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ABSTRACT. We provide a good dynamical framework allowing to general-
ize Thurston’s asymmetric metric and the associated Finsler norm from Te-
ichmiiller space to large classes of Anosov representations. In many cases,
including the space of Hitchin representations, this gives a (possibly asym-
metric) Finsler distance. In some cases we explicitly compute the associated
Finsler norm.
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1. INTRODUCTION

Let S be a connected orientable surface without boundary, with finitely many
punctures and negative Euler characteristic. The Teichmiiller space Teich(S) of S
is the space of isotopy classes of complete, finite area hyperbolic structures on S.
For a pair of points g1, g2 € Teich(S), Thurston [Thu98] introduces the function

Ly, (c)
d =1 92
Th(91, 92) := log sup <Lg1 (c))
where the supremum is taken over all free isotopy classes c of closed curves in S and,
for g € Teich(S), the number L,(c) denotes the length of the unique geodesic in
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the class ¢, with respect to the metric g. In [Thu98, Theorem 3.1] Thurston shows
that dry(+,) defines an asymmetric distance on Teich(S), and investigates many
properties of this metric. For instance, he shows (see [Thu98, Theorem 8.5]) that
dn (g1, g2) coincides with the least possible Lipschitz constant of homeomorphisms
from (S, g1) to (5, g2) isotopic to idg, and constructs families of geodesic rays for
this metric, called stretch lines.

Thurston also constructs a Finsler norm || - ||, on the tangent bundle of Te-
ichmiiller space: For v € T;Teich(S), he sets

dy(L(€))(v)

(1.1) ||t = sup 2
ol o= sup 217

This is indeed a non-symmetric Finsler norm, namely it is non-negative, non degen-
erate, (R>¢)-homogeneous and satisfies the triangle inequality. Moreover, Thurston
shows that the path metric on Teich(S) induced by this Finsler norm coincides with
dTh (~, )

Assume now that S is closed. Then Teich(S) identifies with a connected com-
ponent ¥(S) of the character variety

X(m1(S), PSL(2,R)) := Hom(m(S), PSL(2,R)) /PSL(2, R).
For a conjugacy class [y] in 71 (S) and a point p € T(S), we set
L (1)) = 221 (p(7)),

where A1(p(7)) denotes the logarithm of the spectral radius of p(v). Identifying
isotopy classes of closed curves in S with conjugacy classes in 71(S), one deduces
from Thurston’s result that

Ly (0

(12) B (prp2) = sup log (A)

[v)€lm (S)] Ly ()
defines an asymmetric distance on ¥(S). Similarly, one gets an expression for the
associated Finsler norm. The main goal of this note is to generalize this viewpoint,
constructing asymmetric metrics and Finsler norms in other representation spaces
that share many features with T(S), namely, spaces of Anosov representations,
with a particular attention to Hitchin, Benoist and positive representations.

1.1. Results. For a finitely generated group I' and a semisimple Lie group G of
non-compact type, we denote by X(T", G) the character variety

X(T,G) := Hom(T", G) J/G.

We furthermore denote by a* a chosen Weyl chamber of G, and by A : G — a*
the Jordan projection. A functional ¢ € a* is positive on the limit cone of a
representation p € X(I', G) if for all v € T' of infinite order one has p(A(p(%))) >
c/|A(p(y))]| for some ¢ > 0 and some norm on a. With this at hand, for any
functional ¢ € a* positive on the limit cone of p € X(I",G), we can consider its
w-marked length spectrum

and its p-entropy

h¥ = limsup%log #{[] € [l]: Ly (v) <t} €0,00].
t—o0
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If X € X(T', G) is a subset, let ¢ € a* be a functional positive on the limit cone of
each representation p € X. Naively, one would like to define d%, : X x X — RU{co}
by

© — Lﬁz (’Y)
) Finler:pa) = log (ﬁéﬁ] Lt ()
and prove that it defines an asymmetric metric for some specific choices of X.
However, in this general setting, there could exist pairs of representations so that
the op-length spectrum of p; is uniformly larger than the ¢-length spectrum of ps:
with the above definition, in that situation we would have d=, (p1,p2) < 0 (see
Remark 6.5 and references therein). To resolve this issue, we normalize the length
ratio by the entropy:

he, Ly ()
d?. (p1,p2) :=1log | sup 2222
Th( ' 2) [v]€[r] h’/fl Lﬁ1 (7)

(see Definition 6.1 for more details in the case when T' has torsion). Observe that
in the case when X is the Teichmiiller space, hi)‘l = 1, and thus this definition is
compatible with the one given in Equation (1.2).

By construction d7, satisfies the triangular inequality. Our first result deter-
mines a setting in which such function is furthermore positive and separates points.
For this we consider the definition of the space of ©-Anosov representations, an
open subset of the character variety X(I', G) depending on a subset © of the set of
simple roots II of G (we refer the reader to Section 4 for the precise definition). For
any such set © we denote by

ag := ﬂ ker av
a€cll\©

and by af < a* the set functionals invariant under the unique projection pg : a —
ae invariant under the subgroup Wg of the Weyl group of G fixing ag pointwise.

Theorem 1.1 (See Theorems 6.2 and 6.8). Assume that G is connected, real alge-
braic, simple and center free. Assume furthermore that X C X(I',G) consists only
of Zariski dense ©-Anosov representations. Let ¢ € ag be positive on the limit cone
of each representation in X, and suppose that an automorphism 7 : G — G leav-
ing ¢ invariant is necessarily inner. Then d%, (-,-) defines a (possibly asymmetric)
metric on X.

The Thurston distance on the Teichmiiller space of a closed surface is complete,
however in general the distance df, might be incomplete also due to the entropy
renormalization. This is for example the case for the Teichmiiller space of sur-
faces with boundary of variable length. It would be interesting to investigate the
relation between suitable metric completions and subsets of the length spectrum
compactification, as introduced in [Parl2].

Provided we have a good understanding of all possible Zariski closures in a given
subset X C X(I',G), we can weaken the Zariski density assumption. This is for
instance the case for the set of Benoist representations. A Benoist representation
is a representation p : I' — PGL(d + 1,R) that preserves and acts cocompactly on
a strictly convex domain 2, C P(R?). We let Beng(I') be the space of conjugacy
classes of Benoist representations, which by work of Koszul [Kos68] and Benoist
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[Ben05] is a union of connected components of the character variety X(I", PGL(d +
1,R)). Benoist representations are O-Anosov for © = {1, aq}, see [Ben04] and
[GW12, Proposition 6.1]. In particular, the logarithm of the spectral radius A;
and the Hilbert length function H := X\; — Ag41 belong to ag. Here we recall that
Ad+1(g) denotes the logarithm of the smallest eigenvalue of g.

Since Benoist computed the possible Zariski closures of a Benoist representation
[Ben00], the argument of Theorem 1.1 can be pushed further to show the following.

Theorem 1.2 (See Corollary 8.3 and Remark 8.4). The following holds:
(1) The function dyl : Beng(T) x Beng(T') — R given by
hat LAY (v)
dyy,(p, p) ==1log | sup 4%
' pler] hp' Ly (7)

defines a (possibly asymmetric) distance on Beng(T).
(2) The function dif, : Beng(T') x Beng(I') — R given by

KU LIA{('y)
dL (p,p) :=log | sup &L
mulf:7) e Py L5 ()

s non-negative, and one has
A (p,p) =0& p=porp=p",
where p* is the contragredient of p.

A similar result holds for a class of representations of fundamental groups of
closed real hyperbolic manifolds into PO¢(2, ¢) called AdS-quasi-Fuchsian. These
were introduced by Mess [Mes07] and Barbot-Mérigot [Barl5,BM12]. See Corollary

The renormalization by the entropy in Equation (1.3) while necessary to ensure
positivity, might seem inconvenient: it may be difficult to obtain concrete control
on the entropy, and thus the relation between such distance and the best Lips-
chitz constant of associated equivariant maps is lost. There are, however, natural
classes of representations on which the entropy of some explicit functionals in the
Levi-Anosov subspace a§ is constant. For instance, this is the case for the unstable
Jacobian Jg_1 := dA1 + Agy1 on Benoist components, thanks to work of Potrie-
Sambarino [PS17, Corollary 1.7]. In Corollary 8.1 we define the corresponding
metric. Another important example is the case of Hitchin representations, the rep-
resentations in the connected component Hit(.S,G) of X(m1(S), G), for a split real
Lie group G and the fundamental group of a closed surface S, containing the com-
position of a lattice embedding 71 (S) — PSL(2,R) and the principal embedding
PSL(2,R) — G [Lab06, FGO06]. Hitchin representations are Anosov with respect
to the minimal parabolic [FG06, GLW21], so that afy = a* and the entropy with
respect to all simple roots is constant on Hit(S, G) and equal to one, when G is
classical [PS17, PSW21]. All possible Zariski closures of PSL(d, R)-Hitchin repre-
sentations have been determined by Guichard [Gui], and recently a written proof
appeared in [Sam20]. This result also covers PSp(2r,R) and PSO(p,p + 1)-Hitchin
representations, but not the Hitchin component of PSOq(p, p) (see Subsection 7.1
for details). As we explain in Subsection 7.1, Sambarino’s approach also works in
that case. We deduce the following.
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Theorem 1.3 (See Corollary 7.3). Let G be an adjoint, simple, real-split Lie group
of classical type. Let o be any simple root of G, with the exception of the roots listed
in Table 1. Then the function dF, : Hit(S, G) x Hit(S,G) — R given by

. L& ()
dy(p, p) == 10g<sup L )

e L ()

defines an asymmetric distance on Hit(S, G).

Type Group Diagram Bad roots
Aopq PSLQn (R) O—@O {O[n}

PO(n,n) Vn >5 {ag,...,an_2}

PO(4,4) F< {an,... a4}

TABLE 1. The roots marked in black are fixed by a non-trivial
automorphism, and are therefore not covered by Theorem 1.3.

Dy

Also in this case, even for the bad roots we can understand precisely when
two representations have distance zero. See Subsection 8.3 for further families of
representations for which we can generalize Theorem 1.3; this is notably the case for
some connected components of ©-positive representations of fundamental groups of
surfaces in PO(p, p+ 1) [GW18], which are smooth and conjectured to only consist
of Zariski dense representations [Col20, Conjecture 1.7].

As a second theme in the paper we give an explicit formula for the Finsler norm
associated to the distance on the set X (T, G) of ©-Anosov representations. More
specifically, we introduce a function || - ||%, : TXe(I,G) — R U {£oo} which is
defined as follows. For a given tangent vector v € T,Xg (T, G), we set

loll%, = sup dp(h?)(v)LE (y) + hgd, (L (v))(v)
T el hy Ly () '

If p — h7 is constant, then this expression naturally generalizes Thurston’s Finsler
norm (1.1). We prove

Proposition 1.4 (See Corollary 6.15). Let {ps}sc(—1,1) C Xo(I',G) be a real an-
alytic family and set p := pg and v := % «—oPs- Then s — d%,. (p, ps) is differen-
tiable at s =0 and d
e _ 4 d¢ _
[0l ds|,_, T (P: ps)
It is natural to ask whether | - ||, defines a Finsler norm. In this direction we
show:

Theorem 1.5 (See Corollary 6.16). Let p € Xo(I',G) be a point admitting an
analytic neighbourhood in Xo(I',G). Then the function || - ||%, : T,Xe(l',G) —
R U {zxo0} is real valued and non-negative. Furthermore, it is (Rsq)-homogeneous,
satisfies the triangle inequality and one has ||[v||%, = 0 if and only if

(1.4 azrane = -0 1)
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for all v € T. In particular, if the function p v hg is constant, then
[0]1T, = 0 & dp(LE (7)) (v) = 0
for ally €T.

Condition (1.4) has been studied by Bridgeman-Canary-Labourie-Sambarino
[BCLS15,BCLS18] in some situations. By applying their results we obtain:

Corollary 1.6 (See Corollaries 7.12 and 7.13). The functions || - |31 and || - |3}
define Finsler norms on Hitg(S) := Hit(S, PSL(d, R)).

We don’t know, in this general setting, if the length metric induced by the Finsler
norm |- ||%,, agrees with the distance d7, : indeed it is not clear if the latter distance
is geodesic.

Our final result is an application of Labourie-Wentworth’s computation of the
derivative of some length functions on Hit,(.S) along some special directions [LW18].
By the work of Hitchin [Hit92], fixing a Riemann surface structure Xy on S, we
can parametrize Hity(S) by a vector space of holomorphic differentials (of different
degrees) over Xj. Given an holomorphic differential ¢ of degree k, we associate
to a ray ¢t — tg for t > 0 a family {p;};>0 of Hitchin representations by the
above mentioned Hitchin’s parametrization. We denote by v(q) € Tx,Hitq(S) its
tangent direction at ¢ = 0. The holomorphic differential ¢ also defines a function
Re(q) : T' Xy — R. Details for this construction will be given in Subsection 7.2.

Theorem 1.7 (See Proposition 7.14). There exist constants Cy and Ca, only de-
pending on d and k, such that for every vector v = v(q) € Tx,Hitq(S) as above,
one has
o@I =1 sup | Rela)dss(ary)
[v1€lr]
and
Jo@ll5 = Ca sup [ Re(a)dds(a)
[vI€lr]
where ¢ denotes the geodesic flow of Xo, aj, C T' X, denotes the ¢-periodic orbit
coresponding to ], and d4(ap,)) denotes the ¢-invariant Dirac probability measure
supported on afy).

1.2. Outline of the proofs. The proofs of our main results follow closely the
approach by Guillarmou-Knieper-Lefeuvre [GKL21], which is based on work of
Knieper [Kni95] and Bridgeman-Canary-Labourie-Sambarino [BCLS15]. In [GKT21],
the authors work with the space 9 of isometry classes of negatively curved, entropy
one Riemannian metrics on a closed manifold M. For g € 9t and an isotopy class
¢ of closed curves in M, one may define Ly(c) as we did when g was a point in
Teichmiiller space. Guillarmou-Knieper-Lefeuvre define

Lg,(c)
dru(g1, 92) := logsup ==,
c L.‘h (C)
where the supremum is taken over all isotopy classes ¢ of closed curves in M. In
[GKL21, Proposition 5.4] the authors show

(1.5) drin(g1,92) >0

for all g1, g2 € M, and moreover
(1.6) drn(g1,92) =06 Ly, = Ly,.
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Guillarmou-Lefeuvre’s Local Length Spectrum Rigidity Theorem [GL19, Theorem
1] (see also [GKL21, Theorem 1.1]) gives that Equation (1.6) is equivalent to g1 =
g2, provided that these two metrics are sufficiently regular and close enough in
some appropriate topology. Hence, dry(-,-) defines an asymmetric metric on a
neighbourhood of the diagonal of 9" C 9, where M’ is the subset of 9 consisting
of sufficiently regular metrics (see [GL19, GKL21] for details). Guillarmou-Knieper-
Lefeuvre also construct an associated Finsler norm [GKL21, Lemma 5.6].

Even though the Local Length Spectrum Rigidity Theorem is a geometric state-
ment, the proofs of (1.5) and (1.6) can be abstracted to a more general dynamical
framework inspired from [BCLS15, Section 3]. We develop this general dynamical
framework in detail in Sections 2 and 3, as well as the specific statements needed for
the construction of an asymmetric distance and a Finsler norm in that setting. As
we explain, these general constructions can then be applied not only to the space
M as in Guillarmou-Knieper-Lefeuvre, but also to other geometric settings, such as
spaces of Anosov representations. We expect that this can be applicable in many
more geometric contexts.

The general dynamical framework in Guillarmou-Knieper-Lefeuvre’s setting arises
as follows: Gromov observed that the geodesic flows of any two g1, go € 91 are orbit
equivalent [Gro00]. Roughly speaking, this means that the two flows have the same
orbits, travelled at possibly different “speeds” (see Subsection 2.1 for details). The
change of speed (or reparametrization) is encoded by a positive Holder continuous
function r = rg, 4, on the unit tangent bundle X := T'M of M. To be more
precise, the function rg, 4, is only well defined up to an equivalence relation, called
Livgic cohomology (see Definition 2.2). Thus, we work in the general dynamical
setting of studying the “geometry” of the space £1(X) of Livsic cohomology classes
of entropy one Holder functions on X over the geodesic flow ¢ of g;.

Since ¢ is an Anosov flow, one may study £1(X) through the lens of Theormo-
dynamic Formalism (see Subsection 2.3). Crucial for us is the following rigidity
result by Bridgeman-Canary-Labourie-Sambarino [BCLS15, Proposition 3.8] (see
Proposition 2.18 below): there exists a distinguished ¢-invariant probability mea-
sure mPM(¢) so that

(1.7) /rdeM(¢) >1

and equality holds if and only if r is Livsic cohomologous to the constant function
1, namely the periods of periodic orbits of ¢ and the reparametrized flow by r
coincide. Thus

(1.8) sup/rdm >1,

m
where the supremum is taken over all ¢-invariant probability measures, and equal-
ity in the above formula holds if and only if r is Livsic cohomologous to 1. By
Proposition 2.15, the quantity in (1.8) coincides with the supremum of ratios of
periods of periodic orbits for ¢ and the reparametrized flow by r. These general
dynamical considerations, when applied specifically to reparametrizing functions
associated to g1, g2 € M, readily imply (1.5) and (1.6).

Now as in [BCLS15] for their construction of a pressure metric (see Subsections
1.3 and 3.3 for a detailed comparison), the above general approach can also be ap-
plied to study spaces of Anosov representations. We use Sambarino’s Reparametriz-
ing Theorem [Sam14b] (see Theorem 5.2 below) to map X (T, G) to a space of Livsic
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cohomology classes of Holder functions over Gromov’s geodesic flow UT of I'. More
precisely, we associate to each Anosov representation p and each ¢ € ag a Holder
reparametrization of the geodesic flow UT" encoding the p-spectral data of p. This
procedure is more involved than in the case of negatively curved metrics, not only
because it depends on the additional choice of the functional ¢, but also because
the entropy of ¢ is, in general, non-constant. While, when working with the space
M one can bypass this problem by normalizing the metric, this is not a natural pro-
cedure in our setting, this is why the extra normalization appears in the expression
for d¥,,(-,-) (see Remark 2.16 for further comments on this point). Nevertheless,
Bridgmeman-Canary-Labourie-Sambarino’s rigidity statement (1.7) is adapted to
the setting of arbitrary entropy and we deduce

(1.9) Ay (p1,p2) 20
for all p1, p2 € Xo(T',G), and moreover
(1.10) d%h([)l,pg) :OﬁhﬁlLﬁl :hgzLﬁw

which are the exact analogues of Equations (1.5) and (1.6).

To finish the proof of Theorems 1.1, 1.2 and 1.3 we need to understand under
which conditions one can guarantee Renormalized Length Spectrum Rigidity, that
is, under which conditions the equality h# L# = h? L? implies that p; and po
are conjugate. As in the case of negatively curved metrics, where length spectrum
rigidity is only known to hold locally, this typically requires to restrict to a subset
of Xo(I', G). More precisely, we need to control the Zariski closure G,, of p;, for
i = 1,2. Since central elements and compact factors are invisible to the Jordan pro-
jection, we must require that G,, is center free and without compact factors. Once
this is assumed, and if we assume moreover that G,, is semisimple, renormalized
length spectrum rigidity follows essentially from properties of Benoist’s limit cone
(see Theorem 6.8 and [BCLS15, Corollary 11.6]). In some special cases, such as
Hitchin components and some components of Benoist and positive representations,
these arguments can be pushed further to guarantee global rigidity (see Theorem
7.1 and Section 8).

We study the Finsler norm on Xg(T', G) following the same approach, namely,
by finding a general dynamical construction inspired by [GKIL.21], and then pulling
back this construction to spaces of Anosov representations. Observe, however, that
in this case we need a more complicated expression than what’s available in [GKL21]
because we cannot assume that the entropy is constant.

We may summarize the above discussion by saying that the results of this paper
are obtained by adapting the corresponding constructions in [GKL21] to the con-
text of Anosov representations: we can rely on the Thermodynamical Formalism,
on which part of the constructions in [GKL21] are based, using the work of Sam-
barino [Sam14b] and Bridgeman-Canary-Labourie-Sambarino [BCLS15], and the
local rigidity statement needed in [GIKI.21] is replaced here by rigidity statements
for Anosov representations from [BCLSI15]. One of the strong points of our ap-
proach is to find a suitable general setup where both contexts can be encompassed,
and which might prove useful for other geometric situations.

1.3. Other related work. In [BCLS15, BCLS18] the authors construct Out(I')-
invariant analytic Riemannian metrics on Xo(I', G): they deduce from the afore-
mentioned rigidity result that the Hessian of the renormalized intersection (1.7)
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is a semidefinite non-negative form, called the pressure form. This can be pulled
back to spaces of Anosov representations, sometimes yielding a positive definite
form [BCLS15, BCLS18]. The construction of this paper is different: instead of
integrating with respect to a given measure and taking a second derivative, we in-
tegrate with respect to all invariant measures (see Subsection 3.3 for more detailed
comparisons).

The rigidity result in Equation (1.7) was previously known to hold in other
settings. When restricted to geodesic flows of closed hyperbolic surfaces, this is a
reinterpretation of Bonahon’s Rigidity Intersection Theorem [Bon88, p. 156] (see
Appendix A for more details). More generally, that same result was known to
hold for pairs of convex co-compact, rank one representations p; and ps of a word
hyperbolic group I': see Burger [Bur93, p. 219]. Burger’s results readily imply that

drn(p1, p2) :=log sup hps Lo, (7)
[v]elr] hPl LP1 (’7)
defines an asymmetric distance on a subset of the space of conjugacy classes of
convex co-compact representations I' — G, where G has real rank one (note that in
a rank one situation the choice of a functional ¢ is irrelevant). Burger also relates
the number

(1.11) sup L2 (7)

Melr] Lo, (7)

with one of the asymptotic slopes of the corresponding Manhattan curve: see
[Bur93, Theorem 1]. Guéritaud-Kassel [GK 17, Proposition 1.13] extend Burger’s
asymmetric metric to some not necessarily convex co-compact representations into
the isometry group of the real hyperbolic space. They also show that in some situ-
ations the value (1.11) coincides with the best possible Lipschitz constant for maps
between the two underlying real hyperbolic manifolds.

Our construction of the asymmetric metric is done on a very general dynamical
setting, and pulled back to Anosov representations spaces through Sambarino’s
Reparametrizing Theorem. For reparametrizations of the geodesic flow of a closed
surface, a construction with similar flavor was introduced by Tholozan [Thol9,
Theorem 1.31]. His construction leads to a symmetric distance, and it is described
in terms of the projective geometry of some appropriate Banach space (see [Thol9]
and Remark 3.3 for further details). It would be intriguing to understand the
relation between Tholozan’s construction and the approach we carry out here.

1.4. Plan of the paper. In Section 2 we discuss the dynamical setup, and in Sec-
tion 3 we construct the asymmetric metric and the corresponding Finsler norm in
this general setting. In Section 4 we recall the definition and main examples of inter-
est of Anosov representations. In Section 5 we recall Sambarino’s Reparametrizing
Theorem. In Section 6 we pull back the construction of Section 3 to spaces of
Anosov representations and also discuss the renormalized length spectrum rigidity
in general. In Sections 7 and 8 we specify the discussion to Hitchin representations,
as well as some components of Benoist and positive representations. In Appendix
A we discuss in detail the link between the rigidity statement (1.7) and Bonahon’s
Rigidity Intersection Theorem.

1.5. Acknowledgements. We are grateful to Gerhard Knieper, Rafael Potrie and
Andrés Sambarino for several helpful discussions and comments.
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2. THERMODYNAMICAL FORMALISM

We begin by recalling some important terminology and results about the dynam-
ics of topological flows on compact metric spaces. In Subsection 2.1 we recall the
notions of Holder orbit equivalence and Livsic cohomology. In Subsection 2.2 we
recall the important concept of pressure, and fix some terminology that will be used
throughout the paper. In Subsection 2.3 we recall the notion of Markov coding of a
topological flow, and state the main consequences of admitting such a coding. We
also recall the notion of metric Anosov flows, an important class of flows that admit
Markov codings. Finally, in Subsection 2.4 we recall the notion of renormalized in-
tersection, which is central in our study of the asymmetric metric. The exposition
follows closely Bridgeman-Canary-Labourie-Sambarino [BCLS15, Section 3].

2.1. Topological flows, reparametrizations and (orbit) equivalence. Let
¢ = (¢t : X — X) be a Holder continuous flow on a compact metric space X. In
this paper we always assume that ¢ is topologically transitive. This means that ¢
has a dense orbit.

The choice of a continuous function r : X — R<( induces a “reparametrization”
¢" of the flow ¢. Informally, this is a flow with the same orbits than ¢, but travelled
at a different “speed”. To define this notion properly, we first let x, : X x R = R
be given by

K (2, 1) ::/0 r(¢s(x))ds.

The function k,(z,:) : R — R is an increasing homeomorphism for all z € X and
therefore admits an (increasing) inverse «,.(z,-) : R — R. That is, we have

Kr(z, ap(z,t)) = ap(z, K (2, 1)) =
for all z € X and t € R.

Definition 2.1. The reparametrization of ¢ by a continuous function r : X — R
is the flow ¢" = (¢} : X — X)) defined by the formula

(b: (x) = (bozr(z,t) (x)

for all z € X and t € R. We say that ¢" is a Hélder reparametrization of ¢ if r is
Holder continuous. We let HR(¢) be the set of Holder reparametrizations of ¢.

The reader may wonder why we choose the function «,. to reparametrize, instead
of directly considering the function x,. One reason is the following. Let ¢» € HR(¢),
and denote by 74, the corresponding reparametrizing function, i.e. ¢ = ¢"¢».
Denote by O the set of periodic orbits of 1) (note that this set is independent of the
choice of ¢). Given a € O we denote by py(a) the period, according to the flow 1,
of the periodic orbit a. Then for every x € a one has the following equality

Py (a)
/0 o (n(2))dt = py(a).

Hence, by choosing the function a,., , (instead of k., ,) we avoid a cumbersome
formula involving the integral of 1/r, ., when computing the periods of the new
flow. R N

If we take another point ¢ € HR(¢), then 1 is a reparametrization of 1, that is,

one has ’(Z)\ = 1"»¥ for some positive continuous function r i In fact, an explicit
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computation shows

_Tod
(2.1) Tyl = Fow”
As above, for every a € O and every x € a one has
py (@)
(22) [ s = pya.

There are two notions of equivalence between topological flows that we now
recall. A Holder continuous flow ¢’ = (¢, : X’ — X’) on a compact metric space
X' is said to be (Holder) conjugate to ¢ if there is a (Holder) homeomorphism
h: X — X’ satisfying

hogy=¢,0h
for all ¢ € R. A weaker notion is that of orbit equivalence: the flow ¢ = (¢} :
X' — X') is said to be (Hélder) orbit equivalent to ¢ if it is (Holder) conjugate
to a (Holder) reparametrization of ¢. One can see that every flow in the orbit
equivalence class of ¢ is topologically transitive.

To single out elements in HR(¢) which are conjugate to ¢, one introduces Livsic
cohomology. To motivate this notion, consider a Holder continuous function V' :
X — R of class C! along ¢, and let

@)= (G| vieda)

If r is positive, then ¢" is conjugate to ¢. Explicitly, if one defines h(z) := ¢y (2)(z),
then

t=0

hody =¢ioh
for all t € R.

Definition 2.2. Two Hélder continuous functions f,g : X — R are said to be
Livsic cohomologous (with respect to ¢) if there is a Holder continuous function
V : X — R of class C! along the direction of ¢, so that for all z € X one has

d

f@) =)= | Via),

In that case we write f ~4 g, and denote the LivSic cohomology class of f with
respect to ¢ by [fls.

2.2. Invariant measures, entropy and pressure. For ¢y € HR(¢) we denote by
P (1) the set of Y-invariant probability measures on X. This is a convex compact
metrizable space. We also let &(¢) C £(1) be the subset consisting of ergodic
measures, that is, the subset of measures for which -invariant measurable subsets
have measure either equal to zero or one. The set &(1)) is the set of extremal points
of ().

By the Choquet Representation Theorem (see Walters [Wal82, p. 153]), every
element m € () admits an Ergodic Decomposition. This means that there exists
a unique probability measure 7,, on &(1) such that

Afwmww=éw(4fmmm0wmm

holds for every continuous function f on X.
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The set of periodic orbits of ¢ embeds into & () as follows: for a € O, we
denote by 04 (a) € & () the Dirac mass supported on a, that is the push-forward
of the Lebesgue probability measure on S* 2 [0,1]/ ~ (where 0 ~ 1) under the
map

St 5 X it wpw(a)t(x)v

where z is any point in a. Note that d,(a) € &(¢0). Using Equation (2.2), we
conclude that for every ¢ € HR(¢) one has

(2.3) pyla) = py(a) /X 7,50y (a).

More generally, for m € & (), the map m — m given by
r —dm
(2.4) din = W/’id
Jr p.odm
defines an isomorphism 42 (v) = 9(12)
We now recall the notion of topological pressure, which will be central for our
purposes.

Definition 2.3. Let f : X — R be a continuous function (or potential). The
topological pressure (or pressure) of f is defined by

(2.5) P(6, /)= sup (h(¢,m)+ /. fdm),

meP($)

where h($, m) is the metric entropy of m.

The metric entropy (or measure theoretic entropy) h(¢, m) is defined using m-
measurable partition of X and is a metric isomorphism invariant (see [Wal82, Chap-
ter 4]). When there is no risk of confusion we will omit the flow ¢ in the notation
and simply write P(f) = P(¢, f).

A special and important case is the pressure of the potential f = 0, which is
called the topological entropy of ¢. It is denoted by hiop(¢), or simply by hg.
The topological entropy is a topological invariant: conjugate flows have the same
topological entropy. In contrast, the topological entropy is not invariant under
reparametrizations.

A measure m € Z(¢) realizing the supremum in Equation (2.5) is called an
equilibrium state of f. An equilibrium state for f = 0 is called a measure of
mazimal entropy of ¢.

Livsic cohomologous functions share some common invariants defined in ther-
modynamical formalism.

Remark 2.4. If f: X — R and g : X — R are Livsic cohomologous functions
(w.r.t ¢), then P(¢, f) = P(¢,g) and m € P(¢) is an equilibrium state for f if
and only if it is an equilibrium state for g. Indeed, if f ~4 g and m € Z(¢) then

/X fdm = /X gdm.

This is a consequence of ¢-invariance of m and the Mean Value Theorem for deriva-
tives of real functions.

The following is well-known and useful.
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Proposition 2.5 (Bowen-Ruelle [BR75, Proposition 3.1], Sambarino [Sam14b,
Lemma 2.4]). Let ¢ = (¢y : X — X) be a Holder continuous flow on a com-
pact metric space X and r : X — Rsqg be a Hélder continuous function. Then a
real number h satisfies

P(¢,—hr)=0
if and only if h = hyr.

2.3. Symbolic coding and metric Anosov flows. We now specify an important
class of topological flows for which pressure, equilibrium states and Liv§ic cohomol-
ogy behave particularly well. The property we are interested in is the existence of a
strong Markov coding for the flow. Informally speaking, a Markov coding provides
a way of modelling the flow by a suspension flow over a shift space. This allows
us to obtain many properties about the dynamics of the flow, by studying the
corresponding properties at the symbolic level. The reader can find a general intro-
duction on how to model flows by Markov codings and suspension flows in Bowen
[Bow73] and Parry-Pollicott [PP90, Appendix III]. We give a cursory introduction
of suspension flows and Markov partitions here.

Suppose (3,04) is a two-sided shift of finite type. Given a “roof function”
r: 3 = Ry, the suspension flow of (X,04) under r is the quotient space

Yoo={(z,t) e xR:0<t<r(x),xz € X}/(z,r(x)) ~ (ca(x),0)
equipped with the natural flow o)  (,1) := (z,t + s).

Definition 2.6. A Markov coding for the flow ¢ = (¢¢ : X — X) is a 4-tuple
(X,04,m, 1) where (¥,04) is an irreducible two-sided subshift of finite type, the
function 7 : ¥ — Ry and the map 7 : ¥, — X are continuous, and the following
conditions hold:

e The map 7 is surjective and bounded-to-one.

e The map 7 is injective on a set of full measure (for any ergodic measure of

full support) and on a dense residual set.
e Forall t € Rone has moo)y , = ¢ om.

If both 7 and r are Holder continuous, we call the Markov coding a strong Markov
coding.

The proof of the following proposition can be found in Sambarino [Saml14b,
Lemma 2.9].

Proposition 2.7. Let ¢ = (¢ : X — X)) be a topological flow admitting a strong
Markov coding. Then every flow in the Hoélder orbit equivalence class of ¢ admits
a strong Markov coding.

Thanks to the previous proposition, if ¢ admits a strong Markov coding, then
every element 1) € HR(¢) also does. This has deep consequences for the dynamics
of 1 that we will discuss in this section. However, before doing that we will discuss
an important class of topological flows that admit Markov codings, namely, metric
Anosov flows. This class is important to us because, as proved by Bridgeman-
Canary-Labourie-Sambarino [BCLS15, Sections 4 and 5], every Anosov representa-
tion induces a geodesic flow which is a topologically transitive and metric Anosov.

Among flows of class C! on compact manifolds, Anosov flows provide an impor-
tant class exhibiting many interesting dynamical properties. They were introduced
by Anosov [Ano67] in his study of the geodesic flow of closed negatively curved
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manifolds. Anosov flows were generalized to Aziom A flows by Smale [Sma67]; we
do not give full definitions here and refer the reader to Smale’s original paper. An
example of an Axiom A flow which is not Anosov is the geodesic flow of a noncom-
pact convex cocompact real hyperbolic manifold, the restriction of the flow to the
set of vectors tangent to geodesics in the convex hull of the limit set shares many
dynamical properties with Anosov flows, even though this set is not a manifold. In
some contexts (and particularly in the setting we are focusing on), C'-regularity
is too much to expect; Metric Anosov flows form a class that further generalize
Axiom A flows to the topological setting and still share many desirable properties
with them. They were introduced by Pollicott [Pol87], who also showed that these
flows admit a Markov coding, generalizing the corresponding results for Axiom A
flows obtained previously by Bowen [Bow73].

Let ¢ = (¢4 : X — X) be a continuous flow on a compact metric space X. For
€ > 0, we define the e-local stable set of x by

We(z) :={y € X : d(¢psz, dry) < &,¥t > 0 and d(¢x, pry) — 0 as t — oo}
and the e-local unstable set of x by
Wi(z) ={y e X :d(¢p_sx,d_+y) < e&,Vt >0 and d(¢p_sx,d_+y) — 0 as t = o0}.

Definition 2.8. A topological flow ¢ = (¢; : X — X) is metric Anosov if the
following conditions hold:

(1) There exist positive constants C, A, ¢ such that
d(d¢(z), ¢e(y)) < CeMd(z,y) for all y € W (x) and t > 0,
and
d(p_¢(x), p_+(y)) < Ce Md(z,y) for all y € W2 (x) and t > 0.
(2) There exists § > 0 and a continuous function v on the set
Xs:={(z,y) € X x X : d(z,y) <}

such that for every (z,y) € X5, the number v = v(z,y) is the unique value
for which W (¢,2) N\W2(y) is not empty consists of a single point, denoted

by (z,y).

Theorem 2.9 (Pollicott [Pol87]). A topologically transitive metric Anosov flow on
a compact metric space admits a Markov coding.

For the rest of the section, we fix a topologically transitive flow ¢ = (¢ : X — X)
admitting a strong Markov coding. In this case the entropy of ¢ agrees with the
exponential growth rate of periodic orbits:

1
(2.6) he = tlim n log #{a € O : pg(a) < t}.

Moreover this number is positive and finite (see Bowen [Bow72] and Pollicott
[Pol&7]).

Another useful consequence of the existence of a Markov coding is the density
of O in &(¢). Combined with the Ergodic Decomposition (c.f. Subsection 2.2), it
provides a nice way of relating invariant measures and periodic orbits.
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Theorem 2.10. Let ¢ = (¢ : X — X) be a topologically transitive flow admitting
a strong Markov coding. Then for every measure m € &(¢) there is a sequence of
periodic orbits {a;} C O such that, as j — oo,

dg(aj) = m
in the weak-x topology.

Proof. This is well known in hyperbolic dynamics (see e.g. Sigmund [Sig72, The-
orem 1] when ¢ is Axiom A). We comment briefly on the ingredients of the proof,
since we haven’t found an explicit reference in our specific setting.

By Pollicott [Pol87, p.195] there is a o4-invariant ergodic measure g on X so
that m = 7. (@), where [ is the probability measure on X, induced by the measure
on X x R given by

p®dt

Jrdp”
Hence, it suffices to prove that p can be approximated by periodic orbits of 4. This
is a consequence of two dynamical properties of o 4, called ezpansiveness and the
pseudo-orbit tracing property (see e.g. [KI195, Definition 3.2.11] and [Wal78, The-
orem 1]). Indeed, provided these properties Sigmund’s argument [Sig74, Theorem
1] can be carried out in the present framework. O

With respect to equilibrium states we have the following theorem.

Theorem 2.11 (Bowen-Ruelle [BR75], Pollicott [Pol87], Parry-Pollicott [PP90,
Proposition 3.6]). Let ¢ = (¢ : X — X)) be a topologically transitive flow admitting
a strong Markov coding. For every Hélder continuous function f : X — R, there
exists a unique equilibrium state myz(¢) for f with respect to ¢. Furthermore, the
equilibrium state is ergodic. Finally, if g : X — R is Hoélder continuous and
my (@) = mgy(@), then there exists a constant function c so that f — g ~4 c.

The equilibrium state for f = 0 is called the Bowen-Margulis measure of ¢, and
denoted by mPM(¢). For Anosov flows, the existence of this measure was proved
by Margulis in his PhD Thesis [Mar69]. Uniqueness was originally conjectured by
Bowen [Bow73] and this justifies the name. In a more geometric context, e.g. for
the geodesic flow of a convex cocompact real hyperbolic manifold, Sullivan [Sul79]
gave a description of this measure using Patterson-Sullivan theory. Because of this,
the measure of maximal entropy in those contexts is sometimes called the Bowen-
Margulis-Sullivan measure.

If f ~¢ g then the integrals of f and g over every periodic orbit coincide. In the
present setting we also have a converse statement.

Theorem 2.12 (Livsic [Liv72]). Let ¢ = (¢ : X — X) be a topologically transi-
tive flow admitting a strong Markov coding. Suppose that f and g are two Hélder
continuous functions such that for all a € O and all x € a one has

Do (a) Do (a)
/ F(ée(x))dt = / o))t
0 0
Then f ~g g.

A proof of Livsic’s Theorem 2.12 can be found in [Wal00, Theorem 4.3]: even
though it is stated for C! hyperbolic flows, the proof only uses the existence of the
Markov partition.
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The final property of metric Anosov flows we will need is convexity of the pressure
function, and a characterization of its first derivative in terms of equilibrium states.
Let M be a CF (resp. smooth, analytic) manifold. A family of functions {f, : X —
R},car is said to be a C* (resp. smooth, analytic) family, if for all z € X, the
function s — f,(z) is C* (resp. smooth, analytic).

Proposition 2.13 (Parry-Pollicott [PP90, Propositions 4.10 and 4.12]). Let ¢ =
(o1 : X — X)) be a topologically transitive flow admitting a strong Markov coding.
Then:

(1) For every pair of Holder continuous functions f,g: X — R, the function
s P(o, f + sg)

is convex. Furthermore, it is strictly convex if g is not Livsic cohomologous
(w.r.t. ¢) to a constant function.

(2) Let{fs}se(-1,1) bea CF (resp. smooth, analytic) family of v-Hélder contin-
uous functions on X. Then s — P(¢, fs) is a C¥ (resp, smooth, analytic)

function, and
dfs
= d
s=0 /X ( ds SO> o

where my, = my, (@) is the equilibrium state of fo (w.r.t ¢).

dP(¢, fs)

ds

2.4. Intersection and renormalized intersection. Intersection and renormal-
ized intersection provide a way of “measuring the difference” between two points in
HR(¢). The notion of intersection was introduced by Thurston in the context of Te-
ichmiiller space (see Wolpert [Wol86]), and then reinterpreted by Bonahon [Bon&§|
(see also Appendix A). Burger [Bur93] generalized this notion to pairs of convex
cocompact representations into Lie groups of real rank equal to one, and noticed a
rigid inequality for this number after renormalizing by entropy. Bridgeman-Canary-
Labourie-Sambarino [BCLS15, Section 3.4] further generalized this (renormalized)
intersection in the abstract dynamical setting we are focusing on. We will use these
notions to study the asymmetric distance and Finsler norm in HR(¢) in Section 3.

Definition 2.14. Let z/J,@Z € HR(¢). For m € £(y), the m~intersection number
between 1,1 € HR(¢) is defined by

L, (¢, 0) := /X vy 5dm.

Recall that ¢ is a topologically transitive flow admitting a strong Markov coding.
Intersection numbers and ratios of periods are linked as follows.

Proposition 2.15. For every w,{b\ € HR(¢) the following equality holds

ps(a) N
sup—— = sup L, (1,1)).
aco Py(a) e (y)

Proof. The proof follows closely Guillarmou-Knieper-Lefeuvre [GKL21, Lemma
4.10]. We include it for completeness.
First of all we observe that

(2.7) sup  Ln(,90) = sup L, (1,4).

meP(y) meé& ()
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Indeed, let mg € Z(¢) be such that
sup I’m (¢a 1;) = Imo (¢a {p\)

meP(¢Y)
By Ergodic Decomposition (c.f. Subsection 2.2) we have

L) = [ N (/[ ros@ian) ) an )

-~

sup Im(%?ﬁ) X /g(w) d7-mo (M)

meé& ()

= Ssup Im(d}a d))

meé& ()

IA

The reverse inequality being trivial, this proves Equality (2.7).
We now prove
pg(a) ~
sup = < sup L (4, 1))
ac0 Py(a) T mes(y)

To do that, take a sequence a; € O such that
pg(a) pg(a;)
sup ¥ = lim oI
ac0 Py(a) =00 py(a;)

Since &(¢) is compact we may assume 6y(a;) — m for some m € &(¢). By
Equation (2.3) we have

pyla) -~
sup = hm r . ~déy(a;) = / r,>dm < sup L, (9,v).
aco Py(a) — j—oo [ ¥ wlai) x Y meé (v) ®9)

To finish the proof, it remains to show

p=(a ~
sup 3@ > sup Ln(1,1).
aco Py(a) ~ mes(v)

By Theorem 2.10, given m € &(¢) we may find a sequence a; € O such that
0y (a;) — m. Proceeding as above we have

pyla 0
sup 3(9) > lim [ r, 5ddy(a;) :/ rygdm = In (W, 9).
acO pl/)(a) 7o x 7 X ,

The result follows taking supremum over all m € &(¢). O

The supremum

sup I, (¢¥,¢)= sup /T¢7$dm
me P () me P (Y)
is a well studied quantity in dynamics. Indeed, this number and the measure(s)
attaining the sup is the subject of study of Ergodic Optimization. A general belief
in this area is that “typically” among sufficiently regular functions, the maximizing
measure is unique, and supported on a periodic orbit. See Jenkinson [Jen19] and
references therein for a nice survey. However, for the geometric applications we
have in mind these types of generic results are not enough. In the specific case of
reparametrizing functions arising from points in the Teichmiiller space of a closed
surface, Thurston gives a description of the measures realizing the sup above: these
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are always (partially) supported on a topological lamination on the surface, and
this lamination is typically a simple closed geodesic (see [Thu98, p.4 and Section
10] for details).

The function m — I, (¢, QZ) is continuous with respect to the weak-x topology
on Z(v). Since L () is compact, Proposition 2.15 implies

pyla)
(2.8) sup —
ac0 py(a)
Remark 2.16. Thanks to the above remark one may try to use directly the log of
the number in (2.8) to produce a metric on HR(¢). However, the following problem
arises. For a constant function » = ¢ > 1, we have

log (228 ;’;((C;))) = log (i) <.

Hence, the quantity in Equation (2.8) cannot define a distance in HR(¢). This
problem also arises in the geometric setting we will focus on (c.f. Remark 6.5).

< 0

A way of resolving the above issue, natural from the viewpoint of dynamical sys-
tems, is to normalize by the entropy. Together with Proposition 2.15, this motivates
the following definition.

Definition 2.17. Let 1,7 € HR(¢) and m € £(y)). The m-renormalized inter-
section between 1 and v is

~ h - ~

Considering renormalized intersection fixes the above issue:

Proposition 2.18 (Bridgeman-Canary-Labourie-Sambarino [BCLS15, Proposition
3.8]). For every v,v € HR(¢) one has

T st ) (10, ) > 1.
Moreover, equality holds if and only if (hgr, 5) ~¢ (hyrey).

Proof. By Equation (2.1) we have

~ h- r, -
Timmai () ($,9) = hfw/ (ﬂ) dm®M ().
P (o8
Now the statement becomes precisely that of [BCLS15, Proposition 3.8]. O

3. ASYMMETRIC METRIC AND FINSLER NORM FOR FLOWS

As always we assume that ¢ is a topologically transitive flow admitting a strong
Markov coding. We want to use the formula

hgpgla)\ hy  pgla)
o s 125 ) =1 (722 0

acO h'lll Py (CI,)
to define a distance on a suitable quotient of HR(¢). We begin understanding which
pairs are at distance zero:

Lemma 3.1. For ¢ and {/; in HR(¢) the following are equivalent:
(1) For every a € O, hgps(a) = hypy(a).
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(2) (hgry5) ~¢ (hyToy).
(3) 7.5~ hy/hg.
(4) There exists a constant function c so that v, 5~y c.

Proof. Since 1 and 121\ are topologically transitive and admit a strong Markov coding
(c.f. Proposition 2.7), all results from Section 2 apply. In particular, the equivalence
between (3) and (4) follows from Equation (2.6).

The implications (2)=-(1) and (3)=-(1) are straightforward. The implications
(1)=(2) and (1)=(3) hold thanks to Livsic’s Theorem 2.12 (applied to ¢ and
respectively). O

We say that ¢ and 1Z in HR(¢) are projectively equivalent (and denote 1) ~ 12)
if any of the equivalent conditions of Lemma 3.1 hold. We denote by PHR(¢) the
quotient space under this relation, and denote by [¢)] € PHR(¢) the equivalence
class of 1.

3.1. Asymmetric metric on PHR(¢). Define dry, : PHR(¢) x PHR(¢) — R by

. g pgla)
dru([¥], [¢]) := log <2161(Iﬁ)7 Dy pw(@) ’

where 1) and 1 are representatives of [1] and [] respectively. Lemma 3.1 guarantees
that dry is well-defined, as it does not depend on the choice of these representatives.

Theorem 3.2. The function dy, defines a (possibly asymmetric) distance on PHR(¢).

By “possibly asymmetric” we mean that there is no reason to expect that the

-~ -~

equality drn([¢], [¢]) = dTn([¥0], [¢]) holds for all pairs [¢], [¢)] € PHR(¢). In fact,
in some specific situations it is possible to show that dry (-, -) is indeed asymmetric
(c.f. Remark 7.11).

Proof of Theorem 3.2. Let [¢], [QZ] € PHR(¢) and pick representatives 1, 1Z € HR(¢).
By Proposition 2.15 we have

drn([¢], [¢)) = log ( sup me,@) :

meP(Y)

Proposition 2.18 implies

sup I (1, 0) > Jpumna (10, 9) > 1,
meZ ()

and therefore dry([¢], [121\]) > 0. Moreover, if dry([#], [¢)]) = 0, then Proposition
2.18 implies (hgr, ) ~¢ (hyrg,p), which by Lemma 3.1 means [¢] = [¢]. Since
the triangle inequality for dry (-, -) is easily verified, the proof is complete. O

Remark 3.3. When ¢ is a (not necessarily Holder) continuous parametrization of
the geodesic flow of a closed orientable surface of genus g > 2, Tholozan [Thol9] de-
fined a symmetric distance in PHR(¢) which has similar flavor to our dry (-, -). More
precisely, he works in the space of (not necessarily Holder) continuous reparametriza-
tions of ¢ and considers an appropriate equivalence relation on this space, which
restricts to ~ in the Holder setting. Tholozan proves that the quotient space un-
der this equivalence relation sits as an open, weakly proper, convex domain in the
projective space of some Banach space. Hence, it carries a natural Hilbert metric
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(see [Thol9, Proposition 1.29] for details). In [Thol9, Theorem 1.31], he gives an
expression for this Hilbert metric which is a symmetrized version of dry, (-, ).

3.2. Finsler norm. We now define a Finsler norm || - |1, on the “tangent space”
Ty PHR(¢) of every [¢)] € PHR(¢), and provide a link with the asymmetric distance
drn(-,-) (Proposition 3.6 below). Recall that a Finsler norm on a vector space V
is a function || - || : V' — R such that for all v,w € V and all a > 0 one has:

e |lv]| > 0, with equality if and only if v = 0,

e [lav] = af|v||, and

o [lv+wl < vl + [w].

Before starting we need to make sense of the “tangent space” Tjy,PHR(¢) (c.f.
also [BCLS15, Subsection 3.5.2]). To do this, we express our space of reparametriza-
tions as a level set of the pressure function, and apply Proposition 2.13 and the
Implicit Function Theorem in Banach spaces [H577]. We need to be careful though,
because the space of Hélder continuous functions on X is not closed in the topology
of uniform convergence. To fix this issue, we will fix a Holder exponent v and work
restricted to the space HY(X) of v-Holder functions. In the geometric applications
we have in mind, namely for spaces of Anosov representations, this is not a strong
assumption as discussed in [BCLS15, Section 6] (see also Subsection 6.3 below).

Fix v > 0 and endow HV(X) with the Banach norm

|f(z) = f(¥)

d(z,y)v
where || - [|oo denotes the uniform norm. Let BY(X) C HY(X) be the space of
¢-Livsic coboundaries, that is, the set of v-Hdlder functions on X which are ¢-
Livsic cohomologus to zero. By Livsic’s Theorem 2.12, BY(X) is a closed (vector)
subspace of HY(X). We endow the quotient space LV(X) = H"(X)/BY(X) of
Livsic cohomology classes in HY(X) with the norm

[fllo = Il fllec + sup
TH#Y

— inf  ||ul.,
[Flo = int Jul

which by abuse of notations will also be denoted by || - ||,,. Note that (H"(X), || |l+)
is a Banach space.

Let HR"(¢) be the set of reparametrizations ¢ € HR(¢) so that r4 . € HV(X),
and PHR"(¢) be its projection to PHR(#). Let [¢)] € PHR"(¢) be any point and
take a representative i € HR"(¢) satisfying hy, = 1. By Proposition 2.5 we have

P(¢’ _T¢7¢') =0.

Moreover, if 12 € [¢] is another representative satisfying h = 1, Lemma 3.1 states

that To g ™o T We then have an injective map from PHR"(¢) to the space
PUX) :={[r]s € LY(X) : P(¢,—7) = 0}.

Hence, PHR"(¢) identifies with the open subset of P¥(X) consisting of Livsic co-

homology classes of pressure zero, strictly positive, v-Holder continuous functions

on X. In view of this discussion, throughout this section all representatives 1 of

points [¢] in PHR"(¢) are assumed to satisfy hy = 1.

From now on we simply denote [r]s by [r], omitting the underlying flow ¢. By
Proposition 2.13, for any positive g € HY(X) one has

dpP(¢,-)([g]) > 0.
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That same proposition and the Implicit Function Theorem in Banach spaces imply
that the tangent space to PV(X) at [r] is given by

1,76 = {lal € €00+ [ gam_, —o}.
where m_, = m_,(¢) denotes the equilibrium state of —r (w.r.t. ¢). Since

PHR"(¢) sits as an open subset of PY(X), it is natural to define the tangent space
to PHR"(¢) at [¢)] by
TMPHR“((;S) = T[wyw]PU(X).

We are now ready to define our Finsler norm.

Definition 3.4. Let [g] be a vector in T}, PHR"(¢). We define

dm
ligllen = sup 499
me(¢) | Topdm

Note that this is well-defined, i.e. it does not depend on the choice of the represen-
tatives g and 74,y in the respective ¢-Livsic cohomology classes (c.f. Remark 2.4).
Furthermore, by Equation (2.4) we have the following more succinct expression:

g
(3.1) mmﬁ:m>/(ﬁm
me P (1) Tpp

By definition of the tangent space, ||[g]l|Tn > 0 Moreover, (Rsg)-homogeneity
and the triangle inequality are easily verified. Hence, the following shows that ||- ||ty
is a Finsler norm.

Lemma 3.5. Let [g] € Tiy,/PHR" () be such that ||[g]||tnh = 0. Then [g] = 0.

Proof. To prove the lemma it suffices to show that g is Livsic cohomologous (w.r.t.
¢) to a constant function c. Indeed, if this is the case, then by Remark 2.4 we have

c= /cdm_,«dw = /gdm_ww =0.

Hence [g] = 0 as desired.
Let us assume by contradiction that g is not Livsic cohomologous to a constant.
By Proposition 2.13 the function s — P(¢, —74 ¢ + sg) is then strictly convex and

d

T P(¢, -1y +s9) = /gdm_r(M, =0.

s=0
Strict convexity implies then
P(¢, =144 +9) > P(d, —1gy) = 0.

On the other hand, we show that ||[g]||tnh = 0 implies P(¢, =74 ¢ +g) < 0, giving
the desired contradiction. Indeed, note that

P(¢, —ryp +9) < sup <h(¢, m) — /rd,,d,dm) + sup /gdm.
meP(¢) meZ(¢)
Since ||[g]||lTh = 0 and 74 4 is positive, we have

sup /gdm <0,
meP($)
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and therefore

P(¢, —ry .y +9g) < sup <h(¢, m) — /rdwdm) =P(¢,—r4p) =0.
me P (p)

d

We now link the Finsler norm || - ||ty and the asymmetric distance dry,(-,-). A
path {[¢*]}se(—1,1) C PHR"(¢) is analytic (resp. CF, smooth) if there is an analytic
(resp. C¥, smooth) path {gs}se(=1,1) € HY(X) of strictly positive functions so that
[¢9:] = [¢*] for all s € (—1,1).

Pick a path {[1*]}s¢(—1,1) C PHRY(¢) of class C' and let {gs}se(—1,1) C H"(X)
be as above. By Bridgeman-Canary-Labourie-Sambarino [BCLS15, Proposition
3.12], the function s — hgg. is of class C'. Hence, s — g, := h¢§s§s is also CI.
Furthermore, we have

%) = [0 | = "]
for all s, and therefore we may write 1° = ¢9¢. By construction we have hys = 1,

that is, P(¢, —gs) = 0 for all s € (—1,1) (Proposition 2.5). If we denote gy :=
%’5:0 gs, we have

and Proposition 2.13 gives
0= [ i)y,

where m_g, = m_g,(¢) is the equilibrium state of —go (w.r.t. ¢). That is, setting
¥ := ¢ we have [go] € T}y )PHR"(¢).

Proposition 3.6. With the notations above, the function s — drn([¢], [¢®]) is
differentiable at s = 0. Furthermore, one has

drn([¢], [9°])-

s=0

. d
1lgo]llry = e

Proof. Compare Guillarmou-Knieper-Lefeuvre [GKL21, Lemma 5.6]. Let

g gs
Tep 9o

Ty =

which is the reparametrizing function from 1 to ¥°. Note that

d

_d _ 9
ds

70 : Ty = ,
s=0 r¢,w

and by Equation (3.1) we have

(3.2) lgolllpy = sup / Fodm.
me P ()

On the other hand, let u(s) := e (YL¥"D . Since hy = 1, we have

u(s) = sup /rsdm.

meP(Y)
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It suffices to show that w is differentiable at s = 0 and «'(0) = ||[go]|lTn. Since
ro = 1, we have

= = sup
& s me P (Y)

sup /rsdm— sup /1dm
u(s) —u(0)  me2(v) me P () / (rs - 1) dm

S

and thanks to Equation (3.2) we need to show

s — 1 .
lim sup / (T )dm = sup / rodm.
s70 \me2 () 5 meP ()

Fix some € > (0. The Mean Value Theorem implies that T—;l converges uniformly

to 7o as s — 0. There exists then § > 0 so that, for all 0 < |s| < & one has
rs(x) — 1
s

sup
zeX

Fix any s so that 0 < |s| < §. For every m € £ (¢) we have
< sup

s_l .
’/T dm—/rodm
B} z€X
. Tsfl .
/Todm*€</7dm</T0dm+€,
s

for all m € #(¢)). Taking supremum over all m € Z(1)) the result follows.

— 7’0(:5) < E.

rs(z)—1

—7ro(z)| <e.

s
Therefore

O

Remark 3.7. (1) Keeping the notations from above, Proposition 3.6 can be

restated as
d s
di Js sup Jm(waw ) .
Sls=0 s=0 \meZP(Y)

We will come back to this equality in Subsection 3.3, comparing our view-
point with previous work of Bridgeman-Canary-Labourie-Sambarino [BCLS15].

(2) Notice that although || - ||Th is a Finsler norm induced from the asymmetric
distance dry(+,-), it is not clear whether dry(-,-) is the length distance
induced from ||-||h. In the context of Teichmiiller space (c.f. Remark 7.11),
Thurston [Thu98] shows that dry(-,-) coincides with the length distance
induced by the Finsler norm.

(3) The Finsler norm || - ||y is, in general, not induced by an inner product.
Indeed, in some concrete examples (c.f. Remark 7.11) one may find tangent
vectors [g] for which

_4d
T ds

Th

llglllrn # I = [g}lTn-

3.3. Comparison with pressure norm. Thurston also introduced a Riemannian
metric on the Teichmiiller space of a closed surface .S, which agrees with the Weil-
Petersson metric (see Wolpert [Wol86]). McMullen [McMO8] reinterpreted this con-
struction using Thermodynamical Formalism, and Bridgeman-Canary-Labourie-
Sambarino [BCLS15] took inspiration from this to produce a Euclidean norm || - ||p
on TiyPHR"(¢). We now briefly recall the construction of [BCLS15] and point out
the difference with our approach.
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Let [¢)] € PHR"(¢) and [g] € Tjy,PHR"(¢) be a tangent vector. Thanks to
Proposition 2.13, one has dd—;’ . P(—rg,y + sg) > 0. Hence, one may define

£| P(—rgp+s
o7 s )
liglle =\/ =0 .

Jropdm_y,

Work of Ruelle and Parry-Pollicott implies that | - ||p is a norm' on T}, PHR"(¢),
called the pressure norm. Moreover, this norm is induced from an inner product,

and in fact one has
1 T ’
Th—I>r<l>o T/ (/0 g(¢s(£))d3> dm—r«t,w (x)

fr¢ﬂl1dm—7”¢,w

See [BCLS15, Subsection 3.5.1] for details.

As noticed in [BCLS15, Subsection 3.5.2] the pressure norm is related to the
mBM(4))-renormalized intersection. Indeed, consider the function Jpy () on PHRY(¢)
given by

JW](M) = JmBM(w)(i/MZ%

where 1 (resp. 1) is a representative of [1)] (resp. [1}]). One may check that this is
a well-defined function, as it does not depend on the choice of these representatives.
Furthermore, by Proposition 2.18 this function has a minimum at [¢] and therefore
its Hessian at [¢)] defines a non-negative symmetric bilinear form on Tj, PHR"(¢).
In fact, if we let {gs}se(—1,1) be a smooth path as in Proposition 3.6, then one has

[

See [BCLS15, Proposition 3.11] for details.

Hence, the second derivative of the m®M (1))-renormalized intersection defines an
inner product on T}, PHR"(¢). In contrast, our viewpoint is different: rather than
taking a second derivative of the renormalized intersection with respect to a given
measure, we take the supremum of renormalized intersections over all measures,
and then take a first derivative (c.f. Remark 3.7).

2 dQ

ds?

. I ([¥°]).

P

s=

4. ANOSOV REPRESENTATIONS

Anosov representations were introduced by Labourie [Lab06] for fundamental
groups of negatively curved manifolds, and then extended by Guichard-W. [GW12]
to general word hyperbolic groups. They provide a stable class of discrete represen-
tations with finite kernel into semisimple Lie groups, that share many features with
holonomies of convex cocompact hyperbolic manifolds. We will briefly recall this
notion in Subsection 4.2, after fixing some notations and terminology in Subsection
4.1. In Subsection 4.3 we discuss examples. For a more complete account on the
state of the art of the field, see e.g. [Kas18,Poz19, Wiel8] and references therein.

n particular one has to show that ||[g]||p = 0 if and only if [¢] = 0.
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4.1. Structure of semisimple Lie groups. Standard references for this part are
the books of Knapp [Kna96] and Helgason [Hel78].

Let G be a connected real semisimple algebraic group of non compact type with
Lie algebra g. Let K be a maximal compact subgroup of G and 7 be the corre-
sponding Cartan involution of g. Let

p:={veg:Tv=—v}

We fix a Cartan subspace a C p and let M be the centralizer of a in K.

A natural dynamical system one may look at when studying a discrete subgroup
A < G, is the right action of a on A\G/M. When G has real rank equal to one, this
action is conjugate to the action of the geodesic flow of the underlying negatively
curved manifold. However, in general it may be hard to study the action a ~
A\G/M. In many situations (including the setting we are aiming for), it proves
useful to consider a “more hyperbolic” dynamical system, namely, the action of the
center of the Levi group associated to a parallel set. We now fix the terminology
needed to define this dynamical system.

Denote by ¥ the set of roots of a in g, that is, the set of functionals o € a* \ {0}
for which the root space

0o ={Y €g:[X,)Y]=a(X)Y forall X € a}

is non zero. Fix a positive system YT C X associated to a closed Weyl chamber
a®™ C a. The set of simple roots for X1 is denoted by II.

Ezample 4.1. Suppose G = PSL(V'), where V is a real (resp. complex) vector space
of dimension d > 2. The Lie algebra of G is the space of traceless linear operators
in V. Hence every element of g acts on V. A maximal compact subgroup is the
subgroup of orthogonal (resp. unitary) matrices with respect to an inner (resp.
Hermitian inner) product o in V. A Cartan subspace a C p is the subalgebra of
matrices which are diagonal on a given projective basis £ of V orthogonal with
respect to 0. The choice of a closed Weyl chamber a™ C a corresponds to the
choice of a total order {/1,..., ¢4} on £. Explicitly, if A;(X) denotes the eigenvalue
of X € a on the eigenline ¢;, the Weyl chamber a* is given by the set of matrices
X € a for which

A(X) > > Aa(X).
For i # j we let o j(X) := A\i(X) — A;(X). Then
S={a;:i# 7} and BF = {ay; 10 < j}.
The set of simple roots is
II={wjs1:9=1,...,d—1}.
Sometimes we will write the elements of II simply by o; := a; i41.
Let W be the Weyl group of X. We realize it as
W = Nk (a)/M,

where N (a) is the normalizer of a in K. The group W acts simply transitively on
the set of Weyl chambers in a, thus there exists a unique element wy € W taking
a® to —a™. The opposition involution associated to a™ is ¢ := —wj.
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We will furthermore need the structure of parabolic subgroups of G. Fix a non
empty subset © C II. Consider the subalgebras

po=00® P o P s

aext ae(Il-0)

Po :=go D ED I« @ a,

acxt ac(ll-0)

and

where (IT — 9> denotes the set of positive roots generated by roots in I — ©. We
let Pg and Pg be the corresponding subgroups of G. Every parabolic subgroup of
G is conjugate to a unique Pg. Note that Pg is conjugate to P,g), where

U(©) :={aor:a € B}

The parabolic subgroup Pe is opposite to Pg.
Let

Fo —G/P@ and .7, Fo —G/Po
be the corresponding flag manifolds of G. Two flags ¢ € Fo and £ € Fgo are
transverse if (€,€) belongs to yé% the unique open orbit of the action of G on
Zo X Fo. We also let .F := F and F3 = fr(f).

Ezample 4.2. Let G be as in Example 4.1. The choice of © is in this case equivalent
to the choice of a subset {1 <43 < --- <4, < d—1}, for some 1 <p <d—1.
Then ¢ identifies with the space of partial flags indexed by ©, that is, the space
of sequences ¢ of the form (¢4 C --- C £%), where £ is a linear subspace of V
of dimension ;, for all j = 1,...,p. Furthermore, one has ¢(0) = {1 < d—1i, <
c<d—1i; <d-1}. A ﬂag £ € Zo is transverse to £ € Fg if and only if for all

j=1,...,p the sum§ —|—f“ is direct.

A point in (,€) € ﬁg) determines a parallel set of the Riemannian symmetric
space X¢ of G. It is the union of all parametrized flat subspaces f of X¢ so that
the flag associated to f(at) (resp. f(—a%)) belongs to the fiber over ¢ (resp. &),
for the fibration .# — Zg (resp. . — Zg). When the real rank of G is equal
to 1, this is just a geodesic of Xg. When © =11, it is a maximal flat subspace of
Xg. Any parallel set is identified with the Riemannian symmetric space of the Levi
subgroup Le = Pg N Pg, a reductive subgroup of G.

Let

be the Lie algebra of the center of Lg = Pg NPe (in particular, a;y = a). There is
a unique projection pg : a — ag invariant under the group

Weo :={w € W : w|qg =idge }-

The dual space a§, identifies naturally with {¢ € a* : popg = ¢}. We will use this
identification throughout the paper.

Consider the space ﬁ'g) X ag, endowed with the action of ag by translations on
the last coordinate. This action commutes with a natural action of G that we now
describe, and the quotient dynamics is the “more hyperbolic” dynamical system we
have referred to at the beginning of this subsection.
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Let N be the unipotent radical of P = Py, i.e. the connected subgroup of G
associated to the Lie algebra ) v+ go. The Iwasawa Decomposition is

G = Kexp(a)N.

In particular, .# = K/M and for £ € % we may find k € K such that kM = ¢&.
Quint [Qui02b] defines a map o : G X # — a by the formula

gk = lexp(a(g, kM))n,

where n € N and I € K. Quint [Qui02b, Lemme 6.11] also shows that pg o o :
G X F — ag factors through a map og : G X Fg — ag. For every g,h € G and
¢ € Zo one has

U@(gh,f) = 06(97 h - f) + U@(h, g)
The map og is called the ©-Busemann-Iwasawa cocycle of G. Observe that the
action of ag on ﬁg) X ag commutes with the action of G given by

g(gagaX) = (gg,gf,XfJ@(g,f))

Remark 4.3. The Busemann-Iwasawa cocycle of G is a vector valued version of
the Busemann function of the Riemannian symmetric space X¢ of G. Indeed, when
G has real rank equal to one, then .# identifies with the visual boundary 0X¢ of
Xg. Let 0 € X be the point fixed by K. After identifying a with R suitably, one
has

U(gag) = bﬁ(ovg_l : 0)7
where b.(+,-) : 0X¢ X Xg x Xg — R is the Busemann function. A similar interpre-
tation holds in higher rank (c.f. [Qui02b, Lemme 6.6]).

In Section 5 we will consider a flow space which is even better behaved than
the action of ag associated to a parallel set. It will be induced by the choice of a
functional in af. Natural generators of ag, are the fundamental weights associated
to ©, whose definition we now recall.

Denote by (+,-) the inner product on a* dual to the Killing form of g. For
w, Y € a* set

)
(o) =200

Given « € II, the corresponding fundamental weight is the functional w, € a*
defined by the formulas (wq, 5) = d4p for 8 € II. One has

(4.1) Wa O PO = We

for all & € © (c.f. Quint [Qui02a, Lemme II1.2.1]). In particular, we have w, € ag.

Fundamental weights are related to a special set of linear representations of G
introduced by Tits [Tit71]. If A : G — PGL(V) is an irreducible representation, a
functional x € a* is a weight of A if the weight space

Vi ={veV:Alexp(X)) v= XXy, for all X € a}

is non zero. Tits [Tit71] shows that there exists a unique weight xa which is
maximal with respect to the order given by x > X’ if x —’ is a linear combination of
simple roots with non-negative coefficients. The functional x, is called the highest
weight of A and the representation is prozimal if the associated weight space V,,
is one dimensional. The next proposition is useful.
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Proposition 4.4 (Tits [Tit71]). For every o € II there exists a finite dimensional
real vector space V, and a proximal irreducible representation A, : G — PGL(V,,)
such that the highest weight xo = X, s of the form kowa, for some integer ko > 1.

We fix from now on a set of representations {A,}aenm as in Proposition 4.4.
Observe that for all « € © we have

(42) Xa ©Po = Xa»
and therefore x, belongs to ag,.

We conclude recalling the definitions of Cartan and Jordan projections of G for
later use. The Cartan projection of g € G is the unique element ;(g) € a™ satisfying

g € Kexp(u(g))K.
The Jordan projection of g is defined by

n

A(g) := lim wg")

n—oo N

One may show that for all a € IT and all g € G one has

(43) )\I(Aa(g)) = Xa()‘(g)) = kozwa()‘(g))'
We denote
to =pe o u and Ag 1= pg o A.

4.2. Anosov representations and their length functions. We now define
Anosov representations and their corresponding length functions and entropies.
The definition that we present here is not the original definition, but an equivalent
one established in [KLP17, GGKW17,BPS19].

Let T" be a finitely generated group and | - | be the word length associated to a
finite generating set (that we fix from now on).

Definition 4.5. Let © C II be a non empty set. A representation p : I' — G is
Po-Anosov (or ©-Anosov) if there exist positive constants C' and ¢ such that for
all @ € © one has

a(u(p(7))) =2 Clhyl — ¢
When © = II and G is split, p is sometimes called Borel-Anosov. When G = PSL(V)
with V' as in Example 4.1, {7 }-Anosov representations are also called projective
Anosov.

An immediate consequence of Definition 4.5 is that Anosov representations are
quasi-isometric embeddings from I' to G. In particular, they are discrete and have
finite kernels. A deeper consequence is a theorem by Kapovich-Leeb-Porti [KLP18,
Theorem 1.4] (see also [BPS19, Section 3)): if p : I' — G is ©-Anosov then T is
word hyperbolic. Throughout the paper we shall assume that I' is non elementary
and denote by 9T its Gromov boundary. We also let )T be the space of ordered
pairs of different points in JI'. Every infinite order element v € T" has a unique
attracting (resp. repelling) fixed point in T, denoted by v (resp. v_). We let
I'y C T be the subset consisting of infinite order elements. The conjugacy class of
v € T is denoted by [v], and the set of conjugacy classes of elements of I' (resp.
I'y) will be denoted by [I'] (resp. [T'n]).

A central feature of ©-Anosov representations is that they admit limit maps. By
definition, these are Holder continuous, p-equivariant, dynamics preserving maps

fp:c?l“%ﬁ@ andgp:mj%?@,
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which are moreover transverse, that is, for every x # y in 0T one has

Z 2
€,(2).6 W) € 7.
The limit maps exist and are unique (see [BPS19, GGKW17, KLP17] for details).

Ezample 4.6. Let G be as in Example 4.1 and © = {1 <i; < --- <, <d—1} for
some 1 <p<d—1 (cf. Example 4.2). For j =1,...,p, we let

g0 — Gy (V)

be the ij-coordinate of £, into the Grassmannian G, (V') of i;-dimensional subspaces
of V.

The set of ©-Anosov representations from I' to G is an open subset of the space of
all representations I' — G. This is a consequence of the original definition [Lab06,
GW12]. Indeed, the original definition requires a priori the word hyperbolicity
of I and the existence of the limit maps, with them one constructs a flow space
which, by definition, satisfies certain form of uniform hyperbolicity. General results
in hyperbolic dynamics give that this is an open condition.

Projective Anosov representations are very general:

Proposition 4.7 (Guichard-W. [GW12, Proposition 4.3]). Let p : T' — G be O-
Anosov. Then for every a € O the representation Ayop : T — PGL(V,,) is projective
Anosov.

We denote by Xg(T',G) the space of conjugacy classes of Pg-Anosov represen-
tations from I' to G. Length functions and entropies are important invariants to
study this space. By work of Sambarino that we recall in Section 5, they provide a
way of associating to each p € Xg(I', G) certain flow space as in Sections 2 and 3,
and therefore one may use the Thermodynamical Formalism to study X¢(T", G). To
define length functions and entropies properly we need to recall the definition of a
fundamental object, introduced by Benoist [Ben97] for general discrete subgroups
of G.

Definition 4.8. The ©-limit cone of p € Xo(I',G) is the smallest closed cone
fp@ C ad, containing the set {Ao(p(7)) : v € T'}. The limit cone %, of p is the
[I-limit cone.

In the above definition we abuse notations, because p is a conjugacy class of
representations. However, it is clear that the ©-limit cone is independent of the
choice of a representative in this conjugacy class.

Under the assumption that p is Zariski dense, Benoist [Ben97] showed that .2,
is a convex cone with non empty interior”. Since pg is a surjective linear map, the
same properties hold for the ©-limit cone.

Let

(Z)) = {p € ag:plge >0}
be the dual cone. We denote by int((fp@)*) the interior of (,?p@)*, that is, the set
of functionals in af, which are positive on .2\ {0}.

Fix a functional
pe [ it((Z£))
pEXe(T,G)

2In fact, Benoist shows this result for any Zariski dense discrete subgroup of G.
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The above intersection is non empty. For example, it contains A\; and more generally
wq for all o« € I1.

Definition 4.9. The p-marked length spectrum (or simply @-length spectrum) of
p € Xo(I',G) is the function LY : ' — R>q given by

LE(y) == v(Xe(p(7)))-

Observe that for a ©-Anosov representation p, L¥(y) > 0 if and only if v € 'y
(that is, if it has infinite order). Furthermore the ¢-length spectrum is invariant
under conjugation in I" and therefore descends to a function [I'] — R>o. We will
often abuse notations and denote this function by L7 as well.

Definition 4.10. The @p-entropy of p is defined by
. 1
h¥ = lim sup Elog #{] € [[]: Ly (y) <t} €0,00].
t— o0

The ¢-entropy of p was introduced by Sambarino [Sam14a,Sam14b], who showed
that this quantity is defined by a true limit, is positive, finite, and coincides with
the topological entropy of a suitable flow associated to p and p. We will briefly
recall these results and facts in Section 5.

Ezample 4.11. Here is a concrete set of length spectra that will be of interest (the
corresponding entropies are named accordingly). Let G = PSL(V) with V as in
Example 4.1:

o If p: ' — G is ©-Anosov and «; € O belongs to afy (this is always the case
if © =1I), then Ly is called the itM-simple root length spectrum of p.

e If p: T' — G is projective Anosov, then L,"* is called the Hilbert length
spectrum of p. We denote it by LE.

o If p: T" — G is projective Anosov, then L;J\l is called the spectral radius
length spectrum of p.

4.3. Examples of Anosov representations. Schottky type constructions as in
Benoist [Ben96] provide basic examples of ©-Anosov representations of free groups.
In this subsection we give a list of other examples that will be of interest to us.

Ezample 4.12 (Teichmiiller space). Let S be a connected, closed, orientable surface
of genus > 2 and T' = m1(S) be its fundamental group (in short, T' is a surface
group). The Teichmiiller space of S is the space of isotopy classes of Riemannian
metrics on .S of constant curvature equal to —1. Throughout the paper we identify
this space with a connected component ¥(S) of the space of PSL(2,R)-conjugacy
classes of faithful and discrete representations T' — PSL(2,R). By the Svarc-Milnor
Lemma (see [GAIH90, Proposition 19 of Ch. 3]), representations in T(.S) are Anosov.

Ezample 4.13 (Hitchin representations). An important class of Anosov representa-
tions is given by Hitchin representations. For every split real Lie group G, we denote
by 7 : PSL(2,R) — G the principal embedding [[Kos59], which is well defined up to
conjugation. In the case of G = PSL(d,R), 7 gives the unique irreducible linear rep-
resentation of PSL(2,R). It was proven by Labourie [Lab06] and Fock-Goncharov
[FGO6] that, given the holonomy py, : ' — PSL(2,R) of any chosen hyperbolization
h of S, the entire connected component of 7 o p;, consists of Borel-Anosov repre-
sentations. This component is usually referred to as the Hitchin component. An
element in it is called a (conjugacy class of) Hitchin representation. We will denote
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by Hit4(S) (resp. Hit(S, G)) the Hitchin component of I" in PSL(d, R) (resp. in G).
Any Hitchin-representation is Borel-Anosov, i.e. it is Anosov with respect to any
subset of II. It was proven in [PS17,PSW21] that the entropy of each simple root is
constant and equal to one on each Hitchin component, when G is not of exceptional

type.

Ezample 4.14 (©-positive representations). A general framework encompassing all
cases of connected components of character varieties of fundamental groups of
surfaces only consisting of Anosov representations was proposed by Guichard-W.
[GW18], see also [GLW21]. They introduce the class of ©-positive representations,
which includes, apart from Hitchin components, mazimal representations in Her-
mitian Lie groups, as well as the conncected components of representation in the
POy (p, ¢)-character variety and some components in the character varieties of the
four exceptional Lie groups with restricted root system of type F4. While Hitchin
representations are Borel-Anosov, the other representations are, in general, only
Anosov with respect to a proper subset © < II, which consists of a single root in
the case of maximal representations, and has p—1 elements in the case of POy (p, q)-
positive representations. It was proven in [PSW19] that for maximal and ©-positive
representations in POg(p, q) the entropy with respect to any root in © is equal to
one.

Ezample 4.15 (Hyperconvex representations). Another important class of Anosov
representations are (1, 1, p)-hyperconvez representations studied in [PSW21]. These
are representations p : I' - PGL(d,R) that are {a1,a,}-Anosov, and satisfy the
additional transversality property that for all triples of pairwise distinct points
z,y,z € 9T, the sum &) (x) + £} (y) + £477(2) is direct. If I' is a cocompact lat-
tice in PO(1,p), so that o = SP~!, it follows from [PSW21] that £)(AT) is a
Cl-submanifold of P(R?). Furthermore it was proven in [PSW19] that for these
representations, which sometimes admit non-trivial deformations, the entropy for
the functional pwa, — wq, is constant and equal to 1. Important examples of
this class are the groups I' dividing a properly convex domain in P(R?) studied by
Benoist [Ben03,Ben04,Ben05,Ben06]. These are (1,1, d—1)-hyperconvex, and were
already studied by Potrie-Sambarino [PS17].

Ezample 4.16 (AdS-quasi-Fuchsian representations). Let ¢ > 2 and T" be the funda-
mental group of a closed g-dimensional manifold. A representation p : I' — PO(2, q)
is said to be AdS-quasi-Fuchsian if it is faithful, discrete and preserves an acausal
topological (¢ — 1)-sphere on the boundary of the anti-de Sitter space AdS'?. Re-
call that AdS™? is defined as the set of negative lines for the underlying quadratic
form (-,-)2 4, and its boundary is the space JAdS'? of isotropic lines. A subset
of OAdS™ is said to be acausal if it lifts to a cone in R**9 \ {0} in which all
(-, )2,4-products of non collinear vectors are negative. The fundamental example
of an AdS-quasi-Fuchsian representation is given by AdS-Fuchsian representations,
i.e. representations of the form

I — PO(1,q) — PO(2,q),

where the first map is the holonomy of a closed real hyperbolic manifold, and the

second arrow is the standard embedding stabilizing a negative line in R?*4.
AdS-quasi-Fuchsian representations were introduced in seminal work by Mess

[Mes07] for ¢ = 2, and then generalized by Barbot-Mérigot and Barbot [BM12,
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Barl5] for ¢ > 2. They are {aj}-Anosov representations, where «; is the simple
root in PO(2,q) corresponding to the stabilizer of an isotropic line (see [BM12]).
Furthermore, the space of AdS-quasi-Fuchsian representations is a union of con-
nected components of the representation space (see [Barl5]). AdS-quasi-Fuchsian
representations were generalized to HP~19-convex-cocompact representations by
Danciger-Guéritaud-Kassel [DGIK18].

5. FLOWS ASSOCIATED TO ANOSOV REPRESENTATIONS

We now recall Sambarino’s Reparametrizing Theorem [Saml4a,Sam14b]. This
result associates to each p € Xo(I',G) and each ¢ € int((fp@)*) a topological flow
on a compact space, recording the data of the ¢-length spectrum of p, and admitting
a strong Markov coding. Through the Thermodynamical Formalism, this provides
a powerful tool to study the representation p and the space Xg(T', G) of Pg-Anosov
representations.

Sambarino deals originally with Anosov representations of the fundamental group
of a closed negatively curved manifold. In that case he uses the geodesic flow of
the manifold (which is Anosov) as a “reference” flow, and from p and ¢ builds a
Holder reparametrization of that flow encoding the periods LY (v) = p(Ae(p(7)))-
In the present framework, we are dealing with more general word hyperbolic groups.
Nevertheless, his result is known to still hold: one may replace the reference ge-
odesic flow of the manifold by the Gromov-Mineyev geodesic flow of I'. This is a
topologically transitive Holder continuous flow on a compact metric space UI', well
defined up to Holder orbit equivalence. It was introduced by Gromov [Gro87] (see
also Mineyev [Min05] for details). To define this flow space one considers a proper
and cocompact action of I on )T x R, extending the natural action of I on oA,
The space 9T x R equipped with this action will be denoted by UT", and we refer
to this action as the I-action on )T x R. In the sequel we will consider many
different actions of I on 9@ T x R, depending on various choices, and this justifies
this specific terminology and notation.

The I'-action commutes with the R-action given by

t:(z,y,8) = (z,y,5 +1).

Welet ¢ = (¢, : UI' = UT") be the quotient Gromov-Mineyev geodesic flow. Central
in all what follows is a result by Bridgeman-Canary-Labourie-Sambarino [BCLS15,
Sections 4 & 5], stating that in the present setting ¢ is metric Anosov, and one has
the following (see also [CTT20]).

Theorem 5.1 (Bridgeman-Canary-Labourie-Sambarino [BCLS15]). Let T' be a
word hyperbolic group admitting an Anosov representation. Then ¢ admits a strong
Markov coding.

5.1. The Reparametrizing Theorem. Provided Theorem 5.1, Sambarino’s Re-
parametrizing Theorem carry on to this more general setting, as summarized in
detail in [Sam?22]. More precisely, Sambarino shows that to define a Holder repa-
rametrization of ¢ it suffices to consider a Hélder cocycle over I' with non-negative
periods and finite entropy. We do not give full definitions here and refer the reader to
[Sam?22, Sections 3.1 and 3.2] for details, but let us now recall how this construction
works specifically for the ¢-Busemann-Iwasawa cocycle of p (also called the -
refraction cocycle of p in [Sam?22, Definition 3.5.1]).
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Let p € Xo(T', G) and consider the pullback 82 : T' x 0T — ae of the Busemann-
Iwasawa cocycle of G through the representation p, that is,

6(%(77‘7;) = J@(p(7)7€l)(m>)
The group I' acts on 9T x R by

v (@, y,8) = (y-x,7-y,5s — 0o BE(7.Y)).

The space 0T x R equipped with this action will be denoted by % and we
refer to this action as the (p, p)-refraction action (or simply the (p, ¢)-action). We
let UT”% be the quotient space. The (p, p)-action commutes with the R-action
given by
t:(z,y,s)— (z,y,s — ).

We let ¢?¢ = (¢f¢ : UI?¥ — UL'”¥) be the quotient flow, called the (p,¢)-
refraction flow. As shown by Sambarino, to prove that ¢ is Holder orbit equiv-
alent to ¢ one needs to analyse the periods and entropy of the (p,p)-refraction
cocycle. Let us now recall these notions.

For every v € 'y one has 85(7,7+) = Ae(py) (c.f. [Saml4b, Lemma 7.5]). In
particular, the period p(8g(v,7+)) = L (v) of v € T'y is positive. In [Sam?22,
Section 3.2], the entropy of ¢ o B8 is defined by

tisup + log #{1] € [Tl (98(7,7+)) < 1} € [0, o).

Note that the definition of this entropy differs from the @p-entropy of p by the fact
that here we are only considering conjugacy classes of infinite order elements in T,
while for 7 we also allow conjugacy classes represented by finite order elements.
However, the two numbers coincide: a theorem by Bogopolskii-Gerasimov [BG95]
(see also Brady [Bra00]), states that there exists a positive K1 such that every
finite subgroup of I' has at most Kr elements. In particular, there are only finitely
many conjugacy classes of finite order elements in I' and therefore

(1) b7 = limsup log#{] € [Cu) s ¢(35(17+)) <t} € 0,

Moreover, the p-entropy is positive and finite. Indeed, let a € © and consider the
function IE”(XF,@) — R+ given by

¢(v)
Rv — D)

where v # 0 is any vector representing the line Rv. Since IP’(,,S,”p@ ) is compact, we
find a constant ¢ > 1 so that

)

LSP
< () <e

Alp(7)))

Xal
for all v € I'y. Applying Equation (4 3) we conclude

cl< _ B <c
A (Aalp(7))) ~
for all v € I'y. Thanks to Proposition 4.7, to show 0 < h# < oo it suffices to show
that the spectral radius entropy of a projective Anosov representation is positive
and finite. On the one hand, finiteness follows by an easy geometric argument (see

[Sam22, Lemma 5.1.2]). Positiveness though follows from dynamical reasons: the

—~



34 LEON CARVAJALES, XIAN DAI, BEATRICE POZZETTI AND ANNA WIENHARD

spectral radius entropy coincides with the topological entropy of the geodesic flow
of p, introduced in [BCLS15, Section 4]. Since the latter flow is metric Anosov, we
know by Subsection 2.3 that its topological entropy is positive (see [Sam?22, Theorem
5.1.3] for details).

We have checked the hypothesis on periods and entropy needed to have Sam-
barino’s Reparametrizing Theorem.

Theorem 5.2 (see [Sam?22, Corollary 5.3.3]). Let p € Xo(T',G) and ¢ € int((£2)*).
Then there exists an equivariant Hélder homeomorphism

772 . UT — ﬁpw,

Py

such that for all (x,y) € O there exists an increasing homeomorphism iL(I Y)

R — R satisfying
(5.2) 77 (2, y,8) = (2,9, h(7, (5))

for all s € R. In particular, the (p,p)-refraction action is proper and cocompact.
Moreover, if we let v”¥ : Ul — UTI'”% be the map induced by v”¥, then the flow

(VP#P)—l o ¢p7¢ o yP¥
is a Hélder reparametrization of ¢.
Define R,, : Xo(I', G) — PHR(¢) by
Ro(p) i= [(179) 1 0 6% o 9],

The map R, is well defined because the map v”¥, while not canonical, is well
defined up to Livsic equivalence. We will use R, together with the work in Sec-
tions 2 and 3 to define and study an asymmetric metric on a suitable quotient of
Xo(I',G): Ry, might not be injective. To this aim we will relate, in Section 6, the
p-length spectrum (resp. ¢-entropy) of p with the periods of periodic orbits (resp.
topological entropy) of ¢?#?. We conclude this section discussing the equality:

h% = Riop(67%).

When T is torsion free this follows directly from [Sam?22, Theorem 3.2.2]; we include
in the next subsection a proof allowing for finite order elements in T'.

5.2. Strongly primitive elements, periodic orbits and entropy. The azis of
an element v € I'y is Ay = (7—,74) xR C O@T x R. The element 7 acts via
(p, ) on A, as translation by —p(Ae(p(7))) = —Lg (7). The axis A, descends to
a periodic orbit a¥(v) = a%([y]) of ¢*¥: conjugate elements in I' determine the
same periodic orbit. We let O?% be the set of periodic orbits of ¢**¥*. The period
peew(af (7)) of af(y) divides the number L#(y), and we say that v is strongly
primitive (w.r.t the pair (p,¢)) if this period is precisely L (7). Denote by I'sp C
'y the set of strongly primitive elements. A priori, this set depends on the (p, ¢)-
action. However, we will show in Lemma 6.3 that this is not the case.

Remark 5.3. When I' is torsion free, strongly primitive elements coincide with
primitive elements of T', that is, elements that cannot be written as a power of
another element. In that case, there is a one to one correspondence between periodic
orbits of ¢”% and conjugacy classes of primitive elements in I'. However, if T’
contains finite order elements this correspondence no longer holds (see e.g. Blayac
[Bla21, Section 3.4] for a detailed discussion).
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The discussion above yields a well defined map
(5.3) [Cu] = O7% x (Zso) : [v] = (a7 (7),nF (7)),
where n¥(v) = nf([y]) is determined by the equality

P
L7 (v) = nf (7)pgee (af (7))
To prove the equality h} = hiop (¢7¢) we first show the following technical lemma

(recall that K > 0 is the constant given by Bogopolskii-Gerasimov’s Theorem
[BGI5]).

Lemma 5.4. The fibers of the map (5.3) have at most Kr elements.

Proof. Take (a,n) € O”% x (Zs¢) and fix 79 € I'sp such that a¥(y) = a. Let
H (7o) be the set of elements in I'y that act trivially on A.,. Since the (p, ¢)-action

is proper, the subgroup H (7o) is finite and therefore #H(y9) < Kr. We conclude
observing that the fiber over (a,n) is contained in

{lvonl :ne€ H(vy)}-
0

Corollary 5.5. Let p € Xo(I',G) and ¢ € int((.i”p@)*). Then the p-entropy of p
coincides with the topological entropy of the refraction flow ¢ .

Proof. The inequality htop(qbf) < hY is easily seen. To show the reverse inequality,
recall from Equation (5.1) that

1
hy = limsup - log #{[7] € [Tu] : L7(7) <t}
—00
Lemma 5.4 implies then
1
hy < limsupg log #{(a,n) € O”% x (Zs¢) : npye.«(a) < t}.
t—o0

If we let

k= agl(olgw p¢p‘w(a) > 0,

we have
#{(a,n) € OP% x (Zso) : npgev(a) <t} < % x #{a € OP% : pgo.e(a) < t}.

Equation (2.6) implies the desired inequality. O

6. THURSTON’S METRIC AND FINSLER NORM FOR ANOSOV REPRESENTATIONS

Fix a functional
pe [ int((Z)).
pEXe(T,G)
Recall from Section 5 that this induces a map

R, : Xo(I',G) — PHR(¢),

where ¢ is a Holder parametrization of the Gromov-Mineyev geodesic flow of T'.
In view of the contents of Section 3 (and thanks to Theorem 5.1), it is natural to
try to “pull back” the asymmetric metric on PHR(¢) to Xo(I', G) under this map.
This motivates the following definition.
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Definition 6.1. Define d7, : Xo(I',G) x Xo(T',G) — RU {cc} by”

h? Lf('y)
d? (p,p) :==log | sup —=-L )

The main theorem of this section is the following.

Theorem 6.2. The function d¥, (-,-) is real valued, non-negative, and satisfies the
triangle inequality. Furthermore

5, (p,P) = 0 & hELE = hELE.

We deduce Theorem 6.2 from Theorem 3.2: in Corollary 6.4 we show that for

all p; IBG x@(r, G)7
i, (p, P) = drn(Ry(p), Ry (D))

and in Corollary 6.6 we prove that R,(p) = Ry,(p) if and only if h§ L7 = hpr;.
Both Corollaries 6.4 and 6.6 are straightforward when I is torsion free (see Remark
5.3). We explain the details in Subsection 6.1 allowing for finite order elements
in I'. In Subsection 6.2 we discuss general conditions that guarantee renormalized
length spectrum rigidity. As a consequence, we will have an asymmetric metric
defined in interesting subsets of Xg(I',G) (under some assumptions on G). More

examples will be discussed in Sections 7 and 8. In Subsection 6.3 we use the map
R, to pull back the Finsler norm of PHR(¢) to Xe(T",G).

6.1. Proof of Theorem 6.2. Let p € Xo(I', G). Recall from Subsection 5.2 that
v € T'y is strongly primitive (w.r.t (p, ¢)) if the (p, p)-action of v on the axis A is a
translation by the period of the corresponding periodic orbit of ¢”¥. The following
technical lemma implies in particular that this notion is independent of p (recall
the notation introduced in Equation (5.3)). We note that this holds in the more
general setting of Holder reparametrizations of the Gromov geodesic flow (see also
Remark 6.7 below).

Lemma 6.3. Let p and p in Xo(T',G), then for every v € T'y one has
¢
nf(v) =ni(v).
In particular, v is strongly primitive for the (p, p)-action if and only if it is strongly
primitive for the (p,¢)-action.

Proof. To ease notations we let n := n¥#(y) and 7 := nZ(v). Suppose by contradic-

P
tion that n # n, say n < n.

Let a = a¥(y) (resp. @ = ag(’y)) be the periodic orbit of ¢*¥ (resp. ¢»%)
associated to [y]. Fix a strongly primitive v (resp. 7g) representing a (resp. @) for

the (p, p)-action (resp. (p, ¢)-action). By definition of n and 7 we have
(6.1) L2 (y) = nL# (70) and L£() = ALE o).

We may assume furthermore that (v9)+ = (50)+-

3When v ¢ I'y one has Ly(y)=0= L;ij (7). In the above definition it is understood that in that

case we set v
L,;('Y) _

LE()




ASYMMETRIC METRICS FOR ANOSOV REPRESENTATIONS 37

On the other hand, by Theorem 5.2 there exists an equivariant Holder homeo-
morphism

v S o’
such that for all (z,y) € OT there exists an increasing homeomorphism hiz,y) :
R — R satisfying

l/(l‘7 Y, 5) = (‘Ta Y, h(w,y) (5))
Hence, for all n € T and all (z,y,s) € UL one has
hamy) (5 =90 BE(10,Y) = hiay) () — o B0, y).

In particular, Equation (6.1) gives
h((30) - (301 ) (8 = nLE (%0)) = P((30) - (30) 1) (8 = L5 (7)) = To((30)— (70)4) (8) = LE(7),
and therefore

(o) (10)+) (8 = nLE (10)) = P((30) (v0) 1) (8) = RLZ(F0)-
Hence
((0) - (v0)+) (5= 1LE (1)) = hi(30) - (v0) 1) (8) = LEAG) = P((30) - ,(70)4) (5= L (35 ))-
‘We then conclude

h((0)- . (10)0) (8 = nLE(70)) = h((0) - (70)4) (8 = PLF (30))-
This implies

nL? (o) = nLy (o) > nLy (Yo)-

This is a contradiction because vy was assumed to be strongly primitive for the
(p, p)-action. O

Corollary 6.4. For every p and p in Xo(I', G) one has

0, (0.7) = drn(Ro (). Ro(7).

Proof. By Corollary 5.5 we have

~ hto ((bﬁ#/’
d? (p,p) =lo su P
Tn(p0: D) g (Mel[)r] Rtop (679)

|t
ERYEAS
)
S— | ~—
N———

Equation (5.3) gives then

. Biop (7€) 15 (Y) Pyre (a5(7))
d° -1 p P p .
n(p ) = log (;ﬁ% Paop(07%) 5 (7) pgr-s (a5

=

By Lemma 6.3 we have

h
d%,(p,p) =log | sup
ol elr) Ptop(9#?) Pge-e (ap (7))

This finishes the proof.
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Remark 6.5. There are geometric settings in which the renormalization by entropy
in the definition of the asymmetric metric is essential (see also Section 2.4). For
instance, Tholozan [Thol7, Theorem B] shows that there exist pairs p and j in
Hit3(S) for which there is a ¢ > 1 so that

(6.2) L () > Ll (y)

for all v € m1(S) (recall the notation introduced in Example 4.11). Hence

L 1
log sup J ™) < log () < 0.
el (s) L (7) c

On the other hand some length functions on some spaces of Anosov representa-
tions have constant entropies (c.f. Subsection 4.3). In these situations, renormaliz-
ing by entropy is not needed.

jast

We now compute the set of points which are identified under the map R, fin-
ishing the proof of Theorem 6.2.

Corollary 6.6. Let p and p be two points in Xo(T',G). Then
Ro(p) = Rp(p) & WELE = hELE.
Proof. By definition of PHR(¢) and Corollary 5.5 we have
Re(p) =Ry () & hipge.« (af (7)) = hipgse(af(v))
for all v € I'y. Thanks to Lemma 6.3 this is equivalent to
hin? (V)pgee (a7 (7)) = hEnZ(V)pgo.e (a5 (7))
for all v € I'y. Since for all v € I'y we have
nf (V)pge-e (af (7)) = LE(v) and nf(v)pga.« (a5 (7)) = L5 (7),

the proof is finished.
O

To finish this subsection we record the following technical remark for future use.

Remark 6.7. One may define the notion of strongly primitive elements for the
action I' ~ ﬁ, in a way analogue to the definition for the action I' ~ Ur’’. As
in Lemma 6.3, one shows that v is strongly primitive for I' ~ UL if and only if it
is strongly primitive for the (p, p)-action, for some (any) p € Xo(T, G).

On the other hand, if we let O be the set of periodic orbits of ¢, we may take
for each a € O a strongly primitive representative v, € I'sp. We see that

a— [A,,]

defines a one to one correspondence between O and O”% for all p € Xo(T',G),

where [A,,] is the image of the axis A, under the quotient map U’ — uree.
A set {74 }aco of strongly primitive elements representing each periodic orbit will
be fixed from now on.
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6.2. Renormalized length spectrum rigidity. Recall that G is a connected
semisimple real algebraic group of non-compact type. In this subsection we discuss
necessary conditions that two ©-Anosov representations with the same renormalized
length spectra must satisfy.

For a Lie group G; we denote by (Gy)o the connected component, in the Hausdorff
topology, containing the identity. If o : G; — Gy is a Lie group isomorphism, we
denote, with a slight abuse of notation, by o : aa — aé‘z the induced linear
isomorphism between Weyl chambers. Furthermore, if G; < G is a Lie group
inclusion, we denote by 7g, : aa — aé the induced piecewise linear map.

We will need the following fairly general classical rigidity result, which is an
application of Benoist [Ben97, Theorem 1]. See for instance [BCLS15, Corollary
11.6], Burger [Bur93] and Dal’bo-Kim [DK00].

Theorem 6.8. Let p and p be two ©-Anosov representations into G. Denote by
G, (resp. Gp) the Zariski closure of p(I') (resp. p(I')). Assume that G, and G5
are simple, real algebraic and center-free. Assume furthermore p(I') C (G,)o and
p(I') C (Gp)o- Then if the equality h LE = thg holds, there exists an isomorphism
o :(Gp)o — (Gp)o such that oo p = p. It furthermore holds p o TG, 00 = ¢ o7,

Denote by X4(T, G) C Xo(I', G) the subset consisting of Zariski dense represen-
tations.

Corollary 6.9. Assume that G is simple, center-free, and for every non-inner au-
tomorphism o of G one has oo # ¢. Then df, (-,-) defines a (possibly asymmetric)
metric on X4(T,G).

Remark 6.10. The group G needs to be center-free in Theorem 6.8 and Corollary
6.9: the Jordan and Cartan projections of G factor through the adjoint form of
G, thus any two representations differing by a central character will have the same
renormalized length spectrum, and thus distance zero.

6.3. Finsler norm for Anosov representations. Bridgeman-Canary-Labourie-
Sambarino [BCLS15, BCLS18] used the map R, to pull-back the pressure norm on
PHR"(¢) to produce a pressure metric on Xg(I',G) (for some choices of ¢). We
now imitate this procedure working with the Finsler norm defined in Subsection
3.2.

A family of representations {p, : I' — G},cp parametrized by a real analytic
disk D is real analytic if for all v € T the map z — p.(7) is real analytic. We fix a
real analytic neighbourhood of p € X (T, G) and a real analytic family {p.}.cp C
Xo(T', G), parametrized by some real analytic disk D around 0, so that py = p and
U,epp. coincides with this neighbourhood. By abuse of notation we will sometimes
identify the neighbourhood with D itself.

Definition 6.11. Given a tangent vector v € T,Xeo(I',G) we set
dp(hF)(v)LE(7) + hfd, (L (7)) (v)
1€l hp Lg () ’
where d,(h?) (vesp. d,(L¥(7))) is the derivative of p — hf (vesp. p+— L%(7)) at

p. In particular, if p h; is constant one has

(63) HUHTh - [’Y]G[IFDH] Lg(’)’) .

[vll%y, =
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Remark 6.12. (1) Recall that by [BCLS15, Section 8], entropy varies in an
analytic way over Xg (T, G). In particular, h? is differentiable.

(2) Equation (6.3) generalizes Thurston’s Finsler norm on Teichmiiller space
[Thu9s, p.20].

We want conditions guaranteeing that ||-||%,, defines a Finsler norm on T,X¢ (T, G);
a priori it is not even clear that || - [|%, is real valued and non-negative. To link
|| - 117, and the Finsler norm of Subsection 3.2, we need the following proposition.
We fixed a set of strongly primitive elements {v,} representing each periodic orbit
a € O in Remark 6.7.

Proposition 6.13 ([BCLS15, Proposition 6.2], [BCLS18, Proposition 6.1]). Let
{p:}:ep be a real analytic family of ©-Anosov representations. Then up to re-
stricting D to a smaller disk around 0, there exists v > 0 and a real analytic family
{G. : UT' = Rup}.ep C HY(UT) so that for all z € D, all a € O and all x € a one
has

Do (a)
/0 3 (6a(2))ds = LZ (72)-

In particular, the map D — PHR"(¢) given by z — Ry (p.) = [¢§Z] is real analytic.

Proof. The argument follows [BCLS18, Proposition 6.1]. Since {wa}aco span af,
there exist real numbers a, so that ¢ = Y g @qws. [BCLS15, Proposition 6.2]
gives the result for projective Anosov representations and the spectral radius length
function, thus the proof of [BCLS18, Proposition 6.1] applies (c.f. Proposition 4.7
and Equation (4.3)). O

Fix a real analytic family {g,} as in Proposition 6.13. By [BCLS15, Proposition
3.12] the function z — hys. is real analytic. By Corollary 5.5 we get that z hy.
is real analytic, as claimed in Remark 6.12.

Proposition 6.13 bridges between || - ||, and the Finsler norm on PHR"(¢), as
we now explain. First, observe that in Definition 6.11 it suffices to consider only
strongly primitive elements when taking the sup, that is:

dp(R?)(0)LE () 4+ hed, (LY (7)) (v)
[V€Tse] Ry Ly ()

[vllTn =

Indeed the function p ng (7) is constant for all v € I'y (Lemma 6.3), and Remark
6.7 gives

dp(h?)(v)LE (va) + hEd (LY (7a)) (v)
hy Lg (Ya) '

Recalling the notations from Subsection 3.2 we have the following.

(6.4) [v]|Fy, = sup
acO

Lemma 6.14. Let {p.}.ep C Xo(T',G) be a real analytic family parametrizing
an open neighbourhood around p = po. Fizr an analytic path z : (—1,1) — D so
that 2(0) = 0 and set ps 1= p,(s) and v := %L:O ps- Let also hs == h¥ and
gs = hsgz(s). Then

1011, = Nl go]llon-

In the above statement, by construction, the Livsic cohomology class [§o] = [go]e
belongs to the tangent space Tjgs0]PHR" (¢).
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Proof of Lemma 6.14. Combining Equations (6.4) and (2.3), and Proposition 6.13
we have

”thp = sup i hstS (70) — sup i Efg;d(%(a)
Th acO ds s=0 h;fo(’}/a) (A ds s=0 ho ngd(;¢((l)

Henee d J 9549 (a) J 90dds(a)

gsdogla godogla

v[|%, = sup — = sup .

Pl = 508 5]y Taod0a(a) — 528 T godds(a)

By Theorem 2.10 we get
godm
ol = sup 4

me# () J godm’
This finishes the proof.

From Propositions 3.6 and 6.13, and Corollary 6.4 we obtain the following.

Corollary 6.15. Keep the notations from Lemma 6.1/. Then s — d%, (p, ps) is
differentiable at s =0 and
d
||U||¥h = 7. d'Llp“h(pv Pa)
ds|,_,
We now turn to the study of conditions guaranteeing that ||-||%,, defines a Finsler
norm.

Corollary 6.16. Let p € Xo(T',G) be a point admitting an analytic neighbourhood
inXe(T,G). Then function ||-||%, : T,2Xe (T, G) — RU{%o0} is real valued and non-
negative. Furthermore, it is (Rsg)-homogeneous, satisfies the triangle inequality
and |[v||%,, = 0 if and only if
d,(h?)(v
(65) ap (e ) = -2 o)
P
for all v € T'y. In particular, if the function p — h¥ is constant, then
[0]1Ty, = 0 & dp(L? (7)) (v) = 0
for all v € T'y.

Proof. By Lemma 3.5 and Lemma 6.14, the function || - ||%,, is real valued, non-
negative, (Rsg)-homogeneous and satisfies the triangle inequality. Furthermore,
keeping the notation from Lemma 6.14, if |||, = 0 then gy ~4 0 and this condition
is equivalent to

Py (a) ) d Py (a)
0= [ meend= 5 [ o
0 S1s=0J0
for all a € O and z € a. Hence
d Py (@) d .
= — hS NS dt = - hsL aj-
0= | ne [ e = 5 hrg ()
Thus d (hw)( )
v
dp(Lf (7a)) (v) = == 5=—L¥(7a)

W
for all @ € O. Now by Lemma 6.3 for every v € 'y there is some n > 1 and a € O
so that L¥(v) = nL¥(v,) for all p € Xo (T, G). This finishes the proof. O
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In view of Corollary 6.16, to show that || - ||%, is a Finsler norm, one needs to
guarantee that condition (6.5) implies v = 0. These type of questions have been
addressed by Bridgeman-Canary-Labourie-Sambarino [BCLS15, BCLS18] in some
situations. Rather than discussing these results here, we will recall them in the
next sections, when needed.

7. HITCHIN REPRESENTATIONS

In this section we focus on Hitchin representations. The Zariski closures of
PSL(d, R)-Hitchin representations have been classified by Guichard. Hence, the re-
sults of the previous section apply nicely in this setting giving global rigidity results
and leading to asymmetric distances in the whole component. This is explained in
detail in Subsection 7.1, where we also treat the case of PSOg(p,p), the remain-
ing classical case not covered by Guichard’s classification, using recent results by
Sambarino [Sam20]. In Subsection 7.2 we discuss Finsler norms associated to some
special length functionals in the PSL(d, R)-Hitchin component, showing that they
are non degenerate (this will be a consequence of Corollary 6.16 and results in
[BCLS15,BCLS18]).

Throughout this section we let S be a closed oriented surface of genus g > 2,
and denote by ' = m(S) its fundamental group. We also let G be an adjoint,
connected, simple real-split Lie group. Apart from exceptional cases, G is one of
the following

PSL(da R)7 Psp(2r7 R)a SOO(pap + 1)’ or PSOO(Qa Q)7
for ¢ > 2. Hitchin representations are II-Anosov (c.f. Example 4.13). We denote

by Hit(S,G) the Hitchin component into G, when G = PSL(d,R) we also use the
special notation Hity(S).

7.1. Length spectrum rigidity. For p € Hit(S,G) denote £ := (XPH)* and
consider ¢ € ﬂpeHit(SﬁG) int(gp*) Cay =a*
The main goal of this section is to prove the following.

Theorem 7.1. Let G be an adjoint, simple, real-split Lie group of classical type. In
the case G = PSOq(p,p), assume furthermore p # 4. Let ¢ € ﬂpeHit(S,G) int(Z;)
be so that p o o # ¢ for every non inner automorphism of G. If p,p € Hit(S, G)
satisfy h§ LY = thg, then p = p.

Before going into the proof of Theorem 7.1 we make few remarks and establish
the main corollaries of interest.

Remark 7.2. e When G = PSL(d, R), Bridgeman-Canary-Labourie-Sambarino
[BCLS15, Corollary 11.8] proved Theorem 7.1 for the spectral radius length
function ¢ = A;. The proof of Theorem 7.1 follows the same approach.

e We aim to define a simple root asymmetric metric on Hit(S, G) (Corollary
7.3 below). As every simple root of PSOq(4,4) is fixed by a non inner
automorphism, the function

d,, : Hit(S, PSOg(4,4)) x Hit(S, PSOg(4,4)) — R

does not separate points for any simple root «. This is the main reason
why we exclude the case G = PSOq(4,4) in the statement of Theorem 7.1.

We have the following two consequences of Theorem 7.1.
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Corollary 7.3. Let G be an adjoint, simple, real-split Lie group of classical type.
Let o be any simple root of G, with the exception of the roots listed in Table 1. Then
the function d%,, : Hit(S, G) x Hit(S, G) — R given by

. L& ()
dy(p, p) == 10g<sup L )

pleir L5 ()
defines an asymmetric distance on Hit(S, G).

Proof. By Potrie-Sambarino [PS17, Theorem B] and P.-Sambarino-W. [PSW21,
Theorem 9.9] we have h§ = 1 for all p € Hit(S, G). Since roots as in the statement
are not fixed by non inner automorphisms of G, then by Theorems 6.2 and 7.1 the
function df,, defines a possibly asymmetric metric.

It remains to show that d,, is indeed asymmetric. But Thurston [Thu98, p.5]
exhibits examples of points p, p € Teich(S) for which the distance from p to p is
different from the distance from p to p. Since Hit(S, G) contains a copy of Teich(S),
the claim follows.

(I

Corollary 7.4. Let G = PSL(d,R) and ¢ = A1 be the spectral radius length func-
tion. Then the function dy}, : Hita(S) x Hitq(S) — R given by

A1 TA
h' L3 (7))

3l (p,p) =log [ sup =&
(7 7) el k' L' (7)

defines an asymmetric distance on Hity(S).

Proof. The action on a of the unique non inner automorphism of PSL(d, R) coincides
with the opposition involution ¢. When d > 2 note that A1 # A; o ¢, hence in this
case the result follows from Theorems 6.2 and 7.1. If d = 2, the result follows from
Theorem 6.2 and the Length Spectrum Rigidity for hyperbolic surfaces. O

We now turn to the proof of Theorem 7.1. In view of the natural inclusions
Hit (S, PSp(2r,R)) C Hito,(S) and Hit(S, SOg(p,p + 1)) C Hitap11(5),

we may assume that G is either PSL(d,R) or PSOg(p, p). We will focus on the case
G = PSOq(p,p), the argument for G = PSL(d,R) is similar (and further, in that
case the reader can also compare with [BCLS15, Corollary 11.8]).

The main step in the proof is to carefully analyse the possible Zariski closures
of PSOq(p, p)-Hitchin representations, and show that they satisfy the hypotheses of
Theorem 6.8. This is achieved in Corollaries 7.9 and 7.10 below, as an application
of recent work by Sambarino [Sam?20].

Let then p > 2 and consider a principal embedding 7 : PSL(2,R) — PSOq(p, p).
Then 7 factors as

7: PSL(2,R) — SO (p,p — 1) = PSOy(p, p),

where the first map is the irreducible representation into SL(2p — 1,R), and the
second is induced by the standard embedding stabilizing a non isotropic line £, C
R??. We let 7, be the complementary (p,p — 1) hyperplane. Note that 7 lifts
to a principal embedding 7 : PSL(2,R) — SO¢(p,p). A Fuchsian representation
is a Hitchin representation into PSOg(p,p) (resp. SOp(p,p — 1)) whose image is
contained in a conjugate of 7(PSL(2,R)) (resp. 7(PSL(2,R))). The following is
well-known (see e.g. [Sam?20, p.25] for a proof).
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Lemma 7.5. Let p € Hit(S,PSOq(p,p)). Then there exists a representation p :
' — SO¢(p, p) lifting p that may be deformed to a Fuchsian representation.

Here is another useful lemma.

Lemma 7.6. Let p: T — SOy(p, p) be a Hitchin representation. Then the Zariski
closure G5 of p is reductive.

Proof. Suppose by contradiction that Gz is not reductive. Then Gz is contained in
a proper parabolic subgroup of SOg(p,p) [BT71]. That is, we may assume p(I") C
Po C SOy(p, p), for some subset © of simple roots. In particular, p() is centralized
by exp(ag) for all vy € I'. If {5 : OT' — F = 1 is the limit curve into the space of
full flags of SOq(p, p), this readily implies

exp(X) - &5(x) = &3(x)
for all X € ag and = € OT.
On the other hand, p is positive in the sense of Fock-Goncharov [FGOG]. In
particular, the stabilizer of a triple in the limit set is finite. But we just saw it

contains exp(ag), a contradiction.
O

Remark 7.7. The proof of Lemma 7.6 actually shows that the Zariski closure of
a ©-positive representation in the sense of Guichard-W. [GW18] is reductive, as in
that case the stabilizer of a positive triple is compact [GW22].

For a Hitchin representation p: I' — SOg(p, p), let g5° be the semisimple part of
the Lie algebra g; of Gz. By Sambarino [Sam20, Theorem Al, if p # 4 then g3’ is
either so(p, p), a principal sly, or the image of the standard embedding so(p, p—1) —
s50(p,p). In each case g3’ contains, up to conjugation, the Lie subalgebra d7(sls).

Lemma 7.8. Let p : ' — SOg(p,p) be a Hitchin representation. Suppose that
g € G; satisfies ghg™' = +h for all h € G;. Then g € {id, —id}.

Proof. Let g € G5 be as in the statement. Since 7(PSL(2,R)) C (Gz)o, then g
centralizes (up to a sign) the principal PSL(2,R), which factors through SO¢(p,p —
1).
Now if h € PSL(2,R) is a hyperbolic element with eigenvalues £\ (well defined
up to £1), then 7(h) acting on =, is diagonalizable with eigenvalues

NP0 N2 A2 AT,

Note that these are positive independently on whether we choose A or —\ for the
eigenvalues of h, hence to fix ideas we will assume A > 1. In particular, all the
eigenvalues of 7(h) are positive. We let 7, be the two dimensional plane spanned
by ¢, and the eigenline in 7, of eigenvalue 1, which we denote by ¢,. That is,
7, is the eigenspace of 7(h) associated to the eigenvalue 1. We also let £ be the
eigenline of eigenvalue i = \2(P=1) A2 \=2 . A720—1),

Observe that actually ¢g7(h)g~* = 7(h). Indeed, otherwise we would have
g7(h)g~t = —7(h) and for v € £} one has

g-v= %g?(h) RS —%?(h)g -,

We would then find a negative eigenvalue of 7(h), a contradiction. We conclude
that g7(h)g~* = 7(h) as claimed.
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It follows that g preserves ¢} for all i, and also preserves 7. We claim that g
preserves (. Indeed, note that there is some m € PSL(2,R) so that 7(m) - ¢} # ¢},
as the action of 7(PSL(2,R)) on 7, is irreducible. Furthermore, 7(m)-£} is different
from ¢}, as all these lines are isotropic, while 7(m) - £} is not. By what we just
proved, g preserves m,,nm-1 and therefore preserves m,,;m-1 N 7 = £,. Hence
g ¢ ={, and therefore g - ¢} = ¢} for every hyperbolic h € PSL(2,R).

We conclude that for every hyperbolic h € PSL(2,R), the element g preserves
the projective basis

By :={C"D B 02 02y

Fix such an h. Let m € PSL(2,R) be so that 7(m) - ¢}, & Bj,. Then g preserves the
elements of the basis B,,,.,-1 as well, and therefore preserves 2p+1 lines in general
position in R?P. It follows that g = pid for some p € R. Since g € SOg(p,p), then
n==x1. (]

Corollary 7.9. Assume p # 4 and let p € Hit(S,PSOg(p,p)). Then the Zariski
closure G, of p is simple and center free, and with Lie algebra so(p, p), so(p,p—1),
or a principal sls.

Proof. Let p be a lift of p. Then G, = G;/{£id} and by Lemmas 7.6 and 7.8,
G, is reductive and center free. In particular, it is semisimple and by Sambarino
[Sam20, Theorem A] the result follows. |

The proof of the following well-known fact can be found in [Sam20, Corollary
6.2] for PSL(d, R)-Hitchin representations, but the proof applies in our setting.

Corollary 7.10. Let p € Hit(5, PSO¢(p,p)). Then p(I") C (G,)o.

We have now completed the analysis of the possible Zariski closures of PSOg(p, p)-
Hitchin representations, and we can prove Theorem 7.1.

Proof of Theorem 7.1. By Corollaries 7.9 and 7.10 and Theorem 6.8 there exists an
isomorphism o : (G,)o — (G3)o so that o o p = p. In particular, (G,)o = (G5)o and
we have three possibilities. If (G,)o is a principal PSL(2,R), then the result follows
from Length Spectrum Rigidity in Teichmiiller space. If (G,)o = PSOq(p,p — 1),
then the corresponding Dynkin diagram is of type B,_; and therefore admits no
non trivial automorphism. Hence, in that case o is inner as desired.

Finally, assume (G,)o = PSOq(p,p) and suppose by contradiction that p # p.
Hence o is a non internal automorphism. But on the other hand by Theorem 6.8
we have ¢ o 0 = ¢, contradicting our hypothesis.

O

Remark 7.11. A natural length function on Hit4(S), specially relevant in the case
d = 3, is the Hilbert length (c.f. Example 4.11). However, the Hilbert length
is not rigid, as the contragredient representation p*(y) := 'p(y)~! of p satisfies
hELE = hg* LE*, but in general one has p* # p. Hence, d¥, (-,+) does not separate
points of Hitg(S). It follows from the proof of Theorem 7.1 that this is the only
possible situation where two different PSL(d, R)-Hitchin representations can have
the same Hilbert length spectra. Similar comments apply to the simple roots listed
in Table 1.
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7.2. Simple root and spectral radius Finsler norms. We now restrict to
G = PSL(d,R). We list some useful consequences of Corollary 6.16 and [BCLS15,
BCLS18]. For the first simple root we have the following.

Corollary 7.12. Let ¢ = oy € 11 be the first simple root. The function on THity(S)

o _ dy (L2 (7)) (v)
merm Lot ()

defines a Finsler norm on Hity(S).

Proof. By Potrie-Sambarino [PS17, Theorem B] we have h§t = 1 for all p € Hitq(.5).
Hence, thanks to Corollary 6.16 we only have to show that ||v||7}, = 0 implies
v = 0. But this follows from Corollary 6.16 and [BCLS18, Theorem 1.7]: the set

{d,o (L2 (7)) }er generates the cotangent space T, Hita(S). O

When d = 25 > 2, it is shown in [BCLS18, Proposition 8.1] that the middle root
pressure quadratic form is degenerate along representations that factor through
PSp(2j,R). The proof shows that || - |3, is degenerate as well.

With the same argument as in Corollary 7.12 (but applying [BCLS15, Lemma
9.8 & Proposition 10.1] instead of [BCLS18, Theorem 1.7]), we obtain the following.

Corollary 7.13. Let ¢ = A1 be the spectral radius length function. Then the
function || - |31 : THitg(S) — R, taking v € T,Hitq(S) to

ol = sup SeUP@ILZ () + by dy(L2 (7)) ()
™ pleln) hy Ly (7)

defines a Finsler norm on Hitg(S).

We finish this subsection with a comment on Labourie and Wentworth work
[LW18], which explicitly compute the derivative of the spectral radius and simple
root length functions at points of the Fuchsian locus Teich(S) C Hity4(.S), along
some special directions. More explicitly, fixing a Riemann surface structure Xy on
S, the canonical line bundle K associated to Xy is the (1,0)-part of the complex-
ified cotangent bundle T*X§ = C ®g T*Xo. An holomorphic k-differential is an
holomorphic section of the bundle K*, where the power k is taken with respect
to tensor operation. In local holomorphic coordinates z = = + iy, an holomorphic
k-differential can be written as

gk = Qk(Z) dz®---®dz = qk(z)dzk,
N—
k times
with ¢x(z) holomorphic. Hitchin’s seminal work [Hit92] parametrizes Hity(S) by

the space of holomorphic differentials over X,. More precisely, there exists a home-
momorphism

d
Hitq(S) = @D H (X0, K*),
k=2
where H°(Xg, K*) denotes the space of holomorphic k-differentials over X,. Given
an holomorphic k-differential ¢, € H°(X(, K*), one may consider a natural family
of Hitchin representations {p; }+>0, corresponding to {tgx }+>0 C H°(Xo, K*) under
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this parametrization, with py corresponding to the point Xy in the Teichmiiller
space Teich(S). Infinitesimally, this gives a vector space isomorphism:

d
T,,Hita(S) = P H (X, K*).
k=2

Given a family of Hitchin representations {p;};>0 as above, we denote by v =
v(qg) == %‘t:opt € Tx,Hitq(S) the corresponding tangent vector. The compu-
tation of the derivatives d,, (L.’\j ()(v), for 1 < j < d, has been carried out by
Labourie-Wentworth [LW18, Theorem 4.0.2], using the above identification and in-
formation of H%(Xy, K*). To be more precise, define the function Re g5, : T' Xo —
R as the real part of the holomorphic differential ¢, evaluated on unit tangent
vectors. More precisely,

Re qu(0) = Re (auly (v, ) )

for x = (p,w) € T' X,.

Let ¢ be the geodesic flow on T X. For v € T, let I, () := %L;‘S (7) be the
hyperbolic length of the closed geodesic on X corresponding to the free homotopy
class [v].

Proposition 7.14. There exist constants C1 and Ca, only depending on d and k,
such that for any vector v = v(qx) € Tx,Hitq(S) as above,

1 lpo (6D)
nmmazawp—f/ Re gi(6s(x))ds
e Loo (V) Jo

and

[v(qr)llTs, = C2 sup

lPo('Y)
Re qi(s(2))ds,
elr] lpo(v)/o k(¢s(2))

where © = x., is any point on T' X, that lies in the periodic orbit corresponding to
5.

Proof. The proof is a simple combination of Definition 6.11 together with [LW18,
Theorem 4.0.2, Corollary 4.0.5.]. One also needs the fact that hg\l < 1 with equality
precisely when p is Fuchsian, and h** =1 (by [PS17, Theorem B]). O

8. OTHER EXAMPLES

As discussed in the Introduction in §1.2,
we need two ingredients to gain a good understanding of the asymmetric metric
d%h(" )

e A reparametrization of the geodesic flow of I" with periods given by the
functional ¢: this is needed to show that df, (-,-) is non-negative, degen-
erating if and only if the renormalized length spectra coincide. Sambarino
provides such a reparametrization whenever ¢ € int((.i”p@ )*) and O is the
set of Anosov roots (see Section 5).

e A good understanding of the Zariski closure and its outer automorphism
group for representations belonging to a given class of interests: this is
necessary to obtain renormalized length spectrum rigidity.
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Furthermore on subsets of representations for which the entropy of some func-
tional is constant, one can avoid the renormalization by entropy.

We discuss here further classes in which simultaneous knowledge of some of these
aspects can be achieved.

8.1. Benoist representations. Let I' be a torsion free word hyperbolic group. A
Benoist representation is a faithful and discrete representation p : I' — PSL(d +
1,R) dividing an open, strictly convex set , C RP? (recall Example 4.15). We
denote by Beng(I") € X(T", PSL(d + 1,R)) the space of conjugacy classes of Benoist
representations. Koszul [Kos68] showed that Beny(I') is an open subset of the
character variety, and Benoist [Ben05] showed it is closed. Hence, Beng(T') is a
union of connected components of X(I", PSL(d + 1,R)).

As Benoist representations are ©-Anosov for © = {aq, a4}, both the unstable
Jacobian J4_1 1= dwy —wq = dA1 + Ag1 and H := A\; — Ag41 belong to int((£2)*)
for every p € Beng(T"). We focus here on these two functionals since it was proven
in [PS17, Corollary 7.1] that J4_; has constant entropy, and the Hilbert length
function has particular geometric significance as LE (7) coincides with the length of
the unique Hilbert geodesic in p(I')\Q,, in the isotopy class corresponding to [v].

Corollary 8.1. The function di‘il‘l : Beng(T') x Beng(T') — R given by

Ja—1
dJ(Fl(P b\) _ log sup ﬁd (7)
e el L (7)

defines a (possibly asymmetric) distance on Beng(T).

Proof. Benoist [Ben00, Théoreme 3.6] showed that if p € Beng(I') is not Zariski
dense, then p(I') C PSO(d, 1). Hence, by Theorems 6.2 and 6.8, if dri(p,p) = 0
then there exists an isomorphism o : (G,)o — (G5)o so that oo p = p. If (G,)o =
(Gs)o =2 PSOq(1,d), then the equality p = p follows from Length Spectrum Rigidity
in Teichmiiller space (when d = 2), or by Mostow rigidity (when d > 2).

On the other hand, if (G,)o = (G5)o = PSL(d + 1,R) and ¢ is non inner, it acts
non trivially on the Dynkin diagram of type Ay, hence its action on a coincides with
the opposition involution ¢. Since J;_1 is not t-invariant, and has constant entropy
by [PS17, Corollary 7.1], Corollary 6.9 finishes the proof. O

Remark 8.2. The same applies for all (1, 1, p)-hyperconvex representations p : I' —
PSL(d,R) of hyperbolic groups having as boundary a (p — 1)-dimensional sphere
(see Example 4.15): it follows from [PSW21, Proposition 7.4] that their projective
limit set is a C'-sphere, and from [PSW19, Theorem A] that then the entropy of
the unstable Jacobian J,_; := pw; — wy, is constant and equal to 1. If we then
denote by Hyp?(T') the open subset of the character variety consisting of Zariski
dense (1, 1, p)-hyperconvex representations, the function

()
P o
dry " (p, p) = log ( sup ’”)
plelr) Ly~ (7)
defines a (possibly asymmetric) distance on Hyp?(T').

With the same proof as in Corollary 8.1 we get the following result.
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Corollary 8.3. The function d, : Beny(T') x Beng(I')) — R given by
hy L5 ()
dpy(p.p) =log | sup
o S hH Ly ()
1s real-valued, non negative and dTh(p7 p) =0 if and only if p = p or p = p*, where
p*(7) :="p(y)"" for ally €T.

Remark 8.4. The Hilbert length function H is the only element in int((‘i”[f9 )*)
which is fixed by the opposition involution, and the unstable Jacobian J4_; and
its image Jy_1 0t = —dAgy1 — A1 are the only elements in int((fpg)*) that have
constant entropy on the whole Bengy(I'). In particular for all other functionals
Y E int((fpe)*), such as for example the spectral radius A,

p | h2 LE(7)
Tu(p, p) := log [f’léf}]h 20

defines a (possibly asymmetric) distance on Beng(T'). In all these cases the renor-
malization by entropy is, however, necessary.

8.2. AdS-quasi-Fuchsian representations. Let ¢ > 2 and I' be the fundamen-
tal group of a closed real hyperbolic g-dimensional manifold. Denote by QF,(T')
the space of AdS-quasi-Fuchsian representations I' — POg(2, ¢), which is a union
of connected components of the character variety (recall Example 4.16). Since rep-
resentations in QFq(F) are Anosov with respect to the space of isotropic lines, the
Hilbert length functional H = w; —wq+1 belongs to the Anosov-Levi space ag. This
functional is a multiple of the spectral radius functional on POgy(2, q).

Corollary 8.5. If ¢ > 2, the function d, : QF,(I') x QF,(I') — R given by

hE LH ()
dTh(pa p) = log< sup hp LH( )>

[vlelr

defines a (possibly asymmetric) distance on QFq( ).

Proof. For q > 2 the group POgy(2,q) is simple, and the associated root system
is of type Bs. In particular, it has no non trivial automorphisms and therefore an
automorphism of POg(2, ¢) is necessarily inner. Corollary 6.9 then proves the result
when restricting to Zariski dense AdS-quasi-Fuchsian representations.
Furthermore Glorieux-Monclair [GM18, Proposition 1.4] computed the possible
Zariski closures of an AdS-quasi-Fuchsian representation: if p is not Zariski dense,
then it is AdS-Fuchsian. This means that p preserves a totally geodesic copy of
H¢ inside the Anti-de Sitter space and acts co-compactly on it (c.f. [DGKIS, Re-
mark 1.13]). Therefore p(I') C PO(1,q) C POy(2,¢). Hence the Length Spectrum
Rigidity of closed real hyperbolic manifolds finishes the proof.
|

In the special case ¢ = 2, the function d%h does not separate points. Indeed
PSO(2,2) = PSL(2,R) x PSL(2,R) and every representation of the form
p=(p",p") : mi(S) = PSL(2,R) x PSL(2,R),
where p° is a point in Teichmiiller space for ¢ € {L,R}, is AdS-quasi-Fuchsian.
However, the representation p := (p?, p) has the same Hilbert length spectrum as
p, but p # p (unless p& = pt).
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Remark 8.6. Since AdS-quasi-Fuchsian representations have Lipschitz limit set, it
follows again from [PSW19, Theorem A] that the entropy of the unstable Jacobian
Jg—1 1= qwi — wy is constant and equal to 1 on QFq(I‘). In particular, the function

it QF,(T) x QF,(T') — R given by

Ty
d%“hfl(p, p) :=log ( sup ’J)IM>
Ier Ly ()
is non negative.
However, in this case the unstable Jacobian doesn’t belong to the Levi-Anosov
subspace. As a result it is not clear whether a metric Anosov flow with periods
Jg—1 exists allowing us to apply the Thermodynamical Formalism which is at the

basis of this work. Thus, we don’t know if the condition dJth’l (p, p) = 0 leads to an
equality between length spectra that allows to conclude that d%qh’l separates points.
8.3. Zariski dense ©-positive representations in POy(p,p +1). Let 2 < p <

g. Let I' = m(S) be a surface group and Pos, 4(5) be the space of O-positive
representations I' — POq(p, q) (c.f. Example 4.14).

Corollary 8.7. for2 <p<gqandj=1,...,p—2 let o; be the corresponding
simple root of POy(p,q). Let Posg,q(l") C Pos, 4(T") be the subset consisting of
Zariski dense representations. Then the function

di, : Pos? (T) x Pos/ (T) - R

di,(p, p) =log | sup Ly ()
B e Lo’ (7)

defines a (possibly asymmetric) distance on POSZZ)’q(F).

given by

Proof. AsPOg(p, q) ©-positive representations are ©-Anosov for © = {a1,...,ap_1}
(see [GLW21,BP21]), we have a; € int((Z;)*) for every p € Posg’q(l"). Further-
more, aj-entropy is constant on the space of POg(p,q) positive representations
[PSW19, Corollary 1.7]. Thus to finish the proof it only remains to show that
aj-length spectrum rigidity holds on Posg7q(F).

Since POg(p, ¢) is simple and center free, Theorem 6.8 guarantees that two rep-
resentations in POSZ’ q(I‘) having the same renormalized length spectra differ by an
automorphism of POg(p, ¢). Since the Dynkin diagram associated to the root sys-
tem of POg(p, ¢) is of type of type B, and admits no non trivial automorphism, the

outer automorphism group of POy(p, ¢) is trivial and this finishes the proof.
O

Remark 8.8. The space Posy 3(I") contains connected components only consisting
of Zariski dense representations [AC19, Theorem 4.40]. More generally, for all p > 2
the space Pos, p+1(I") contains smooth connected components. It is conjectured
that these consist only of Zariski dense representations as well (see [Col20, Conjec-
ture 1.7]), if the conjecture were true, the functions in Corollary 8.7 would define
metrics on these connected components.

On the other hand it follows from the classification in [AABC™19] that for ¢ > p
all connected components of Pos,, 4(.5), with the exception of the Hitchin component
if p = ¢ contain representations with compact centralizer.
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APPENDIX A. GEODESIC CURRENTS

Bridgeman-Canary-Labourie-Sambarino [BCLS18, p.60] remarked that the renor-
malized intersection number of Subsection 2.4 can be linked to Bonahon’s inter-
section number, in the specific case of geodesic flows associated to points in the
Teichmiiller space of a surface. We explain this in more detail for the reader’s
convenience.

Let S be a connected closed orientable surface of genus bigger than one and
S be its universal cover. Let I' be the fundamental group of S. A (complete)
geodesic of S is an element of 9T, A geodesic current is a Borel, locally finite,
I'-invariant measure on the space of geodesics of S, which is also invariant under
the map (x,y) — (y,z). We let €(S) be the space of geodesic currents in S. An
important example of a geodesic current is given by isotopy classes of closed curves
in S: every such class « defines an element 6, € %(S) by representing « as a
conjugacy class ¢, in I', and then considering the sum of Dirac masses supported
on the axes of elements in ¢,. Another interesting example is given by measured
geodesic laminations on S (c.f. Bonahon [Bon&8, p. 153]).

Bonahon [Bon88| defined a continuous, bilinear, symmetric pairing

i:6(S) x€(S) = Rxo,

called the intersection number between geodesic currents. This terminology is mo-
tivated by the following property: if a and 3 are isotopy classes of closed curves in
S, then one has

i(0a,05) = inf  #(' NA).

a’ea,B'EP
Furthermore, Bonahon defines an embedding

L : Teich(S) — €(5)

from the Teichmiiller space Teich(.S) into the space of geodesic currents that can be
described as follows. Since every point p € T(S) is Anosov, we have an equivariant
limit map &, : 0T — P(R?) and we may pull back the Haar measure on P(R?) x
P(R*)\ {(n,m) : n € P(R?*)} under this map. We obtain an element L, € %(S)
which is called the Liouville current of p. Furthermore, the Haar measure on
P(R?) x P(R?)\ {(n,m) : n € P(R?)} can be normalized so that for every isotopy
class of closed curves « in S

(A.1) i(Lp, 0a) = Ly(a),

where L,(a) is the length of the unique closed geodesic (for the metric p) in the
isotopy class a (c.f. [Bon88, Proposition 14]).

The embedding L : Teich(S) — € (S) allows us to relate renormalized intersection
and Bonahon’s intersection. Indeed, pick a base point py € Teich(S) and denote
by S,, the underlying hyperbolic surface. The associated geodesic flow ¢ = ¢,
is a topologically transitive Anosov flow and admits a strong Markov coding (c.f.
Theorem 2.9). Furthermore, the choice of pg induces a homeomorphism between
% (S) and the space Z(¢). Indeed, the Busemann-Iwasawa cocycle of pg induces an
identification between the unit tangent bundle of the Riemannian universal cover
of §,, with

O x R,
in such a way that the action of the (lifted) geodesic flow is given by translation in
the R-coordinate. The identification € (S) = (¢) is defined by associating to a
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geodesic current v the probability measure m, homothetic to the quotient measure
of v ® dt.

The geodesic flow ¢ = ¢, corresponding to another point p € Teich(S) is Holder
orbit equivalent to ¢ = ¢,,, and therefore we may think 1 as an element of HR().

Lemma A.1. Let pg and p be two points in Teich(S) and take v € €(S). Then:

— _ Z.(V’ LP)
L, (6,4) = Jm, (6:) = 5.
Proof. The function J.(¢, ) is continuous on & (¢). Similarly, i(-,L,,) and i(-,L,)
are continuous on %(S). Since v +— m, is a homeomorphism and multi-curves
are dense in €(S) (see Bonahon [Bon88, Proposition 2]), it suffices to prove the
statement for v = J,, where « is any isotopy class of closed curves in S.
Assume then v = 4. By Equation (A.1) we have

i(v,Lp,) = Ly, (@) and i(v,L,) = L,(a).
On the other hand, it is well known that hy = hy = 1 (c.f. Manning [Man79]), hence
o, (¢,90) =1, (¢,1). Also, a defines a periodic orbit a, € O satisfying py(aq) =
L,,(a) and py(aa) = Ly(a). Since ms, = d4(aq), Equation (2.3) completes the
proof. O

One can check that mPM(¢) = my, . Hence, combining Lemma A.1 and Bona-
hon [Bon88, Proposition 15] we have
i(LposLp) _ ilLpys L)
(A.2) sy (9, 0) = LU P2 = .
e i(Lpy Lpo) — w2 Ix(S)]
As an interesting consequence, one gets

Jmer () (6, 1) = Tpumn(y) (¥, @)

for all pg,p € %(S). However, if one considers the supremum of all renormalized
intersections (rather than just the Bowen-Margulis-renormalized intersection), this
symmetry no longer holds: combine Theorem 3.2 with Thurston’s example [Thu98,
p.5].

Another interesting consequence of Equation (A.2) is that it recovers a result by
Bonahon [Bon88, p. 156]. Indeed, combining that equation with Proposition 2.18
and length spectrum rigidity on Teich(S), one has

i(Lpy,Lp) > Wz‘X(S”
for all pg, p € T(S), with equality if and only if p = pg.
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