CannaLatan - International Society for Neurochemistry School "Investigating cannabinoid function in the nervous system: mechanism of action and biomedical implications"

Neuroprotective property of *Cannabis* extracts and cannabinoids: *in vitro* studies

Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección. Departamento de Neuroquímica, IIBCE Montevideo, Uruguay

Carolina Echeverry, PhD

caroliecheverry@gmail.com

OVERVIEW

- Neuroprotection
- Phytocannabinoids as neuroprotective agents
- Our Results

Isolated phytocannabinoids Combined phytocannabinoids

Cannabis-based extracts:

Pharmaceutical products-with high content of CBD

Whole-plant cannabis extracts

***** Neuroprotection involves prevention of neuronal death

Ischemia/Stroke

In the 1960s the term "neuroprotection" was applied to the protection of the brain during high-risk neurosurgical that required the interruption of blood circulation to the brain

Neurodegenerative diseases

Are characterized by progressive and irreversible neurons loss from specific regions of the brain

- ✓ Are the leading causes of death in developed countries.
- ✓ Epidemiological data indicate that the incidence worldwide has increased significantly in the last 30 years.
- ✓ Demand high economic and emotional costs for the patient and their close environment.
- ✓ The therapies available are symptomatic and do not stop or delay the degenerative process.

Neuroprotective therapies in neurodegenerative diseases

Neuropsychiatric disorders

schizophrenia, bipolar disorder, and major depression

✓ Accumulating data from postmortem and brain imaging studies revealed morphological changes in the brain of patients with these mental disorders, such as ventricle enlargement, volumetric reduction, loss of neurons and glial cells in particular cortical and limbic brain regions (Hunsberger et al 2009, Wee et al 2016).

Dodd.2013

Table 1 Neuroprotective properties of agents that may be used for mental health.							
	MRI evidence of prevention of brain volumetric changes	Neuroprotective in cell cultures or animal model					

	brain volumetric changes cultures or animal models		
Lithium	Yes	H ₂ O ₂ treated contex cells	
Clozapine		IPS treated neuron-glia cells	
		-	
Arinirazola		Cutamate treated neurons	
Anpirazoie		cautamate deated neurons	
Olanzapine		1. Nutrient deprived cells.	
		2. Mouse cerebral ischemia.	
Paliperidone		H ₂ O ₂ treated neurons	
Quetiapine		INF-y treated microglia	
Ziprazadone		INF-y treated microglia	
Perospirone		INF-y treated microglia	
Antidepressants		IPS treated neuronal stem	
		cells	
Mino cvd ine		1. Glutamate treated neurons.	
		2. Mouse cerebral ischemia.	
Statins			
Arritin		Rodent carebral inchamia	
ларты		Augent Grebhar benefina.	
Omega-3			
PUFA			
Erythropoietin		Trimethyltin	
Melatonin	Yes	treated	
Leptin		neurons	
		Rodent brain;	
		Human brain cells.	
		JMDD, JAlzheimer	
		degen	

- ✓ Studies support the notion that psychotropic agents used to treat the major psychiatric disorders are associated with significant neurotrophic/neuroprotective effects.
- ✓ Has opened a novel avenue of exploring the causes and healing of neuropsychiatric diseases

• Although the etiology of neurological diseases is different, they all share similar biochemical events that lead to cell malfunction and subsequent death.

✓ To date, there is no drug in the clinic that is sufficiently effective and safe to be used as a neuroprotective in acute or chronic neurological diseases.

Neuroprotective therapies

✓ Which of these different altered cellular functions should be prioritized as a therapeutic target?

POLY-PHARMACOLOGICAL STRATEGY

- broad spectrum agents capable of limiting simultaneously some of the cytotoxic mechanisms.
- combination of more selective agents

Natural products (NPs) from plants as Neuroprotective agents

The term "natural product" = "secondary metabolite"

Synthesis of natural products is a result of enzymatic interactions. Therefore, their biological activity involves protein binding making them effective drug candidates.

Their use in traditional medicine may provide insights regarding efficacy and safety. Ethnobotany, has always served as a starting point for drug discovery programs from herbs

Xie et al., 2021

Cannabis sativa and Phytocannabinoids

Cannabis sativa L. has a long history as a medicinal plant and was fundamental in the discovery of the endocannabinoid system.

Phytocannabinoids was originally defined in a phytochemical context to refer to a structurally homogenous class of meroterpenoids typical of cannabis (Cannabis sativa L.)

This chemical classification is broadly based on their derivation from a common C21 precursor (cannabigerolic acid (CBGA), or its C19 analog (cannabigerovarinic acid (CBGVA)

Phytocannabinoids as any plant-derived natural product capable of either directly interacting with endocannabinoid system

Phytocannabinoids as neuroprotective agents

Its potential as NEUROPROTECTIVE AGENTS is based on:

 Wide spectrum of action: within the endocannabinoid system (ECS), and also outside this neuromodulatory system.

Phytocannabinoids as neuroprotective agents

Echeverry et al., 2022

2. Location and distribution of those possible targets for action

CB1Rs are found predominantly in the CNS on presynaptic axon terminals.

CB2R are present mainly in glial cells (astocytes and microglia). High expression of CB2R mRNA was also observed in neurons, with reports showing most neuronal CB2R localization post-synaptically.

In contrast to the constitutive expression of CB1R, CB2Rs are strongly induced following trauma or pathology

CB1-Rs: localización intracelular

mitochondrial cellular respiration production, hence regulating cellular metabolism

Zou and Kumar, 2018

The typical distribution of CB1-R is in the plasma membrane. However, there is intracellular localization, the functions that these receptors control, eg. by internalization of receptors, or in mitochondria (Piomelli, 2014 Vallee et al., 2014) Possible connection with the neuroprotective actions of cannabinoids.

3. Evidence suggests that certain ECS components are deregulated in various neuropathologies (Cooray et al, 2020)

Potential of **phytocannabinoids** to act as new therapeutic agents in CNS disorders

Reports demonstrating the therapeutic potential of phytocannabinoids as neuroprotective agents (Stone et al., 2020).

Derivatives of CBG, known as VCE-003 or VCE-002.3 (Diaz-Alonso et al., 2016)

TABLE 3 Summary of the conditions where emerging cannabinoids have been studied

	Cannabigerol (CBG)/derivatives	Cannabidivarin (CBDV)	Cannabichromene (CBC)	Cannabinol (CBN)	Cannabidiolic acid (CBDA)	∆ ⁹ -THCV	∆ ⁹ -THCA
Huntington's	1	-	-	1	х	-	🗸 PPARγª
Multiple sclerosis	1	-	-	-	-	-	-
Autoimmune encephalomyelitis	✓PPARγ/CB₂ ^a	-	-	-	-	-	-
Parkinson's	✓PPARγ ^a	-	-	-		1	1
Neuroinflammation / neuroprotection	1	1	1	1		1	1
Epilepsy/seizure	×	✓TRPV1 ^a	1	-		1	-
Amyotrophic lateral sclerosis (ALS)	1	-	-	1	-	-	-
Oxidative stress		-		1		-	-
Rett syndrome	•	1	-	-	-	-	-
Alzheimer's disease	1	1	1	-		-	-

Note. A tick or cross represents whether a cannabinoid showed efficacy in a condition or not. A dash means that a cannabinoid has yet to be studied in a condition. ^aSome of the compounds neuroprotective effects were mediated by this receptor, but no other receptors were probed.

CBC CBG

CBN

Structured of some of the minor phytocannabinoids with cannabidiol (CBD) and tetrahydrocannabidiol (Δ 9-THC) included for reference: Δ 9-tetrahydrocannabinolic acid (Δ 9-THCA), Δ 9-tetrahydrocannabinolic (Δ 9-THCV), cannabidivarin (CBDV), cannabidiolic acid (CBDA), cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN)

Further studies are required to investigate the full neuroprotective potential of these compounds particularly the mechanisms underlying their protective effects, as well as exploring whether their combinations may enhance their capabilities as neuroprotectors

Neuroprotective agents

Isolated phytocannabinoids

Combined phytocannabinoids

Cannabis-based extracts:

Pharmaceutical products-with high content of CBD

Whole-plant cannabis extracts

ORIGINAL ARTICLE

A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT_{1A} Receptors

Carolina Echeverry¹ · Giselle Prunell¹ · Camila Narbondo¹ · Verónica Sánchez de Medina² · Xavier Nadal³ · Miguel Reyes-Parada^{4,5} · Cecilia Scorza⁶

AIM

- ✓ The ability of CBD, CBG, CBDA and CBGA to attenuate the neurotoxicity induced by two insults involving oxidative stress (hydrogen peroxide, H₂O₂) and mitochondrial dysfunction (rotenone) was evaluated in neural cell cultures.
- ✓ The involvement of CB-1 and CB-2, PPARy or 5-HT1A receptors was investigated.

Neurotoxical insults:

Oxidative stress: Hydrogen Peroxide

Mitochondrial dysfunction: Rotenone

Experimental design:

• Primary culture of cerebellar granule neurons

CB1/Hoechst

CB2/Hoechst

Neurotoxicity assays of CBD, CBG, CBDA and CBGA

Neuroprotection assay against H₂O₂

Tubulina/Hoechst

Echeverry et al. 2020

Neuroprotection assay against rotenone

Neuroprotection assay against rotenone

Tubulina/Hoechst

Echeverry et al. 2020

Mechanism of action in rotenone assay

PPARy antagonism

Neuroprotective agents

Isolated phytocannabinoids

Combined phytocannabinoids

Cannabis-based extracts:

Pharmaceutical products-with high content of CBD

Whole-plant cannabis extracts

Neuroprotective activity of combined phytocannabinoids

Given that the neuroprotective effect of CBD and CBG is independent CB1-R and CB2-R, their combination with THC could enhance their effects

FCE_3_2020_1_162440 Proyecto de investigación Fundamental Fondo Clemente Estable - 2020

DATOS GENERALES

DATOS GENERALES

Título en español

Uso medicinal de Cannabinoides: búsqueda de una combinación THC:CBD o THC:CBG que potencie su

acción como agentes neuroprotectores y mejore su biodisponibilidad cerebral

Título en inglés

Cannabinoids medicinal use: search for a combination of THC:CBD and THC:CBG which potentiate their actions as neuroprotector agents and improve its brain bioavailability

THC neurotoxicity

CBD + THC Neuroprotection

CBG + THC Neuroprotection

Isolated phytocannabinoids

Combined phytocannabinoids

Cannabis-based extracts:

Pharmaceutical products-with high content of CBD

Whole-plant cannabis extracts

Entourage effect?

Neuroprotective activity of pharmaceutical cannabis-based extracts-with high content of CBD

First Uruguayan medical cannabis product registered (2017, 2%, 2018, 5%)

Registered only for the treatment of refractory epilepsy in children and adolescents

EPI Neurotoxicity

EPI Neuroprotection

 $EC_{50} (\mu M) = 2.6$

XALEX 10% Pharmaceutical CBD purified of EPI

08007266 | (2) 094067266 | atencion@rammpharma.com

medicplast.com.uy | D @ Medicplast

Neuroprotective agents?

Isolated phytocannabinoids

Combined phytocannabinoids

Cannabis-based extracts:

Pharmaceutical products-with high content of CBD

Whole-plant cannabis extracts

Entourage effect?

Neuroprotective effect of Cannabis extracts (alfa y beta varieties)

- EtOH-H2O extracts
- Decarboxylation (120 min, 90 °C)
- Analysis of Cannabinoid Content (CBD, CBDA ,THC) HPLC-DAD (210nm)

F. Vignolo

Extract neurotoxicity

Extract neuroprotection

Conclusions

- Our results support the notion that cannabis extracts possess differential pharmacological properties compared to isolated cannabinoid molecules
 - ✓ There is a synergistic effect between the different Cannabis compounds for both neuroprotection and neurotoxicity
 - ✓ In vivo studies are necessary in this topic

THANK YOU

For your attention!!!

Acknowledgments

Depto. de Neuroquímica

Carolina Echeverry Jimena Fagetti Federico Vignolo Dra. Giselle Prunell Camila Narbondo

Depto. de Neurofarmacología Experimental

<u>n</u>

Dra. Cecilia Scorza Dra. Analia Richeri Dra. Gaby Martinez Dra. Ximena López Dra. Jessika Urbanabicius

