
Exploration Policies for On-the-Fly Controller Synthesis:
A Reinforcement Learning Approach

Tomás Delgado1, Marco Sánchez Sorondo1, Vı́ctor Braberman1, Sebastián Uchitel12

1Universidad de Buenos Aires
2Imperial College

tdelgado@dc.uba.ar, msorondo@dc.uba.ar, vbraber@dc.uba.ar, suchitel@dc.uba.ar

Abstract

Controller synthesis is in essence a case of model-based
planning for non-deterministic environments in which plans
(actually “strategies”) are meant to preserve system goals
indefinitely. In the case of supervisory control environments
are specified as the parallel composition of state machines
and valid strategies are required to be “non-blocking” (i.e.,
always enabling the environment to reach certain marked
states) in addition to safe (i.e., keep the system within a
safe zone). Recently, On-the-fly Directed Controller Synthesis
techniques were proposed to avoid the exploration of the
entire -and exponentially large- environment space, at the
cost of non-maximal permissiveness, to either find a strategy
or conclude that there is none. The incremental exploration
of the plant is currently guided by a domain-independent
human-designed heuristic.
In this work, we propose a new method for obtaining heuristics
based on Reinforcement Learning (RL). The synthesis
algorithm is thus framed as an RL task with an unbounded
action space and a modified version of DQN is used. With a
simple and general set of features that abstracts both states and
actions, we show that it is possible to learn heuristics on small
versions of a problem that generalize to the larger instances,
effectively doing zero-shot policy transfer. Our agents learn
from scratch in a highly partially observable RL task and
outperform the existing heuristic overall, in instances unseen
during training.

1 Introduction
Reactive systems in domains such as communication
networks, automated manufacturing, air traffic control, and
robotics, can benefit from the automated construction of
correct control strategies. Discrete Event Control (Wonham
and Ramadge 1987), Automated Planning (Nau, Ghallab, and
Traverso 2004) and Reactive Synthesis (Pnueli and Rosner
1989) are fields that address this automated construction
problem. Although they have representational, expressiveness
and algorithmic differences, the three must deal with the
state explosion that results from analysing a compact input
description with exponentially large underlying semantics.
Recently, an increasing number of studies aimed at relating
the fields (e.g. Ehlers et al. 2017; Sardiña and D’Ippolito

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2015; Camacho, Bienvenu, and McIlraith 2021; Hoffmann
et al. 2020).

In this paper we study an approach to discrete event
systems (DES) control in which a plant to be controlled
is specified modularly as the parallel composition of
communicating finite state automata (Wonham and Ramadge
1988). The aim is to build a director that is safe and
nonblocking. That is, it should guarantee that a marked state
of the plant can always be reached while ensuring that unsafe
plant states are never reached. Directors (Huang and Kumar
2008) are controllers that enable at most one controllable
event at any time, in contrast to supervisors, which are
maximally permissive.

Composing the automata of the plant can result in an
exponential state explosion. Approaches that first build the
full plant and compute a director can fail within a time and
memory budget even when there is a director that keeps the
system in a very small proportion of the full plant state space.
On-the-fly Directed Controller Synthesis (OTF-DCS) (Ciolek
et al. 2023) attempts to avoid state explosion by exploring the
composed plant incrementally, checking for the existence of
directors after each new transition is added. If guided by good
heuristics, this process allows finding controllers by building
only the parts of the plant that the controllers themselves
enable reaching. In the same work, several manually designed
heuristics were proposed and it was shown that for certain
domains it is possible to solve instances that cannot be solved
by a fully-compose and synthesise approach.

In this work we propose replacing manually designed
heuristics for OTF-DCS with an exploration policy learned
via Reinforcement Learning (RL) that is efficient for large
instances of a parameterized control problem having been
trained only on small instances of the problem. Note that
we cannot use RL to learn the control strategy itself because
RL cannot provide full guarantees that the controller will
satisfy the safety and non-blocking properties. We use RL to
learn an exploration strategy that minimizes the number of
transitions to be added to the plant by the OTF-DCS algorithm.
Additionally, note that RL has traditionally focused on tasks
where agents are evaluated in the same environment as they
are trained. This is not useful in our application because we
are ultimately interested in solving large instances that cannot
currently be solved in reasonable amounts of time. We use
RL to find policies that generalize to unseen instances.

ar
X

iv
:2

21
0.

05
39

3v
2

 [
cs

.L
G

]
 3

 M
ay

 2
02

3

For this purpose, the OTF-DCS algorithm (and not the
control problem being solved) is framed as a Markov
Decision Process in which reward is obtained by minimizing
the number of explored transitions of the plant. This task can
be challenging because (1) it has a sparse reward (“there is no
information about whether one action sequence is better than
another until it terminates”, Gehring et al. (2022)), (2) the
action set is large (one per plant transition) and actions are
used only once per episode, and (3) the state has a complex
graph structure.

We use a modified version of DQN (Mnih et al. 2013)
and we abstract both actions and states to a feature space
that is unique for all instances of a parameterized control
problem. This addresses challenges (2) and (3), and allows for
generalization, but causes the RL task to be highly partially
observable due to the information loss of the set of features.
We propose training in small instances of a problem (partially
addressing challenge (1)) for a relatively short time with a
small neural network. Then, a uniform sample of the policies
obtained during training is tested on slightly larger instances.
The one that shows best generalization capabilities is selected
and then fully evaluated in a large time-out setting.

Our results show first that with this technique it is possible
to learn competitive heuristics on the training instances; and
second, that these policies are effective when used in larger
instances. Our agents are evaluated both in terms of expanded
transitions and in terms of solved instances within a time
budget, and overall they outperform the best heuristic from
Ciolek et al. (2023), pushing the boundaries of instances
solved in various of the benchmark problems.

2 Background
2.1 Modular Directed Control
The discrete event system (DES) or plant to be controlled
is defined as a tuple E = (SE , AE ,→E , s̄,ME), where SE
is a finite set of states; AE is a finite set of event labels,
partitioned as ACE ∪AUE , the controllable and uncontrollable
events; →E : SE × AE 7→ SE is a partial function that
encodes the transitions; s̄ ∈ SE is the initial state; andME ⊆
SE is a set of marked states.

This automaton defines a language L(E) ⊆ A∗E , where ∗
denotes the Kleene closure in the usual manner. A word w ∈
A∗E belongs to the language if it follows→E with a sequence
of states s̄ = s0 . . . st. In this case we note s̄

w→···→E st.
A function that based on the observed behaviour of a plant

decides which controllable events are allowed is referred
to as a control function. Given a DES E, a controller is a
function σ : A∗E 7→ P(ACE). A word w ∈ L(E) belongs to
Lσ(E), the language generated by σ, if each event li is either
uncontrollable or enabled by σ(l0 . . . li−1).

Given a plant, we wish to find a controller that ensures that
a marked state can be reached from any reachable state (even
from marked states). The non-blocking property captures this
idea. Formally, a controller σ for a given DES is non-blocking
if for any trace w ∈ Lσ(E), there is a non-empty word
w′ ∈ A∗E such that the concatenation ww′ ∈ Lσ(E) and

s̄
ww′

→···→E sm for some sm ∈ME . Additionally, a controller is

a director if |σ(w)| ≤ 1 for all w ∈ A∗E .
Note that with this definition a non-blocking controller

must also be safe in the sense that it cannot allow a deadlock
state to be reachable (i.e. a state with no outgoing transitions).
Unsafe states can be modelled as deadlock states.

Modular modelling of DES control problems (Ramadge
and Wonham 1989) supports describing the plant by means
of multiple deterministic automata and their synchronous
product or parallel composition.

The parallel composition (‖) of two DES T and Q yields a
DES T‖Q = (ST×SQ, AT∪AQ,→T‖Q, 〈t̄, q̄〉,MT×MQ),
where ACT‖Q = ACT ∪ACQ and→T‖Q is the smallest relation
that satisfies the following rules:

(i) if t `→T t
′ and ` ∈ AT \AQ then 〈t, q〉 `→T‖Q〈t′,q〉,

(ii) if q `→Q q′ and ` ∈ AQ\AT then 〈t, q〉 `→T‖Q〈t,q′〉,

(iii) if t `→T t
′, q `→Q q′, and ` ∈ AT∩AQ then 〈t, q〉 `→T‖Q

〈t′, q′〉.
A Modular Directed Control Problem, or simply control

problem in this paper, is given by a set of deterministic
automata E = (E1, . . . , En). A solution to this problem
is a non-blocking director for E1‖ . . . ‖En. Additionally,
the control problems that we aim to solve in this work are
parametric. A control problem domain is a set of instances
Π = {Ep : p ∈ C}, where each Ep is a (modular) control
problem and C is a set of possible parameters. In our case,
control problems in each domain are generated by the same
specification, which takes parameters p as input and is written
in the FSP language (Magee and Kramer 2014).

2.2 On-the-Fly Modular Directed Control
The Modular Directed Control Problem can be solved by
fully building the composed plant and running a monolithic
algorithm such as the presented by Huang and Kumar (2008).
While this quickly becomes intractable, there are problems
for which the state explosion can be delayed significantly
by exploring a small subset of the plant that is enough to
determine a control strategy (or to conclude that there is
none). The OTF-DCS algorithm (Ciolek et al. 2023) is briefly
summarized in Algorithm 1. It performs a best-first search of
the composed plant, adding one transition at a time from the
exploration frontier to a partial exploration structure (A).

Formally, given E = (SE , AE ,→E , s̄,ME), a control
problem, and h = {a0, . . . , at} ⊆→E , a sequence of
transitions, the exploration frontier of E after expanding
sequence h is F(E, h), the set of transitions (s, `, s′) ∈
(→E \ h) such that s = s̄ or (s′′, `, s) ∈ h for some s′′.
An exploration sequence for E is {a0, . . . , at} ⊆→E such
that ai ∈ F(E, {a0, . . . , ai−1}) for 0 ≤ i ≤ t.

With each added transition, expandAndPropagate
updates the classification of states in sets of losing (LS),
winning (WS), or neither. We say that a state s ∈ E is
winning (resp. losing) in a plant E if there is a (resp. there is
no) solution for Es, where Es is the result of changing the
initial state of E to s. Essentially, a state will be winning if
it is part of a loop that has a marked state and that has no
uncontrollable events that go to states outside the loop, or

Algorithm 1 On-the-fly exploration procedure.
Input: Ei = (SEi , AEi ,→Ei , s̄i,MEi), components of E,
and a heuristic H for E.
s̄← (s̄1, . . . , s̄n)
h← Empty list.
A← ({s̄}, AE , ∅, s̄,ME ∩ {s̄})
WS ← ∅
LS ← ∅
while s̄ 6∈WS ∪ LS do
a← action selected from F(E, h) using H .
expandAndPropagate(a,A,WS ,LS)
Append a to h

if s̄ ∈WS then
return buildController(h,WS)

else
return unrealizable

if it can controllably reach a winning state. A state will be
losing if it has no path to a marked state, if it can be forced by
uncontrollable events towards a losing state, or if all its events
are controllable but they lead to losing states. For a given
(uncompleted) exploration sequence a state is defined to be
winning (resp. losing) if it is winning (resp. losing) when
assuming that every transition in the exploration frontier goes
to a losing (resp. winning) state. Note that it is possible for a
state to be neither winning nor losing when the plant is not
completely explored.

A key remark is that the classification performed by the
algorithm is correct and complete (no false positives or
false negatives). Hence, a verdict for the initial state will
be found in worst case after the last transition is expanded,
and that verdict is guaranteed to be correct. A heuristic,
then, will try to minimize the number of transitions explored,
but even with very poor decisions, the completeness of the
synthesis algorithm is not threatened. In this work, heuristics
are replaced by learned exploration policies that evaluate
transitions observing a set of features that are computed
throughout the algorithm.

2.3 Q-Learning with Function Approximation
Reinforcement Learning considers an agent that interacts
iteratively with its environment, learning to maximize a
reward function. An episodic RL task can be formalized
as a Markov Decision Process (MDP)M = (S,A, P, r, S0)
where S is a set of states; A is a set of actions; P : S ×A×
S 7→ [0, 1] encodes the probability Pr{s′|a, s} of observing
state s′ after selecting action a in state s; r : S ×A×S 7→ R
is a reward function; and S0 is an initial state. The set of
available actions in state s is denoted byA(s). Then, the goal
is to find a policy π : S × A 7→ [0, 1] that maximises the
expected accumulated reward Eπ[

∑T
t=0Rt], where T and

Rt are random variables describing the number of steps and
the reward at step t for an episode.

Q-Learning (Watkins and Dayan 1992) approximates an
optimal action-value functionQ∗ : S×A 7→ R, which can be
defined as Q∗(s, a) = max

π
Eπ[

∑T
t′=tRt′ |St = s,At = a].

That is, the expected accumulated reward that is obtained
after taking action a in state s and then following an optimal
policy. Any action-value function directly induces a greedy
policy that always chooses the action that maximizes Q
for the given state, and the policy induced by Q∗ is an
optimal policy. When the state-action space is intractable,
the tabular form for Q is commonly replaced by a function
approximator Q̂w(s, a). Then, stochastic gradient descent
updates on w can be used to minimize the one-step error
(Rt+1 + maxa∈ASt+1

Q̂w(St+1, a)− Q̂w(St, At))
2.

In the tabular case convergence is guaranteed under
sufficient exploration of the state-action space and the
step-size parameter being reduced appropriately. However,
it is known that using function approximation together with
this off-policy one-step error (sometimes called a deadly
triad) can cause divergence (see Chapter 11 of Sutton and
Barto (2018) for instructive examples). Two techniques that
have been proposed to restore stability are Experience Replay
and Fixed Q-Targets (Mnih et al. 2013; Lin 1992). Instead
of updating directly from each observation with the current
value function, a minibatch update is used with a uniform
sample of the last B experiences, towards a fixed Q function
that is updated periodically.

3 OTF-DCS Using Reinforcement Learning
3.1 Exploration Optimization as an RL Task
In this section we define an MDP that, although not
immediately practical, exactly represents the problem of
minimizing exploration. Given the similarity between MDPs
and DES, it is tempting to define an MDP in which states and
actions in the DES correspond to states and actions in the
MDP, and a reward in the MDP is given when a marked state
is visited in the DES. However, with this MDP the resulting
policy would be able to select an event in a plant state, and
not a transition in the exploration frontier. Also, it is not
obvious how to encode uncontrollable transitions, since it
can be crucial to select them in the exploration problem, but
in the control problem they are out of the control of the agent.

In our MDP, a state is defined as the state of the exploration
process (the sequence of expanded transitions), and an
action represents the expansion of a transition (a DES
state-event pair). The dynamics (P) are simply given by
adding transitions to the sequence, and the rewards are always
−1. A terminal state is an exploration state in which the initial
DES state is marked as winning or losing by OTF-DCS.

More formally, given a control problemE = E1‖ . . . ‖En,
we define the associated MDP as (S,A, P, r, S0), where

• S = {h : h is an exploration sequence for E};
• A = SE × AE , A(s) = {(s, `) : ∃(s, `, s′) ∈
F (E,SE)};

• P (s′|s, a) = 1 if a ∈ F(E, s) and s′ = sa, and 0
otherwise;

• r(s, a, s′) = −1 ∀s, a, s′;
• s ∈ S is a terminal state if the initial state is winning or

losing after expanding sequence s in E;
• S0 = ∅ (the empty sequence).

A positive property of this MDP is that it is an exact
representation of our problem: a policy with reward −R
maps directly to a heuristic that expands R transitions in
the OTF-DCS algorithm. The problem is that the state and
action signals are completely impractical. First, the state is a
sequence of explored transitions conforming a graph, which
cannot be processed by traditional neural networks with a
fixed input size. Second, the action space is large and only a
variable-size subset of the actions is available at every step
(the frontier). Note that in this MDP actions are taken at most
once in a given episode.

Even more problems arise since, as will be further
discussed in the next subsections, we want a learned
exploration policy to be well-defined in larger instances of
a domain. Plant states in different instances are different
(because the corresponding plants are the composition of
different sets of automata) and labels of events usually also
change, because they can reference individual automata.
Furthermore, the number of actions grows unbounded as
the problems in a domain grow in size.

3.2 Abstracting the Exploration State

To solve the problems above, we propose abstracting the
explored subgraph of the plant and the transitions available
in the frontier, describing them with a general set of features
φ(s, a) = (φ1(s, a), . . . , φdE (s, a)) ∈ RdE . Then, agents
observe in each state a list of feature vectors, one for each
transition available in the frontier (the features that describe
the state of the exploration are replicated).

This featurization has several advantages. First, the feature
space has a fixed size (dE), allowing the use of a traditional
neural network. Second, it can make learning easier by
simplifying the state signal and enriching the action signal;
in particular, it allows generalizing across states and actions
with similar features, which would not be possible with a
granular unstructured identification. Third, and maybe most
importantly, if agents learn in a feature space that is unique
for a set of instances, the policy learned in one instance
induces policies in all the others.

Nevertheless, the featurization may (and in our case
will) introduce partial observability in both states and
actions. Having partially observable states makes the task
non-Markovian and can be modelled as a POMDP (Singh,
Jaakkola, and Jordan 1994). However, our actions are also
partially observable: the featurization does not need to fully
characterize a transition in the plant. In the case of having
two transitions in the frontier with the same feature vectors,
the agent cannot distinguish them and one must be chosen
arbitrarily (in this paper we choose the transition that entered
the frontier first). If learning in this context is possible, the
quality of the learned exploration policies will depend on
the ability of the features to separate good state-action pairs
from bad state-action pairs. Furthermore, the quality of the
induced policies will only be preserved across instances if
state-action pairs of different instances with similar features
are similarly good (in terms of the number of transitions that
can be expanded through them).

Algorithm 2 Q-Learning with function approximation for
the Modular Directed Control RL task.
Input: A control problem E.
Env ← OTF-DCS solver environment for E.
Initialize Q with random weights and input dimension dE .
Initialize Q′ as a copy of Q.
Initialize buffer B with observations from a random policy.
S0 ← reset(Env).
for t = 0 to T do

at ←

{
a random action with probability ε
arg max

a∈A(St)
Q(φ(St, a)) otherwise

St+1 ← Expand and propagate at at Env.
Add (φ(St, at), St+1) to B.
Sample transitions (φ(Sj , aj), Sj+1) randomly from B

δj ← −1+

{
0 if Sj+1 is terminal

max
a∈A(Sj+1)

Q′(φ(Sj+1, a)) otherwise

Gradient descent on Q with minibatch (φ(Sj , aj), δj)
Q′ ← Q if a fixed number of steps has passed.
St+1 ← reset(Env) if St+1 is terminal.

3.3 Learning Algorithm
In this section we describe how neural network-based
Q-Learning can be used to solve our RL task. The algorithm
used is essentially DQN (Mnih et al. 2013). However, DQN
relies on a fixed (relatively small) action set which, as it
was discussed in the previous subsections, is not the case
for our task. Thus, instead of using an architecture with one
output for each action, we evaluate each action separately
using a neural network with a single output. The input of
the network is the feature vector φ(s, a) ∈ RdE for each
state-action pair (s, a) ∈ S × A. The network estimates
the optimal value function Q∗(s, a) via Qw(φ(s, a)), where
w is a set of weights, and the Q-Learning update rule is
used. Formally, this can be viewed as doing Q-Learning
with function approximation, with the composition Q ◦ φ
as function approximator, and thus we have no theoretical
guarantees of convergence.

Note that since each transition expanded has a reward of
−1 and Q is the expected sum of the rewards, the Q-values
will be estimates of the (negative) expected number of
transitions that will need to be expanded to finish the task
after expanding transition a in state s.

A pseudocode for the learning algorithm is shown in
Algorithm 2. The agent synthesizes the same problem
repeatedly until the time steps run out. At each step t, the
feature vector φ(St, a) of each transition a in the exploration
frontier is evaluated using Q, and an ε-greedy action is
selected. The environment propagates the verdicts of winning
and losing states in the explored plant and the new experience
is added to B, removing the oldest experience if necessary.
At an implementation level, a vector of feature vectors, one
for each transition a ∈ A(St+1), is saved instead of St+1.
After every step, a minibatch update is performed on Q from
a random sample of B. The target value δj for experience
(φ(Sj , aj), Sj+1) is, if Sj+1 is not terminal, the value of the

best feature vector in Sj+1, according to Q′, minus one (the
reward). The target function is updated with a fixed frequency
as a new copy of Q. Finally, if the new state is terminal the
synthesis process is restarted.

Asymptotically, the evaluation of the neural network does
not induce an overhead since the complexity of each iteration
of OTF-DCS (expanding a transition and propagating the
verdicts) is bounded by O(|SES |2 × |AE |) and the number
of transitions in the frontier is bounded by O(|SES |2). In
practice, the worst-case bound for the propagation procedure
could be reached rarely, and the evaluation of a large neural
network could add a significant overhead.

3.4 Generalizing to Larger Instances
Our work in this paper is concerned with scaling the synthesis
procedure to large environments. Specifically, given a control
problem domain Π, we want to find exploration policies
that allow solving instances that cannot currently be solved
using a reasonable amount of resources (time or memory).
Since training in RL involves playing episodes repeatedly,
our algorithmic design has an important constraint: training
cannot be performed in the instances that we want to solve.
Thus, one way forward is to find a methodology that leverages
what can be learned in relatively small instances of a domain
and attempts to use similar exploration strategies in the larger
versions.

Clearly, for this to be possible, the larger versions should
be related in some way to the training instances. This
homogeneity hypothesis in our case is based on the fact that
all instances Ep ∈ Π are defined using the same parametric
specification in the FSP language.

Since our learning algorithm presumably produces good
exploration policies for a given instance, and the Q functions
that it generates induce policies in all instances of the
same domain, our approach for solving the largest possible
instances of a given problem Π consists of three steps:

(S1) Training in an instance Ep0 (as described in section 3.3),
saving N agents sampled uniformly from the training
process.

(S2) Testing the policies obtained during (S1) on each instance
Ep ∈ Π with a small budget of transitions. The policy that
generalized best (i.e. solved the most instances, breaking
ties with total expanded transitions) is selected.

(S3) The policy selected in (S2) is used with a full budget to
solve as many instances as possible from Π.

Although our hypothesis of homogeneity suggests that
good performances in the training instance correlate in some
hard-to-specify way to good performances in larger instances,
it is clearly possible for a given set of weights to be an
exception to this idea. A policy could be overfitted to the
training instance in two ways. First, it could only make good
decisions in its deterministic trajectory of expansions for
that instance, performing poorly if forced to play from any
other state, as has been shown to be possible in the arcade
learning environment (Machado et al. 2018). Second, and
maybe more of a concern in our case, an agent could learn
a robust strategy that relies on specific characteristics of the
training instance and does not generalize well to the larger

Feature (size) Description

Event label (|AEp |) Determines the label of ` in AEp .

State labels (|AEp |)
Determines the labels of the explored
transitions that arrive at s.

Controllable (1) Whether ` ∈ AC
Ep

.
Marked state (2) Whether s and s′ ∈ MEp .

Phases (3)

Whether (at some point in the episode)
a marked state has been found, a
winning state has been set, and a cycle
containing a marked state was closed.

Child state (3) Whether s′ is winning, losing, none,
or not yet explored.

Uncontrollable (4) Whether s and s′ have uncontrollable
transitions and they were explored.

Explored (2) Whether a transition from s or s′ has
already been explored.

Last expanded (2) Whether s is the last expanded state
in h (outgoing or incoming).

Table 1: Features that describe a state-action pair (h, (s, `)),
where→E (s, `) = s′, for a control problem Ep . Size refers
to the number of booleans used for each feature.

versions. Step (S2) is important to account for the potential
diversity of generalization capabilities of the trained agents.

Another idea that might have a positive impact on
generalization is stopping training relatively early. This
could be useful following the common idea from supervised
learning of stopping training when the performance in a
testing set starts decreasing. Nevertheless, performance in
our case is quite noisy and we have not found strong evidence
for that phenomenon being clearly replicated. Another
similar but slightly simpler reason to stop training early is
that policies might be more diverse during the first stages
of training, before convergence is achieved, making the
probability of finding a good general strategy there higher.

3.5 Definition of a Feature Vector
The definition of a set of features that compose the
state-action signal and describe the transitions in the frontier
and the general state of the exploration is a key component of
this approach. The feature function φ : S×A 7→ RdEp should
be informative enough to allow good policies. However, it
is significantly constrained by the generalization objective.
First, the number of features (dEp

) should be constant for all
instances in a domain, since it is the input dimension of the
neural network. Second, the semantics of each element in the
feature vector should be maintained and the distribution be
shifted as little as possible. A more philosophical constraint is
that features should be automatically extracted from E, and
not defined manually for each domain. A final constraint
that is worth mentioning is that they should not be too
computationally expensive, since at every step all feature
vectors need to be computed and evaluated.

Although real-valued features are possible, they generally
rely on the neural network generalizing to unseen values
during testing, making generalization harder. The feature
vector used in this paper is solely composed of boolean
features. The specific features used are shown in Table 1.

Note that all features are either very inexpensive to compute
or are already tracked by OTF-DCS.

A problem with the first two features is that the set
AEp usually depends on the instance parameters p. For
example, in the Air Traffic problem of the benchmark used
(Ciolek et al. 2020), there is one action label land.i
for each plane i, and the number of planes is one of the
dimensions p. Those indexes need to be removed to address
the generalization constraints. In the example, we would
only have one label land for feature calculation. This is a
significant constraint in our learned exploration policies since
they cannot disambiguate different components of the same
type.

4 Experimental Evaluation
In this section we present empirical results for our approach.
We report on an implementation of OTF-DCS extended
for feature calculation within the open-source MTSA tool
(D’Ippolito et al. 2008). The training procedure, which wraps
the synthesis algorithm as an RL environment, is available
here1. Experiments were run on an Intel i7-7700 CPU with
16GB of RAM and no GPU. We compare the results with an
exploration policy that always chooses a random transition in
the frontier (RANDOM) and with the Ready Abstraction (RA),
the overall best performing heuristic of Ciolek et al. (2023).

Our approach is evaluated using a benchmark introduced
by Ciolek et al. (2020). It contains six control problem
domains: Air Traffic (AT), Bidding Workflow (BW), Travel
Agency (TA), Transfer Line (TL), Dinning Philosophers (DP)
and Cat and Mouse (CM). All the problems scale in two
dimensions, the number of intervening components grows
proportionally to parameter n and the number of states per
component grows proportionally to parameter k.

For each domain we train in the (n = 2, k = 2) instance
until no better performance is achieved for the last third of
the training steps, for a minimum of 500000 steps. The (2, 2)
instances range from 91 total transitions in AT to 5044 in
CM, so the number of episodes played can vary significantly.
While training, we save the weights of the neural network
every 5000 steps and a uniform sample of 100 policies is
tested with all values of n and k up to 15 with a budget
of 5000 transitions (S2), only testing instances (n, k) for
which both (n−1, k) and (k−1, n) have been solved within
the budget. After that, we select the neural network that
maximizes the number of instances solved, breaking ties with
the minimum sum of expanded transitions.

The architecture used is a multilayer perceptron with one
hidden layer of 20 neurons and ReLU activation. Informal
experimentation showed no improvement using deeper or
wider networks, but they might be useful with a larger set of
features that allows more complex policies. The optimizer
used was stochastic gradient descent with a constant learning
rate of 1e-5 and weight decay 1e-4. The rate of exploration (ε)
was decayed linearly from 1.0 to 0.01 over the first 250000
steps of training. The buffer size used for Experience Replay
is 10000, with batch size of 10, and the target network is
reset every 10000 steps.

1https://github.com/tdelgado00/Learning-Synthesis

Experiments aim to answer the following questions:

(Q1) Do agents learn to reduce de exploration of the plant?
(Q2) Are the learned policies competitive in the training

instances?
(Q3) Are the policies induced in larger instances competitive?
(Q4) Is the RL approach competitive with a fixed time budget?
(Q5) Ablation study: What is the impact of the selection step

in the overall performance?

Partial observability, sparse rewards, and the deadly
triad are individually sufficient reasons for learning to fail
completely, so whether the reward obtained will increase over
time is not obvious. Curves in Figure 1 show the evolution of
the accumulated reward during training and the performance
of RANDOM for each problem, answering question (Q1).
First, we highlight that no signs of divergence of the model
weights were observed in the results. Furthermore, in all
cases non-random average performances were achieved.
The learning curves show consistent improvement for AT,
BW and TL. In CM we only see a slight improvement
with respect to RANDOM. In DP and TA agents seem to
achieve a peek performance that is then lost. Although
this loss in performance could be merely explained by
the instability of the learning rule, we have observed that
removing momentum from the SGD optimizer completely
eliminates the decrease. Nevertheless, we chose to keep the
momentum since removing it slightly reduces the overall
performance of the best agents found.

Even if learning converges, it is initially unclear whether
the features chosen are informative enough to encode good
policies and whether the agents will be able to find those
policies. The red horizontal lines in Figure 1 show the
performance of the RA heuristic, answering question (Q2).
Our agents rapidly outperform RA in AT, BW, and TA, and
the mean performance in DP and TL approximates that of
RA quite closely. Learning in CM proves to be challenging
for our agents, which stay far from the performance of RA.

As discussed in Section 3.4, good performances in the
training instances do not necessarily translate to larger
instances. To evaluate the generalization capabilities of our
agents, Figure 2 shows for each domain the transitions
expanded by the policy selected in Step (S2), RANDOM
and RA as the total size of the plant grows. Our agents
perform significantly better than RANDOM in all domains,
considerably lowering the growth rate of the explored
portion of the state space (note that the scale is logarithmic).
Furthermore, in AT, BW, and TA, the problems in which
training performances were better than RA, expanded
transitions were significantly better in the target instances too.
This was not the case in the problems in which our agents
did not surpass RA during training (CM, DP and TL), but in
all cases performance was maintained in the larger instances
and in DP and TL the agents emulate RA quite closely.

Another important remark for these results is the continuity
of the expanded transitions across instances for most
problems, which is surprising given that different instances
are automata with different labels and states, and seems to
show that both the set of features and the policies found are

Figure 1: Evolution of the number of transitions expanded in the training episodes, with an ε-greedy policy. Results for 5 random
seeds are shown, the average highlighted in blue. Curves are smoothed using buckets of 5000 steps and a moving average of 10
for readability. Performance of RA and RANDOM (mean and max over 100 executions) are shown in red and green, respectively.

Figure 2: Expanded transitions of the RA heuristic and each random seed of RL and RANDOM, for all instances for which the size
of the plant (x-axis) could be computed in less that 15000. Second plot is as fist one, but with non-realizable instances removed.

RL RLNS RANDOM RA

AT 99.2 ± 8.16 79.0 ± 3.79 82.6 ± 0.8 88
BW 159.4 ± 4.59 92.2 ± 25.91 47.2 ± 0.4 47
CM 22.8 ± 0.98 23.6 ± 0.8 22.0 24
DP 89.4 ± 11.41 62.4 ± 6.62 46.6 ± 0.49 137
TA 99.2 ± 21.71 100.6 ± 22.84 51.8 ± 0.4 65
TL 225.0 225.0 60.6 ± 4.45 225
All 695.0 ± 23.32 582.8 ± 38.01 310.8 ± 5.04 586

Table 2: Number of instances solved by the different
approaches. Standard deviation is shown when it is not zero.

being able to capture similarities at least to some degree.
In AT all n > k instances are non-realizable (no other
benchmark domain has non-realizable instances when n, k >
1) making them in most cases easier to solve with few
expansions. Note that the behaviour in the realizable instances
is more comparable to other problems.

As mentioned in section 3.3, our approach entails the
overhead of computing features and evaluating the model
for every transition in the exploration frontier at each time
step, which could be problematic in the end-to-end objective
of pushing the frontier of solvable instances within a time
budget.

Table 2 shows the number of instances solved on average
by the selected models and the baselines with a fixed
time budget of 10 minutes, answering question (Q4). Our
approach solves significantly more instances than RA in three
of the six problems (AT, BW, and TA), shows no difference
with RA in two (CM and TL) and solves fewer instances
than RA in DP. Finally, across problems, the total number

of instances solved was significantly higher than that of RA.
Although in TL both exploration policies solve the same
number of instances, if larger instances are evaluated RA fails
first because it performs poorly in the k = 1 cases (the yellow
crosses that grow faster in Figure 2).

Finally, to answer question (Q5), the second row (RLNS) of
Table 2 shows the number of instances solved when replacing
step (S2) with a maybe more obvious and cheaper selection
method that does not focus on generalization capabilities:
selecting the agent with the highest reward in the training
instance (breaking ties with the latest agent). Results show
that for AT, BW, and DP (S2) allowed solving significantly
more instances (on average 20.6, 68.8, and 23.8 instances,
respectively) while for CM, TA and TL the difference was
not significant. Overall, this step was necessary to solve more
instances than RA.

5 Related Work
Guiding the exploration of the plant in the OTF-DCS
algorithm is a Heuristic Search problem in which the
objective is to find a subgraph of the plant that contains
a winning control strategy (or proves that there is none).
A similar approach with RL and generalization has
been recently proposed for Classical Planning (Gehring
et al. 2022). A key difference is that they solve a
deterministic problem while we study a problem in which the
controller does not have full control over the environment.
A more comparable setting to DES Control would be
Fully Observable Non-Deterministic planning. Gehring
et al. (2022) address reachability properties yielding finite
executions, while non-blocking requires infinite executions.
In terms of the learning task, their estimated reward is the

distance to a goal at a given point in the execution of a plan,
while we estimate the number of additional transitions that
need to be added to allow OTF-DCS to terminate. Additionally,
they learn residuals on existing heuristics using reward
shaping to accelerate the learning process in what otherwise
would be a sparse-reward environment; conversely, we learn
from scratch in a sparse-reward environment. Finally, they
use Neural Logic Machines to represent the value function,
which take logic formulae describing the problem state as
input, while we use a traditional multilayer perceptron that
takes a general set of features as input.

Our homogeneity hypothesis is similar to the underlying
assumption of common patterns in solutions of generalized
planning, where different flavors of learning have been
applied (Groshev et al. 2018; Toyer et al. 2020; Ståhlberg,
Bonet, and Geffner 2022). Plans or policies are represented
in such a way they can be applied to solve classical
planning problems on any instance of a given domain (Martı́n
and Geffner 2004; Srivastava, Immerman, and Zilberstein
2011). In our setting, neither exploration policies are
algorithmic-like representations (e.g. Srivastava, Immerman,
and Zilberstein 2011) nor domain-specific features or lifted
domains are defined (e.g. Ståhlberg, Bonet, and Geffner
2022; Toyer et al. 2020). In contrast, our approach relies
on domain-independent feature representations.

A recent effort in the context of Heuristic Search for
classical planning is that of Sudry and Karpas (2022). Despite
the differences between DES control and classical planning,
they share with our work the key idea of estimating search
progress. However, they use supervised learning with LSTMs
to estimate relative search progress for a given heuristic,
while our RL approach updates both its estimation of search
progress and its search policy simultaneously.

Generalization in RL is an emerging and scarcely studied
topic. Kirk et al. (2022) develop categorizations for tasks
and methods for approaching generalization. Following their
definitions, we perform out-of-distribution zero-shot policy
transfer, training in one context and evaluating in multiple
contexts. However, the relation between these MDPs is subtle
since they do not share neither states nor actions, and in our
approach, this is solved through abstraction. Generalizing to
a different set of actions is not considered in their survey and
is, to the best of our knowledge, uncommon.

As far as we are aware, DES Control and RL have only
been studied jointly by Ushio and Yamasaki (2003) using
tabular RL; but the focus was on the extension to partially
observable environments and maximizing permissiveness
rather than scaling to larger plants. Their approach requires
solving the target control problem repeatedly, whereas ours
does not use target instances during training.

6 Conclusions and Future Work
In this work we showed a novel way of combining RL and
discrete event control, using RL as a heuristic to accelerate
a correct and complete control synthesis algorithm. We
proposed a way of framing the guidance of an on-the-fly
synthesis algorithm as an RL task and used a modified
version of DQN with both states and actions abstracted to
make training and generalization feasible. Our results show

that learning in small instances is possible; that learned
value functions can induce, in larger instances, policies
that reduce the explored portion of the plant with respect
to human-designed existing heuristics; and that, overall,
learned policies can allow solving more control problems
within an execution time budget. In addition, we highlight
a set of components of our approach that can be useful
to improve generalization. Namely, selecting exploration
policies according to their performances in slightly larger
instances, stopping training early to evaluate a diverse set of
policies, and defining a set of features that aims at generality
rather than completeness.

There is room for improvement in the work described
in this paper. We observed by inspecting the specifications
that good exploration policies for DP and CM are strongly
dependant on the indexes of transition labels (particularly in
the latter), which are not informed to our agents due to the
generalization restrictions (see Section 3.5). We believe that
this is the main reason for our agents to underperform in those
problems and represents an opportunity for improvement.

More generally, the partial observability of our task could
be better addressed. Using a recurrent neural network could
allow agents to remember the important aspects of the
explored plant and the actions that have been taken. This
idea was both proposed for applying DQN on POMDPs
(Hausknecht and Stone 2017) and for estimating search
progress for a fixed planning heuristic (Sudry and Karpas
2022). Nevertheless, it is not immediately adaptable to
our setting, where not only states but also actions are
partially observable, and all actions are evaluated individually
at every step. Alternatively, graph neural networks could
be used to process either the explored subgraph or the
individual uncomposed automata. However, none of these
ideas immediately solve the index problem.

In this paper we train only with one instance of a fixed size
for all domains, but a round-robin or incremental training
from multiple instances could also be possible. Adding such
diversity in the training set has been shown in some cases
to reduce overfitting (Zhang et al. 2018), but it is challening
in our case since instances in the benchmark used get too
large to learn from very rapidly. Additionally, the value
function estimates the number of transitions to be expanded
and its scale varies with instance size, making it difficult for
the learning algorithm to reduce the error towards different
instances simultaneously. Similarly, studying generalization
across control problems from different domains is of interest.

Finally, we believe the ideas reported in this paper may be
useful for FOND strong cyclic planning and other control
settings from the Automated Planning and the Reactive
Synthesis communities.

Acknowledgements

This work was partially supported by PICT 2018-3835,
2019-1442, 2019-1973; UBACYT 2020-0233BA,
2018-0419BA; and IA-1-2022-1-173516 IDRC-ANII.

References
Camacho, A.; Bienvenu, M.; and McIlraith, S. A. 2021.
Towards a Unified View of AI Planning and Reactive
Synthesis. Proceedings of the International Conference on
Automated Planning and Scheduling, 29(1): 58–67.
Ciolek, D.; Duran, M.; Zanollo, F.; Pazos, N.; Braier,
J.; Braberman, V.; D’Ippolito, N.; and Uchitel, S. 2023.
On-the-fly informed search of non-blocking directed
controllers. Automatica, 147: 110731.
Ciolek, D. A.; Braberman, V.; D’Ippolito, N.; Sardiña, S.;
and Uchitel, S. 2020. Compositional Supervisory Control
via Reactive Synthesis and Automated Planning. IEEE
Transactions on Automatic Control, 65(8): 3502–3516.
D’Ippolito, N.; Fischbein, D.; Chechik, M.; and Uchitel, S.
2008. MTSA: The Modal Transition System Analyser. In
Proc. of the Int. Conf. on Automated Software Eng., ASE ’08,
475–476. USA: IEEE Computer Society.
Ehlers, R.; Lafortune, S.; Tripakis, S.; and Vardi, M. Y. 2017.
Supervisory control and reactive synthesis: a comparative
introduction. Discrete Event Dynamic Systems, 27: 209–260.
Gehring, C.; Asai, M.; Chitnis, R.; Silver, T.; Kaelbling, L.;
Sohrabi, S.; and Katz, M. 2022. Reinforcement learning
for classical planning: Viewing heuristics as dense reward
generators. In Proc. of the Intl. Conference on Automated
Planning and Scheduling, volume 32, 588–596.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. Proc. of the Intl. Conference
on Automated Planning and Scheduling, 28(1): 408–416.
Hausknecht, M.; and Stone, P. 2017. Deep
Recurrent Q-Learning for Partially Observable MDPs.
arXiv:1507.06527.
Hoffmann, J.; Hermanns, H.; Klauck, M.; Steinmetz, M.;
Karpas, E.; and Magazzeni, D. 2020. Let’s Learn Their
Language? A Case for Planning with Automata-Network
Languages from Model Checking. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(09): 13569–13575.
Huang, J.; and Kumar, R. 2008. Directed control of discrete
event systems for safety and nonblocking. IEEE Trans.
Automation Science & Engineering, 5(4): 620–629.
Kirk, R.; Zhang, A.; Grefenstette, E.; and Rocktäschel, T.
2022. A Survey of Generalisation in Deep Reinforcement
Learning. arXiv:2111.09794.
Lin, L.-J. 1992. Reinforcement learning for robots using
neural networks. Carnegie Mellon University.
Machado, M. C.; Bellemare, M. G.; Talvitie, E.; Veness,
J.; Hausknecht, M.; and Bowling, M. 2018. Revisiting the
Arcade Learning Environment: Evaluation Protocols and
Open Problems for General Agents. J. Artif. Int. Res., 61(1):
523–562.
Magee, J.; and Kramer, J. 2014. Concurrency: State Models
and Java Programs. Wiley.
Martı́n, M.; and Geffner, H. 2004. Learning Generalized
Policies from Planning Examples Using Concept Languages.
Appl. Intell., 20(1): 9–19.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing Atari with Deep Reinforcement Learning.
arXiv:1312.5602.
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Morgan Kaufmann Publishers.
Pnueli, A.; and Rosner, R. 1989. On the Synthesis of a
Reactive Module. In Proc. of the Symp. on Principles of
Programming Languages, POPL, 179–190.
Ramadge, P. J.; and Wonham, W. M. 1989. The control of
discrete event systems. Proc. of the IEEE, 77.
Sardiña, S.; and D’Ippolito, N. 2015. Towards
Fully Observable Non-Deterministic Planning as
Assumption-based Automatic Synthesis. In Proc. of
the Intl. Joint Conf. on Artificial Intelligence, IJCAI 2015,
3200–3206.
Singh, S. P.; Jaakkola, T.; and Jordan, M. I. 1994. Learning
Without State-Estimation in Partially Observable Markovian
Decision Processes. In Machine Learning Proceedings 1994,
284–292. Morgan Kaufmann.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for generalized
planning. Artif. Intell., 175(2): 615–647.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
Generalized Policies without Supervision Using GNNs. In
Procs of the 19th Intl. Conference on Principles of Knowledge
Representation and Reasoning, KR.
Sudry, M.; and Karpas, E. 2022. Learning to Estimate
Search Progress Using Sequence of States. Proceedings
of the International Conference on Automated Planning and
Scheduling, 32(1): 362–370.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learning:
An Introduction. Cambridge, MA, USA: A Bradford Book.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. J. Artif.
Intell. Res., 68: 1–68.
Ushio, T.; and Yamasaki, T. 2003. Supervisory control
of partially observed discrete event systems based on a
reinforcement learning. In IEEE International Conference
on Systems, Man and Cybernetics., volume 3, 2956–2961.
IEEE.
Watkins, C. J. C. H.; and Dayan, P. 1992. Technical Note: Q
-Learning. Mach. Learn., 8(3–4): 279–292.
Wonham, W. M.; and Ramadge, P. J. 1987. On the Supremal
Controllable Sublanguage of a Given Language. SIAM
Journal on Control and Optimization, 25(3).
Wonham, W. M.; and Ramadge, P. J. 1988. Modular
Supervisory Control of Discrete-Event Systems.
Mathematics of Control, Signals and Systems, 1(1):
13–30.
Zhang, C.; Vinyals, O.; Munos, R.; and Bengio, S. 2018.
A Study on Overfitting in Deep Reinforcement Learning.
arXiv:1804.06893.

