biological invasions or ecosystem functioning. Moreover, our 412 

maps can help to define cooperation on supranational management policies (e.g. planning of road 413 

infrastructure for cargo transport, estimating the final volume of raw materials in different ports, 414 

etc.) or to assess the effect of different land management policies at the national level.  415 

Our maps presented accuracies comparable to those reported in other works that map land 416 

cover over large areas and reflect the complexity of mapping natural grasslands. For example, 417 

Buchorn et al. (2020), for Copernicus Global Land Cover - Collection 2, reported a global accuracy 418 

around 80%, accuracies around 70% for herbaceous vegetation and 50-60 % for wetlands and 419 

shrublands. Stheman et al. (2021), reported somewhat higher precision for the annual map series of 420 

the U.S. Geological Survey Land Change Monitoring, with an average overall accuracy of 82.5% but 421 

highly variable in space; for example, the grass/shrub class had user accuracies of 36 and 48% and 422 

producer accuracies of 15 and 11% for east and central-east regions, respectively. Wickham et al. 423 

(2021) analyzed the accuracy of the National Land Cover Database, a Landsat based land cover maps 424 

for the conterminous US, and reported global accuracies of around 72% and user and producer 425 

accuracies of 65 and 67% for grasslands, respectively. The accuracy of our maps was also similar to 426 

that of other map collections from the MapBiomas initiative. For example, Souza et al. (2020) for 427 

annual land cover maps of MapBiomas Brazil - Collection 3, reported overall accuracies ranging from 428 

95 to 73%, depending on the biome considered, with high omission and commission errors for 429 

grassland class. In the Brazilian Cerrado, a particularly complex biome subjected to an intense 430 

process of land cover change, Alencar et al. (2020) mapped native vegetation with overall accuracies 431 

from 67 to 74% and higher errors in grasslands. For MapBiomas Chaco initiative, Banchero et al. 432 

(2020) reported overall accuracies around 74% but do not report the error distribution of the 433 

different mapped classes. In a direct antecedent that mapped RPG biome, Baeza and Paruelo (2020) 434 

used information on vegetation phenology derived from NDVI-MODIS time series to generate annual 435 

maps for the period 2000-2014. This work had higher accuracy (around 95% at regional level) but 436 

lower conceptual resolution (grouped natural grasslands with sown pastures and native forests with 437 
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commercial afforestation), lower spatial resolution (250 m) and covered a shorter period of time 438 

than MapBiomas Pampa Collection 1 maps.  439 

The accuracy analysis shows coincidences with other works and particular characteristics of 440 

our study area and the approach used. Overall accuracy (and producer / user accuracies) was higher 441 

in 2018 than in 2001, which is expected given the lower availability of high-resolution imagery at the 442 

beginning of the map series, which generates higher uncertainties in both training and evaluation 443 

sample generation. This trend of increasing accuracy of maps from more recent years was also 444 

reported in other works of MapBiomas initiative (Alencar et al. 2020, Souza et al. 2020). 445 

A detailed analysis of the confusion matrices including omission and commission errors, 446 

allocation disagreement (AD) and quantity disagreement (QD), and their partial calculus, allows to 447 

identify the main problems of the maps and to infer which classes tend to have their extent 448 

overestimated or underestimated (Table S3, Supplementary material). One of the biggest challenges 449 

in the context of this work is the discrimination of grasslands from other land covers. Grasslands are 450 

mainly confused with farming, probably with sown pastures (included in farming class). The high 451 

physiognomic similarity and the intra class heterogeneity of the spectral response of both natural 452 

grasslands (different communities, landscape positions, location in the study area) and sown 453 

pastures (different species, sowing dates, pasture age, etc.) generate an overlapping of the spectral 454 

signatures of these coverages, which makes it difficult to discriminate between them. Additionally, 455 

and unlike other temperate grasslands where the herbaceous vegetation dries up or is covered with 456 

snow for part of the year, RPGs have photosynthetically active vegetation throughout the year, 457 

making it difficult to discriminate based on phenology. This difficulty for correctly discriminating 458 

grasslands has been reported before in several works and is reflected in the greater confusion of this 459 

category in the land cover works discussed above. For our study area, Rios et al. (2022) reported this 460 

problem for grasslands in southeastern Uruguay, Souza et al. (2020) for South Brazilian grasslands, 461 

Baeza et al. (2019) and Baeza and Paruelo (2020) for Uruguayan grasslands. Baeza and Paruelo (2020) 462 
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dealt with this grassland-pasture confusion by merging the classes into a single category of perennial 463 

forage resources. Contrary, in our work, pastures were mapped together with crops in a single 464 

Farming class, leaving natural grasslands, the main natural vegetation formation of the biome, as an 465 

independent class. 466 

4.1 Grassland loss and main Land Use Changes. 467 

In 20 years, RPG region lost almost 2.4 million ha of grassland (9% of the remaining grassland 468 

area in 2001). Most of these losses are concentrated in Brazil and Uruguay and are associated with 469 

new agricultural or forestry areas. Similar trends were previously reported in other works that cover 470 

partially (Baldi & Paruelo; 2008; Cordeiro and Hasenack, 2009; Kuplich et al. 2018; Oliveira et al. 471 

2017; Volante et al. 2015) or totally (Baeza et al. 2020; Graesser et al 2015; Potapov et al. 2021) de 472 

study area. Song et al. (2021) recently reported that most of the expansion of the soybean area in 473 

South America occurred at the expense of grassland areas in the RPGs where the area with this crop 474 

practically doubled in the last 20 years. In Argentina, the area with natural grasslands remained 475 

practically unchanged, probably because most of the sites suitable for agriculture had already been 476 

transformed prior to the period analyzed and/or the new agricultural areas come from areas 477 

previously occupied with sown pastures. Baldi & Paruelo (2008) and Viglizzo et al. (2011) reported 478 

that the agriculturalization process in most of the Argentine pampas predates the year 2000. Baeza 479 

and Paruelo (2020) reported changes from perennial forage resources to crops in the Argentine 480 

pampas after 2000. These changes probably respond to an agricultural intensification process with a 481 

shift from sown pastures or pasture-agriculture rotation to continuous annual crops; both land cover 482 

categories fall into the farming class in our classification scheme, which would explain why our maps 483 

do not capture these changes. 484 

Another important land cover      change process that has occurred in the last two decades is 485 

the increase of forest plantation, which doubled the area occupied compared to 2001. This increase 486 

was particularly important in Uruguay and Brazil, where the forested area doubled and tripled, 487 
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respectively. In Uruguay, the expansion of forest plantation is associated with political and economic 488 

incentives and the installation of the cellulose industrial complex (Baeza et al. 2006; Baeza and 489 

Paruelo, 2020; Baldi & Paruelo, 2008; Paruelo et al. 2006). In Brazil, it results from private 490 

investments made by large national and international companies to expand the pulp and paper 491 

supply chain within a framework of strong globalization, centralization of assets and concentration of 492 

industrial production (Benetti 2008). A similar process was documented for Argentina, but was 493 

mainly located in North Entre Ríos and Corrientes provinces (Baldi & Paruelo, 2008), areas not 494 

included in this study. 495 

Although the accuracy of the maps is moderate, the analysis of the confusion matrix and the 496 

metrics proposed by Pontius and Millones (2011), shows that most of the error is associated with the 497 

allocation and not to quantity disagreement. This increases the map accuracy for area calculation 498 

(Overall accuracy + Allocation disagreement), reaching 98 and 91 % for 2001 and 2018 respectively, 499 

increasing confidence in the loss of grassland areas reported. Moreover, error-corrected area 500 

estimates (Table S4-Supplementary material) show that these grassland losses are surely even 501 

greater. Grassland area was slightly overestimated in 2001 and strongly overestimated in 2018, so 502 

the net loss is probably much higher than calculated from the maps. The opposite occurs with the 503 

two main grassland replacements; Farming underestimation was lower in 2001 than in 2018, from 504 

which it is reasonable to assume that expansion was larger than shown by the maps. Forest 505 

plantations were slightly overestimated in 2001 and considerably underestimated in 2018, implying 506 

that net gain was quite larger than that reported on the maps. 507 

The decrease in grassland area coincides with what happened in other grasslands around the 508 

world (Bond and Parr, 2010; Lark et al. 2015; Neke and Du Plais, 2004; Veldman et al. 2015) and 509 

alerts about the conservation status of this biome, often forgotten in the conservation agenda 510 

(Hoekstra et al. 2005; Overbeck et al. 2007; Silveira et al. 2020; Watson et al. 2016). According to 511 

Oyarzabal et al. (2020) there are 99 protected areas in RPG     , which cover between 3.7% and 6.8% 512 
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of the biome extent, depending on the considered regional limits. Most of these protected areas 513 

have been implemented on public lands of generally low-economic importance, regardless of their 514 

conservation values (Baldi et al. 2017, 2019; Oyarzabal et al 2020). The availability of regional 515 

(semi)natural vegetation maps with good spatial and temporal resolution therefore becomes central 516 

for defining efficient conservation and/or restoration policies (Buisson et al. 2021; IPCC, 2019). Our 517 

maps allow  systematically identifying both grassland remnants in highly transformed areas and large 518 

grassland patches within landscapes with low fragmentation suitable for conservation programs.  519 

 4.2 Limitations and next steps 520 

There are a number of aspects to consider when interpreting the results of this work, 521 

evaluating the scope of generated maps and improving future map collections. The results presented 522 

in this article do not contemplate the entire study area since the maps of MapBiomas Pampa-523 

Collection 1 also incorporate portions of other neighbor biomes (see methods). However, the 524 

evaluation of the maps was carried out from a stratified sampling that contemplates the entire 525 

mapped area and not exclusively the RPG. This implies that the error estimation and area correction 526 

presented might be slightly different if the stratification and sampling had been done exclusively 527 

within the RPG limits. 528 

Future work will require improvements in class differentiation, conceptual resolution (larger 529 

number of classes) and extension of the time period under study. Discrimination improvements 530 

depend on the class to map. In our region, the grasslands confusion discussed above, fundamentally 531 

with sown pastures, could be partially corrected through several mechanisms: improvements in the 532 

quantity and quality of training data; extension of the feature space; use of the historical map series 533 

to discriminate grasslands sites that were previously other land cover. Recently, Rios et al (2022) 534 

used an agricultural mask (sites that had agriculture in at least one of the last 12 years) to 535 

discriminate grasslands from other herbaceous covers (sown pastures, post-agricultural fields with 536 

different stages of vegetal succession) in the southeastern Uruguay. Another class with which 537 
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grasslands are confused is native woody vegetation, particularly with open woody / savanna 538 

formations, a frequent confusion in systems with variable density of woody cover (Alencar et al. 539 

2020; Sano et al. 2010). Incorporating, at least for the most recent maps, information that accounts 540 

for vegetation structure, such as radar images (see for example: Heckel et al. 2020; Lopes et al. 2020; 541 

Zhang et al. 2019,) or Lidar technology (Ferraina et al. 2022; Ferreira et al. 2011; Zimbres et al. 2020), 542 

could also improve the discrimination of open woody covers and reduce their mixing with grasslands. 543 

The improvements in conceptual resolution fundamentally imply the separation of the 544 

farming class between crops and sown pastures and, within crops, between annual and perennial 545 

crops, expanding the potential uses of generated maps (see below). The extension of the studied 546 

period will allow to improve the description of land cover change processes and the analysis of its 547 

causes and consequences. In the RPGs, for example, much of grassland losses, mainly in the 548 

Argentine portion of the study area, occurred before the year 2000 and are not captured in the map 549 

collection presented here. The extension of the map series up to 1985 from the historical Landsat 5 550 

archive has already been successfully used in other works such as MapBiomas Brazil (Souza et al. 551 

2020) or the Land Change Monitoring Assessment and Projection (LCMAP) in the United States 552 

(Brown et al. 2020; Stehman et al. 2021).  553 

Due to time and budget constraints, the evaluation of the map collection accuracy was 554 

carried out exclusively for two years, at the beginning and end of the series. An evaluation of the 555 

entire map collection would allow a correct quantification of the rates of change for the different 556 

classes, with more stable trends, enabling the possibility of correcting erroneous transitions. 557 

4.3 The MapBiomas platform and its potential uses 558 

Wall to wall (entire region) RPG maps allow for a comprehensive view of a number of core 559 

aspects linked to ecosystem structure and functioning. They allow to, for example, assess the 560 

biodiversity conservation status and conservation/restoration priorities; model species distribution 561 
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and design management strategies based on their habitat requirements; assess the role of habitat 562 

loss and fragmentation in biological diversity and/or exotics invasion processes; analyze exchanges of 563 

matter and energy and their influence on the regional climate; or define supranational management 564 

policies. On the other hand, the results allow the comparison of the land use planning policies of the 565 

three countries involved and the evaluation of their effect on the landscape conformation and its 566 

changes over time. For example, the law for the promotion of forestry activities in Uruguay (law 567 

15939) and the installation of 3 large pulp mills, promoted the expansion of forestry plantations 568 

observed in our maps. 569 

Previous products from other MapBiomas initiatives, such as MapBiomas Brazil maps’ 570 

collections have been used in numerous works. For example, Rosa et al. (2021) quantified native 571 

forest cover dynamics in the Brazilian Atlantic Forest and related them to restoration programs and 572 

Nunes et al. (2020) analyzed the extension and carbon gains of secondary vegetation in the Brazilian 573 

Amazon. Several works also model the impact of land cover changes on energy flows and water cycle 574 

(dos Santos et al. 2022; Laipelt et al. 2021; Rosan et al. 2021) or animal diversity and distribution 575 

(Camana et al. 2020; Alvarenga et al. 2021, Galan Acedo et al. 2021) 576 

 MapBiomas Pampa land cover maps are conceived as successive evolving collections where 577 

all the products, methods and tools are freely and publicly available on internet 578 

(https://pampa.mapbiomas.org/). We hope that the successive maps collection of MapBiomas 579 

Pampa initiative contribute to the development of knowledge and the improvement of decision-580 

making at both the regional and national levels 581 

https://pampa.mapbiomas.org/
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Supplementary Materials: Figure S1: Region of interest mapped in the MapBiomas Pampa initiative 582 

showing the limits of relatively homogeneous areas used  to perform independent classifications, 583 

Table S1: Legend description of the MapBiomas Pampa Collection 1, Table S2:  Feature space (107 584 

variables) used in the digital classification of Landsat image mosaics in the MapBiomas Pampa 585 

Collection 1 (2000-2019), Table S3: Contingency matrices between classification results and 586 

independent validation dataset, Table S4: Area estimates corrected from the analysis of the 587 

contingency matrices 588 

Acknowledgements: We would like to thank all the team involved in the MapBiomas Collections and 589 

particularly to Tasso Azevedo (general coordinator) and Marcos Rosa (technical coordinator) from MapBiomas 590 

for promoting and supporting the entire Pampa Trinational initiative. We gratefully acknowledge the USGS and 591 

NASA for the courtesy of the Landsat images. We are also grateful to Google for providing access to the Google 592 

Earth Engine platform that enables the processing of all data. We also thank Fundación Vida Silvestre Argentina 593 

for operating arrangements. This work has been partially funded by MapBiomas Brasil through Arapyaú 594 

Institute. MapBiomas is supported by a network of funders including Children's Investment Fund Foundation 595 

(CIFF), Climate and Land Use Alliance (CLUA), Global Wildlife Conservation (GWC), Good Energies Foundation, 596 

Gordon & Betty Moore Foundation, Iniciativa Internacional de Clima e Florestas da Noruega (NICFI), Instituto 597 

Arapyaú, Instituto Clima e Sociedade (ICS), Instituto Humanize, OAK Foundation, Quadrature Climate 598 

Foundation (QCF), Walmart Foundation (USA), Wellspring Philanthropic Fund (WPC). This work has been also 599 

partially funded by ANII INNOVAGRO projects FSA_PI_2018_1_149022 and FSA_PI_2018_1_148811; CSIC I+D 600 

2020_358, FMV_3_2020_1_162279,  and FMV_1_2021_1_167032 601 

References  602 

Alencar, A., Z Shimbo, J., Lenti, F., Marques, C.B., Zimbres, B., Rosa, M., ... & Barroso, M. (2020). 603 

Mapping three decades of changes in the brazilian savanna native vegetation using landsat data 604 

processed in the google earth engine platform. Remote Sensing, 12(6), 924. 605 



31 
 

Altesor, A., Oesterheld, M., Leoni, E., Lezama, F., & Rodríguez, C. (2005). Effect of grazing on 606 

community structure and productivity of a Uruguayan grassland. Plant Ecology, 179(1), 83-91. 607 

Alvarenga, G. C., Chiaverini, L., Cushman, S. A., Dröge, E., Macdonald, D. W., Kantek, D. L. Z., ... & 608 

Kaszta, Ż. (2021). Multi-scale path-level analysis of jaguar habitat use in the Pantanal ecosystem. 609 

Biological Conservation, 253, 108900. 610 

Andrade, B. O., Marchesi, E., Burkart, S., Setubal, R. B., Lezama, F., Perelman, S., ... & Boldrini, I. I. 611 

(2018). Vascular plant species richness and distribution in the Río de la Plata grasslands. Botanical 612 

Journal of the Linnean Society, 188(3), 250-256. 613 

Austin, A. T., Piñeiro, G., & Gonzalez-Polo, M. (2006). More is less: agricultural impacts on the N cycle 614 

in Argentina. Biogeochemistry 79: 45–60. 615 

Azpiroz, A. B., Isacch, J. P., Dias, R. A., Di Giacomo, A. S., Fontana, C. S., & Palarea, C. M. (2012). 616 

Ecology and conservation of grassland birds in southeastern South America: a review. Journal of Field 617 

Ornithology, 83(3), 217-246. 618 

Azzari, G. & Lobell, D. B. (2017). Landsat-based classification in the cloud: An opportunity for a 619 

paradigm shift in land cover monitoring. Remote Sensing of Environment 202: 64–74. 620 

Baeza, S. Baldassini, P., Bagnato, C., Pinto, P., Paruelo, J. M. (2014). Caracterización del uso/cobertura 621 

del suelo en Uruguay a partir de series temporales de imágenes MODIS. Agrociencia Uruguay, 18 622 

2:95-105. 623 

Baeza S. & Paruelo J. 2018. Spatial and temporal variation of Human Appropriation of Net Primary 624 

Production in the Rio de la Plata Grasslands. ISPRS Journal of Photogrammetry and Remote Sensing. 625 

145: 238 – 249 626 

Baeza, S., & Paruelo, J. M. (2020). Land use/land cover change (2000–2014) in the Rio de la Plata 627 

grasslands: an analysis based on MODIS NDVI time series. Remote Sensing, 12(3), 381. 628 



32 
 

Baeza, S., Paruelo, J. M., & Altesor, A. (2006). Caracterización funcional de la vegetación del Uruguay 629 

mediante el uso de sensores remotos. Interciencia, 31(5), 382-388. 630 

Baeza S.; Rama G. & Lezama F. 2019. Cartografía de los pastizales en las regiones geomorfológicas de 631 

Uruguay predominantemente ganaderas. Ampliación y actualización. En Altesor A, López-Mársico L y 632 

Paruelo J (Eds.). Bases ecológicas y tecnológicas para el manejo de pastizales II., pp. 27-47 633 

Baldi, G., Paruelo, J.M. (2008). Land-Use and Land Cover Dynamics in South American Temperate 634 

Grasslands. Ecology and Society 13: 6. 635 

Baldi, G., Schauman, S., Texeira, M., Marinaro, S., Martin, O. A., Gandini, P., & Jobbágy, E. G. (2019). 636 

Nature representation in South American protected areas: country contrasts and conservation 637 

priorities. PeerJ, 7, e7155. 638 

Baldi, G., Texeira, M., Martin, O. A., Grau, H. R., & Jobbágy, E. G. (2017). Opportunities drive the 639 

global distribution of protected areas. PeerJ, 5, e2989. 640 

Banchero, S., De Abelleyra, D., Veron, S. R., Mosciaro, M. J., Arevalos, F., & Volante, J. N. (2020, 641 

March). Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano. In 2020 642 

IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS) (pp. 511-514). IEEE. 643 

Benetti, M. (2008) Indicadores da formação de uma plataforma exportadora de celulose no Rio 644 

Grande do Sul. Indicadores Econômicos FEE, Porto Alegre, v. 35, n. 3, p. 21-28. 645 

Bond, W. J., & Parr, C. L. (2010). Beyond the forest edge: ecology, diversity and conservation of the 646 

grassy biomes. Biological conservation, 143(10), 2395-2404. 647 

Breiman, L. Random Forests. Machine Learning 2001, 45, 5–32. 648 

Brown, J. F., Tollerud, H. J., Barber, C. P., Zhou, Q., Dwyer, J. L., Vogelmann, J. E., ... & Rover, J. (2020). 649 

Lessons learned implementing an operational continuous United States national land change 650 



33 
 

monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach. 651 

Remote Sensing of Environment, 238, 111356. 652 

Buchhorn M, Lesiv M, Tsendbazar N E, Herold M, Bertels L and Smets B 2020 Copernicus global land 653 

cover layers-collection 2. Remote Sensing 12: 1–14. 654 

Buisson, E., Fidelis, A., Overbeck, G. E., Schmidt, I. B., Durigan, G., Young, T. P., ... & Silveira, F. A. 655 

(2021). A research agenda for the restoration of tropical and subtropical grasslands and savannas. 656 

Restoration Ecology, 29, e13292.. 657 

Camana, M., Dala-Corte, R. B., Collar, F. C., & Becker, F. G. (2020). Assessing the legacy of land use 658 

trajectories on stream fish communities of southern Brazil. Hydrobiologia, 1-16. 659 

Caride, C., Piñeiro, G., & Paruelo, J. M. (2012). How does agricultural management modify ecosystem 660 

services in the argentine Pampas? The effects on soil C dynamics. Agriculture, ecosystems & 661 

environment, 154, 23-33. 662 

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. 663 

Remote sensing of environment, 37(1), 35-46. 664 

Congalton, R. G. (2009). Accuracy and error analysis of global and local maps: Lessons learned and 665 

future considerations. Remote Sensing of Global Croplands for Food Security, 441, 47-55. 666 

Cordeiro, J. L. P., & Hasenack, H. 2009. Cobertura vegetal atual do Rio Grande do Sul. Em: Pillar, V. 667 

D..; Müller, S. C.; Castilhos, Z. M. S. & Jacques, A. V. A. [Eds.]. Campos Sulinos–conservação e uso 668 

sustentável da biodiversidade. Brasília: Ministério do Meio Ambiente, Brasil, 285-299. 669 

dos Santos, V. J., Calijuri, M. L., & de Assis, L. C. (2022). Land cover changes implications in energy 670 

flow and water cycle in São Francisco Basin, Brazil, over the past 7 decades. Environmental Earth 671 

Sciences, 81(3), 1-24. 672 



34 
 

Ellis, E. C., Gauthier, N., Goldewijk, K. K., Bird, R. B., Boivin, N., Díaz, S., ... & Watson, J. E. (2021). 673 

People have shaped most of terrestrial nature for at least 12,000 years. Proceedings of the National 674 

Academy of Sciences, 118(17). 675 

Ferraina, A., Baldi, G., de Abelleyra, D., Grosfeld, J., & Verón, S. (2022). An insight into the patterns 676 

and controls of the structure of South American Chaco woodlands. Land Degradation & 677 

Development, 33( 5), 723– 738.  678 

Ferreira, L. G., Urban, T. J., Neuenschawander, A., & De Araújo, F. M. (2011). Use of orbital LIDAR in 679 

the Brazilian Cerrado Biome: Potential applications and data availability. Remote Sensing, 3(10), 680 

2187-2206. 681 

Foody, G. M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and 682 

comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of 683 

Environment, 239, 111630. 684 

Galán-Acedo, C., Spaan, D., Bicca-Marques, J. C., de Azevedo, R. B., Villalobos, F., & Rosete-Vergés, F. 685 

(2021). Regional deforestation drives the impact of forest cover and matrix quality on primate 686 

species richness. Biological Conservation, 263, 109338. 687 

Graesser, J.; Aide, T. M.; Grau, H. R. & Ramankutty, N. 2015. Cropland/pastureland dynamics and the 688 

slowdown of deforestation in Latin America. Environmental Research Letters, 10(3), 034017 689 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. (2017). Google Earth 690 

Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18-27 691 

Guerschman, J. P., Paruelo, J. M., & Burke, I. C. (2003). Land use impacts on the normalized 692 

difference vegetation index in temperate Argentina. Ecological applications, 13(3), 616-628. 693 

Guido, A., Vélez‐Martin, E., Overbeck, G. E., & Pillar, V. D. (2016). Landscape structure and climate 694 

affect plant invasion in subtropical grasslands. Applied Vegetation Science, 19(4), 600-610. 695 



35 
 

Hall, A.J., Rebella, C.M., Ghersa, C.M., Culot, J.P. Field crop systems of the Pampas. In Field Crop 696 

Ecosystems; Pearson, C.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 413–450. 697 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., ... & 698 

Townshend, J. (2013). High-resolution global maps of 21st-century forest cover 699 

change. science, 342(6160), 850-853. 700 

Hasenack, H. Determinantes biofísicos e geopolíticos do uso da terra no estado do Rio Grande do Sul, 701 

Brasil. 2017. 70 f. Tese (Doutorado) - Universidade Federal do Rio Grande do Sul, Centro de Estudos e 702 

Pesquisas em Agronegócios, Programa de Pós-Graduação em Agronegócios, Porto Alegre, BR-RS. 703 

Heckel, K., Urban, M., Schratz, P., Mahecha, M. D., & Schmullius, C. (2020). Predicting forest cover in 704 

distinct ecosystems: The potential of multi-source Sentinel-1 and-2 data fusion. Remote Sensing, 705 

12(2), 302. 706 

Henwood, W. D. (1998). An overview of protected areas in the temperate grasslands biome. Parks, 707 

8(3), 3-8. 708 

Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H. & Roberts, C. 2005. Confronting a biome crisis: global 709 

disparities of habitat loss and protection. Ecology letters, 8, 23-29. 710 

IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land 711 

degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial 712 

ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, 713 

P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. 714 

Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press. 715 

Jobbágy, E. G., & Jackson, R. B. (2003). Patterns and mechanisms of soil acidification in the 716 

conversion of grasslands to forests. Biogeochemistry, 64(2), 205-229. 717 



36 
 

Kuplich, T. M., Capoane, V.; Costa, L. F. F. O avanço da soja no bioma Pampa. Boletim Geográfico do 718 

Rio Grande do Sul, Porto Alegre, n. 31, p. 83-100, jun. 2018 719 

Lark, T. J., Salmon, J. M., & Gibbs, H. K. (2015). Cropland expansion outpaces agricultural and biofuel 720 

policies in the United States. Environmental Research Letters, 10(4), 044003. 721 

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., ... & Xu, J. (2001). 722 

The causes of land-use and land-cover change: moving beyond the myths. Global environmental 723 

change, 11(4), 261-269. 724 

Laipelt, L., Kayser, R. H. B., Fleischmann, A. S., Ruhoff, A., Bastiaanssen, W., Erickson, T. A., & 725 

Melton, F. (2021). Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google 726 

Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 81-96. 727 

Lezama, F., Pereira, M., Altesor, A., & Paruelo, J. M. (2019). Grasslands of Uruguay: classification 728 

based on vegetation plots. Phytocoenologia, 211-229. 729 

Lopes, M., Frison, P. L., Durant, S. M., Schulte to Bühne, H., Ipavec, A., Lapeyre, V., & Pettorelli, N. 730 

(2020). Combining optical and radar satellite image time series to map natural vegetation: savannas 731 

as an example. Remote Sensing in Ecology and Conservation, 6(3), 316-326. 732 

Neke, K. S., & Du Plessis, M. A. (2004). The threat of transformation: quantifying the vulnerability of 733 

grasslands in South Africa. Conservation Biology, 18(2), 466-477. 734 

Nosetto, M. D., Jobbágy, E. G., Brizuela, A. B., & Jackson, R. B. (2012). The hydrologic consequences 735 

of land cover change in central Argentina. Agriculture, Ecosystems & Environment, 154, 2-11. 736 

Nosetto, M. D., Jobbágy, E. G., & Paruelo, J. M. (2005). Land‐use change and water losses: the case of 737 

grassland afforestation across a soil textural gradient in central Argentina. Global Change Biology, 738 

11(7), 1101-1117. 739 



37 
 

Nunes, S., Oliveira, L., Siqueira, J., Morton, D. C., & Souza, C. M. (2020). Unmasking secondary 740 

vegetation dynamics in the Brazilian Amazon. Environmental Research Letters, 15(3), 034057. 741 

Oliveira, T. E. D.; Freitas, D. S. D.; Gianezini, m.; Ruviaro, C. F.; Zago, D.; Mércio, t. Z.; Dias, E. A.; 742 

Lampert, V. D. N.; barcellos, J. O. J. Agricultural land use change in the Brazilian Pampa Biome: The 743 

reduction of natural grasslands. Land Use Policy, v. 63, p. 394-400, 2017/04/01/ 2017. 744 

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good 745 

practices for estimating area and assessing accuracy of land change. Remote sensing of Environment, 746 

148, 42-57. 747 

Overbeck, G. E., Müller, S. C., Fidelis, A., Pfadenhauer, J., Pillar, V. D., Blanco, C. C., ... & Forneck, E. D. 748 

(2007). Brazil's neglected biome: the South Brazilian Campos. Perspectives in Plant Ecology, Evolution 749 

and Systematics, 9(2), 101-116. 750 

Oyarzabal M, Andrade B, Pillar VD, Paruelo JM. 2020. Temperate subhumid grasslands of southern 751 

South America. Pp 1-17. In: Di Paolo, D. Encyclopedia of the World's Biomes. Elsevier, Países Bajos. 752 

ISBN 978-0-12-816096-1. 753 

Panario, D., Gutiérrez, O., Sánchez Bettucci, L., Peel, E., Oyhantçabal, P., & Rabassa, J. (2014). Ancient 754 

landscapes of Uruguay. In Gondwana landscapes in southern South America (pp. 161-199). Springer, 755 

Dordrecht. 756 

Paruelo, J. M., Guerschman, J. P., Piñeiro, G., Jobbagy, E. G., Verón, S. R., Baldi, G., & Baeza, S. (2006). 757 

Cambios en el uso de la tierra en Argentina y Uruguay: marcos conceptuales para su análisis. 758 

Agrociencia, 10, 47-61. 759 

Pontius Jr, R. G., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and 760 

allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 761 

4407-4429. 762 



38 
 

Potapov, P., Turubanova, S., Hansen, M. C., Tyukavina, A., Zalles, V., Khan, A., ... & Cortez, J. (2021). 763 

Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first 764 

century. Nature Food, 1-10. 765 

Rios, C., Lezama, F. Rama, G., Baldi, G. & Baeza, S. (2022). Natural grassland remnants in dynamic 766 

agricultural landscapes: identifying drivers of fragmentation. Perspectives in Ecology and 767 

conservations. https://doi.org/10.1016/j.pecon.2022.04.003 768 

Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology?. Research policy, 769 

44(10), 1827-1843. 770 

Rosa, M. R., Brancalion, P. H., Crouzeilles, R., Tambosi, L. R., Piffer, P. R., Lenti, F. E., ... & Metzger, J. 771 

P. (2021). Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges 772 

restoration programs. Science advances, 7(4), eabc4547. 773 

Rosan, T. M., Goldewijk, K. K., Ganzenmüller, R., O’Sullivan, M., Pongratz, J., Mercado, L. M., ... & 774 

Sitch, S. (2021). A multi-data assessment of land use and land cover emissions from Brazil during 775 

2000–2019. Environmental Research Letters, 16(7), 074004. 776 

Rusch, G. M., & Oesterheld, M. (1997). Relationship between productivity, and species and functional 777 

group diversity in grazed and non-grazed Pampas grassland. Oikos, 519-526. 778 

Sano, E. E., Rosa, R., Brito, J. L., & Ferreira, L. G. (2010). Land cover mapping of the tropical savanna 779 

region in Brazil. Environmental monitoring and assessment, 166(1), 113-124. 780 

Silveira, F. A., Arruda, A. J., Bond, W., Durigan, G., Fidelis, A., Kirkman, K., ... & Buisson, E. (2020). 781 

Myth‐busting tropical grassy biome restoration. Restoration Ecology, 28(5), 1067-1073. 782 

Song, X. P., Hansen, M. C., Potapov, P., Adusei, B., Pickering, J., Adami, M., ... & Tyukavina, A. (2021). 783 

Massive soybean expansion in South America since 2000 and implications for conservation. Nature 784 

sustainability, 4(9), 784-792. 785 



39 
 

Soriano, A. Rio de la Plata Grasslands. In Natural Grasslands; Coupland, R.T., Ed.; Elsevier: 786 

Amsterdam, The Netherlands, 1991; pp. 367–407. 787 

Souza, C.M., Jr., Z. Shimbo, J., Rosa, M.R., Parente, L.L., A. Alencar, A., Rudorff, B.F.T., Hasenack, H., 788 

Matsumoto, M., G. Ferreira, L., Souza-Filho, P.W.M., de Oliveira, S.W., Rocha, W.F., Fonseca, A.V., 789 

Marques, C.B., Diniz, C.G., Costa, D., Monteiro, D., Rosa, E.R., Vélez-Martin, E., Weber, E.J., Lenti, 790 

F.E.B., Paternost, F.F., Pareyn, F.G.C., Siqueira, J.V., Viera, J.L., Neto, L.C.F., Saraiva, M.M., Sales, M.H., 791 

Salgado, M.P.G., Vasconcelos, R., Galano, S., Mesquita, V.V., Azevedo, T. Reconstructing Three 792 

Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth 793 

Engine. Remote Sensing 2020: 12, 2735  794 

Souza, C.M., Jr.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map 795 

canopy damage from selective logging and forest fires. Remote Sensing of Environment. 2005, 98, 796 

329–343. 797 

Staude, I. R., Vélez‐Martin, E., Andrade, B. O., Podgaiski, L. R., Boldrini, I. I., Mendonca Jr, M., ... & 798 

Overbeck, G. E. (2018). Local biodiversity erosion in south Brazilian grasslands under moderate levels 799 

of landscape habitat loss. Journal of Applied Ecology, 55(3), 1241-1251. 800 

Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., ... & Sörlin, S. 801 

(2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223). 802 

Stehman, S. V., Pengra, B. W., Horton, J. A., & Wellington, D. F. (2021). Validation of the US 803 

Geological Survey's Land Change Monitoring, Assessment and Projection (LCMAP) Collection 1.0 804 

annual land cover products 1985–2017. Remote Sensing of Environment, 265, 112646. 805 

Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., ... & Bond, 806 

W. J. (2015). Where tree planting and forest expansion are bad for biodiversity and ecosystem 807 

services. BioScience, 65(10), 1011-1018. 808 



40 
 

Viglizzo, E. F., F. Lértora, A. J. Pordomingo, J. N. Bernardos, Z. E. Roberto, and H. Del Valle. 2001. 809 

Ecological lessons and applications from one century of low external-input farming in the pampas of 810 

Argentina. Agriculture, Ecosystems and Environment,  83: 65-81. 811 

Viglizzo, E. F., Frank, F. C., Carreño, L. V., Jobbagy, E. G., Pereyra, H., Clatt, J., ... & Ricard, M. F. (2011). 812 

Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global 813 

change biology, 17(2), 959-973. 814 

Volante, J., Mosciaro, J., Morales Poclava, M., Vale, L., Castrillo, S., Sawchik, J., ... & Paruelo, J. (2015). 815 

Expansión agrícola en Argentina, Bolivia, Paraguay, Uruguay y Chile entre 2000-2010: Caracterización 816 

espacial mediante series temporales de índices de vegetación. RIA. Revista de investigaciones 817 

agropecuarias, 41(2), 179-191. 818 

Watson, J. E., Jones, K. R., Fuller, R. A., Marco, M. D., Segan, D. B., Butchart, S. H., ... & Venter, O. 819 

(2016). Persistent disparities between recent rates of habitat conversion and protection and 820 

implications for future global conservation targets. Conservation Letters, 9(6), 413-421. 821 

Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L., & Dewitz, J. A. (2021). Thematic accuracy 822 

assessment of the NLCD 2016 land cover for the conterminous United States. Remote Sensing of 823 

Environment, 257, 112357. 824 

Zhang, W., Brandt, M., Wang, Q., Prishchepov, A. V., Tucker, C. J., Li, Y., ... & Fensholt, R. (2019). From 825 

woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody 826 

plants in savannas. Remote Sensing of Environment, 234, 111465. 827 

Zimbres, B., Shimbo, J., Bustamante, M., Levick, S., Miranda, S., Roitman, I., ... & Alencar, A. (2020). 828 

Savanna vegetation structure in the Brazilian Cerrado allows for the accurate estimation of 829 

aboveground biomass using terrestrial laser scanning. Forest Ecology and Management, 458, 117798. 830 


