
Proceedings of Machine Learning Research 217:295–298, 2023 Taysir competition papers

Results of Neural-Checker Toolbox
in Taysir 2023 Competition

Franz Mayr mayr@ort.edu.uy

Sergio Yovine yovine@ort.edu.uy

Mat́ıas Carrasco matias.carrasco@fi365.ort.edu.uy

Alejo Garat
Mart́ın Iturbide
Juan da Silva
Federico Vilensky
Facultad de Ingenieŕıa, Universidad ORT Uruguay, Montevideo, Uruguay

Editors: François Coste, Faissal Ouardi and Guillaume Rabusseau

Abstract

This paper presents the results obtained with the Neural-Checker toolbox in the Taysir
2023 challenge. It briefly describes the two tracks of the competition and the specific
techniques that yielded the best results with respect to the corresponding scoring metrics.

Keywords: Active learning. Neural language models. DFA. PDFA. MAT-PAC.

1. Description of the competition

TAYSIR is an on-line competition about model inference form Neural Networks (NN).
The 2023 challenge was divided in two tracks. The goal of Track 1 was to learn language
acceptors from Recurrent NN and Transformer classifiers. Track 2 focused on learning
surrogate models from Neural Language Models (NLM), also RNN and Transformers, that
process sequences and output a distribution over the next symbols. For both tracks the
evaluation score was defined as follows: Score = 1/2× ER+ 1/4×MU+ 1/4× CT where
ER in the first track represents the error rate the learnt model has when comparing to the
original NN, that is ER1 =

1
n

∑n
i=1 1[yi ̸= ŷi] , and in the second represents the MSE×106,

ER2 = 106

n

∑n
i=1(yi − ŷi)

2. MU represents the memory used by the model and CT
represents the CPU time the submitted model lasts processing a given sequence.

The first track contained 11 NNs while the second one contained 10 NNs. The score
was computed independently for each of the networks.

2. Description of the Tools Used

The tool we used is Neural-Checker Mayr et al. (2021). Neural-Checker is a repository that
provides two libraries, pythautomata 0.38.1 and pyModelExtractor 0.35.2. Pythautomata’s
main goal is to provide implementations for the structures needed for working in the Model

© 2023 F. Mayr, S. Yovine, M. Carrasco, A. Garat, M. Iturbide, J. da Silva & F. Vilensky.



Mayr Yovine Carrasco Garat Iturbide da Silva Vilensky

Extraction Framework. PyModelExtractor’s main goal is to enable the explainability and
checking of complex systems in a black box context through the use of active learning
techniques. For the first track of the competition we used a representation of a DFA
(deterministic finite automata). A DFA provides a Regular Language that can differentiate
which sequences belong to the Language. A DFA over an alphabet Σ can be represented
as a tuple (Q, τ , qin, F) consisting of: a finite set of states (Q), a transition function
(τ : Q × Σ → Q), an initial state (qin) and a finite set of final states (F). The DFA
can process a sequence by starting in qin, for each symbol on the sequence the states
are traversed using τ given the symbol and the actual state. When the sequence is fully
processed the DFA will return True if, and only if, the last state belongs to F or not.

For the second track the models were PDFA (probabilistic deterministic finite au-
tomata). A PDFA over Σ is a tuple (Q, qin, π, τ), where Q is a finite set of states, qin ∈ Q
is an initial state, π : Q → ∆(Σ$) maps each state to a probability distribution over Σ$,
and τ : Q× Σ → Q is the transition function. Both π and τ are total functions.

3. Extraction Approach

PyModelExtractor provides several active black-box model extraction algorithms such as
L∗ Angluin (1987) for DFA, and more novel ones like QuaNT Mayr et al. (2022) for
PDFA. These algorithms construct regular models by interacting with a Minimally Ad-
equate Teacher (MAT) using two operations: membership queries (MQ) and equivalence
queries (EQ). MQ responds the output of querying the underlying target model inside
the MAT, while EQ is a function that compares the target model with the constructed
automaton. These algorithms require some considerations when working with NNs as there
is no direct way of computing EQ, and there is no termination guarantees, as the target
languages may be more complex than automata. In this scenario we followed Mayr and
Yovine (2018) approach, that is, to use a sampling technique, like the one presented by the
PAC framework Valiant (1984) and establish bounds to the learning processes.

EQ needs to define a distribution over sequences to sample from. We evaluated the
following cases: uniform length, sampling from length distribution in validation data, and
using the full prefix set of words up to some given length. The uniform length sampling
consists in uniformly sampling a random length between a minimum and a maximum for
each word and then creating a word with the chosen length using an uniform distribution
over the symbols. Sampling from length distribution in validation, implies first choosing a
length following a random sample from validation and then choosing every symbol of the
sequence uniformly.

To guarantee termination, a maximum running time was set. This implies stopping an
extraction if the run surpasses a given duration. When the extraction process is stopped
by a bound instead of returning the last built model, we create a new model based on the
final observation table (or tree). This idea, that we called partial model, allowed us to use

296



Results of Neural-Checker Toolbox in Taysir 2023 Competition

all the information gathered in the extraction and not only the information until the last
EQ.

Finally to lower the cpu time and the memory usage of the submitted model we used new
automata implementations, FastDFA and FastPDFA, which reduced the models’ inference
time and memory usage. However, these structures are not as general as the type of
models provided by pyhtautomata, since symbols are only restricted to integer type and do
not allow for more complex data structures.

4. Experimental Results

We will present the best results regarding the competition score, however, they are mainly
focused in ER and CT, as MU was highly dependant on auxiliary library versions. In track
1, see Table 1, the datasets 2, 3, 4, 5, 6 and 7 ended up with a perfect submission ER. For
these cases EQ was implemented with PAC, using a sampling technique that generated
words with a fixed length of 22. In this setting we did not fix a maximum running time
as L∗execution finished with EQ passing the PAC test. All PAC tests were performed
with ϵ = δ = 0.01 parameters. For dataset 1, 9, 10 and 11, PAC was not passed, and we
resorted to use a a continuous run that stopped every 3 hours, output a partial DFA and
then continued running with the same observation table. Best results were obtained on 5
to 7 iterations of this process (15-21 hours runs). For datasets 9, 10 and 11 sampling from
length distribution in validation led to better results. For dataset 8 we tried all mentioned
techniques but none ended with positive results. The result became more complex the
longer we trained the model, making the memory usage bigger and the ER worse. We
ended up submitting a trivial model that returns False for every given sequence. This
turned out to be the best model.

Dataset
Duration

(s)
EQs MQs

Extracted
States

Validation
ER

Submission
ER

MU
(MiB)

CT
(ms)

1 1.08E+04 9 1.18E+07 3.84E+04 7.10E-02 8.44E-02 139 6.8E-02
2 6.80E+01 5 1.08E+04 9.00E+00 0.00E+00 0.00E+00 121 7.2E-02
3 1.21E+02 3 3.02E+03 1.00E+01 0.00E+00 0.00E+00 121 7.4E-02
4 1.61E+02 3 2.89E+03 5.00E+00 0.00E+00 0.00E+00 96 5.7E-02
5 6.80E+01 2 1.16E+03 6.00E+00 0.00E+00 0.00E+00 96 5.6E-02
6 4.60E+01 1 1.29E+02 2.00E+00 0.00E+00 1.00E-05 96 5.4E-02
7 1.60E+01 1 1.29E+02 2.00E+00 0.00E+00 0.00E+00 96 5.5E-02
8 - - - 1.00E+00 3.42E-01 3.27E-01 108 3.0E-02
9 6.48E+04 3 5.13E+06 3.37E+04 1.34E-02 3.07E-02 121 5.7E-02
10 6.48E+04 1 3.09E+06 1.83E+04 1.82E-01 5.23E-02 126 5.9E-02
11 7.56E+04 0 4.81E+06 1.60E+04 2.49E-02 2.20E-02 186 8.6E-02

Table 1: Track 1 results

For track 2 the final results are presented in Table 2. In contrast to track 1, the
validation ER was less correlated to the submission ER and perfect submission ER was

297



Mayr Yovine Carrasco Garat Iturbide da Silva Vilensky

only obtained for datasets 7 and 9. It can be noted that duration times were smaller, this is
because despite having been evaluated, running extraction for hours yielded worst results
than the ones presented. Regarding EQ two sampling strategies proved to be successful,
full prefix set and PAC sampling from length distribution in validation. The latter yielded
better results in the competition for all datasets except for instance number 9. All PAC
tests were performed with ϵ = δ = 0.01 parameters. None of the presented results passed
any of those tests. Also EQ number was low, which means, most of the time the algorithm
discovered states through MQ. Regarding κ, values in the set {10i, i ∈ [1, 5]} were
evaluated, in most scenarios higher values reported better results.

Dataset
Duration

(s)
EQs MQs

Extracted
States

κ
Validation

ER
Submission

ER
MU

(MiB)
CT
(ms)

1 3.35E+02 1 5.96E+03 14 105 1.04E-04 3.77E-01 118 9.7E-02
2 7.64E+02 1 1.82E+03 32 105 6.17E+03 8.57E-03 118 9.7E-02
3 7.47E+02 1 1.26E+03 5 105 5.44E+03 4.32E-04 118 9.6E-02
4 4.73E+02 1 3.02E+03 7 104 3.40E-08 6.64E-08 118 9.8E-02
5 3.46E+02 1 9.11E+03 8 105 1.29E-03 9.66E-08 118 9.6E-02
6 7.21E+02 1 7.22E+03 17 105 1.03E-04 4.54E-01 118 9.7E-02
7 4.04E+02 1 2.18E+03 5 104 8.06E-34 0.00E+00 119 9.7E-02
8 2.45E+02 1 2.50E+03 4 104 1.82E-01 5.35E-03 118 9.7E-02
9 8.27E+02 3 5.63E+05 39 10 6.05E-37 0.00E+00 119 6.8E-02
10 2.23E+03 1 2.45E+05 218 10 1.72E-08 1.83E-01 120 1.2E-01

Table 2: Track 2 results

5. Conclusions

This work presented the results showcasing the performance of the Neural-Checker toolbox
in the Taysir 2023 challenge, providing insights into the techniques that were effective in
achieving the best results.

Acknowledgments Research reported in this article has been partially funded by ANII-
Agencia Nacional de Investigación e Innovación under grant IA 1 2022 1 173516.

References

D. Angluin. Learning regular sets from queries and counterexamples. Inf. Com., 75, 1987.

Franz Mayr and Sergio Yovine. Regular inference on artificial neural networks. In Machine
Learning and Knowledge Extraction, pages 350–369, Cham, 2018. Springer.

Franz Mayr, Sergio Yovine, Federico Pan, and Federico Vilensky. Neural checker. https:
//github.com/orgs/neuralchecker/, 2021.

Franz Mayr, Sergio Yovine, Federico Pan, Nicolas Basset, and Thao Dang. Towards efficient
active learning of pdfa. arXiv preprint arXiv:2206.09004, 2022.

Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

298

https://github.com/orgs/neuralchecker/
https://github.com/orgs/neuralchecker/

	Description of the competition
	Description of the Tools Used
	Extraction Approach
	Experimental Results
	Conclusions

