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Abstract: Chagas disease is a zoonotic infectious disease caused by the protozoan parasite Try-
panosoma cruzi. It is distributed worldwide, affecting around 7 million people; there is no effective
treatment, and it constitutes a leading cause of disability and premature death in the Americas. Only
two drugs are currently approved for the treatment, Benznidazole and Nifurtimox, and both have
to be activated by reducing the nitro-group. The T. cruzi aldo-keto reductase (TcAKR) has been
related to the metabolism of benznidazole. TcAKR has been extensively studied, being most efforts
focused on characterizing its implication in trypanocidal drug metabolism; however, little is known
regarding its biological role. Here, we found that TcAKR is confined, throughout the entire life cycle,
into the parasite mitochondria providing new insights into its biological function. In particular,
in epimastigotes, TcAKR is associated with the kinetoplast, which suggests additional roles of the
protein. The upregulation of TcAKR, which does not affect TcOYE expression, was correlated with an
increase in PGF2α, suggesting that this enzyme is related to PGF2α synthesis in T. cruzi. Structural
analysis showed that TcAKR contains a catalytic tetrad conserved in the AKR superfamily. Finally,
we found that TcAKR is also involved in Nfx metabolization.

Keywords: Trypanosoma cruzi; aldo-keto reductase; mitochondrial enzyme; kinetoplast; antipodal
sites; prostaglandin F2α synthase; nifurtimox metabolism

1. Introduction

Chagas disease, or American Trypanosomiasis, is a chronic parasitosis caused by
the protozoan parasite Trypanosoma cruzi. It is estimated that nearly 7 million people are
infected worldwide [1]. However, this is probably an underestimation since no in-depth
studies cover all of Latin America, the endemic area of this disease. In nature, it can
be transmitted either through a triatomine vector (vector-dependent transmission that
includes ingestion) or transplacentally (vector-independent transmission); in addition,
human activities such as blood transfusion, organ transplantation, and laboratory accidents
constitute additional sources of infection. It causes high morbidity and mortality rates in
endemic and non-endemic areas, leading to the global spread of Chagas disease [2–4].

Benznidazole (Bzn) and Nifurtimox (Nfx) are currently the only drugs proven ef-
fective against Chagas disease, although they exhibit undesirable side effects that can
lead to treatment interruption [5,6]. Both act as prodrugs and must be activated by re-
ducing the nitro-group [7]. In T. cruzi, three enzymes have been related to Bzn and Nfx

Pathogens 2023, 12, 85. https://doi.org/10.3390/pathogens12010085 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens12010085
https://doi.org/10.3390/pathogens12010085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0003-0181-3671
https://orcid.org/0000-0002-9971-4710
https://orcid.org/0000-0001-7330-7693
https://orcid.org/0000-0001-6061-1936
https://orcid.org/0000-0001-9856-395X
https://orcid.org/0000-0001-6985-6171
https://doi.org/10.3390/pathogens12010085
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens12010085?type=check_update&version=3


Pathogens 2023, 12, 85 2 of 15

metabolism: the NADH-dependent Trypanosomal type I nitroreductase (TcNTRI) [8], the
NADPH-dependent Old Yellow Enzyme (TcOYE) [9–12] and an aldo-keto reductase name
TcAKR [13–16]. TcAKR belongs to a conserved superfamily present in all domains of life
whose function is the reduction of aldehydes and ketones [17,18]. In Trypanosomatids, a
member of this family exhibits PGF2α synthase activity both in Trypanosoma brucei and
Leishmania spp. [19–21], but its putative ortholog in T. cruzi did not show such activity [13].
Instead, TcAKR has NADPH-dependent reductive activity on quinones, Bzn, methylglyoxal,
and isoprostanes [13,14,16]. However, when the available information is analyzed, some
contradictory results appear. On the one hand, this enzyme has been captured through an
untargeted chemical proteomics approach using immobilized Bzn, which strongly suggests
that it could be related to reductive drug activation and resistance mechanisms [15]. In line
with this finding, it has been shown that both recombinant and native TcAKR enzymes
reduce Bzn, and TcAKR-overexpressing epimastigotes showed higher NADPH-dependent
Bzn reductase activity [14]. However, more recently, it was proposed that the enzyme does
not use Bzn as a substrate, and this was studied kinetically and by mass spectrometry [16].
The second controversial point is that most characterized prostaglandin F2α synthases
(PGFS) belong to the aldo-keto reductase protein family [22], including the PGF2α syn-
thases identified in T. brucei and Leishmania spp. [19,20]. In this context, it is surprising
that attempts to demonstrate this activity in TcAKR failed [13,16], taking into account
their homologies and the ability of T. cruzi to convert exogenous arachidonic acid (AA)
into PGF2α [23]. A possible explanation is that the presence of an “Old Yellow Enzyme”
(TcOYE) in this parasite is entirely responsible for this activity. However, it does not seem
like a plausible idea, especially considering that TcOYE was likely acquired more recently
through horizontal transfer [11]. To provide clarity in this regard, we performed functional,
structural, and phylogenetic studies to obtain new insights into the role of this protein.

2. Materials and Methods
2.1. Plasmids Construction, Recombinant Protein, and Antibody

TcAKR coding sequence was PCR-amplified from genomic DNA of T. cruzi Dm28c epimastig-
otes with Pfu DNA polymerase (Fermentas, Vilnius, Lithuania) using Fw_TcAKR_XbaI_Dm28c
(AATCTAGAATGAAATGCAATTACAGCTGTGTG) and Rv_TcAKR_HindIII_cSTOP_Dm28c
(AAAAGCTTTCACTCCTCTCCACCAGAGAAAAAATTATC) primers. PCR products
were cloned in pGEM®-T Easy plasmid (Promega, WI, USA) using T4 DNA Ligase (Sigma-
Aldrich, WI, USA) and sequenced. The coding sequence was subcloned into the pTREX-n
vector [24] and the pQE30 vector (Qiagen, Venlo, The Neterlands). Recombinant TcAKR
purification under non-native conditions was performed with nickel-charged affinity resin
(Ni-NTA). The recombinant protein purity was analyzed by 12% SDS-PAGE stained with
colloidal coomassie (Brilliant Blue G-250, Sigma-Aldrich, WI, USA), and protein concentra-
tion was determined by the Bradford method [25]. A polyclonal antiserum against TcAKR
was obtained from New Zealand White rabbits after intraperitoneal injection of 100 µg of
recombinant TcAKR in Freund’s Complete Adjuvant (Sigma-Aldrich, WI, USA), followed
by two immunizations with 50 µg of recombinant protein in Freund’s Incomplete Adjuvant
(Sigma-Aldrich, WI, USA). Serum was obtained after 15 days of the last boost.

2.2. Parasites and Cells

Vero cells [26] were cultivated in Dulbecco’s Modified Eagle’s Medium supplemented
with 10% (v/v) fetal bovine serum (FBS), penicillin (100 U mL−1) and streptomycin
(100 µg mL−1) at 37 ◦C in a humidified 5% CO2 atmosphere. T. cruzi Dm28c [27] epi-
mastigotes were cultured axenically in liver infusion tryptose (LIT) medium supplemented
with 10% (v v−1) inactivated FBS at 28 ◦C. Trypomastigotes were collected from the su-
pernatant of infected monolayers of Vero cell lines and were maintained cyclically. For
stable transfections, T. cruzi epimastigotes were transfected with pTREX-n (empty vector)
or pTREX-n TcAKR construction. Parasites (8 × 107) were washed three times with PBS,
resuspended in HBS Buffer (21 mM HEPES, 137 mM NaCl, 5 mM KCl, 6 mM glucose,
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pH 7.4), and electroporated with 100 µg of plasmid DNA using two pulses at 450 V, 1300 µF
and 13 Ω in 4 mm cuvettes. Transfected parasites were then selected with increasing G418
(Sigma-Aldrich, WI, USA) concentrations from 50 µg mL−1 to 300 µg mL−1. Overexpression
of TcAKR was confirmed by Western blot analysis and indirect immunofluorescence.

2.3. PGF2α Synthase Activity

PGF2α determination was performed with the PGF2 alpha High Sensitivity ELISA Kit
(Abcam, Boston, MA, USA). Briefly, TcAKR-overexpressing parasites were washed twice
with PBS and incubated with 50 µM of arachidonic acid (Abcam, Boston, USA) for two
hours. Cells were removed by pelleting at 1100× g for 10 min. Parasite-free supernatant
was stored for PGF2α measurement, the parasites were resuspended in PBS, and an extract
was performed by thermal shock (15 min at −80 ◦C and 15 min at 37 ◦C three times
consecutively). Finally, the resulting homogenized was centrifuged at 20,000× g for 30 min
at 4 ◦C, and the supernatant was used for PGF2α determination. The measurements were
performed in biological replicates.

2.4. Structural Comparison of AKR Proteins

The structural-based phylogenetic analysis was performed with the Multiseq [28]
plugin of VMD [29] considering AKRs from T. cruzi (TcAKR, PDB: 4GIE), T. brucei Homo
sapiens (AKR5A2, PDB: 1VBJ), L. major (AKR5A, PDB: 4G5D), Bacillus subtilis (AKR5G1,
PDB: 3D3F), Rattus norvegicus (AKR1B14, PDB: 3QKZ) Homo sapiens (AKR1C3, PDB: 2F38
and AKR1B1, PDB: 1US0). Three-dimensional structures were first aligned using the
algorithm STAMP (Structural Alignment of Multiple Proteins) [30], which minimizes the
Cα distance between residues of each molecule by applying globally optimal rigid-body
rotations and translations. Then a QH [4] score was computed for each pair of aligned
structures to infer the structural similarity (distance) from which trees were plotted:

QH = N
[
qaln + qgap

]
where qaln and qgap are score functions accounting for structurally aligned regions and
structural deviations induced by insertions, respectively, and N is a normalization constant.

Electrostatic potentials were calculated with APBS [31] using a cubic grid of 120 Å per
side with 10 points per Å2 setting a dielectric constant of 78.54 for water, a salt bath of 0.150
mM NaCl, and a temperature of 298 ºK. The potential was forced to converge to zero at
boundaries. PQR file preparation was performed with the PDB2PQR server [32]. AMBER
charges were used, and protonation states at pH 7.0 were set according to PROPKA [33].
The dimerization interface was explored with PDBePISA (Proteins, Interfaces, Structures,
and Assemblies) [34].

2.5. Transcript Abundance Analysis

Transcriptomic analysis of both copies of TcAKR was performed using RNA-seq data
from different stages of T. cruzi Dm28c [35]. Salmon [36] was used to estimate transcript
levels. The normalized counts of TcAKR were plotted using R.

2.6. Epimastigotes Synchronization

Cell cycle synchronization was performed as described previously [37–39]. Wild-type
Dm28c epimastigotes were washed twice with PBS and subsequently incubated with LIT
supplemented with 20 mM of hydroxyurea (Sigma-Aldrich, WI, USA) for 24 h. Parasites
were washed twice with PBS and cultured in LIT medium supplemented with 10% (v v−1)
inactivated fetal bovine serum. At different times cells were washed with PBS and fixed for
30 min with 4% (w v−1) paraformaldehyde for immunolocalization studies.
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2.7. Immunolocalization Studies

For indirect immunofluorescence (IIF) localization, parasites were fixed for 16 h at
4 ◦C with 4% (w v−1) paraformaldehyde and then incubated with 50 mM ammonium
chloride (Sigma-Aldrich, WI, USA) for 10 min at room temperature. Parasites (1 × 106)
were settled in polylysine pre-treated slides and permeabilized for 5 min with 0.5% (v v−1)
Triton™ X-100 (Sigma-Aldrich, WI, USA). Blocking was performed with 2% (w v−1) BSA,
0.1% (v v−1) Tween 20 in PBS for 1 h, and washing with 0.1% (v v−1) Tween 20 in PBS. Cells
were incubated with polyclonal antibodies anti-TcAKR (1/30 dilution) and anti-TcmTXNPx
(1/100 dilution) primary antibodies for 2 h. After three washes, Alexa Fluor® 488 goat
anti-rabbit IgG) or Cy3® goat anti-mouse IgG (Invitrogen, MA, USA) secondary antibodies
were added for 1 h at a 1/1000 dilution. After four washes, slides were mounted with
FluoroshieldTM with DAPI (Sigma-Aldrich, WI, USA) and visualized under Zeiss confocal
microscope. The whole procedure was performed at room temperature.

Ultrastructure expansion microscopy (UExM) was performed as described previ-
ously [40,41] without modifications. All images were acquired using a Zeiss confocal
LSM880 microscope using a Plan-Apochromat 63×/1.40 oil objective. All images were
acquired and processed using the Zeiss ZEN blue edition v2.0 software. All images were
deconvolved using Huygens Professional v19.10.0p2 64b (https://svi.nl/, accessed on
30 December 2022). Alexa Fluor™ 488 NHS Ester (Succinimidyl Ester) (Thermo Fisher
Scientific, MA, USA) was used to label the amines (R-NH2) of proteins.

2.8. Drug Susceptibility

Susceptibility experiments were performed as previously described [11]. Briefly,
TcAKR-overexpressing epimastigotes (5 × 106) were washed twice with 1% (w v−1) glucose
in PBS and then incubated for 24 h with Nfx (20, 50 and 100 µM) in the same media.
Parasites transfected with the empty vector were used as controls. The viability was
evaluated with the resazurin reagent (Sigma-Aldrich, WI, USA), measuring absorbance at
490 and 595 nm. Results are referred to the condition of parasites without treatment.

2.9. IC50 Determination

For IC50 experiments, epimastigotes were seeded at 3 × 106 cells per mL and in-
cubated with serial dilutions of nifurtimox starting from 100 µM. Control conditions of
parasites without the drug (100% survival) and culture medium without parasites were
included. After 72 h at 28 ◦C, parasite survival was determined by the resazurin method
as described [42]. Results are expressed as the mean of three different and independent
experiments and refer to the condition of parasites without treatment.

2.10. Phylogenetic Analysis

A representative set of AKR sequences was obtained from NCBI [43]. Sequences with
the characteristic domains of the protein family (“Aldo ket red” in Pfam y “Aldo ket red
superfamily” in NCBI-CD search) were used to create an AKR database to search these
proteins in complete nucleotide sequences of Trypanosomatids. To identify the sequences
regardless of genome annotation, the AKR sequences were retrieved from protozoan
genomes using the command-line Basic Local Alignment and Search Tool (BLAST)x [44]
and several in-house scripts in R. The protein sequences were multiply aligned using
the accurate mode of T-coffee [45]. This method considers the 3D structures available
for improving the alignment quality. ProtTest v3.2.2 [46] was applied to find an optimal
substitution model for each alignment. WAG (Whelan and Goldman) was the best-fit
model. Phylogenetic analyses were performed with the maximum-likelihood method using
the program PhyML [47]. For the visualization, FigTree v1.4.2 was used.

https://svi.nl/


Pathogens 2023, 12, 85 5 of 15

2.11. Statistical Analysis

GraphPad Prism® Version 5.0 was used to determine statistically significant differences.
Data are presented as mean ± SE. Statistical significance was assumed with probability values
less than or equal to 0.05 using the following convention: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

3. Results
3.1. Phylogenetic Analysis of Aldo-Keto Reductase Protein Family in Trypanosomatids

Given that most currently characterized PGFS belong to the AKR superfamily [22] and
AKR proteins are taxonomically widely distributed [18], we performed the phylogenetic
characterization of AKR proteins from Trypanosomatids. A representative set of well-known
AKR (n = 70) sequences was obtained from NCBI (Supplementary Material S1). Sequences
with the characteristic domains of the family (“Aldo ket red” PF00248 in Pfam and “Aldo ket
red superfamily” cl00470 in NCBI-CD search) were used to create an AKR database to search
these proteins in 37 genomes, and 161 recovered sequences (Supplementary Material S2)
were used for phylogenetic reconstructions (Figure S1 and Table S1). The resulting tree
shows that the proteins are grouped into four distinct phylogenetic groups (Figure 1). These
clades consist of sequences with the same gene annotation. In particular, TcAKR clustered
with AKRs annotated as PGFS. However, this clade is subdivided into two groups: one
comprising proteins whose PGFS activities have been demonstrated: T. brucei (GenBank
AB034727.1; seq73, seq75 and seq 79 in our analysis), L. major (GenBank J04483.1; seq 42,
seq45, and seq52 in our analysis), L. donovani (GenBank BAC07250.1, seq106 and seq107
in our analysis), and L. tropica (GenBank ABI17868.1; seq110 in our analysis) [19,20]; and
another, where TcAKR is found, which includes proteins annotated as PGFS but differ
in sequence.
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Figure 1. Evolutionary relationship of Aldo-Keto Reductase proteins in Trypanosomatids. Evolutionary
relationships of AKR sequences retrieved from protozoan genomes. The sequence alignment was
performed using the accurate mode of T-Coffee software. The tree was built with the maximum-
Likelihood method. The sequences are provided in Supplementary Material S2.

3.2. TcAKR Is Located in the Mitochondria and Is Expressed in Epimastigotes and Amastigotes

The Dm28c genome [48] contains two copies of tcakr (C4B63_207g13 and C4B63_207g15)
encoded in the same chromosome and separated by a gene coding for the 40S ribosomal
protein S2 (Figure 2a). TcAKR coding sequence was cloned and expressed in bacterial ex-
pression vectors, and the protein was purified from E. coli to generate polyclonal antibodies.
To address the subcellular localization of TcAKR, we performed indirect immunofluores-
cence (IIF) assays in wild-type epimastigotes, intracellular amastigotes, and cell-derived
trypomastigotes. We found that TcAKR is localized inside the single ramified mitochondria
spread throughout the cell body in intracellular amastigotes and co-localizing with the
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mitochondrial tryparedoxin peroxidase (TcmTXNPx) [49]. Nevertheless, TcAKR was mainly
localized at both ends of the kinetoplast in epimastigotes (Figure 2b). In trypomastigotes,
the non-replicative stage, the levels of TcAKR were undetectable. The analysis of mRNA
expression from RNA-seq data yielded the same differential expression pattern (Figure 2c).
By performing ultrastructure expansion microscopy (UExM), we determined that TcAKR
has a discrete location in the kinetoplast region proximal to the basal bodies (Figure 2d).
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Figure 2. TcAKR subcellular localization. (a) Genomic localization of tcakr genes in PRFA01000207
scaffold. (b) Immunolocalization of TcAKR and TcmTXNPx in epimastigotes and amastigotes using
rabbit α-TcAKR (1/30) (green) and α-TcmTXNPx (1/100) (red) polyclonal antibodies. DAPI was used
as a nucleus and kinetoplast marker. Scale bar: 5 µm. (c) RNA-seq analysis to quantify the mRNA
levels of the TcAKR during the life stages: A = amastigote, E = epimastigote, and T = trypomastigote.
(d) Epimastigotes were subjected to ultrastructure expansion microscopy (UExM) and stained with
rabbit α-TcAKR (1/30) (red), N-Hydroxysuccinimide (NHS) (gray), and DAPI. Note that NHS labels
the pan-proteome, labeling different parasite structures as the nucleus, flagella, and kDNA, among
others. (A) Z Maximum intensity projection showing TcAKR (red), NHS (gray), and kDNA and
nucleus with DAPI (blue). (B) Z (23–26) Maximum intensity projection showing TcAKR (Red), NHS
(gray) and kDNA and nucleus with DAPI (blue). (C) Z (23–26) Maximum intensity projection showing
TcAKR (red) and kDNA and nucleus with DAPI (blue). Scale bar: 1 µm. BB: basal bodies.
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To better understand the particular subcellular localization of TcAKR in epimastigotes,
we synchronized their cell cycle using hydroxyurea treatment (HU). To identify specific
morphological changes that occur during the T. cruzi cell cycle, we used DAPI as a DNA
marker for the nucleus (N) and kinetoplast (K) and phase contrast microscopy to assess the
number and appearance of flagella (F). As previously described [37,38], G1/S stages are
considered between 3 and 6 h after hydroxyurea removal. At these stages (1N1K1F), TcAKR
was restricted to the kinetoplast ends (Figure 3). At the onset of the G2 phase, the stage
defined when a second flagellum emerges from the cellular pocket (1N1K2F), the signal is
more intense at one of the sites where TcAKR is localized. In addition, at this stage, TcAKR
was observed in both extremes of the kinetoplast and more distributed in the kinetoplast.
In late G2 and during the transition to M, TcAKR is localized in three positions on an
elongated kinetoplast. After duplication of the kinetoplast (1N2K2F) and during mitosis
(2N2K2F), TcAKR was again located at both extremes of the kinetoplast. These results
indicate a dynamic and site-specific localization of TcAKR that changes concomitantly with
the progress of the parasite cell cycle.

1 
 

 

Figure 3. TcAKR localization during the epimastigotes cell cycle. Localization of TcAKR by im-
munofluorescence in synchronized epimastigotes stained with α-TcAKR (1/30) (green) and α-
TcmTXNPx (1/100) (red) rabbit polyclonal antibodies. Cell cycle stages (G1/S, G2, M, and C) are
defined by the position of the DAPI-stained kinetoplast (K), nucleus (N) in blue, and the number of
flagella (F) analyzed in DIC.
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3.3. TcAKR Is Related to PGF2α Synthase Activity

To gain insight into the PGF2α synthase activity of TcAKR in parasites, we overex-
pressed the enzyme and measured PGF2α production. Western blot analysis showed an
increased protein level in TcAKR-overexpressing parasites compared to control parasites
transfected with an empty plasmid (Figure 4a). TcAKR overexpression did not interfere
with TcOYE expression, as can be observed by cross overexpression controls performed by
Western blot. As stated above, PGF2α synthase activity could not be previously demon-
strated for TcAKR [13]. We first determined PGF2α synthesis in epimastigotes, finding an
increase in the PGF2α production in TcAKR-overexpressing parasites (Figure 4b). To have
adequate negative control, we used trypomastigotes, which under normal conditions do
not express the enzyme, and TcAKR-overexpressing trypomastigotes. PGF2α was mea-
sured in the pellets and supernatants of parasites previously incubated with arachidonic
acid as substrate, finding an increase in PGF2α synthase activity in the overexpressing
trypomastigotes, which is statistically significant (Figure 4c).
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Figure 4. TcAKR overexpression and PGF2α detection. (A) Western blot analysis of total protein
extracts of trypomastigotes transfected with pTREX-n (empty vector) and pTREX-n TcAKR (includes
complete TcAKR coding sequence) using rabbit α-TcAKR polyclonal antiserum. The relative ex-
pression was estimated by image densitometry analysis normalized by tubulin expression. TcOYE
expression was evaluated in TcAKR-overexpressing parasites using rabbit α-TcOYE polyclonal anti-
serum as a control. (B) Determination of PGF2α in cells and supernatant of TcAKR-overexpressing
epimastigotes. (C) Determination of PGF2α in cells and supernatant of TcAKR-overexpressing cell-
derived trypomastigotes. These results correspond to two biological replicates. Asterisks represent
statistical significance (two-tailed Student’s t-Test) p-values: pellet p = 0.0001, supernatant p = 0.0623.

3.4. Structural Analysis of TcAKR

We performed structural comparative analyses of TcAKR protein with AKR structures
from T. brucei, L. major, Bacillus subtilis, Rattus norvegicus, and Homo sapiens to study whether
TcAKR has structural similarities to other AKR with PGFS activity. Electrostatic potentials
were calculated for every structure to perform a detailed comparative analysis at the active
site, and three-dimensional structures were aligned. All catalytic and cofactor binding
residues were conserved in all the compared AKR structures (Figure 5). Our results indicate
that LmAKR, TbAKR, and TcAKR are homologous proteins with similar protein folding
and active site architecture. The comparison with human PGFS highlights preserving the
catalytic function through evolution. Our analysis concludes that no structural reason
could prevent TcAKR from performing as a PGFS.
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Figure 5. Structural comparatives analyses of TcAKR protein with AKR structures from T. brucei,
L. major, B. subtilis, R. norvegicus, and H. sapiens. (A) Phylogenetic tree of AKRs based on the QH
index. (B) Electrostatic potential mapped on solvent-accessible surfaces of AKR proteins. Values
range from −130 (red) to 130 mV (blue). (C) Structural alignment and sequence conservation of AKR
proteins. The first and second shells of residues around the active site of TcAKR. Residues that differ
from other species are indicated. The structures used were: T. cruzi TcAKR PDB = 4GIE; T. brucei
AKR5A2 PDB = 1VBJ; L. major AKR5A PDB = 4G5D; B. subtilis AKR5G1 PDB = 3D3F; R. norvegicus
AKR1B14 PDB = 3QKZ; H. sapiens AKR1C3 PDB = 2F38.

In addition, by modeling on the TcAKR crystal structure we cannot neither confirm
nor discard a dimer conformation [16]. Analyzing the crystallographic structure of TcAKR
NADP-bound (PDB ID: 4FZI) [50] representing the conformation of the enzyme, we show
a contact surface where the monomers could interact (Figure 6a). On the other hand, when
we increased the incubation time of the primary antibody (16 h), we observed, in addition
to the expected band (32 kDa), bands of higher molecular weight (Figure 6b).
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Figure 6. TcAKR studies on oligomerization. (a) Interaction surface of the proposed monomers
using TcAKR crystals. PDB 4FZI: interface A/B x, y, z. Area: 377.7 Aˆ2. DG: −5.5 Kcal/mol. DG
p-value = 0.21. (b) Western blot analysis of total protein extracts from Sylvio and Dm28c epimastigotes
using rabbit α-TcAKR polyclonal antiserum overnight. Protein bands corresponding to molecular
weights compatible with oligomerization states are observed. S: Sylvio, D: Dm28c.
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3.5. TcAKR-Overexpressing Parasites Increases Their Susceptibility to Nifurtimox

TcAKR has been studied in relation to the interaction, metabolization, and resis-
tance to Bzn [14–16,51,52]. Nevertheless, there is no information regarding TcAKR and Nfx
metabolism in the parasites. Here, we evaluated sensitivity to Nfx of TcAKR-overexpressing
cells and calculated IC50. Transfected parasites overexpressing TcAKR were more suscep-
tible to Nfx than the control (Figure 7a), showing a statistically significant decrease in all
the concentration assays. Notably, Nfx IC50 in transfectant parasites decreases by nearly
four times.

Figure 7. Susceptibility to Nfx. (a) Viability percentages of transfected epimastigotes challenged with
different concentrations of Nfx. The percentages of cell viability are normalized against parasites
without treatment. Values are the means of three independent assays performed in quadruplicate.
Nfx p-values: 20 µM p = 0.0868; 50 µM p = 0.0062; 100 µM p = 0.0054. (b) Percentage of epimastigotes
survival. IC50 for NFX was determined in pTREX and pTREXn-TcAKR parasites. Values are the
means of three independent assays performed in quadruplicate. (p = 0.0227; asterisks represent
statistical significance; two-tailed Student’s t-test). (a) and (b) are two independent experiments
(different datasets).
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4. Discussion

We found that TcAKR is differentially regulated along the T. cruzi life cycle. It is
expressed in the replicative parasite forms (epimastigotes and amastigotes) at the protein
and mRNA levels but is undetectable in trypomastigotes. This expression pattern is the
same as that of TcOYE, which turns off entirely in the trypomastigote stage [11]. TcAKR
has a particular subcellular localization in the parasite. Through immunofluorescent and
UExM assays, we observed that TcAKR is located in the mitochondria. This does not agree
with previous reports that located the enzyme in the cytosol and reported its expression in
trypomastigotes by Western blot [13]. The latter observation may be related to amastigotes
contamination in the preparation, although strain differences cannot be ruled out. The
enzyme exhibits a broad distribution in the mitochondria in amastigotes; nevertheless,
in epimastigotes, it is located in proximity to the kinetoplast. TcAKR was observed to be
located at both ends of the kinetoplast, close to the antipodal sites, two structure assemblies
where ligases, topoisomerases, polymerases, and other proteins are located [53,54] and
where the repair of gaps in the newly synthesized minicircles that are reattached to the
kDNA network occurs [55,56]. Since the kDNA replication is closely related to the cell
cycle, we synchronized epimastigotes and followed TcAKR along the process, finding that
its location is linked to the changes in the kinetoplast during S, G1, G2, and mitosis and
cytokinesis. It was previously reported that methylglyoxal is the most efficient substrate for
TcAKR compared with other toxic ketoaldehydes [16]. The primary endogenous sources of
methylglyoxal are glycolysis and the breakdown of threonine and lipid peroxidation [57].
These last reactions take place in mitochondria, in the exact subcellular location that TcAKR,
indicating that this enzyme could have a relevant role in detoxification at the mitochondrial
level, especially protecting kDNA replication, since methylglyoxal severely inhibits DNA
replication [58]. Finally, high-resolution microscopy by UExM reveals that TcAKR is located
in the kinetoplast region proximal to basal bodies. These localization changes along the life
cycle deserve future studies using high-resolution microscopy methods.

By phylogenetic studies, we found that the AKR family in trypanosomatids are
grouped in four main clades and TcAKR clusters with those with PGFS function in Leishma-
nia and T. brucei [19–21]. However, in T. cruzi, this activity appears to be missing [13,16].
The absence of TcAKR expression in trypomastigotes constitutes an opportunity to revisit
PGFS activity using TcAKR-overexpressing parasites. We observed that the level of PGF2α

measured in transfectant parasites was significantly higher than in control parasites. Our ex-
perimental model allows us to conclude that TcAKR can catalyze the synthesis of PGF2α. In
concordance with previous reports [11], high levels of PGF2α were found in measurements
made from the culture supernatant of TcAKR-overexpressing parasites, suggesting that
this molecule is released from the parasite once it is synthesized. In this sense, it was also
reported that secretion of PGF2α synthesized by T. brucei and L. infantum [19,59]. Ashton
and collaborators demonstrated, using TXA2 synthase-null mice, that most of the TXA2
in infected mice is parasite-derived [23]. All these studies point out that parasite-derived
eicosanoids exert a paracrine or endocrine effect in Trypanosomatid infections. We deter-
mined that the catalytic tetrad, highly conserved throughout the AKR superfamily [60], is
present in TcAKR, with a core folding of (α/β) TIM barrel that acts via classic ping-pong
kinetics [17,61]. The phylogenetic tree shows that TcAKR groups with PFGS; however, this
clade is subdivided into two groups: one comprising proteins whose PGFS activities have
been demonstrated and another where TcAKR is found, which includes proteins annotated
as PGFS but with some differences in sequences.

There is a discrepancy in the literature regarding the evidence of the oligomeriza-
tion state of TcAKR [13,16]. Garavaglia et al. (2016) detected mixed species containing
monomeric, dimeric, and tetrameric forms of the enzyme from the CL-Brener strain by
gel chromatography with the recombinant soluble enzyme [13], while Roberts et al. (2018)
found a single peak with a calculated MW close to that of a monomer [16]. When we
increased the incubation time in western blots, bands compatible with TcAKR oligomers
were detected, although mass spectrometry must confirmed their identity. Also, we found
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a contact surface where the monomers could interact, but we cannot discard that as a
consequence of the crystallization process.

TcAKR has been widely studied in relation to drug metabolism, including Bzn. Its
overexpression leads to increased resistance to Bzn [14]. However, recent studies have not
found evidence for the reduction of Bzn by recombinant TcAKR and homologs in the related
parasites T. brucei and L. donovani. Instead, these enzymes metabolize a variety of toxic
ketoaldehydes, including glyoxal and methylglyoxal, suggesting a role in cellular defense
against chemical stress [16]. Bzn is a prodrug and undergoes activation via two sequential
two-electron reduction steps by a mitochondrial nitroreductase to form a toxic reactive
hydroxylamine intermediate. This compound subsequently undergoes rearrangement to a
dihydro-dihydroxy intermediate [62] or forms adducts with low molecular mass thiols [51].
This intermediate can then dissociate to form glyoxal and N-benzyl-2-guanidinoacetamide.
UPLC-QToF/MS analysis of Bzn bioactivation by T. cruzi cell lysates confirmed previous re-
ports identifying numerous drug metabolites, including a dihydro-dihydroxy intermediate
that can separate into N-benzyl-2-guanidinoacetamide and glyoxal. However, metabolomic
studies did not detect glyoxal adducts [51]. TcAKR may play a role in detoxifying some
of the toxic metabolites generated by the reductive metabolism of Bzn by NTRI in the
mitochondria, including glyoxal or others; also considering TcAKR was found in previous
reports bound to immobilized Bzn [15]. In this work, we focused our study on Nfx, that,
as most nitroheterocyclic agents, must undergo activation by nitroreduction, a process
catalyzed by type I nitroreductases. It has been shown that these reductases generate
cytotoxic nitrile metabolites responsible for trypanocidal activity [63]. We found that
TcAKR-overexpressing parasites are more susceptible to Nfx, which constitutes a difference
from TbAKR that does not affect sensibility to Nfx in T. brucei. Metabolomic and proteomic
studies on Nfx metabolization are necessary to evaluate the direct or indirect (by favoring
the overexpression of other proteins) role of this enzyme in the metabolism of this drug,
where TcAKR overexpression parasites constitute a valuable tool that can provide clues on
the unknown mode of action of Nfx.

In summary, the substrate-specificity of this aldo-keto reductases is broader than other
prostaglandin F2α synthases, and TcAKR is likely to be involved in arachidonic metabolism,
detoxification of ketoaldehydes and the activation of the prodrug nifurtimox. Its subcellular
localization during the cell cycle is compatible with a significant role in kDNA metabolism
by eliminating toxic metabolites that can inhibit replication. Together these results position
TcAKR as a relevant target for the action of drugs.
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