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Marine environments are changing, and further changes are expected in response to climate 

change, industry development (e.g. oil and gas explorations and marine renewable energy), 

pollution, and overfishing. There is an urgent need to understand effects of these stressors on 

marine ecosystems and to adopt effective management measures that minimize detrimental 

effects. Accomplishing this goal requires a comprehensive understanding of “natural” temporal 

patterns of biological components and underlying processes. High-latitude environments and 

marine renewable energy development sites have been particularly understudied due to sampling 

challenges (e.g. presence of sea ice, and high currents). This lack of baseline information 

required to measure biological responses to environmental change has increased the difficulty to 

document impacts in these areas and to predict effects of further changes in the ecosystems. 



 

Chapter 1 reviews temporal variability in marine ecosystems. Chapters 2 and 3 evaluate high 

resolution, stationary acoustic data from the Chukchi Ecosystem Observatory (CEO) and 

concurrent measurements from a large set of environmental sensors to characterize temporal 

variability in the abundance and behavior of fish and zooplankton in the Chukchi Sea. Chapter 4 

quantifies the spatial area that is represented by acoustic point source measurements to define the 

spatial scope of CEO observations and to inform cost-effective monitoring design at high 

latitudes. Chapter 5 compares temporal variability in biological characteristics at sites selected 

for wave and tidal energy industry development to assess the potential for applying standard 

methods and analytic tools for biological monitoring. Chapter 6 provides a synthesis of results 

and implications for biological monitoring. This comprehensive characterization of fish and 

zooplankton dynamics in the Chukchi Sea and at sites selected for marine renewable energy 

development increases our ability to detect and predict biological responses to environmental 

change, ensure the collection of representative samples, and assist in the design of standard 

strategies for biological monitoring at a range of aquatic ecosystems.  
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Chapter 1. TEMPORAL VARIABILITY IN MARINE ECOSYSTEMS 

WITH IMPLICATIONS FOR BIOLOGICAL MONITORING 

1.1 INTRODUCTION 

The accelerated pace and extent of environmental change over recent decades has increased the 

urgency and relevance of detecting and understanding biological responses to changes in natural 

ecosystems. There is a growing need for effective environmental monitoring strategies to obtain 

baseline data for ecosystem management, detect effects of anthropogenic perturbations or climate 

change on biological communities, and to validate model predictions on biological responses to 

environmental change (Spellerberg 1991). To accomplish these goals in marine environments, 

understanding natural variability at multiple scales is essential. 

Ocean ecosystems are variable across a wide range of spatial and temporal scales. This 

variability is generated by numerous physical and biological processes acting and/or interacting 

across an equally-wide range of scales (e.g. Stommel 1963; Haury et al. 1978). Our understanding 

of these processes is predicated on the scales at which we observe them (Levin 1992). Thus, our 

ability to detect change and/or predict biological responses to change in marine communities relies 

on the quantification of natural variability, its dependence on observational scale, and on the 

understanding of processes driving that variability. 

Temporal variability in biological communities has been measured less frequently than 

spatial variability, especially in aquatic ecosystems. Aquatic biologists typically work with time-

series that are short with high resolution or longer with a low sampling frequency due to the 

discrete nature of biological sampling and constraints of research surveys that include availability 

of time, resources, and site accessibility. The relative scarcity of high-scope (i.e. long extent, high 
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resolution) biological time-series may represent a significant gap in our ecological knowledge of 

patterns and underlying processes, especially in dynamic aquatic environments (Stommel 1963; 

Haury et al. 1978; Schneider 2001). 

Recent innovations in battery life and data storage have facilitated the use of remote 

sensing technologies, including active acoustics, that enable the collection of high-scope biological 

data (e.g. Godø et al. 2014). Active acoustic technologies measure fish and macrozooplankton 

densities using short pulses of sound through the water. Any object with a density different than 

water will reflect (i.e. backscatter) a portion of the energy to a transceiver (Simmonds and 

MacLennan 2005). Acoustic backscatter can be scaled to numeric and mass densities and used to 

characterize biological distributions and dynamics in the water column through time.  

The use of active acoustics in instrumented platforms allows simultaneous and continuous 

collection of biological and physical data, a prerequisite for understanding biological responses to 

other physical and biological environmental drivers. These autonomous sensors enable high-scope 

temporal studies at relatively low-cost, which contrasts to data collected from time and resource 

consuming research vessels. Instrumented platforms may be particularly useful in areas of high 

environmental dynamics or areas with scarce or no baseline information. High-scope biological 

and physical datasets can be used to understand temporal variability in communities of marine 

animals living in the water column (i.e. pelagic communities), design monitoring plans, and 

increase our capability to detect and predict biological responses to environmental change. 

The shift from vessel-based mobile, short range, coarse resolution, discrete samples to 

ocean observatories with multiple remote sensors collecting high resolution data over long periods 

brings new challenges. Analytic approaches and tools need to be adapted to include automated 

processing and to extract relevant information on distribution characteristics of aquatic organisms 
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from large datasets (Hampton et al. 2013). Also, the spatial equivalence of point-source 

measurements may limit the interpretation and application of results to larger spatial ranges and 

the quantification of the spatial scope of these measurements is required to ensure the collection 

of representative samples (Horne and Jacques 2018). 

1.2 OBJECTIVES 

This project quantifies temporal patterns in fish and zooplankton densities and behavior, and 

identifies associated influential environmental processes in dynamic and seasonally variable 

environments. Specific objectives include: 

1a. Quantifying temporal scales of variation in densities and vertical distributions of 

pelagic fish and zooplankton in a seasonally variable, high latitude marine ecosystem. 

1b. Identifying scale-dependent associations of observed temporal variability with 

dominant environmental processes.  

2. Assessing associations between temporal variability in environmental processes and the 

timing and amplitude of Arctic cod (Boreogadus saida) densities in a high latitude marine 

ecosystem. 

3. Analyzing temporal and spatial scales of variation in densities and vertical distributions 

of pelagic fish and zooplankton to quantify the representative range of point measurements in 

space. 

4. Comparing temporal variability in densities and distributions of pelagic fish and 

macrozooplankton communities in environments with different dynamics to assess the potential 

for generic biological monitoring strategies. 
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Chapter 2. MULTI-SCALE TEMPORAL VARIABILITY IN 

BIOLOGICAL-PHYSICAL ASSOCIATIONS IN THE NE 

CHUKCHI SEA1 

2.1 INTRODUCTION 

Biological and physical processes that shape marine communities typically operate over multiple 

scales (Stommel 1963; Haury et al. 1978; Levin 1992; Schneider 1994). Consequently, efforts to 

attribute/associate observed variability with potential causes must also be conducted over a range 

of spatial and or temporal scales (McIntire and Fajardo 2009). This approach increases our ability 

to detect and predict biological responses to environmental change (Horne and Schneider 1994), 

and identify relevant scales for effective impact assessments and resource management (Hewitt et 

al. 2007; Godø et al. 2014). 

The dependence of observed patterns on observational scale coupled with potential trends 

over time increases the effort needed to understand temporal variability in biological variables. A 

complete characterization of time-dependent patterns requires high resolution and long-term (i.e. 

high scope) data. High scope data can be difficult to obtain due to available resources or 

constrained accessibility. These challenges are amplified in high latitude marine environments 

where the presence of sea ice during most of the year limits vessel-based sampling (e.g. Mueter et 

al. 2017; Spear et al. 2019). In these areas, data acquisition is typically limited in extent and/or 

resolution, fragmenting our understanding of important biological and physical processes over the 

annual cycle. In particular, long term studies in the Pacific Arctic have focused on descriptions of 

biological variability from samples mainly collected during summer months either through 

 
1 Published as: Gonzalez S, Horne JK, Danielson SL (2021) Multi-scale temporal variability in biological-physical 
associations in the NE Chukchi Sea. Polar Biol 44:837–855. https://doi.org/10.1007/s00300-021-02844-1 
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systematic (e.g. Bluhm et al. 2010; Hopcroft and Day 2013; Moore and Stabeno 2015) or 

opportunistic (e.g. Ershova et al. 2015; Randall et al. 2019) surveys and data compilations. Studies 

examining high frequency temporal patterns (e.g. diel vertical migrations) over limited temporal 

extents (i.e. days to a few months) prevent an assessment of the consistency in observed patterns 

over longer periods (Fortier et al. 2001; Berge et al. 2009; Darnis et al. 2017; Geoffroy et al. 2017). 

A few studies have collected year-long biological data (e.g. Geoffroy et al. 2016; Kitamura et al. 

2017), but to our knowledge, none have assessed biological patterns over a range of temporal 

scales through multiple years. 

The seasonally ice-covered Chukchi Sea receives a nearly continual input of heat, nutrients, 

organic carbon, and organisms from Pacific-origin water flowing northward in response to an 

oceanic pressure head that results from an elevation difference between the Pacific and Arctic 

Oceans (Stigebrandt 1984). This input from the Bering Sea, combined with shallow depths 

enhances biological productivity in the Chukchi Sea (Grebmeier et al. 2015). A large 

phytoplankton bloom that occurs in late spring and summer (Questel et al. 2013) supports the 

largest soft bottom benthic faunal biomass in the world ocean (Grebmeier et al. 2006a, 2015), and 

corresponding populations of zooplankton (Ershova et al. 2015), seabirds (Kuletz et al. 2015), and 

marine mammals (Hannay et al. 2013). The Chukchi shelf is also home of Arctic cod (Boreogadus 

saida), a fish species that plays a key role in the transfer of energy from lower to higher trophic 

levels in high latitudes (Lowry and Frost 1981; Whitehouse et al. 2014). Located over the 

Northeast Chukchi shelf on the southern flank of Hanna Shoal (Figure 2.1), the Chukchi 

Ecosystem Observatory (CEO), is a set of instrumented moorings that has been collecting high-

resolution, continuous biological, biogeochemical, and physical measurements since 2014 



 

 

6 

(Danielson et al. 2017b; Hauri et al. 2018; Lalande et al. 2020). The CEO provides a unique 

opportunity to quantify biological and physical patterns over a continuum of temporal scales. 

Continuous datasets from remote sensing technologies fill existent data gaps and provide data 

to characterize these highly dynamic and rapidly changing ecosystems. In this study, I conducted 

a time-scale decomposition of biological metrics derived from acoustic backscatter and 

environmental variables to (a) quantify temporal scales of variation in densities and vertical 

distributions of fish and zooplankton, and (b) identify scale and time-dependent biological-

physical associations using the CEO as a study case. Results from this study will contribute to 

improve our mechanistic understanding of the ecosystem dynamics and constitute first steps 

towards an effective prediction and detection of biological responses to a rapidly changing 

environment. 

2.2 METHODS 

2.2.1 Study site 

The CEO is located in the NE Chukchi Sea shelf between Hanna Shoal and Barrow Canyon (71° 

35.976’ N, 161° 31.621’ W) at 46 m depth (Figure 2.1). The CEO seascape varies seasonally: a 

late fall and winter homogeneous water column with thickening sea ice and light-limited primary 

production (Weingartner et al. 2005), a spring with diatoms and sea ice algae blooms triggered by 

the return of light (Gradinger 2009; Arrigo et al. 2014), and a stratified, warmer, nutrient-rich water 

column after May when sea ice starts to melt, triggering massive phytoplankton blooms under the 

ice (Arrigo et al. 2012a) and through the summer (Hill et al. 2018a). In the fall, the intensification 

of winds and diminishing solar input allows the water column to re-homogenize and surface waters 

are replenished with nutrients that supports fall phytoplankton blooms until sunlight fades. 
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Most universities have strict rules on the style of chapter titles and heading titles. The safest way 

is to follow this template and to consult with the appropriate parties who certify the formatting of 

a thesis or dissertation.  

 

Figure 2.1. Study region map with bathymetric depths, and main flow pathways. The yellow 

arrow represents the Beaufort Gyre, black arrows represent the Alaskan Coastal Current, the brown 

arrow represents the Siberian Coastal Current, and purple arrows represent pathways of Bering 

Shelf, Anadyr, and Chukchi shelf waters. The red circle indicates the location of the Chukchi 

Ecosystem Observatory. 
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2.2.2 Environmental data 

To examine biological-physical associations that vary over time and among temporal scales, I 

supplemented physical data collected at the CEO with data from other sources. Near-bottom and 

midwater salinity and temperature measurements were collected hourly at the CEO during the five 

deployment years using a Sea-Bird SBE-37 MicroCat located at a depth of 43 m (seafloor depth 

of 46 m) and a Sea-Bird Scientific SBE-16 SeaCat deployed at 28¬–33 m depth. Daily averages 

of satellite-based sea ice concentration (%) data were downloaded from the National Snow and Ice 

Data Center (NSIDC) archive (http://nsidc.org/data/seaice/pm.html#pm_seaice_conc) (Maslanik 

and Stroeve 1999). Hourly sun altitudes relative to the horizon at the CEO were calculated using 

the ‘sunAngle’ function of the R package oce (v. 1.1–1, Kelley & Richards 2019). Daily sunrise 

and sunset times were calculated using the ‘sunriset’ function of the R package maptools (v. 0.9-

9, Bivand & Lewin-Koh 2019). Also, daily maximum and minimum air temperatures recorded at 

the nearby coastal city of Utqiaġvik were obtained from the U.S. climate data website 

(https://www.usclimatedata.com/climate/barrow/alaska/united-states/usak0025). Hourly wind 

speed and direction data for the CEO location were obtained from the Copernicus Climate Change 

Service (Hersbach et al. 2018). 

2.2.3 Acoustic data acquisition 

Active acoustic data were used to characterize temporal patterns in fish and zooplankton densities 

and behavior in the Chukchi Sea. Acoustic backscatter (i.e. ensemble reflected energy) data were 

collected using an ASL, Acoustic Zooplankton Fish Profiler (http://www.aslenv.com/AZFP.html), 

deployed at 28–35 m depth (depending on year), looking upwards (Figure 2.1). The instrument 

operated at 38 (12°), 125 (8°), 200 (8°), and 455 (7°) kHz (nominal beam width, measured between 

half power points in parenthesis) since September 9, 2014. The AZFP collected data every 15 
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seconds (0.067 Hz) at a vertical resolution of 4 cm. Every summer, a new mooring with a 

manufacturer-calibrated AZFP was deployed followed by the recovery of the previous mooring to 

ensure continuity of data collection. 

2.2.4 Acoustic data processing and classification 

Acoustic data from the CEO was processed using Echoview software (v. 9.0). Background noise 

was subtracted and a minimum signal-to-noise ratio filter of 6 dB re 1 m-1 (hereafter dB) was 

applied. Echoes within 3 m from the face of the transducer were excluded from the analyses to 

avoid the integration of echoes in the acoustic nearfield. Sea water surface and sea ice edges were 

delimited using Echoview’s linear offset operator algorithm followed by visual inspection and 

manual correction. A surface exclusion line was set 0.5 m below the corrected surface and echoes 

above the line were excluded to ensure that backscatter from surface turbulence or sea ice were 

not included in analyses. 

I classified acoustic backscatter into fish and zooplankton categories using differences in 

mean volume backscattering strength (MVBS) (Madureira et al. 1993; Kang et al. 2002; 

Korneliussen and Ona 2003) between 125 and 38 kHz data (ΔMVBS125-38 kHz). Backscatter 

measurements were averaged in 4 pings (1 min) horizontal by 1 m vertical cells for each frequency. 

Cells with ΔMVBS125-38 kHz values in the range of -16 to 8 dB were classified as fish and 

ΔMVBS125-38 kHz values in the range of 8 to 30 dB were classified as zooplankton (cf. De Robertis 

et al. 2010). A minimum volume backscattering strength (Sv) integration threshold of -70 dB was 

applied to the 38 kHz (“fish”) data (c.f. De Robertis et al. 2017) and a -80 dB Sv integration 

threshold was applied to the 125 kHz (“zooplankton”) data (cf. Ressler et al. 2012). 

Although no direct fish and zooplankton sampling was conducted in association with 

acoustic measurements, we can rely on catch data from surveys carried out in the NE Chukchi Sea 
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to attribute most of the observed fish backscatter to Arctic cod (Boreogadus saida). Arctic cod 

accounted for 81–90% of total fish biomass and abundance from bottom (Barber et al. 1997; 

Goddard et al. 2014; Sigler et al. 2017; Logerwell et al. 2018) and pelagic (Lowry and Frost 1981; 

De Robertis et al. 2017) trawl surveys conducted in spring-fall ice-free seasons. From four 

midwater trawls conducted on Hanna Shoal in close proximity to the CEO in summer of 2017, De 

Robertis (pers. comm) observed that Arctic cod constituted 66–99% of the fish biomass and 93–

99% of the fish abundance. Other species occasionally caught included capelin (Mallotus villosus), 

Lumpenus spp, staghorn sculpin Gymnocanthus tricuspis, and Liparidae snailfish. As further 

support of this backscatter categorization, age-0 Arctic cod was the dominant contributor to 38 

kHz backscatter in the northern region of the Chukchi Sea in acoustic-trawl surveys conducted in 

2012 and 2013 as part of the Arctic Ecosystem integrated survey (De Robertis et al. 2017). 

Zooplankton communities in the Hanna Shoal area are dominated numerically by small 

copepods such as Oithona similis and Pseudocalanus spp. and in biomass by the larger Calanus 

glacialis/marshallae (Lane et al. 2008; Elliott et al. 2017; Lalande et al. 2020). The arctic copepod 

Calanus hyperboreus has also been observed in this area (Lane et al. 2008; Hopcroft and Day 

2013; Lalande et al. 2020). Other non-copepod groups that contribute to the Chukchi zooplankton 

community biomass, especially during summer, are the appendicularians Fritillaria borealis and 

Oikopleura vanhoeffeni, the chaetognath Parasagitta elegans, and some meroplankton species, 

particularly bivalve, polychaete and echinoderm larvae (Hopcroft et al. 2010; Ashjian et al. 2017; 

Lalande et al. 2020). 

Electric interference was visible in the 125 kHz data throughout most of the first 

deployment year (September 2014–August 2015) and as a result, the first year of data was excluded 
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from further analyses. Fish and zooplankton Sv were integrated into hourly averages from 

September 1, 2015 to August 18, 2019 and used in all analyses. 

2.2.5 Data analysis 

The analytic approach consists of (1) characterizing temporal scales of variability in density and 

vertical distributions metrics for fish and zooplankton using wavelet analysis, (2) describing scale- 

and time-dependent associations of these metrics with physical environmental variables using 

wavelet coherence, and (3) assessing synchronicity and lags in biological-physical associations 

using phase angle differences between pairs of variables. 

2.2.5.1 Characterization of biological vertical distributions 

A suite of metrics derived from acoustic data, collectively referred as to Echometrics (Burgos and 

Horne 2008; Urmy et al. 2012), were used to describe variations in density and vertical 

distributions of fish and macrozooplankton in the water column at the CEO. Echometrics can be 

used to efficiently summarize temporal variability in abundance and behavior in large datasets and 

to detect and quantify variability across a broad range of temporal scales (e.g. transient events, diel 

vertical migrations, and interannual changes). The Echometrics suite includes: (1) mean Sv (units: 

dB re m-1), an index of organism mean density (MacLennan et al. 2002); (2) center of mass (units: 

m), the mean weighted location of backscatter in the water column relative to the bottom; (3) 

inertia (units: m2), a measure of organism dispersion (i.e. variance) from the center of mass; and 

(4) an aggregation index (units: m-1), which measures vertical patchiness of backscatter through 

the water column. The aggregation index is calculated over a scale from 0 to 1, with 0 being evenly 

distributed throughout the water column and 1 being aggregated. 
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2.2.5.2 Scales of variation in biological characteristics 

To identify the dominant scales of temporal variability in fish and zooplankton metrics and to 

examine the consistency in dominant scales of variability through time I used wavelet analysis 

(Torrence and Compo 1998). A wavelet transform decomposes a time series across time and 

frequency domains through the convolution of a waveform—the wavelet—that is stretched or 

compressed (i.e. scaled) and slid through the time series (i.e. translation). The result is a 2-

dimensional heat-map, called a scalogram, that represents the wavelet power (i.e. variance) 

contributed by each temporal period (or scale) at each time step. Therefore, a wavelet transform 

allows not only the detection of constituent periods or frequencies (analogous to a Fourier 

Transform), but also the temporal location of frequency components within the record (Torrence 

and Compo 1998; Cazelles et al. 2008). 

A continuous Morlet mother wavelet function (Torrence and Compo 1998) was applied to 

each time series. Continuous wavelets enable the localization of transient patterns in variance and 

have been previously used for the analysis of temporally-indexed acoustic data (e.g. Urmy 2012, 

Viehman & Zydlewski 2017, Gonzalez et al. 2019). Temporal scales analyzed ranged from two 

hours (twice the hourly aggregated data resolution) to 11,585 hours (one third of the time series 

length). Wavelet power was calculated using the R package WaveletComp (v. 1.1, Roesch & 

Schimidbauer 2018). Statistical significance in localized wavelet power was evaluated through 

comparison to a white noise (constant value, equal to the time series variance) null hypothesis at a 

95% confidence level (Torrence and Compo 1998) using 100 simulations. Edge effects were 

minimized by adding zeroes at the beginning and end of each data series to increase the total length 

of the series to the next power of two (Torrence and Compo 1998). 

Horizontal integration of wavelet power at each scale over the entire deployment—the 

global wavelet spectrum—allows the measurement of variance contributed by each scale across 
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the entire series. The global wavelet spectrum was calculated using the R package WaveletComp 

(v. 1.1, Roesch & Schimidbauer 2018). Significance of this time-averaged variance was tested 

against white noise at a 95% confidence level (Torrence and Compo 1998). 

2.2.5.3 Time- and scale-dependent biological and physical associations 

To assess time and scale-dependent correlations between biological metrics and the marine 

environment I used wavelet coherency. Wavelet coherency measures the correlation (taking values 

from 0 to 1) and phase (values from –п to п) of two variables at each time step and scale of the 

decomposed series enabling the description of localized (in scale and time) and lead-lag 

relationships between two time series (Torrence and Compo 1998). Daily averages of all variables 

were used to compute wavelet coherences between the four biological metrics and physical 

variables. Daily values correspond to the highest common temporal resolution for all biological 

and physical variables. The R package WaveletComp (v. 1.1, Roesch & Schimidbauer 2018) was 

used to calculate wavelet coherence and phase. Statistical significance of localized wavelet 

coherency between each pair of variables was also tested against white noise using 100 simulations 

at a 95% confidence level. Global wavelet (i.e. time averaged) coherence was calculated and its 

significance was tested against white noise at a 95% confidence level (Torrence and Compo 1998). 

To look at potential predator-prey interactions between fish and zooplankton communities I 

calculated wavelet coherence between hourly series of fish and zooplankton densities (i.e. mean 

Sv). 
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2.3 RESULTS 

2.3.1 Echometrics and environmental conditions 

Densities and vertical distributions of fish and zooplankton displayed intra-annual temporal 

variability (Figure 2.2). Seasonal patterns were observed in all metrics for both backscatter groups. 

Backscatter corresponding to fish and zooplankton was observed throughout the year with greater 

densities (i.e. mean Sv) in summer than in winter. Peak densities of fish were observed in July–

September and highest densities of zooplankton were recorded in August–November (Figure 2.2a). 

In general, fish were located deeper in the water column than zooplankton. Both backscatter groups 

were located deeper in the water column during winter and started ascending around February, 

reaching depths closest to the surface by the end of the summer (i.e. late August–September) and 

then descended to deeper waters (Figure 2.2b). Fish dispersion (i.e. inertia) was relatively low 

throughout the year with highest values observed in autumn. Zooplankton dispersion was higher 

in autumn and winter months (Figure 2.2c). Fish and zooplankton were more strongly aggregated 

in winter and spring months while weaker aggregations were observed in autumn each year (Figure 

2.2d). Short-period (24 hours or less) variability was also present in the data, with high hourly 

variability observed in all metrics (not shown). 

Inter-annual variability was observed in the timing and amplitude of seasonal changes. For 

example, the peak in fish and zooplankton production was much higher and more extended during 

late summer¬–early fall of 2017 (Figure 2.2a). This high production was coincident with the 

highest water temperatures recorded in 2017 (Figure 2.2e). The timing of the peaks in fish and 

zooplankton density occurred earlier each year, shifting from September in 2016 to August in 2018 

for fish and from November in 2016 to August in 2018 for zooplankton (Figure 2.2a).  
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I observed seasonal and inter-annual variations in sea ice concentration, midwater 

temperature, and salinity (Figure 2.2e and f). Sea ice started to concentrate in November each year 

reaching 50% concentrations at midwater temperatures near 0 °C. Sea ice melting started in June 

in 2016 and earlier in following years (Figure 2.2e). Summer of 2017 was the warmest in the series 

with midwater temperatures reaching 4 °C by mid-September. This year, sea ice melting started in 

April and the onset of sea ice formation was delayed until December (Figure 2.2e). Midwater 

salinity values were lowest (ca. 31) in November-December each year (Figure 2.2f) with the 

exception of 2017 when salinity remained near 32. 
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Figure 2.2. Daily averages of fish and zooplankton density and vertical distributions derived 

from acoustic backscatter data (a–d), and physical variables (e–f) at the Chukchi Ecosystem 

Observatory from September 1, 2015 to August 18, 2019. CM: center of mass, AI: aggregation 

index. Shaded areas highlight months between Fall and Spring equinoxes. Temperature and 

salinity values correspond to midwater measurements. 
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2.3.2 Dominant scales of temporal variability in biological metrics and their consistency 

through time 

Variability in biological characteristics at the CEO was observed at multiple temporal scales (i.e. 

periods) with varying degrees of consistency through time (Figure 2.3 and Figure 2.4). Variability 

in fish metrics (Figure 2.3) was concentrated at the ~ 1-year period (~ 8679 hours), indicating a 

strong signal of intra-annual variations in fish densities and vertical distributions. A consistent 

band of high wavelet power was observed around a 4096-hour period (ca. 5.5–6 months) and was 

represented as a peak in the global wavelet plots. This peak in wavelet power at the ~ 6-month 

period was present in all metrics, but this signal was much weaker for the aggregation index 

(Figure 2.3d). Variability at this scale, although present throughout the year, was more pronounced 

in summer months (Figure 2.3). A third peak in average wavelet power was observed at a ~ 24-

hour period representing diel changes in fish metrics. The occurrence of the 24-hour period signal 

was less consistent through time than annual and ~ 6-month periods but the strength of the signal 

(i.e. wavelet power) was high when present (Figure 2.3a). For aggregation index, the ~ 24-hour 

period wavelet power was particularly accentuated in 2019, compared to previous years (Figure 

2.3d). High wavelet power values localized at specific times within the series were observed in the 

scalograms and as smaller peaks in global wavelet spectra at 2435-hour (~ 3 months), 683-hour (~ 

28 days), and 341-hour (~ 14 days) periods for mean Sv, center of mass, and inertia (Figure 2.3a–

c). Variability at these time scales was stronger from late fall to early spring each year (Figure 

2.3a–c). For inertia, wavelet power was noticeably high around the ~ 3-month period from July to 

March with some variations in temporal extent among years (Figure 2.3c). 

Variability in zooplankton metrics was also concentrated in three main scales with peaks 

at the ~ 1-year and ~ 24-hour periods, matching observations for fish, and at the 2896-hour (~ 4 

months) period (Figure 2.4) with a few exceptions. For the aggregation index, the local peak 
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observed at the 1-year period for all other metrics was not present but a peak in the average wavelet 

power spectra occurs at a 9-month period (Figure 2.4d). For zooplankton center of mass, a peak 

occurs at the ~ 5.5-month period instead of the ~ 4-month period that was observed for all other 

metrics and an additional peak was observed at the 1933-hour (~ 3 months) period (Figure 2.4b). 

Variability at the 574-hour (~ 28 days) and 341-hour (~ 14 days) periods was observed for all 

metrics during November-June and were represented as small peaks in the average wavelet power 

spectra (Figure 2.4). These two scales of temporal variability suggest monthly and fortnightly 

influences of moon cycles on zooplankton density and vertical distribution through the modulation 

of tides and light in winter months. Variability at an 80-hour (~ 3 days) period was also observed 

during September-November for center of mass and inertia in both fish and zooplankton groups 

each year (Figure 2.3b-c and Figure 2.4b-c). This peak is attributed to the occurrence of storms 

that are typically accentuated in fall. 

In summary, variability in biological metrics occurred over a range of time scales with peaks 

observed at the annual, seasonal (3–6 months), and diel (24-hour) periods. Smaller peaks resulting 

from a less consistent occurrence throughout the series occurred at intermediate time scales of 3–

28 days. Variations in observed peaks emphasize the importance of a multi-scale approach for a 

thorough characterization and better understanding of biological and physical patterns in Arctic 

marine ecosystems. 
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Figure 2.3. Time-scale decomposition of hourly values of fish density and vertical distribution 

metrics derived from acoustic backscatter at the CEO.Mean Sv, (b) center of mass, (c) inertia, (d) 

aggregation index. The color bar represents the wavelet power (σ2). The shaded area represents 

the cone of influence (edge effects) and the black contour lines indicate areas of significance (95% 

confidence against white noise). Time averaged wavelet power (global wavelet spectrum) is shown 

on the right for each metric. Significant periods (95% confidence against white noise) are shown 

in red. Dashed lines indicate 1-year, 5-month, 1-month, 1-week, 24-hour periods. 
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Figure 2.4. Time-scale decomposition of hourly values of zooplankton density and vertical 

distribution metrics derived from acoustic backscatter at the CEO. (a) Mean Sv, (b) center of mass, 

(c) inertia, (d) aggregation index. The color bar represents the wavelet power (σ2). The shaded area 

represents the cone of influence (edge effects) and the black contour lines indicate areas of 

significance (95% confidence against white noise). Time averaged wavelet power (global wavelet 

spectrum) is shown on the right for each metric. Significant periods (95% confidence against white 

noise) are shown in red. Dashed lines indicate 1-year, 5-month, 1-month, 1-week, 24-hour periods. 
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2.3.3 Biological-physical associations 

Scale- and time-dependent associations between biological metrics and environmental variables 

were observed for fish and zooplankton with variations in strength and phase (i.e. coherence).  

2.3.3.1 Predator-prey associations 

Coherence between fish and zooplankton densities was observed at multiple temporal scales with 

variations in lagging group at each scale (Figure 2.5). A significant peak in average wavelet 

coherence between both backscatter groups was observed at a 1-year period. At this period, a 

significant positive association was observed throughout the entire deployment led by zooplankton 

(Figure 2.5) with phase differences (i.e. fish phase – zooplankton phase, hereafter phase) of -0.2 

rad (~ -11 days) to -0.4 rad (~ -23 days). Significant positive associations at 2.5-month, 1-month, 

and 11-day periods were observed in winter and spring months each year with fish (mean phase: 

+1.6 rad or +19 days), zooplankton (mean phase: -0.6 rad or -3 days), and fish (mean phase: +0.3 

rad or +12 hours) as the leading variables (Figure 2.5), respectively. Significant coherence between 

both groups was also observed at the diel scale (Figure 2.5). 

 

Figure 2.5. Wavelet coherence between hourly values of fish and zooplankton density (mean 

volume backscattering strength). The color bar represents the wavelet coherence. The shaded area 
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represents the cone of influence (edge effects) and the areas of significance are traced with a black 

line (95% confidence against white noise). Arrows indicate the phase difference between the two 

variables of the wavelet spectra (right arrows indicate series are in phase, left arrows indicate series 

are completely out of phase (180°), and an arrow pointing vertically upward means the second 

series lags the first by 90°. Time averaged wavelet coherence is shown on the right with significant 

periods (95% confidence against white noise) shown in red. Dashed lines indicate 1-year, 3-month, 

1-month, 1-week, 24-hour periods. 

 

2.3.3.2 Scale- and time-dependent coherence among biological metrics and 

physical environment 

Strength of bio-physical associations varied between backscatter groups, among biological 

metrics, and among temporal scales of variation (Figure 2.6 and Figure 2.7). Significant biological-

physical associations presented in this section result from consistently significant coherence 

throughout the entire time series and can therefore be considered as robust associations. Only 

biological-physical associations occurring at time scales identified as dominant scales of temporal 

variability in biological metrics in section 3.2 (i.e. peaks in metrics global wavelet spectra) are 

described here and further discussed in section 4. 

2.3.3.2.1 Diel variability 
The strength of the 24-hour period signal in fish and zooplankton location and dispersion (i.e. 

center of mass and inertia) in the water column, indicative of diel vertical migrations (DVM), 

varied throughout the year (Figure 2.6). In general, highest peaks in the strength of the diel signal 

in both metrics occurred at intermediate daylengths (i.e. autumn and spring) for both fish and 

zooplankton. In particular, diel cycles in center of mass for both backscatter groups were stronger 

during autumn and spring months each year but did persist with lower values throughout winter 
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months. From March to September this signal was non-significant for fish and was low or non-

significant for zooplankton (Figure 2.6a). 

The diel signal in fish dispersion was only present during late summer and autumn months, 

with highest wavelet power values observed in November when there exists < 5 hours of daylight 

at the CEO site (Figure 2.6b). Significant values of diel dispersion outside autumn months were 

only observed in February–April of 2019 with a peak in wavelet power in March (10 hours of 

daylight) that had an amplitude similar to observations in fall. Diel cycles in zooplankton 

dispersion were more persistent throughout the year, with lower but still statistically significant 

values during both midnight sun (i.e. 24 hours of daylight) and polar night (i.e. 0 hours of daylight) 

months. Annually, the highest values in wavelet power of the 24-hour period for zooplankton 

dispersion were observed in September for 2015–2017, while in 2018 the highest values were 

observed in November (Figure 2.6b). The observed association between vertical distribution 

metrics and light radiation patterns at the DVM period was supported by high significant coherence 

between hourly values of fish and zooplankton metrics, and sun altitude around the 24-hour period 

(Appendix A). 
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Figure 2.6. Temporal variation in the strength of the 24h-period signal in center of mass (a) 

and inertia (b) for fish (top) and zooplankton (bottom) in association with daylength at the Chukchi 

Sea Observatory. Significant peaks in wavelet power are shown in red. Shaded areas in orange and 

blue indicate periods of midnight sun and polar night, respectively. 

2.3.3.2.2 Multi-day to monthly variability 
At the ~ 1-month scale, I found significant associations between echometrics and light, salinity, 

and wind. In particular, fish mean Sv and center of mass were associated with wind direction, 

while fish aggregation index was associated with light patterns (Figure 2.7 left panel). For 

zooplankton, patterns in mean Sv and center of mass were associated with wind and light patterns. 

(Figure 2.7 right panel). At this scale, water salinity was associated with fish center of mass and 

density and patchiness of zooplankton (Figure 2.7). Biological associations with wind patterns 

were tighter in autumn when storms are stronger and more frequent. Associations with salinity 
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were stronger in autumn and spring months, typically October-November and April-May (see 

Appendix B) potentially associated with periods of sea-ice formation and melting. 

Patterns in zooplankton mean Sv and aggregation index observed at the 14-day period were 

associated with wind speed (Figure 2.7d) and minimum air temperature, respectively (Figure 2.7a 

and d right panel), whereas no significant associations were observed for fish metrics at this scale 

(Figure 2.7 left panel). At the 6-day period midwater salinity and wind direction were associated 

with the fish aggregation index and zooplankton inertia (Figure 2.7d left panel and Figure 2.7c 

right panel). Peaks in variance observed between 1–3-day periods in fish and zooplankton location 

and dispersion in the water column (i.e. center of mass and inertia) could not be associated with 

any environmental variables (Figure 2.7). 

2.3.3.2.3 Seasonal and annual variability 
Variability in biological metrics at scales ranging from 3 to ~ 6 months was associated with distinct 

environmental covariates and potentially reflects differences in seasonality among physical drivers 

(see Appendices B and C). Covariates associated with biological metrics at each of these periods 

varied between fish and zooplankton (Figure 2.7). For fish, significant coherence at the ~ 3-month 

period was observed between mean Sv and bottom salinity, and between inertia and sun altitude. 

No significant associations were found for center of mass (Figure 2.7 left panels). For zooplankton, 

significant coherence at a 3-month period was present between mean Sv, center of mass, inertia, 

and sea ice concentration (Figure 2.7 right panels). 

High variance at the ~ 5.5-month time scale observed in fish metrics (mainly mean Sv, 

center of mass, and inertia, Figure 2.3a-c) was associated with multiple temperature metrics 

(Figure 2.7a-c left panels). In particular, water temperature (both midwater and bottom) was 

associated with fish mean Sv, inertia, and aggregation index. Center of mass was associated with 
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midwater ocean temperature and daily maximum air temperature (Figure 2.7 left panels). Water 

temperature values that remain at the freezing point half of the year (October–April) undergo 

warming-cooling cycles over a ~ 5-month period. Water temperature starts to increase in June-

July, reaches maximum values in August–September, and returns to minimum values by October-

November (Figure 2.2e). Biological variability shifted from a time scale of ~ 5.5 months in 2015, 

2016, and 2018 to ~ 6 months in 2017 (Figure 2.3) coinciding with temperatures remaining 

relatively high for an extended period of time in summer of 2017 (Figure 2.2e). In particular, I 

observed that coherence between fish mean Sv and water temperature was highest from October 

to February each year and was particularly strong in 2017. Significant, in-phase associations 

between water temperature and fish dispersion were present through April 2016–February 2017 

and September 2017–February 2019 whereas significant, out-of-phase associations with the 

aggregation index were present only during 2018 (see Appendix B). Significant associations were 

also observed with wind speed during fall and winter months each year (November 2016–January 

2017 and October 2018–April 2019) when stronger winds enhance mixing of the water column. 

For zooplankton, variance in the center of mass at this scale (Figure 2.4b) was not associated with 

temperature but with fluctuations in sea ice concentration and wind speed (Figure 2.7b, right 

panel). This association between center of mass and sea ice concentration was present throughout 

the time series except for January–October 2017 and January–August 2019 when significant, out-

of-phase coherence with light irradiance was observed (Table 2.1, Appendix B). 

Variability observed at the ~ 4-month time scale in zooplankton mean Sv (Figure 2.4a) was 

associated with air temperature and light irradiance (Figure 2.7a, right panel) whereas 4-month 

cycles in inertia (Figure 2.4c) were associated with temporal patterns in sea ice concentration 

(Figure 2.7c, right panel). These associations were present throughout the year although stronger 
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in October 2016-September 2017 and again from October of 2018 until the end of the time series. 

For fish, significant coherence at a ~ 4-month period between mean Sv and bottom salinity were 

only observed during summer months with both variables out of phase (Table 2.1, Appendix B). 

At the largest time scale (i.e. 1-year period), all biological metrics of both backscatter 

groups were associated with all physical variables except for salinity (Figure 2.7). This observation 

is consistent with weak annual cycles observed in the salinity time series (Figure 2.2f). At the 1-

year period, significant associations were consistent through time, except for wind speed where 

coherence with fish and zooplankton metrics decreased to non-significant values in January 2018 

(Appendix B). Sea ice concentration was out of phase with mean Sv and inertia and in phase with 

center of mass for both backscatter groups at the annual scale. Minimum densities and dispersion 

of organisms located deeper in the water column were associated with highest sea ice 

concentrations in winter months (Figure 2.2e and Appendix B). Water temperature was in phase 

with mean Sv and inertia (Figure 2.7). Highest densities of highly dispersed organisms were 

recorded around October each year associated with warmest waters (Figure 2.2e). Light irradiance 

and wind direction led fish and zooplankton densities by ~ 90°, whereas the two variables were 

out of phase with center of mass (Table 2.1). The largest scale of variation in the zooplankton 

aggregation index, observed at a 9-month period (Figure 2.4d), was associated with patterns in air 

temperature, sea ice concentration, light irradiance, and wind direction (Figure 2.7d right panel). 

In summary, despite the shallow depths of the CEO and the lack of changes in light intensity 

during polar night and midnight sun, fish and zooplankton displayed DVM throughout most of the 

year. Water temperature, sea ice concentration, and light radiation patterns tended to be the most 

important environmental factors associated with biological metrics at the longest time scales. 

Salinity and wind patterns were important at seasonal-related (time scales ranging from 3 to ~6 
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months), and intermediate (3–28 days) scales. Sea ice concentration was strongly associated with 

zooplankton metrics at time scales from 28 days to one year, while its association with fish metrics 

was only significant at the annual scale. Wind speed and direction were sporadically associated 

with biological metrics over a broad range (6 days–1 year) of time scales. 

 

Figure 2.7. Average wavelet coherence between daily values of fish (left panel) and 

zooplankton (right panel) density and vertical distribution metrics derived from acoustic 

backscatter and physical environmental variables at the CEO. (a) Mean Sv, (b) center of mass, (c) 

inertia, (d) aggregation index. Circles represent significant values at the 95% confidence. Water 

temperature corresponds to midwater temperature and bottom salinity is shown for fish and 

midwater salinity is shown for zooplankton. Dotted lines indicate periods of 1 week, 15 days, 1–5 

months, 9 months, and 1 year. 
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Table 2.1. Summary table indicating presence (colored cells) of each of the scales of variability 

(identified as dominant in section 3.2) in metrics for fish (blue) and zooplankton (orange). When 

present, significant associations between metrics and environmental variables at each scale are 

represented using + or – depending if the variables are in phase or out of phase, respectively. Sv: 

mean Sv; Cm: center of mass; In: inertia; Ai: aggregation index; MW temp.: midwater 

temperature; Air temp.: air temperature; Sea ice %: sea ice concentration; Sun alt.: sun altitude; 

Ws.: wind speed; Wdir.: wind direction; B sal.: bottom salinity; MW sal.: midwater salinity. 

 Fish Zooplankton 
 Sv Cm In Ai Sv Cm In Ai 

1 year                 
MW temp. + + + - + + + - 
Air temp. + - + - + - - - 
Sea ice % - -  + - + - + 
Sun alt. - - - - - - - + 
Ws. + + + - +  + - 
Wdir. - - - + - - - + 
9 months                 

Air temp.        - 
Sea ice %        + 
Sun alt.        + 
Wdir.        + 
5 months                 

MW temp. +  +      
Air temp.  -       
Sea ice %      +   
Ws.      +   
Wdir.   -      
4 months                 

Air temp.     +    
Sea ice %       +  
Sun alt.     -    
3 months                 

Sea ice %      +   
Sun alt.   +      
B sal. -        
2 months                 
28 days                 

Sea ice %      +   
Sun alt.    + - - -  
Ws.     +    
Wdir. + +     +  
MW sal.     +   + 
B sal.  +       

14 days                 
Air temp.        - 
Ws.     +    

6 days                 
3 days                 

24 hours                 
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2.4 DISCUSSION AND CONCLUSIONS 

In this study, focused on a high latitude marine ecosystem, I used multi-year abundance and 

behavior metrics of pelagic fish and macrozooplankton, and environmental covariates to identify 

scales of temporal variability. I observed that (1) variability in biological characteristics occurs at 

multiple temporal scales, (2) the relative importance of scale-dependent patterns in biological 

metrics varies through time, (3) coherence between environmental factors and biological metrics 

is scale-dependent, and (4) the strength of those biological-physical associations varies through 

time. 

2.4.1 Diel variability and predator-prey associations 

A strong diel signal (i.e. variability at a 24-h period) was observed in all metrics and backscatter 

groups. Diel variations in the vertical distribution of fish and zooplankton densities have been well 

described in many aquatic systems (Hays 2003; Cohen and Forward 2009). DVM is thought to be 

an evolved response to limited food at depth and avoidance of visual predators in shallow waters 

(Hays 2003). These vertical movements typically involve the upward migration of organisms to 

feed in surface waters at night and movements to depth to seek refuge from visual predators during 

the day, all cued by changes in light irradiance (Cohen and Forward 2009). In high latitudes, DVM 

have been observed during fall and spring, when pronounced day-night cycles are present (Falk-

Petersen et al. 2008; Gjelland et al. 2009; Darnis et al. 2017). Despite the shallow depth at the CEO 

site, I observed fish and zooplankton DVM throughout most of the year, with the diel signal 

strongest during fall and spring. 

A growing body of studies have shown that organisms respond to subtle changes in 

background light in the dark winter (Berge et al. 2009; Cohen et al. 2015; Hobbs et al. 2018). At 

the CEO, DVM by both fish and zooplankton persisted through the polar night (November–
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January), with the signal more pronounced in fish. Age-0 Arctic cod is by far the most abundant 

species in the NE Chukchi Sea during summer (De Robertis et al. 2017) and can also be reasonably 

expected to be dominant under the sea ice in winter. Benoit et al. (2010) reported that young Arctic 

cod undergo DVM from December to May (beginning of midnight sun) possibly to avoid feeding 

interference with adult Arctic cod that remain at depth in the Beaufort Sea. For zooplankton, 

weakening of the DVM signal during winter could be a result of decreases in zooplankton 

abundances combined with the presence of both migrant and non-migrant zooplankton species in 

the CEO’s winter assemblage. In winter, high abundances of O. similis copepods and lower 

abundances of stage five copepodites of C. glacialis were observed in sediment trap samples 

obtained at the CEO (Lalande et al. 2020). O. similis has been reported to perform small scale 

DVM in the Arctic (Ashjian et al. 2003; Daase and Falk-Petersen 2016) whereas stage five 

copepodites of C. glacialis enter diapause to overwinter at depth (Falk-Petersen et al. 2009; Elliott 

et al. 2017) and would not contribute to an acoustically-detected DVM signal in winter. 

Occurrence of zooplankton DVM during midnight sun has been variable among study sites 

(Fortier et al. 2001; Blachowiak-Samolyk et al. 2006; Cottier et al. 2006; Wallace et al. 2010) 

suggesting that local characteristics (e.g. species composition, presence/absence of sea ice, and 

prey distribution) influence the occurrence and strength of DVM. Coarse temporal and vertical 

depth resolution of previous studies could be failing to detect DVM that occurred over a shorter 

duration and vertical distance in summer (Daase and Falk-Petersen 2016). At the CEO during 

midnight sun (May–August), the diel signal was absent for fish but present with minimal but 

significant strength for zooplankton. Benoit et al. (2010) reported a lack of synchronized 

movements of Arctic cod during midnight sun but the authors suggest that short individual 

(unsynchronized) migrations were possible. In this period of continuous light irradiance, Arctic 
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cod and other planktivorous fish use shoaling in surface layers as an alternative or complementary 

strategy for predation avoidance (Gjelland et al. 2009; Matley et al. 2012). DVM persistence for 

zooplankton in May-June could be attributed to the presence of sea ice and phytoplankton 

aggregations at the CEO. Sea ice and dense phytoplankton layers that often occur near the 

subsurface pycnocline could attenuate light in the water column and provide these smaller (and 

less visible) organisms refuge from visual predators for a longer period of time (Lorenzen 1972; 

Wallace et al. 2010). Fortier et al. (2001) observed that herbivorous copepods C. hyperboreus, C. 

glacialis, and Pseudocalanus acuspes displayed normal DVM under ice despite the midnight sun 

in Barrow Strait. Once sea ice melts, the lack of light attenuation and increased phytoplankton 

availability as food throughout the water column could make zooplankton DVM unnecessary 

(Blachowiak-Samolyk et al. 2006), limited to a part of the population (Dale and Kaartvedt 2000), 

or become unsynchronized (Cottier et al. 2006). 

At the diel scale, I observed co-variations in fish and zooplankton densities, which were 

accentuated around March. We cannot determine if this co-variation is a result of fish chasing their 

zooplankton prey or an avoidance response to their own visual predators. Supporting the latter, 

DVM patterns displayed by Arctic cod under ice in the Beaufort Sea were associated with the 

presence of ringed seals (Benoit et al. 2010), a known predator of Arctic cod (Born et al. 2004). 

Synchronicity between zooplankton and fish was also observed at an annual scale. Fluctuations in 

organisms’ densities occur throughout the year, with densities increasing from late spring to early 

autumn due to increased local production and arrival of organisms from the Bering Sea (Kitamura 

et al. 2017). At the annual scale zooplankton was leading in phase, indicating a faster response to 

changes in the environment than fish throughout the year. Densities of fish and their zooplanktonic 

prey were synchronized at several other intermediate temporal scales, mainly during winter 
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months. This high coherence of fish and zooplankton abundance in winter could be attributed to 

the overall reduction of organisms in the region during this season rather than to an interaction 

between predators and their prey. Even though feasible interpretations for strong covariations in 

fish and zooplankton densities are provided, there are caveats that need to be considered. First, fish 

and zooplankton density estimates are not independent, and we could expect some bias caused by 

a misclassification of fish and/or zooplankton acoustic backscatter. Second, acoustic backscatter 

classified as zooplankton represents a species assemblage. Fish, predominantly age-0 Arctic cod, 

could be preying on a subset of zooplankton species or on smaller zooplankton that were excluded 

in this study. Third, covariations between predator and prey could be generated by a common 

response of fish and zooplankton to a single or a combination of environmental drivers operating 

at a similar scale, rather than by a true interaction between predators and prey. 

 

2.4.2 Multi-day to monthly variability 

Cyclic extrinsic (e.g. moon phase) or intrinsic (e.g. hunger-satiation) cues can shape patterns in 

fish and zooplankton biomass distributions at temporal scales ranging from days to several weeks 

(e.g. Campbell et al. 2008; Berge et al. 2015; Last et al. 2016). Variability in fish and zooplankton 

vertical distributions observed at a ~ 28-day and ~ 14-day periods from late fall to early spring 

could be associated with lunar and semi lunar cycles. During polar night, the moon is the dominant 

source of ambient light and may facilitate visual predation during winter (Berge et al. 2015). Last 

et al. (2016) observed that zooplankton sink to deeper waters every 29.5 days in winter coincident 

with periods of the full moon in the lunar cycle. Marine species can synchronize their distribution 

and behavior to the semi-lunar cycle, which is coincident with full or new moon phases (Berge et 

al. 2015). 
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Periodicities of 4–12 days in fish center of mass observed during winter at the CEO could be 

a result of hibernation cycles interrupted by short feeding excursions by small arctic cod. During 

winter in the Southern ocean, Campbell et al. (2008) observed that Antarctic cod (Notothenia 

coriiceps) enter a state of dormancy interrupted by awakenings of a few hours every 4–12 days. 

Benoit et al. (2010) suggested that Arctic cod could also be undergoing dormant-wake cycles in 

the Beaufort Sea during winter.  

Temporal patterns in salinity and wind were also associated with fish and zooplankton density 

and vertical distribution metrics at scales of 6–28 days. Wind direction and strength affect 

properties of Chukchi shelf waters through changes in circulation or stratification/mixing of the 

water column in summer and fall (Weingartner et al. 2013; Danielson et al. 2017a). In autumn, 

enhanced mixing by strong wind events can re-nourish depleted surface waters with nutrients from 

below the stratified layer, triggering a phytoplankton bloom (Lin 2012; Zhao et al. 2015) with 

cascading effects to higher trophic levels (Fujiwara et al. 2018). Changes in salinity, that are 

associated with changes in water masses and sea ice cycles, have also been reported to influence 

species’ distributions in the Pacific Arctic (e.g. Norcross et al. 2010; Ershova et al. 2015). Bottom 

salinity is one of the main environmental factors affecting demersal fish assemblages in the 

Chukchi Sea (Norcross et al. 2010) whereas surface salinity has been reported as an important 

factor influencing zooplankton distributions (Ershova et al. 2015). In this study, fish and 

zooplankton distribution patterns were associated with salinity. The occurrence of these 

associations coincided with sea ice formation and melt as well as with autumn strengthening of 

local winds at the CEO. 
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2.4.3 Seasonal and annual variability 

There was no single scale of seasonal variability in fish and zooplankton metrics values, nor could 

seasonal time scales be attributed to a single environmental factor. Scales of seasonal variability 

and scale-dependent associations with environmental factors were also different for fish and 

zooplankton.  

A seasonality of 3 months in zooplankton metrics corresponded to temporal patterns in sea 

ice concentration, whereas 3-month cycles in fish metrics appeared related to variability in water 

salinity. Temporal patterns in sea ice formation and melt modulate light irradiance and 

stratification of the water column, directly affecting temporal patterns of ice algae, phytoplankton 

(Palmer et al. 2014), and in turn, zooplankton production (Matsuno et al. 2011; Questel et al. 2013; 

Amano et al. 2019). Ice algae initiate primary production underneath the ice during late winter–

early spring (typically in March) at very low light intensities and constitute an early food source 

for zooplankton (Søreide et al. 2010). In spring, increased insolation, stratification from ice melt, 

and availability of nutrients accumulated during the winter, trigger the onset of a phytoplankton 

bloom that sustains annual zooplankton production (Søreide et al. 2010; Leu et al. 2011; Arrigo et 

al. 2012a; Leu et al. 2015). In particular, Calanus glacialis has synchronized its seasonal vertical 

migrations, reproduction, and growth to these two bloom events. The ice algae bloom is thought 

to fuel early maturation and reproduction of zooplankton whereas the subsequent phytoplankton 

bloom provides high-quality food to the resulting zooplankton offspring (Søreide et al. 2010; Leu 

et al. 2011; Barber et al. 2015). This tight control exerted by seasonal sea ice on densities and 

vertical distributions of zooplankton is consistent with patterns observed in this study. 

Temperature is known to structure habitats of Arctic fish species and to affect their 

distribution (Benoit et al. 2014; Sigler et al. 2017), growth (Bouchard and Fortier 2011; Laurel et 
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al. 2016), and abundance (Mueter et al. 2016). Chukchi shelf water masses that start cooling 

approximately in October and remain close to the freezing point through April warm in summer 

when northward transport of warmer waters from the Bering Sea is highest (Danielson et al. 2017a; 

Lu et al. 2020). In the NE Chukchi Sea, the arrival of warmer waters from the Bering Sea generally 

increases the abundance of organisms in summer through the addition of imported boreal 

organisms and enhancement of local growth (Questel et al. 2013; Ashjian et al. 2017). As water 

temperature cools in autumn, densities of organisms decrease. This has been attributed to 

unsuccessful overwintering of boreal species (Kitamura et al. 2017) or horizontal migrations of 

local species to overwinter in adjacent deeper waters (Kosobokova 1999; Benoit et al. 2008, 2010; 

Geoffroy et al. 2011). I observed water temperature-associated variability in fish metrics at the ~ 

5-month period mainly from late spring to early fall, which corresponds to transitional periods 

from cold to warm and return to cold “seasons”. Similar patterns in fish location and dispersion at 

the ~ 5-month scale might also be indicative of seasonal vertical migrations associated with species 

life cycles (i.e. ontogenetic migrations; Geoffroy et al. 2016; LeBlanc et al. 2019) and behavioral 

changes (e.g. summer shoaling, Gjelland et al. 2009; Benoit et al. 2010) that typically occur from 

late spring to fall. However, variability in the vertical distributions of zooplankton species during 

these transitional periods seemed to respond to seasonal transitions from ice covered to open 

waters (and the reverse), and changes in wind speed. These two factors affect stratification of the 

water column, that in turn, modulate the timing and amplitude of primary production blooms. 

Some zooplankton species (e.g. C. glacialis) perform ontogenetic seasonal vertical migrations that 

are tightly synchronized with blooms events (Søreide et al. 2010; Darnis and Fortier 2014).  

Similarly, ~ 4-month cycles in zooplankton densities associated with air temperature and light 

irradiance at the CEO might be indicative of transitional periods between seasons. During these 
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periods high variations in zooplankton densities are expected in response to changes in sun 

radiation and air temperature that control the onset of primary production (Søreide et al. 2010). 

Shorter seasonal cycles in zooplankton, compared to fish, could be associated with a faster 

response to changes in the environment and synchronicity of their life cycles to temporal patterns 

in food availability that are triggered mainly by changes in irradiance (Mundy et al. 2014). Longer 

seasonal cycles in fish are possibly explained by slower changes in water temperature throughout 

the year. 

Variations in water temperature, sea ice concentration, light irradiance, and wind throughout 

a year shape the conspicuous annual cycles in fish and zooplankton metrics at the CEO. As 

described above, these factors play a key role in pelagic organisms’ growth, reproduction, and 

distribution. Temperature regulates the growth rate of fish and zooplankton, while light irradiance, 

sea ice concentration and winds modulate primary and secondary production, either directly or 

through the modulation of light and nutrient availability. Biological interactions might also play a 

role shaping fish and zooplankton temporal patterns in addition to the physical environment. In 

particular, predation pressure and light irradiance could be responsible of the 9-month cycles 

observed in zooplankton patchiness instead of the annual cycle observed for all other metrics. 

Persistence of dense patches of zooplankton individuals throughout periods of continuous daylight 

in summer have been described as a strategy to reduce predation risk (Majaneva et al. 2013). 

2.4.4 Importance and applications 

The need to address scale-dependency of biological patterns is well recognized in ecological 

literature (Stommel 1963; Haury et al. 1978; Levin 1992; Schneider 1994). Understanding 

temporal variability across a broad range of scales is essential to derive general conclusions about 

species abundance and behavior dynamics. As demonstrated in this study, fish and zooplankton 
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metrics not only undergo variability at a range of temporal scales but also the relative importance 

of these scales may vary through time. As a result, an extrapolation of observed patterns from a 

short temporal extent may not be representative of patterns occurring at other times of the year. 

This emphasizes the importance of continuous year-round studies to obtain a complete description 

of biological patterns in high latitude marine ecosystems. Scale- and time-dependent 

characterization of marine ecosystems requires continuous, high-resolution, long-term datasets 

that are not possible to obtain using traditional vessel-based sampling methods, especially in high 

latitudes. The use of active acoustics integrated with other sensors in ocean observing platforms 

provides simultaneous measurements of multiple ecosystem components at high temporal 

resolution over long periods. Time-frequency decomposition of biological and physical series 

using wavelets and wavelet coherence enabled identification of dominant scales of variability, 

located the occurrence of those periodicities in time, and helped identify potential environmental 

processes associated with observed biological patterns. Studies of temporal variability typically 

look at variations in the amplitude of a variable in the time domain (e.g. Gaston and McArdle 

1994). Even though variability is rarely used as a response variable to assess the influence of 

environmental disturbances, it is an extremely sensitive metric that can provide ecological 

information about underlying causal processes (Fraterrigo and Rusak 2008). 

A characterization of scale-dependent biological patterns and associations with environmental 

factors is a first step towards a mechanistic understanding of ecosystem dynamics. This 

understanding is necessary to predict biological responses to environmental change. Rapid changes 

in the Chukchi physical environment have been reported and further changes are expected (Wood 

et al. 2015; Woodgate 2018). Some of these changes include reduced seasonal sea ice extent and 

duration, increased ocean temperatures, and increased freshwater content (Stroeve et al. 2007; 
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Polyakov et al. 2010; Steele et al. 2010; Lu et al. 2020). Changes in the physical environment are 

expected to alter amplitude, periodicity, and timing of biological production (Grebmeier 2012). 

Predicting the potential direction and magnitude of these changes will help design or improve 

mitigation strategies and management of arctic marine species. Arctic cod has been identified as a 

species of potential commercial importance in the Arctic Fishery Management Plan (NPFMC 

2009). In the context of potential harvest, a characterization of variability scales in Arctic cod 

abundance can be used to inform stock assessments that provide accurate biomass estimates and 

detect trends in population variability. A characterization of scale-dependent temporal patterns can 

also be used to inform the design of monitoring programs to ensure detection of change in an 

already highly variable environment. Both sampling resolution and extent can be defined using 

natural scales of biological variation rather than arbitrary or convenience scales (e.g. annual 

surveys during open water season), allowing the distinction between “natural” variability from 

differences in the timing or resolution of sampling. A continuous, long term characterization of 

biological patterns can be used to identify a baseline, and subsequent deviations can be quantified 

to characterize and determine change. 

  



 

 

40 

Chapter 3. MACROSCOPIC TEMPORAL PATTERNS AND 

ENVIRONMENTAL DRIVERS OF ARCTIC COD 

(“BOREOGADUS SAIDA”) DENSITIES IN THE NE CHUKCHI 

SEA 

3.1 INTRODUCTION 

Changes in the Arctic environment are indisputable. Increases in water temperature over the last 

century that have intensified since 1995 (Steele et al. 2008) are coupled with drastic reductions in 

the duration of the sea-ice covered season (Serreze et al. 2016), summer minimum and winter 

maximum sea-ice spatial extents (Comiso and Parkinson 2004), and sea-ice and snow cover 

thickness (Kwok 2018). Changes in sea-ice affect the entire underwater climate as sea-ice 

modulates underwater light irradiance, sea surface temperature, stratification/mixing of the water 

column and subsequent nutrient replenishment (Mundy et al. 2005; Hill et al. 2018b). Impacts of 

climate warming on biological communities have been documented for arctic marine ecosystems 

including an increase in primary production (e.g. Arrigo and van Dijken 2015; Lewis et al. 2020), 

a shift towards smaller phytoplankton and zooplankton species (e.g. Hop et al. 2006; Li et al. 2009; 

Møller and Nielsen 2020), changes in species phenology (e.g. Søreide et al. 2010; Ji et al. 2013; 

Ardyna and Arrigo 2020), and northward expansion of boreal fish and zooplankton species 

distributions (e.g. Fossheim et al. 2015; Polyakov et al. 2020) 

Biological responses to large and rapid changes in the physical environment at high 

latitudes remain poorly understood (Grebmeier 2012; Post et al. 2013; Assmy et al. 2017; 

Drinkwater et al. 2018). This lack of understanding is attributed to the uncertainty of the overall 

effects of changes in combined factors (e.g. increase in light availability due to thinner ice and 
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snow cover or the decrease in light availability due to increased cloud cover) and limited, long 

term synchronous measurements of biological and physical environmental components. A better 

understanding of biological responses to further changes in the Arctic ecosystem requires 

identification of primary environmental factors associated with current biological patterns, and the 

characterization (i.e. strength and shape) of those associations using long term physical and 

biological time series. 

Sea ice and water temperature have been proposed as the main environmental factors 

influencing fish and zooplankton biomass and behavior patterns. Sea ice constitutes a habitat for 

sea ice algae and regulates the light available for primary production (Søreide et al. 2010; Janout 

et al. 2016). Changes in sea ice thickness and break-up timing potentially affects timing and 

amplitude of sea ice algae and phytoplankton blooms, that in turn, affect zooplankton and fish 

production (Arrigo et al. 2012b, 2014; Arrigo and van Dijken 2015). Fish and zooplankton 

production are also affected by water temperature that is crucial for their optimal reproduction and 

development (Leu et al. 2011).  

Arctic cod (Boreogadus saida) is the most abundant fish species in Arctic waters and has 

been identified as a species of potential commercial importance in the Arctic Fishery Management 

Plan (NPFMC 2009). This dominant species constitutes a key link between lower and higher 

trophic levels within the Arctic ecosystem (Welch et al. 1992; Whitehouse et al. 2014) being an 

important prey for birds, seals and whales (Bluhm and Gradinger 2008; Harter et al. 2013). Arctic 

cod lives in association with sea ice, where it feeds and spawns (Graham and Hop 1995; Bouchard 

and Fortier 2011). Therefore, changes in sea ice concentrations and timing will have direct and 

indirect effects on temporal patterns of Arctic cod densities that will affect the flow of energy in 
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marine Arctic food webs and the services they provide to northern communities (Darnis et al. 

2012). 

Four years of continuous, high-resolution biological and physical data streams from the 

Chukchi Ecosystem Observatory (CEO) will be used to (1) characterize macroscopic patterns in 

Arctic cod densities and (2) identify and quantify relationships between Arctic cod densities and 

environmental factors in years with different environmental conditions. Understanding bio-

physical patterns in years with different sea ice conditions can help elucidate potential biological 

responses to further changes in the Arctic Ocean. 

 

3.2 METHODS 

3.2.1 Study area 

The CEO is located on the NE Chukchi Sea shelf between Hanna Shoal and Barrow Canyon (71° 

35.976’ N, 161° 31.621’ W) at 46 m depth (Figure 2.1). Located in the midst of a hotspot of benthic 

biomass (Grebmeier et al. 2015), the CEO area attracts populations of upper trophic level 

consumers (Jay et al. 2012; Hannay et al. 2013). The CEO seascape varies seasonally with a late 

fall and winter homogeneous water column with thickening sea ice and light-limited primary 

production (Weingartner et al. 2005), and a spring with diatoms and sea ice algae blooms triggered 

by the return of light (Gradinger 2009; Arrigo et al. 2014). When sea ice starts to melt after May, 

a stratified, warmer, nutrient-rich water column triggers massive phytoplankton blooms under the 

ice (Arrigo et al. 2012a) that continue through the summer (Hill et al. 2018a). In the fall, the 

intensification of winds and diminishing solar input allows the water column to re-homogenize 

and surface waters are replenished with nutrients that supports fall phytoplankton blooms until 

sunlight fades. 



 

 

43 

The Chukchi Sea continental shelf waters are highly influenced by northward-flowing 

waters from the North Pacific carrying heat, freshwater, and nutrients through the Bering Strait 

(Figure 2.1). This transport is driven by a seasonally fluctuating Pacific–Arctic pressure head 

(Stigebrandt 1984; Aagaard et al. 2006) that transmits 1.0–1.2 Sv during summer and 0.5–0.6 Sv 

during winter months (Woodgate et al. 2005a). Water flowing through Bering Strait is routed 

across the Chukchi shelf along three main pathways: Herald Canyon in the west, Barrow Canyon 

in the east and the Central Channel across the mid-shelf, although wind driven and other 

fluctuations episodically modify or even reverse these flows (Weingartner et al. 2005; Woodgate 

et al. 2005b). 

3.2.2 Environmental data 

A set of environmental data collected at the CEO during the study period (2016–2019) was 

supplemented with data from other sources for this study. Midwater measurements of salinity, 

temperature, photosynthetically active radiation (PAR), fluorescence, and nitrate concentration 

were collected hourly at the CEO using a Sea-Bird Scientific SBE-16 SeaCat and a Satlantic 

SUNA sensor deployed at 28–33 m depth. Bottom temperature and salinity measurements were 

collected hourly using a Sea-Bird SBE-37 MicroCat located at a depth of 43 m (seafloor depth of 

46 m). 

In situ fluorescence concentration measurements (a proxy for chlorophyll a concentration) 

were not available for the August 15th 2017–August 5th 2018 period and were predicted using the 

auto-sklearn machine learning tool kit (Feurer et al. 2015). The automatic machine learning 

framework takes a Bayesian optimization algorithm as the core method to conduct the automation 

of feature engineering, classifier selection, and hyper-parameter adjustment (Feurer et al. 2015). 

This method involved fitting a statistical model to observed in situ fluorescence based on daily 
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averages of all the variables described, and then using model-based predictions when observations 

were absent. Daily measurements of chlorophyll a from the MODIS sensor on the NASA Aqua 

satellite (https://polarwatch.noaa.gov/) were also included as a predictor in the models. A 10-fold 

cross validation data resampling method was used to split the dataset into train and test samples. 

The coefficient of determination (R2) between observed and predicted fluorescence values was 

used as the optimization metric during training. The accuracy of predictions was evaluated using 

R2, mean absolute percentage error, and root mean squared error (RMSE). 

Daily averages of satellite-based sea ice concentration (%) data were downloaded from the 

National Snow and Ice Data Center (NSIDC) archive 

(http://nsidc.org/data/seaice/pm.html#pm_seaice_conc) (Maslanik and Stroeve 1999). Sea ice 

retreat and advance days were identified for each year, defined as the first day with sea ice 

concentration less than 30% and exceeding 30% each year, respectively (Serreze et al. 2016). Daily 

sunrise and sunset times at the CEO obtained using the ‘sunriset’ function of the R package 

maptools (v. 0.9-9, Bivand & Lewin-Koh 2019) were used to calculate daylength, a proxy of light 

irradiance throughout the year. Daily air temperatures recorded at the nearby coastal city of 

Utqiaġvik were obtained from the U.S. climate data website 

(https://www.usclimatedata.com/climate/barrow/alaska/united-states/usak0025). Hourly wind 

speed data for the CEO location were obtained from the Copernicus Climate Change Service 

(Hersbach et al. 2018). 

3.2.3 Acoustic data acquisition 

Four years (2016–2019) of active acoustic data were used to characterize temporal patterns in 

Arctic cod densities in the Chukchi Sea (Figure 2.1Error! Reference source not found.). 

Acoustic backscatter data, a proxy for fish density, were collected using an ASL, Acoustic 
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Zooplankton Fish Profiler (http://www.aslenv.com/AZFP.html), deployed at 28–35 m depth 

(depending on year), looking upwards. The instrument operated at 38 (12°), 125 (8°), 200 (8°), 

and 455 (7°) kHz (nominal beam width, measured between half power points given in parenthesis). 

The AZFP collected data every 15 seconds (0.067 Hz) at a vertical resolution of 4 cm. Every 

summer, a new mooring with a manufacturer-calibrated AZFP was deployed followed by the 

recovery of the previous mooring to ensure continuity of data collection.  

3.2.4 Acoustic data processing and classification 

Acoustic data from the CEO was processed using Echoview software (v. 11.0). Background noise 

of -135.45 dB re 1 m-1 (hereafter dB) was subtracted and a minimum signal-to-noise ratio filter of 

6 dB was applied to each analytic cell. Backscattered energy within 3 m from the face of the 

transducer were excluded from the analyses to avoid the integration of echoes in the acoustic near-

field. Sea water surface and sea ice edges were delimited using Echoview’s linear offset operator 

algorithm followed by visual inspection and manual correction. A surface exclusion line was set 

0.5 m below the corrected surface and echoes above the line were excluded to ensure that 

backscatter from surface turbulence or sea ice were not included in analyses. 

Acoustic backscatter corresponding to fish was discriminated from other sources of 

backscatter using differences in mean volume backscattering strength (MVBS) (Madureira et al. 

1993; Kang et al. 2002; Korneliussen and Ona 2003) between 125 and 38 kHz data (ΔMVBS125-

38 kHz). Backscatter measurements were averaged in 4 pings (1 min) horizontal by 1 m vertical 

cells for each frequency. Cells with ΔMVBS125-38 kHz values in the range of -16 to 8 dB were 

classified as fish (cf. De Robertis et al. 2010). A minimum volume backscattering strength (Sv) 

integration threshold of -70 dB was applied to the 38 kHz (“fish”) data (c.f. De Robertis et al. 



 

 

46 

2017b). Fish Sv values were integrated into hourly averages from January 1, 2016 to December 

31, 2019. 

Although no direct fish sampling was conducted in association with acoustic 

measurements, we can rely on catch data from fisheries surveys carried out in the NE Chukchi Sea 

to attribute most of the observed fish backscatter to Arctic cod (Boreogadus saida). Arctic cod 

accounted for 81–90% of total fish biomass and abundance from bottom (Barber et al. 1997; 

Goddard et al. 2014; Sigler et al. 2017; Logerwell et al. 2018) and pelagic (Lowry and Frost 1981; 

De Robertis et al. 2017) trawl surveys conducted from spring through autumn, ice-free seasons. 

From four midwater trawls conducted on Hanna Shoal in close proximity to the CEO in summer 

of 2017, Levine and De Robertis (pers. comm) observed that Arctic cod constituted the majority 

of fish biomass (63–99%) and abundance (93–99%). Other species caught near Hanna Shoal 

included capelin (Mallotus villosus), Lumpenus spp, staghorn sculpin (Gymnocanthus tricuspis), 

and Liparidae snailfish. As further support of this backscatter categorization, age-0 (i.e born within 

the past year) Arctic cod was the dominant contributor to 38 kHz backscatter in the northern region 

of the Chukchi Sea in acoustic-trawl surveys conducted in 2012 and 2013 as part of the Arctic 

Ecosystem integrated survey (De Robertis et al. 2017) and constituted > 85% of the catch per unit 

effort in a 2019 survey in the Chukchi Sea (Levine et al. 2021). 

3.2.5  Data analysis 

3.2.5.1 Macroscopic characterization of temporal patterns in Arctic cod 

backscatter 

Ecosystems have complex dynamics that result from the combined effects of population dynamics, 

environmental variability, and species interactions. Macroscopic patterns (e.g. power laws and 

fluctuations distributions) are useful to provide general descriptions of a system without including 
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detailed information on interacting agents (Maurer 1999; Cohen et al. 2012; Segura et al. 2021). 

These macroscopic patterns allow to characterize dynamical and static patterns and compare 

among populations, ecosystems, or environmental conditions. 

3.2.5.1.1 Taylor’s power law 
One effective way to summarize temporal patterns of a species is using Taylor's power law 

(TPL). TPL states that the spatial or temporal variance (V) in population abundance (N) is related 

to the mean (M) population abundance via: V[N]=aM[N]b; b ~ 2) (Taylor 1961), with the 

coefficient a and the scaling exponent b. Conceptually, the scaling component b captures the level 

of aggregation between individuals in a population, while the coefficient a is considered an artefact 

of sampling methodology (Taylor 1961). When mean–variance pairs are estimated from 

abundances measured through time at the same location, the temporal aggregation in the 

populations is described. This is referred to as temporal TPL, where the scaling exponent, b, can 

be considered a measure of the magnitude of fluctuations in population abundance through time. 

The scaling exponent has been used as an ecological metric to compare fish populations between 

regions of contrasting environmental characteristics (e.g. Cobain et al., 2019; Mellin et al., 

2010), at varying levels of fishing pressure (e.g. Cohen et al., 2012; Fujiwara & Cohen, 2015; Kuo 

et al., 2016; Segura et al., 2021), and between fish species with different life histories (e.g. Kuo et 

al., 2016). 

Daily mean and variance in backscattering strength from Arctic cod were calculated from 

hourly values of the volume backscatter coefficient (sv: units: m-1; linear form of Sv [dB]). Days 

with less than 5 backscatter observations were excluded from the analysis to avoid bias in variance 

estimates. The TPL exponent and coefficient were estimated from the linear relationship of the 

base 10 logarithms of the sample’s sV variance and mean described by: 
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 !"#!"(%['#]) = !"#!"(+) + -	!"#!"(/['#]) + 	0	 (3.1) 

 

where 0 is the residual error. TPL exponents and coefficients estimated using ordinary least 

squares linear relationships were compared among years. The null expectation for Taylor’s power 

law for temporal variation is that the slope of the log variance versus log mean plot equals 2. 

Confidence intervals (95% level) were used to contrast estimated scaling exponents against the 

null hypothesis and to compare the exponents among years. 

3.2.5.1.2 Backscatter fluctuation distributions 
To characterize and compare Arctic cod population dynamics among years with different 

environmental conditions, I analyzed the distribution of fluctuations in Arctic cod mean Sv. Daily 

fluctuations in backscatter values (r) were calculated as the first difference between daily values 

of Sv for each year: 

 r = 2$%! − 2$	 (3.2) 

where N are Sv values in a 10*log10 scale (dB). To identify what type of distribution better 

describes backscatter fluctuations at the CEO, a suit of candidate distributions including Gaussian 

distribution, t-distribution, skewed t-distribution and mix of Gaussians were fitted to Sv daily 

fluctuations each year. These distributions have been previously used to describe population 

fluctuations (e.g. Halley and Inchausti 2002; Anderson et al. 2017). The distributions were fitted 

using the R packages MASS (Venables and Ripley 2002), fGarch (Wuertz et al. 2020), and mixtools 

(Benaglia et al. 2009). For each year, a model (i.e. adjusted distribution) was selected using the 

Akaike Information Criterion (AIC). 
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3.2.5.2 Environmental drivers of Arctic cod densities 

To identify associations between Arctic cod densities and environmental variables at the CEO I 

used Generalized Additive Models (GAMs). GAMs are nonlinear regression models in which the 

relationships between the response variable and the predictor variables are modeled using 

nonparametric smooth functions (Hastie and Tibshirani 1990; Wood 2004, 2017). GAMs represent 

an effective modeling approach for assessing the responses of fish communities to environmental 

factors (e.g. Sigler et al. 2015; Logerwell et al. 2018; Forster et al. 2020). The advantage of this 

method is that it is not necessary to specify the type of relationship between the variables a priori 

because these can be determined from the data. Specifically, given a response variable y and a set 

of m predictor variables x (covariates), the relationship between the two is established by: 

 4& = 5 +	∑ ''78'&9 + :&
(
')! 	 (3.3) 

 

The error term, ei is generally assumed to be independent and identically distributed with 

zero mean and common variance. The gj are smooth nonparametric functions estimated using thin 

plate regression splines (Wood 2017). Smoothing parameters were selected using restricted 

maximum likelihood (REML) which penalizes overfitting more than other methods (Wood 2011). 

Daily averages of mean volume backscattering strength attributed to Arctic cod were used as a 

response variable. Days with no backscatter (7% of measurements) were excluded so fitted GAMs 

describe the densities of Arctic cod when present. Daily averages of midwater and bottom 

temperature and salinity, sea ice concentration, number of days after sea ice retreat, air 

temperature, chlorophyll a concentration, PAR, nitrate concentration, wind speed, and daylength 

were included as covariates in candidate models. Year was included as a factor in all models. Time 

series of environmental covariates included in candidate GAMs are shown in Appendix D. 
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Collinearity among covariates was identified from the variance inflation factor (VIF) using a value 

of less than 5 as a cutoff for inclusion of covariates in the same candidate model (Zuur et al. 2009). 

GAMs were fitted using the mgcv (version 1.8–38; Wood, 2017) package in R using a 

Gaussian distribution and identity link function. To account for autocorrelation in the time series, 

an AR(1) (i.e. autocorrelation of order one) term was included in all candidate models. The model 

with the lowest AIC was selected. Residuals from each model were visually compared to the 

normal distribution using quantile-quantile plots. Autocorrelation functions (ACF), and partial 

autocorrelation functions (PACF) were calculated to check for any remaining autocorrelation 

within the residuals. 

 

3.3 RESULTS 

3.3.1 Macroscopic temporal patterns in environmental variables and Arctic cod backscatter 

Sea ice retreat occurred earlier in 2017 (June 3rd) and 2019 (May 12th) compared to 2016 (July 

13th) and 2018 (July 14th) (Figure 3.1a). Sea ice advance occurred later in 2017 (December 5th) and 

2019 (December 7th) compared to 2016 (November 21st) and 2018 (November 23rd) (Figure 3.1a). 

This resulted in longer open water periods (i.e. period between retreat and advance dates) in 2017 

(185 days) and 2019 (209 days) than in 2016 (131 days) and 2018 (132 days). Retreat and advance 

dates in 2016–2019 were up to two months earlier than the historic mean retreat date (July 27th) 

and about one month later than the historic advance date (October 31st) resulting in open water 

seasons longer than the historic average of 96 days. Annual average sea ice concentrations were 

lower in 2017 (43%) and 2019 (40%) than in 2016 (58%) and 2018 (57%). Annual average sea ice 

concentrations for all years were below the historic (1975–2015) annual average of 67%. 



 

 

51 

Maximum midwater temperatures recorded at the CEO were greater in 2017 (3.87 °C) and 

2019 (3.83 °C) than in 2016 (2.11 °C) and 2018 (1.31 °C) (Figure 3.1b). Midwater temperature 

peaks occurred on October 28th in 2016, October 6th in 2017, November 15th in 2018, and on 

November 1st in 2019 (Figure 3.1b). Average midwater temperatures were -1.04 °C in 2016, -0.53 

°C in 2017, -1.31 °C in 2018, and -1.02 °C in 2019. Midwater temperatures in 2017 and 2019 were 

higher than in 2016 and 2018 during late spring–early summer (June–mid July) and during Autumn 

(late October–mid November) (Figure 3.1b). 

Years 2016 and 2018 (hereafter “cold” years) were characterized by later sea ice retreat, 

earlier advance, greater sea ice concentration, and lower water temperatures than 2017 and 2019 

(hereafter “warm” years). 

Peaks in fish backscatter attributed to Arctic cod had higher amplitude and occurred earlier 

in the summer in “warm” than in “cold” years (Figure 3.1c). Peak Sv values of -80.97 dB 

(9/29/2016), -70.60 (7/31/2017), -82.81 dB (9/2/2018), and -77.80 dB (8/19/2019) were observed 

in the 7-day smoothed series (Figure 3.1c). In “warm” years, peak values were ~3–12 dB greater 

than in “cold” years corresponding to ~2–16 times more fish in years with earlier sea ice retreat 

and higher water temperatures. Peaks in Sv values occurred 14–60 days earlier in “warm” than 

“cold” years. Peaks in Sv occurred 78 days after sea ice retreat in 2016, 58 days in 2017, 50 days 

in 2018, and 99 days in 2019. 
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Figure 3.1. Biological and physical patterns at the Chukchi Ecosystem Observatory. (a) Daily 

sea ice concentration from satellite data. Grey circles represent values from 1978–2015 and the 

grey line represents the average sea ice concentration for that period. (b) Daily averages of in situ 

measurements of midwater temperature. (c) Daily mean backscattering strength (mean Sv) values 

corresponding to Arctic cod. Lines represent weekly moving averages and horizontal lines indicate 

days from sea ice retreat date to the peak in Arctic cod backscatter each year. 

 

The medians of the non-zero backscatter values were greater (Kruskal-Wallis p < 0.05) in 

“warm” years (-95.10 dB in 2017 and -95.31 dB in 2019) than in “cold” years (-101.47 dB in 2016 

and -101.10 dB in 2018 (Figure 3.2). Most frequent backscatter values were ~ -100 dB all years 

but a second mode at relatively high backscatter values (greater than ~ -85 dB) was observed 

during “warm” years (Figure 3.2). During “cold” years the percentages of hours with no 

backscatter were greater (69% in 2016 and 63% in 2018) than in “warm” years (51% in 2017 and 

43% in 2019). 
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Figure 3.2. Distribution of daily averages of hourly mean backscattering strength (mean Sv) 

values corresponding to Arctic cod (Boreogadus saida) for 2016–2019. The dashed line indicates 

the median. 

 

Peaks in variance occurred 27–56 days earlier in “warm” years than in “cold” years (Figure 

3.3). Highest variances were observed during autumn months in 2016 (October 7th) and 2018 

(September 11th) and in the summer in 2017 (August 12th) and 2019 (August 14th). Overall, 

variability was highest in 2017 (-153.40 dB) followed by 2016 (-157.16 dB), 2019 (-167.03 dB), 

and 2018 (-172.64 dB). In “warm” years variance was higher than “cold” years during July–

September and mid-January–April. 
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Figure 3.3. Variance calculated over a 1-day period from hourly mean backscattering strength 

(mean Sv) values corresponding to Arctic cod (Boreogadus saida). Lines represent lowess 

smoothing with window size =0.2 for each year. 

3.3.1.1 Backscatter mean and variance: Taylor’s power law 

Significant log–log relationships between variance and mean sV were observed all years at the 

p=0.05 level with coefficients of determination (R2) greater than 0.94 (Figure 3.4). Variance 

increased faster (i.e. slope b significantly greater) in 2016 (b=2.36) and 2018 (b=2.16) than in 

2017 (b=1.79) and 2019 (b=1.93). The scaling exponent b was significantly greater than the 

theoretical value of 2 in “cold” years, and significantly below 2 in “warm” years (Figure 3.4). 

These observations suggest that overall, Arctic cod at the CEO experiences greater temporal 

fluctuations (i.e. shorter persistence time) in density during “cold” years than in “warm” years. 

Regression lines intersect each other at log10M(sv) ~ -9 dB (mean Sv = -90 dB) with “warm” years 

exhibiting higher variability at low fish densities and lower variability at relatively high densities 

than “cold” years. 
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Figure 3.4. Relationship between daily averages and variance calculated from hourly 

backscattering values corresponding to Arctic cod (Boreogadus saida) at the Chukchi Ecosystem 

Observatory. The quantity sv is the volume backscatter coefficient (linear form of volume 

integrated energy Sv [dB]), units: m-1. 

3.3.1.2 Backscatter fluctuations distributions  

Daily fluctuations in Arctic cod backscatter values did not follow a Gaussian distribution (Shapiro-

Francia test p < 0.05) but were adequately described by a t-distribution (Table 3.1) in all years. In 

2018, the AIC was lowest for the mix of Gaussian distributions but very close to the AIC for the 
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t-distribution (DAIC = 4.461) so the latter was selected to enable parameter comparison among 

years. The standard deviation of the fitted t-distributions were significantly lower in 2019 and 

significantly greater in 2018 than the rest of the years but no significant differences were observed 

for the mean and degrees of freedom among years (Figure 3.5). The mean was close to 0 in all 

years indicating an absence of any trend in density fluctuations each year. 

Table 3.1. Akaike information criterion (AIC), AIC differences (∆AIC), and log likelihood for 

candidate theoretical distribution models fitted to empirical backscatter fluctuations distributions 

for each year of deployment (2016–2019) at the Chukchi Ecosystem Observatory. 

 

Year Model AIC ∆AIC log likelihood 

2016 

t 2031.492 1.89 -1012.746 

t skewed 2033.382 6.446 -1012.691 

mix Gaussians 2037.938 48.62 -1013.969 

Gaussian 2080.112 1.89 -1038.056 

     

2017 

t 2013.348 0 -1003.674 

mix Gaussians 2014.203 0.855 -1002.101 

t skewed 2015.137 1.789 -1003.569 

Gaussian 2101.549 88.201 -1048.774 

     

2018 

mix Gaussians 2106.711 0 -1048.355 

t 2111.172 4.461 -1052.586 

t skewed 2113.051 6.34 -1052.526 

 Gaussian 2177.938 71.227 -1086.969 

  
 

2019 

t 1939.535 0 -966.767 

t skewed 1940.955 1.42 -966.478 

mix Gaussians 1949.08 9.545 -969.5398 

 Gaussian 2020.189 80.654 -1008.095 
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Figure 3.5. Estimated mean, standard deviation, and degrees of freedom from fitted t-

distributions for each year (2016–2019). 

 

3.3.2 Environmental drivers of Arctic cod densities 

Arctic cod backscatter was predominantly associated with bottom temperature, days after sea ice 

retreat, midwater salinity, PAR, daylength, and the cube of wind speed (Figure 3.6 and Table 3.2). 

The resulting GAM had an R2 of 0.626 and the autocorrelation of the residuals was reduced 

significantly by the inclusion of an autoregressive lag 1 process in the model. The relationship 

between Arctic cod densities and bottom temperature was linear and slightly positive (Figure 3.6). 

The association between Arctic cod and sea ice was positive from ~ 30 days before and until ~ 100 

days after sea ice retreat when fish densities started to decrease. Highest backscatter values were 

observed at salinities above 32, cubed wind speed of less than 1000 (m3/s-3), PAR values of 5–7 

;mol photons m-2 sec-1, and daylengths of 10–20 hours (Figure 3.6). Parametric coefficients (i.e. 

intercepts) significantly differed between “cold” (2016 and 2018) and “warm” years (2017 and 

2019) (Figure 3.7). 
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Table 3.2. Results of Generalized Additive Models for Arctic cod (Boreogadus saida) 

backscatter at the Chukchi Ecosystem Observatory.Mw. temp.: midwater temperature, mw. 

salinity: midwater salinity, ice retreat: days after sea ice retreat, ws: wind speed, PAR: 

photosynthetically active radiation, chl-a: chlorophyll a concentration, sea ice %: sea ice 

concentration, NO3: nitrate concentration, b. temp: bottom temperature, b. salinity: bottom salinity. 

 

Model AIC ∆AIC 
Mw. temp. + ice retreat + mw. salinity + ws3 + PAR + daylength 8791.14 0 

B. temp. + ice retreat + mw. salinity + chl-a + ws3 +PAR + daylength 8794.258 3.118 

B. temp. + ice retreat + mw. salinity + chl-a + ws3 + PAR + daylength + NO3 8796.438 5.298 

B. temp. + ice retreat + mw. salinity + chl-a + ws3 + PAR 8809.9 18.76 

Air temp. + mw. salinity + sea ice % + NO3 + daylength + PAR + ws 8862.274 71.134 

Mw. salinity + sea ice % + NO3 + daylength + PAR + ws 8862.94 71.8 

Mw. temp. + mw. salinity + sea ice % + NO3 + daylength + PAR + ws 8863.786 72.646 

Mw.temp. + mw. salinity + sea ice % + NO3 + daylength + PAR + chl-a + ws 8866.059 74.919 

B. temp. + mw. salinity +  sea ice % + NO3 + daylength + PAR + chl-a + ws 8866.621 75.481 

B. temp. + mw. salinity + sea ice % + NO3 + daylength + PAR + chl-a 8869.056 77.916 

B. temp. + sea ice % + mw. salinity + chl-a + ws3 + PAR 8891.294 100.154 

B. temp. + sea ice % + mw. salinity + chl-a + ws3 8896.673 105.533 

B. temp. + sea ice % + mw. salinity + chl-a 8898.18 107.04 

B. temp. + sea ice % 8910.002 118.862 

B. temp. + sea ice % + b. salinity 8912.937 121.797 
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Figure 3.6. Partial effects of covariates included in the Arctic cod (Boreogadus saida) 

backscatter Generalized Additive Model. Grey areas indicate 95% confidence intervals. Points 

correspond to residual values. 
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Figure 3.7. Partial effects of year in the Arctic cod (Boreogadus saida) backscatter Generalized 

Additive Model. The envelope encompassing the mean values indicates the standard error for each 

year. 

3.4 DISCUSSION 

3.4.1 Temporal patterns in environmental variables and fish backscatter 

The two sets of sea ice and water temperature characteristics observed in 2016/2018 and 

2017/2019 are attributed to differential northward heat fluxes through the Bering strait. Sea ice 

retreat and advance dates in the Chukchi Sea are mainly associated with mean northward transport 

of warmer Pacific waters through the Bering Strait during April–June and during the summer 

months, respectively (Serreze et al. 2019). In 2017, moorings in the Bering Strait recorded one of 

the highest heat inflows in the last three decades (Woodgate and Peralta-Ferriz 2021). This high 

heat inflow was a result of combined high water transport (~ 1.2 Sv) and temperatures of 4 °C as 



 

 

61 

early as June, ~ 0.2 Sv and two degrees higher than those recorded in 2016, 2018, and the 

climatological average for the same month (Woodgate and Peralta-Ferriz 2021). This upstream 

observation is consistent with the resulting early sea ice retreat and the long open water season in 

the Chukchi Sea during 2017 and probably 2019, the two years with lowest sea ice concentrations 

on record in the area (Serreze et al. 2019). Greater northward heat fluxes through the Bering Strait 

and longer exposure to solar radiation due to earlier retreat and later advance of sea ice are also 

consistent with the higher temperatures (1.7–2.7 °C more) recorded at the CEO in 2017 and 2019 

than in 2016 and 2018. 

Contrasting patterns in fish acoustic backscatter were observed between years with 

different sea ice and temperature conditions, emphasizing the important role of these physical 

factors on the Chukchi Sea ecosystem. Higher peaks in fish density and variance occurring earlier 

in the summer during years with early sea ice retreat and high temperatures is attributed to a 

combination of (1) earlier and increased transport of age-0 Arctic cod from spawning areas; (2) 

enhanced local primary production followed by increased secondary production due to an earlier 

sea ice retreat; and (3) increased growth rates of fish due to higher temperatures. 

Arctic cod aggregations found in the NE Chukchi shelf are mainly comprised by small, 

age-0 individuals possibly advected from spawning areas located further South (De Robertis et al. 

2017; Forster et al. 2020; Levine et al. 2021). Arctic cod potential spawning areas have been 

proposed near St. Lawrence Island in the northern Bering Sea, east of the Chukotka peninsula in 

western Bering Strait, and the Beaufort Sea (Kono et al. 2016; Vestfals et al. 2019; Mueter et al. 

2020). Arctic cod spawn under sea ice during autumn and winter (Graham and Hop 1995), and 

early stages of Arctic cod are believed to be advected into the NE Chukchi shelf by ocean currents 

in the spring (Forster et al. 2020; Levine et al. 2021). Higher fish densities occurring earlier in the 
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summer at the CEO were associated with high northward water transport from the northern Bering 

and southern Chukchi Seas into the northern Chukchi Sea in 2017 and 2019. This water flux 

supports the hypothesis that early stages of Arctic cod could be advected into the study area by 

prevailing northward currents in the spring. Highest backscatter values were observed in 

Bering/Chukchi Summer Water (BCSW) (Figure 3.8 and see Figure 1 of Appendix D) that flows 

north into the Chukchi Sea from the northern Bering Sea shelf (Danielson et al. 2017a) providing 

further support for the hypothesis of Arctic cod advection from the south rather than advection 

from potential spawning sites in the Beaufort Sea. 

Earlier sea ice retreat could, through earlier increases in water column light irradiance and 

stratification, have propitiated the earlier and extended periods of high chlorophyll concentrations 

and enhanced Arctic cod densities observed at the CEO in 2017 and 2019 (Figure 3.8 and see 

Figure 2 in Appendix D). Arctic cod larvae hatch under sea ice from January to July and develop 

in surface waters over spring and summer (Bouchard and Fortier 2011; Geoffroy et al. 2016). In 

general, early hatchers (i.e. those hatching during winter/early spring) have the advantage of an 

extended growing season that leads to larger pre-winter sizes (Fortier et al. 2006; Bouchard and 

Fortier 2011) at the end of the growth year. Large pre-winter sizes are associated with enhanced 

winter survival through increased lipid content, predator avoidance, resistance to starvation, and 

physiological tolerance (e.g. Hunt et al. 2011). Later hatching during times when temperature, 

light, and food are at their maximum would result in a shorter growing season and sizes too small 

to ensure winter survival (Bouchard et al. 2017). It has been observed that early sea ice breakup 

favors higher densities of larger pre-winter Arctic cod (Bouchard et al. 2017). In the Canadian 

Arctic, the biomass of juvenile Arctic cod in late September was 11 times greater for an early May 

ice breakup (< 50 % ice cover) compared to a late September ice breakup (Bouchard et al. 2017). 
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These observations are consistent with the 2–16 times greater fish densities for a May/June sea ice 

retreat (2017 and 2019) compared to a July sea ice retreat (2016 and 2018) observed at the CEO. 

Earlier ice retreat and warmer waters enhance growth and survival of early hatchers by 

increasing food availability earlier in the year relative to years with late sea ice retreat (LeBlanc et 

al. 2019b). Earlier phytoplankton blooms and extended periods of primary productivity have been 

observed in association with decreased sea ice in the Chukchi Sea, northern Barents Sea, and the 

Canadian Arctic (Zhang et al. 2015; Kahru et al. 2016; LeBlanc et al. 2019b). An advanced and 

extended bloom results in an earlier and more intense production of copepod nauplii and 

copepodites (LeBlanc et al. 2019b), the preferred prey of age-0 Arctic cod (Bouchard et al. 2016). 

In this study I observed that early sea ice retreat in June 2017 was associated with earlier and 

extended periods of primary production and higher zooplankton densities (see Figure 2 and Figure 

3 in Appendix D). However, an ice retreat before June in 2019 did not result in an earlier bloom 

and lower zooplankton densities were observed compared to 2017. These observations support 

previous studies in the Canadian Arctic (LeBlanc et al. 2019b) and in the Bering Sea (Hunt et al. 

2002), and suggest a potential mismatch between copepods and their food when the ice breaks 

earlier than June (Leu et al. 2011). Arctic copepod species such as Calanus glacialis, time their 

seasonal migration, foraging, and reproduction to the ice algal and phytoplankton blooms (Leu et 

al. 2011). A mismatch between C. glacialis and its food can result in a fivefold lower biomass of 

C. glacialis in the summer that could in turn affect the recruitment of juvenile Arctic cod and upper 

trophic levels (Leu et al. 2011). 

Higher temperatures at the CEO during 2017 and 2019 could have contributed to enhanced 

growth that resulted in earlier and higher Arctic cod acoustic backscatter in the summer. 

Temperature influences growth rates of juvenile Arctic cod (Laurel et al. 2017) with a relatively 
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high growth at 0 °C and near-maximal growth at 5 °C (Laurel et al. 2016). Highest backscatter 

values were observed in Bering/Chukchi Summer Waters in 2017 and 2019 when temperatures 

(0–4 °C) were closest to the reported temperature for near-maximal growth of Arctic cod. Levine 

et al. (2021) observed an 87% increase in fish backscatter throughout the summer associated with 

increases in fish length (i.e. backscattering cross section), suggesting that growth of individuals 

could also contribute to the large backscatter increases observed in the area. 

Arctic cod typically disperse from nursery to adult habitats at higher depths (Geoffroy et 

al. 2016; Forster et al. 2020), likely the Beaufort and Chukchi slopes and Arctic basin (Levine et 

al. 2021), or colonize the ice pack as age-1 (David et al. 2016). Observed decreasing fish densities 

after October at the CEO could be due to a downward vertical movement of Arctic cod to depths 

below the transducer and/or to horizontal movement out of the Hanna Shoal area. In a previous 

study, we observed that fish targets descended to deeper waters after the summer where they stayed 

until February when they started moving upwards in the water column, reaching depths closest to 

the surface by the end of the summer (Chapter 1 and Gonzalez et al. 2021b). These observations 

suggest that not all individuals may leave the area in autumn, but that some may remain at depth 

until February when they move upwards closer to the sea ice, possibly as age-1. 

Changes in mean Arctic cod density were paralleled by changes in variance throughout the 

year. As fish densities increased, variance in daily backscatter, a proxy for density, increased. Once 

the Arctic cod population was established in the area, variance decreased and remained low. 

A summary of temporal patterns of Arctic cod and relevant environmental variables is 

presented in Figure 3.8. 



 

 

65 

 

Figure 3.8. Summary of temporal pattens in biological and physical variables in (a) “cold” 

years (2017 and 2019) and (b) “warm” years (2016 and 2018) at the Chukchi Ecosystem 

Observatory. WW: Winter Water, MWW: Modified Winter Water, cSW: cool Shelf Water, wSW: 

warm Shelf water. 

3.4.2 Relationship between fish backscatter mean and variance: Taylor’s power law 

Taylor’s power law scaling exponents (i.e. log-log regression slopes) from this study were within 

the typical b value range of 1.5 to 2.5, agreeing with previous empirical work (see Eisler et al., 

Sea ice Ice algae/Phytoplankton bloomSunlight Polar cod backscatter

b

a
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2008) but varied among years with different environmental conditions. In “warm” years, TPL 

slopes were significantly below the theoretical value of b = 2 (Taylor 1961). Kilpatrick & Ives 

(2003) demonstrated how negative interactions among species in a community can produce TPL 

slopes smaller than 2, which may be relevant to the NE Chukchi Sea. In warmer years, enhanced 

northward movement of Bering Sea species, especially walleye pollock (Levine et al. 2021), could 

lead to increased interspecific competition and reductions of the TPL slope compared to “cold” 

years when Arctic cod is the dominant species (De Robertis et al. 2017). Increased abundance of 

Arctic cod in “warm” years could also increase intraspecific competition through cannibalism, a 

behavior previously reported for this species in the Beaufort and Chukchi Seas (e.g. Benoit et al., 

2010; Gray et al., 2016) leading to reductions of the TPL slope. Observed lower fish temporal 

aggregation (i.e. lower temporal variability) at high fish densities in “warm” than in “cold” years 

are consistent with observations reported in a previous study at the CEO (Gonzalez et al. 2021, 

Chapter 1). Out-of-phase associations between water temperature and fish patchiness were 

observed with lowest fish and zooplankton aggregations occurring during months of highest fish 

and zooplankton densities (July–November).  

In “cold” years, when seasonality at the CEO is more accentuated (i.e. greater temporal 

variability), the TPL slope was greater than the theoretical value of 2. Greater slopes suggest higher 

temporal aggregation (i.e. greater temporal fluctuations) in Arctic cod densities with shorter 

persistence. Overall, the TPL scaling exponent b seems sensitive enough to track changes in fish 

density fluctuations under different sea ice and temperature conditions in the NE Chukchi Sea 

supporting previous empirical studies suggesting that TPL exponents do contain ecologically 

relevant information (e.g. Cobain et al., 2019; Lagrue et al., 2015; Taylor & Woiwod, 1982) and 

can be useful ecosystem metrics (Cobain et al. 2019). 
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3.4.3 Fish backscatter fluctuations 

Fish backscatter fluctuations at the CEO did not follow a Gaussian distribution and were 

better described by a t-distributions with low degrees of freedom (df ~ 3) characteristic of heavy 

tails. This suggests that large jumps in Sv from one day to the next are more likely than expected 

under a normal distribution. Heavy-tailed distributions have been recently reported for a range of 

taxa implying that extreme population fluctuations are more likely than previously expected and 

that a normal distribution underestimates the probability of extreme events (i.e. black-swan events, 

Segura et al. 2013; Anderson et al. 2017). However, Anderson et al. (2017) did not observe heavy-

tailed distributions in fish populations. In the present study, density fluctuations were measured at 

a scale smaller than the reproduction rate, so we are looking at the effects of migrations or 

movements in and out the sampled area rather than the effects of local predation, competition, or 

drastic changes in the environment that drive die-offs (Anderson et al. 2017) or outbreaks (Segura 

et al. 2013) described at other scales. Also, the amount of data used to characterize fluctuations in 

Anderson et al 2017 were lower than in the present study, precluding the characterization of 

extreme events. 

At the CEO, fluctuations of fish backscatter were symmetric and centered on zero (i.e. 

mean of the distribution ~ 0) indicating that large rate increases and decreases from one day to the 

next are equally likely. At the temporal resolution (daily) and the spatial extent of measurements 

(55 m2) centered, heavy-tailed distributions in density fluctuations could be explained by Arctic 

cod foraging behaviors. Probabilistic search patterns described by a type of random walk models 

known as Lévy flights have been demonstrated to be the optimal search strategy for marine 

predators in environments with patchy prey distributions (Sims et al. 2008; Humphries et al. 2010) 

such as those of Arctic cod prey in the Arctic (e.g. Blachowiak-Samolyk et al. 2006). Lévy flights 
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describe a movement pattern characterized by many small steps connected by longer relocation 

steps that could result in movements into and away from the acoustic beam providing a potential 

explanation to the observed heavy-tailed, non-skewed distributions in density fluctuations 

(Viswanathan 2010). The standard deviation of density fluctuations distributions was greater in 

2018 and smaller in 2019 compared to the rest of the years, suggesting that different foraging 

strategies could be in place. Variations in prey abundance and distribution (e.g. higher abundances 

distributed more uniformly) associated with changes in the physical environment could lead to 

changes in Arctic cod foraging strategies that may be reflected in daily or lower scale fluctuation 

distributions. A closer look at Arctic cod and zooplankton distributional patterns (e.g. mean 

location, dispersion, and aggregation in the water column) in association with Arctic cod density 

fluctuation distributions at daily and smaller scales under different environmental conditions could 

provide insight into this hypothesis. 

3.4.4 Environmental drivers of temporal patterns in Arctic cod backscatter 

Linkages between oceanographic variables and fish backscatter suggest that seasonal sea-ice 

dynamics and water mass advection are important for the ecology of Arctic cod. Sea ice conditions 

in winter and spring have been shown to explain Arctic cod densities in the summer (Bouchard et 

al. 2017; LeBlanc et al. 2019b). The timing of sea ice retreat affects the timing, amplitude, and 

duration of sea ice algae and phytoplankton blooms, which stimulates and supports secondary 

productivity, and ultimately determines available food resources for Arctic cod. LeBlanc et al. 

(2019) observed that zooplankton backscatter in August was more strongly correlated to ice 

breakup date and phytoplankton bloom onset date than to chlorophyll a concentration, indicating 

that the duration of the season of food availability rather than food abundance was likely the 

primary driver of zooplankton biomass in late summer. At the CEO, significance of days after sea 
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ice retreat, daylength, and PAR, but not of chlorophyll a concentration in this study also suggest 

that duration of food abundance rather than food abundance might be the primary driver of 

secondary production, and therefore of Arctic cod densities. 

Temperature and salinity have been reported as important variables associated with Arctic 

cod abundances (De Robertis et al. 2017; Logerwell et al. 2018; Forster et al. 2020). In this study, 

a linear, slightly positive association between temperature (range -2–4 °C) and Arctic cod density 

was observed. This trend is consistent with other studies that report a bell-shaped association 

between temperature and Arctic cod abundances with highest abundances at 4–6 °C (Vestfals et 

al. 2019; Forster et al. 2020), the temperatures for Arctic cod optimal growth (Laurel et al. 2016). 

Positive linear associations between Arctic cod and salinities up to 34 psu have also been observed 

in other studies (De Robertis et al. 2017; Forster et al. 2020). Temperature and salinity can be used 

to define water masses with characteristic nutrient concentration and phytoplankton composition 

(Danielson et al. 2017a), which have been shown to influence the distribution of Arctic cod and 

their prey (Eisner et al. 2013). Highest Arctic cod densities were observed in BCSW, specifically 

cool Shelf Water (cSW) and warm Shelf Water (wSW), and in Modified Winter Water (MWW) 

(Figure 3.8 and Figure 1 in Appendix D), which are the prevalent water masses at the CEO during 

spring, summer, and autumn (Danielson et al. 2020). BCSW is a nutrient-rich water mass 

(Danielson et al. 2017a) with a zooplankton community composed of lipid-rich calanoid copepods 

and euphausiids (Eisner et al. 2013), which are prey for Arctic cod (Rand et al. 2013). Lowest 

Arctic cod densities were observed during winter when Winter Water (WW) is the dominant water 

mass present in the area (Danielson et al. 2020). WW is characterized by lower nutrient 

concentrations than BCSW (Danielson et al. 2017a) and is composed of smaller zooplankton 

including Oithona similis and Pseudocalanus spp. (Eisner et al. 2013). These zooplankton species 
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are a less advantageous prey for Arctic cod given their smaller lipid content (Falk-Petersen et al. 

2009). Water mass distribution is influenced by advection and local changes in temperature and 

salinity driven by sea ice melt and formation cycles. Temporal variations in water masses influence 

nutrient and prey composition of the water column through time, ultimately affecting temporal 

patterns of Arctic cod densities at the CEO. 

Wind patterns determine sea ice drift and water mass movement that, in turn, affects 

distributions of Arctic cod and their prey. Wind-driven variations in water flow direction can 

explain interannual changes in age-0 gadid backscatter in the Chukchi and western Beaufort seas 

(Vestfals et al. 2019; Levine et al. 2021). Flow reversals associated with strong southward winds 

in the summer were used to explain the retention of Arctic cod in the Chukchi shelf in the summer 

of 2018, whereas autumn northward winds were responsible for the northward advection of age-0 

Arctic cod towards the Chukchi and Beaufort shelf breaks (Levine et al. 2021). 

3.5 CONCLUSIONS 

Four years of continuous biological and physical observations at the CEO provide evidence that 

sea ice is a key structuring factor of the Chukchi Sea ecosystem. This study supports previous 

observations that earlier sea ice retreat and increases in temperature associated with enhanced 

water transport from the NE Pacific could temporally benefit Arctic cod production in the NE 

Chukchi Sea. Earlier sea ice retreat results in greater and earlier peaks in Arctic cod densities and 

more stable populations (i.e. smaller fluctuations) by extending the growing season with favorable 

temperature and food conditions. Continuing changes in the physical environment could further 

alter the timing of biological processes that could lead to a mismatch of age-0 Arctic cod and their 

prey. Changes in water mass characteristics in the area could also alter the quality of Arctic cod 
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prey by replacing lipid-rich species such as Calanus glacialis and Calanus hyperboreous by 

smaller, relatively lipid-poor species such as the subarctic Calanus finmarchicus (Spear et al. 

2020). These changes in food availability and quality would likely impact Arctic cod growth and 

survival rates in the NE Chukchi Sea (Bouchard and Fortier 2020). Increasing temperatures and 

earlier transport off the Chukchi shelf due to increased northward advection of warm Pacific waters 

could limit age-0 growth prior to their first winter and may increase competition and predation 

pressure by increasing abundances of subarctic pelagic fish such as walleye pollock (Fossheim et 

al. 2015; Huntington et al. 2020; Levine et al. 2021). Further increases in temperatures above 

optimal could also be detrimental for egg development and age-0 Arctic cod growth. 

As high latitudes experience increased anthropogenic and climatological pressures, 

increased understanding of temporal patterns and environmental drivers of key components of the 

Arctic ecosystem, like Arctic cod, can be used to inform resource use and management decisions. 

This work provides baseline information on temporal patterns and environmental drivers of Arctic 

cod in the northeast Chukchi Sea and provides insight into the oceanographic processes and 

environmental characteristics that affect Arctic cod feeding, growth, and survival. 
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Chapter 4. REPRESENTATIVE RANGE OF ACOUSTIC POINT 

SOURCE MEASUREMENTS IN THE CHUKCHI SEA2 

4.1 INTRODUCTION 

Detecting and predicting biological responses to episodic perturbations (e.g. oil spills, marine 

heatwaves) and longer-term trends (e.g. global warming, ocean acidification) in marine 

environments requires a characterization and understanding of the ecosystem’s “natural” or 

baseline variability. However, characterizing biological variability is not easy because marine 

ecosystems are comprised of numerous physical and biological processes operating over multiple 

spatial and temporal scales (Stommel 1963; Haury et al. 1978; Levin 1992; Schneider 1994). 

Characterizing and monitoring biological variability in marine ecosystems requires high 

resolution, long-term (i.e. high scope) datasets that can be challenging to obtain due to limited 

resources or constrained accessibility. Such challenges are amplified in high latitude marine 

environments where the presence of sea ice during most of the year limits vessel-based sampling 

of the water column (e.g. Mueter et al. 2017; Spear et al. 2019). In these areas, data acquisition is 

typically limited in duration and/or resolution, fragmenting our understanding of important bio-

physical processes over the annual cycle.  

The use of echosounders attached to bottom-mounted platforms or moorings (i.e. stationary 

acoustics) provides a non-invasive technology to characterize and monitor temporal variability in 

abundance and behavior of pelagic organisms (e.g. Urmy et al. 2012; Horne and Jacques 2018; 

Gonzalez et al. 2021). Stationary acoustics can: (1) characterize “natural” or baseline conditions 

through continuous sampling of fish and zooplankton year-round; (2) quantify the amount of 

 
2 In press: Gonzalez S, Horne JK, Danielson SL, Lieber L, Lopez G. Representative range of acoustic point source 
measurements in the Chukchi Sea. Elementa. 
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change relative to baseline variability to help determine thresholds of environmental effects; and 

(3) monitor changes, episodic or trending, in pelagic organisms’ abundance or behaviors. The 

inclusion of active acoustics in instrumented platforms (i.e. marine observatories; e.g. Godø et al. 

2014) also allows the simultaneous and continuous collection of biological and physical data, 

which can be used to understand underlying mechanisms of observed biological patterns, a 

prerequisite to predicting biological responses to environmental change (Linder et al. 2017). 

Despite covering a wide spectrum of temporal scales (e.g. seconds to years), acoustic 

measurements from stationary echosounders are point source measurements and are limited in 

their spatial coverage. Since fish and zooplankton distributions are heterogeneous (i.e. patchy), 

biological similarity is expected to decay with geographical distance (Soininen et al. 2007). 

Beyond a certain distance, known as the representative range, meaningful inferences cannot be 

derived as uncertainty and interpolation errors are expected to increase (Martin et al. 2005; Anttila 

et al. 2008; Milewska and Hogg 2010). When monitoring a large spatial domain, multiple point 

measurements within the representative range provide redundant information and a reallocation of 

sampling resources would lower sampling costs or could be used to expand the sampling domain. 

A better understanding of a site’s representative range ensures appropriate characterization and 

monitoring of the environment, and at the same time, optimizes the cost-effectiveness of 

monitoring through the deployment of one or multiple sensor packages. 

Located over the Northeast Chukchi shelf on the southern flank of Hanna Shoal, the 

Chukchi Ecosystem Observatory (CEO, Figure 4.1), is a set of instrumented moorings that has 

been collecting high-resolution, continuous biological, biogeochemical, and physical 

measurements since 2014 (Danielson et al. 2017b; Hauri et al. 2018; Lalande et al. 2020). The 

location of the CEO enables tracking of temporal variability and potential trends (i.e. ocean 
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monitoring, Danielson et al. 2017) in a biological hotspot (Grebmeier et al. 2015). In this study 

concurrent mobile and stationary acoustic data were used to: (1) characterize spatial variability in 

fish and zooplankton densities, and (2) quantify the representative range of CEO’s point source, 

active acoustic sampling. Comparison of stationary acoustic data with data from surface, mobile 

surveys will further the understanding of spatiotemporal biological variability in Arctic 

ecosystems, and inform the design of effective monitoring networks to monitor and detect potential 

impacts of environmental change on pelagic communities. 

4.2 METHODS 

4.2.1 Study area 

The seasonally ice-covered NE Chukchi Sea receives a nearly continual input of heat, nutrients, 

organic carbon, and organisms from Pacific-origin water flowing northward in response to an 

oceanic pressure head that results from an elevation difference between the Pacific and Arctic 

Oceans (Stigebrandt 1984) (Figure 4.1). This input from the Bering Sea, combined with shallow 

depths, enhances biological productivity in the Chukchi Sea (Grebmeier et al. 2015). A large 

phytoplankton bloom that occurs seasonally in late spring and summer (Questel et al. 2013) 

supports the largest soft bottom benthic faunal biomass in the world’s ocean (Grebmeier et al. 

2006a, 2015), and corresponding populations of zooplankton (Ershova et al. 2015), seabirds 

(Kuletz et al. 2015), and marine mammals (Hannay et al. 2013). The Chukchi continental shelf is 

also home to Arctic cod (Boreogadus saida), a fish species that plays a key role in the transfer of 

energy from lower to higher trophic levels in high latitudes (Lowry and Frost 1981; Whitehouse 

et al. 2014). 
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Figure 4.1. Map of the study region showing bathymetric depths, and main flow pathways. The 

yellow arrow represents the Beaufort Gyre, black arrows represent the Alaskan Coastal Current, 

the brown arrow represents the Siberian Coastal Current, and purple arrows represent pathways of 

Bering Shelf, Anadyr, and Chukchi shelf waters. The red circle indicates the location of the 

Chukchi Ecosystem Observatory (CEO) and selected transects (ML3–ML6) from the Arctic 

Marine Biodiversity Observing Network (AMBON) surveys are shown in black. 

 

4.2.2 Datasets 

To characterize spatial variability in fish and zooplankton densities in the study area and to 

quantify the representative range of CEO point measurements, active acoustic data from a 

stationary mooring (i.e. temporally indexed data) and coincident mobile surveys (i.e. spatially 

indexed data) conducted in proximity to the mooring (Figure 4.1) were analyzed. 
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4.2.2.1 Spatially indexed data 

Spatial variability in fish and zooplankton density was characterized using acoustic data from four 

transects (ML3, ML4, ML5, and ML6) measured during two Arctic Marine Biodiversity 

Observing Network (AMBON) surveys that included coverage of Hanna Shoal (Figure 4.1). These 

surveys were conducted during August 8th–September 5th in 2015 and August 5–24th in 2017. 

Acoustic data were collected using a Teledyne 307 kHz Workhorse Mariner acoustic Doppler 

current profiler (ADCP) mounted to the survey vessel at a depth of ca. 3 m below the sea surface. 

Data were collected every 0.5 seconds (2 Hz) with a vertical resolution of 1 m. ADCPs can be used 

to measure acoustic backscatter (i.e. ensemble reflected energy) throughout the water column as a 

proxy for pelagic fish and zooplankton densities (e.g. Cochrane et al. 1994; Ressler 2002; Zedel et 

al. 2003) and have been used to describe diel migrations and distributions of biological scattering 

layers (e.g. Luo et al. 2000; Cisewski et al. 2010). ADCPs cannot be calibrated using standard 

reference targets (Demer et al. 2015) but comparisons of measurements by an ADCP and a 

calibrated scientific echosounder showed that data from the two instruments were highly correlated 

(Brierley et al. 1998). 

All ADCP data were acquired using VMDas software (v. 1.46; RD Instruments, Inc.) and 

post-processed in WinADCP (v. 1.14; RD Instruments, Inc.) as part of standard quality control 

procedures. Data files were then exported and further processed in Matlab R2020a. Volume-

backscattering strength (Sv measured in dB re 1 m-1, hereafter dB) was calculated across a 

maximum of 25 vertical bins from the ADCP’s recorded raw echo intensity data using the sonar 

equation as described in Deines (1999) and updated by Mullison (2017). The backscatter sonar 

equation accounts for two-way signal transmission loss (i.e. time-varying gain), sound absorption, 

and uses an instrument- and beam-specific Returned Signal Strength Indicator (RSSI) scaling 

factor to convert counts to decibels. This makes ADCP backscatter measurements more robust 



 

 

77 

compared to raw echo intensity measurements, which are more readily extracted from an ADCP. 

Mean Sv was calculated for each vertical bin along each of the four beams of the ADCP. The mean 

of the four beams (Svmean) was used to calculate mean backscatter in the water column for each 

along-track 4-ping (i.e. 2 second) bin (corresponding to 8 to 10 m at vessel speeds of 8–10 knots). 

A double pass 1x3 median filter was applied to the Sv data to reduce contamination/interference 

from the ship’s echosounder. 

4.2.2.2 Temporally indexed data 

Temporally-indexed acoustic backscatter data was collected at the CEO (71° 35.976’ N, 161° 31.621’ W) 

using an upward-looking, Acoustic Zooplankton Fish Profiler (AZFP; ASL Environmental Sciences), 

deployed at 35 m depth (bottom depth: 45 m) (Figure 4.1). The instrument operated at 38 (12°), 125 (8°), 

200 (8°), and 455 (7°) kHz (nominal beamwidths, measured between half power points in parenthesis) since 

September 9, 2014. The AZFP collected data every 15 seconds (0.067 Hz) at a vertical resolution of 4 cm. 

Acoustic backscatter from the AZFP was processed using Echoview software (v. 9.0). Background noise 

was subtracted and a minimum signal-to-noise ratio filter of 6 dB was applied. Echoes within 3 m from the 

face of the transducer were excluded from analyses to avoid integration of echoes in the acoustic nearfield 

(Foote 2014). Sea water surface and sea ice edges were delimited using Echoview’s bottom detection and 

linear offset operator algorithm followed by visual inspection and manual correction. A surface exclusion 

line was set 0.5 m below the corrected surface and echoes above the line were excluded to ensure that 

backscatter from surface turbulence or sea ice was not included in analyses. 

I used the 125 kHz AZFP mooring backscatter data corresponding to August and September of 2015 and 

2017 to match the timing of mobile surveys in the area. A threshold of -110 dB was applied and backscatter 

for the entire water column was integrated in 1-minute bins (i.e. 4 pings). 
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4.2.3 Characterization of spatial variability 

To characterize spatial heterogeneity and spatial dependence in acoustic backscatter I quantified 

and compared spatial variability in across-shore (ML3 and ML4) and along-shore (ML5 and ML6) 

transects within years, and from 2015 and 2017 AMBON surveys using autocorrelation functions 

(Legendre 1993) and wavelets (Torrence and Compo 1998).  

Autocorrelation is a property of ecological variables that occurs when measurements that are 

close together in space or time are more similar than measurements taken farther apart. Spatial 

autocorrelation manifests as patches or gradients in biological distributions that can result from 

physical forcing of environmental variables or community processes (Legendre 1993). Lagged 

Autocorrelation Functions quantify spatial dependency in acoustic backscatter by partitioning 

covariance over distance classes (Legendre and Fortin 1989). Lagged Pearson’s product-moment 

correlation coefficients (<) define the correlation between all measurements at a given lag (h) and 

can be modeled using an exponential model:             

 <=(ℎ) = 	<=(0):*+, (4.1) 

where <=(0) is the autocorrelation at lag 0, d is the number of lags, and 5 is the range at which the 

autocorrelation decays by a value of :. I calculated the isotropic (i.e. direction-independent) and 

anisotropic (i.e. direction-dependent) correlograms of acoustic backscatter from transects 

conducted in 2015 and 2017. 

Wavelet analysis can be used to explore spatial structure along one-dimensional transects 

(e.g. Torgersen et al. 2004; Grados et al. 2012; McGowan et al. 2019). A wavelet transform 

decomposes a data series as a function of scale and position through the convolution of a 

waveform—the wavelet—that is stretched or compressed (i.e. scaled) and slid through the series 

(i.e. translation). In this way, the wavelet decomposition identifies dominant spatial scales that 
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account for variance throughout the series (Torrence and Compo 1998). A continuous Morlet 

mother wavelet function (Torrence and Compo 1998) was applied to each transect. Wavelet power 

was calculated using the R package WaveletComp (v. 1.1, Roesch & Schimidbauer 2018). 

Statistical significance in localized wavelet power was evaluated through comparison to a white 

noise (constant value, equal to the time series variance) null hypothesis at a 95% confidence level 

(Torrence and Compo 1998) using 100 simulations. Edge effects were minimized by adding zeroes 

at the beginning and end of each data series to increase the total length of the series to the next 

power of two (Torrence and Compo 1998). Horizontal integration of wavelet power at each scale 

over the entire series—the global wavelet spectrum—allows the measurement of variance 

contributed by each scale across the entire transect. The global wavelet spectrum was calculated 

using the R package WaveletComp (v. 1.1, Roesch & Schimidbauer 2018). Significance of this 

time-averaged variance was tested against white noise at a 95% confidence level (Torrence and 

Compo 1998). 

4.2.4 Quantification of representative range 

Six different methods described in Horne and Jacques (2018) were used to quantify the 

representative range of point measurements from the CEO AZFP. The use of multiple methods 

enables assessment of consistency among calculated ranges and facilitates generation of guidelines 

to design the spatial distribution of monitoring sensors. All methods estimate the representative 

range of the mean or variance of a quantity. Both mean and variance are considered appropriate 

monitoring metrics to track changes in biological variables (Underwood 1991; Osenberg et al. 

1994). The six methods can be categorized into four approaches: (1) distance between sensors 

based on spatial correlation; (2) sample size calculations assuming random sampling to detect a 

minimum threshold of change; (3) maximization of spatial variance; and (4) scales at which spatial 
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and temporal variability are equivalent. The first approach calculates the optimum distance 

between sensors based on the relationship of spatial measurements. Using the decay of spatial 

correlation with distance (e.g. Anttila et al. 2008), the representative range corresponds to the 

distance at which measurements become independent. The second approach quantifies the number 

of sensors needed to detect change using a paired t-test, sample size calculation assuming a random 

sampling framework (e.g. Rycroft 1949). Three methods that use this random sampling approach 

include: the number of replicates using a derivative of minimum sample size calculations for a 

paired t-test (Gray et al. 1992), a paired t-test, repeated measures ANOVA (Sullivan 2006), and a 

sample size calculation for a paired t-test including statistical power (Zar 2010). The third and 

fourth approaches quantify representative ranges of temporal variance rather than the mean. The 

third approach models the theoretical power spectrum as a function of the spatial autocorrelation 

(modeled in the first approach). The spatial period at which 95% of the maximum observed 

variance in fish density is set as the representative period of variance (e.g. Gilman et al. 1962). The 

final approach compares empirically derived spatial and temporal power-spectra to identify 

equivalent scales of spatial and temporal variability by identifying periods at which identical 

magnitudes of spatial and temporal variability are observed (e.g. Wiens 1976). 

4.3 RESULTS 

4.3.1 Characterization of spatial variability 

4.3.1.1 Spatial autocorrelation  

The autocorrelation structure of each of the four transects surveyed in 2015 and 2017 is presented 

in Figure 4.2. The spatial distribution of pelagic organisms’ densities, described by the distance at 

which samples become independent (ρ=0) and the % of variance associated with spatial 

autocorrelation (ρ(1)), varied widely among transects. Differences between calculated ranges 
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within across and along-shore transect pairs were typically larger than differences observed 

between transects of different orientation. Across-shore measurements became independent 

(ρ(2/√l)) at distances of 14,880–53,296 m whereas along-shore measurements became independent 

at 10,856–73,960 m. In 2015, more than half (58–89%) of the variability observed between 

sequential observations was explained by autocorrelation (ρ(1)) whereas autocorrelation explained 

a smaller proportion of this variability (30–38%) in 2017. 

 

Figure 4.2. Autocorrelation function for across-shore (ML3 and ML4) and along-shore (ML5 

and ML6) acoustic transects conducted in 2015 (a) and 2017 (b). Dashed lines indicate the 95% 

threshold of significance. 
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4.3.1.2 Wavelets 

Scales of spatial variability differed among transects and between years (Figure 4.3). In general, 

spatial variability was concentrated at fewer scales in 2015 than in 2017. Peaks in averaged wavelet 

power were observed at scales ranging from 1024 m to 73,500 m in 2015 and from 64 m to 73,500 

m in 2017. In 2015, the largest peaks in averaged wavelet power were observed at large scales 

(greater than 30 km) in ML3 and ML5 and at intermediate (10–30 km) scales in transects ML4 

and ML6. In 2017, largest peaks in averaged wavelet power were observed at smaller scales (1–4 

km) compared to 2015 for ML3 and ML5 and at large scales (greater than 40 km) for ML4 and 

ML6 transects. 

 

Figure 4.3. Averaged wavelet power for across- (ML3 and ML4) and along-shore (ML5 and 

ML6) acoustic transects conducted during 2015 (a–d) and 2017 (e–h) surveys. Significant scales 

(95% confidence against white noise) are shown in red. 
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4.3.2 Quantification of representative range 

4.3.2.1 Spatial autocorrelation 

Spatial autocorrelation decayed exponentially as a function of distance (Figure 4.4). Exponential 

decay models fit to the lagged coefficient of determination (squared correlation coefficient, R2) 

followed y = 0.685e-0.0006456x in 2015 and y = 0.229e-0.0007704x in 2017. The coefficient of 

determination at lag 1 (ρ(1)) indicated that more than half of the variability between sequential 

observations was explained by autocorrelation in 2015 (ρ(1) = 0.68) whereas a smaller proportion 

of this variability could be attributed to autocorrelation in 2017 (ρ(1) = 0.23). The mean number 

of observations per transect (26,488 in 2015 and 25,179 in 2017) was used to calculate a 95% 

confidence interval for the lagged coefficients of determination. Based on calculated thresholds of 

significance (0.012 in 2015 and 0.013 in 2017) the representative range was estimated to be 49,817 

m in 2015 (Figure 4.4a) and 30,101 m in 2017 (Figure 4.4b). The representative area, defined as a 

circle of radius equal to the representative range, was 7797 km2 in 2015 and 2846 km2 in 2017. 
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Figure 4.4. Lagged coefficient of determination (R2) model for 2015 (a) and 2017 (b) datasets. 

Squared correlation values for each individual transect are shown in grey and model fit is shown 

in red. The black point indicates the representative range at the 95% threshold of significance 

(black line). 

 

Representative ranges calculated using this method were highly dependent on the length of 

the transects used in the analysis (Figure 4.5). To examine the relationship between representative 

range and transect length I calculated the representative range for each of the four transects 

surveyed in 2015 using transect lengths from 1.6 km (200 observations) to ~ 250 km in 0.8 km 

(100 observations) increments. Representative ranges increased with transect length with values 

ranging from 16 m to ~ 70,000 m and constituted 11–32% of the transect length in average. In 

general, representative ranges were similar for all transects up to a transect length of 18 km after 

which ranges increased at different rates. Representative ranges reached an asymptote at different 
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transect lengths for each transect (Figure 4.5). Minimal changes in representative range (i.e. rate 

change smaller than 0.5%) were observed for transect lengths greater than 100 km for ML3, 144 

km for ML4, 149 km for ML5, and 165 km for ML6. 

 

Figure 4.5. Representative ranges of acoustic backscatter for different transect lengths using 

the Autocorrelation method for the 2015 dataset. 

 

4.3.2.2 Sample size calculations 

The number of required sensors to detect a minimum threshold of change was calculated for the 

2015 and 2017 acoustic grids using the Gray et al. (1992) equation and derived paired t-test and 

power test equations. To meet independence requirements of sample size calculations, data were 

averaged into 49,817 m bins for the 2015 and 30,101 m bins for the 2017 data. These bin sizes 

corresponded to representative ranges calculated using the spatial autocorrelation method in 

Section 4.2.1. This coarser data resolution resulted in only 4–6 observations per transect. However, 

no significant differences in sample size calculations were observed when using at least 30 

observations (~ 375 m bins) per transect (results not shown).  
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Representative ranges varied among sample size calculation methods and between years 

(Table 2.1). The representative range using the Gray et al. (1992) equation was 12,271 m in 2015 

and 19,325 m in 2017. Paired t-test calculations resulted in representative ranges of 305 m in 2015 

and 756 m in 2017. Representative ranges calculated using the power test equation for a 

significance level α = 0.05 and a probability of type II error β = 0.90 were 2,677 m in 2015 and 

4,215 m in 2017. Since choice of α and β are arbitrary, representative ranges for different 

combinations of α and β are presented in Figure 4.6. Setting α = 0.05 and the effect size E = 1 dB 

constant, the representative range increased 30% when decreasing beta from 0.90 to 0.70, from 

2677 m to 3492 m in 2015 (Figure 4.6a) and from 4,215 m to 5,500 m in 2017 (Figure 4.6b). If 

beta is held constant at a conservative value β = 0.90 and α is increased from 0.05 to 0.1, the 

representative range increases from 2,677 m to 2,965 m in 2015 (Figure 4.6a) and from 4,215 m 

to 4,670 m in 2017 (Figure 4.6b). 

 

Figure 4.6. Representative ranges of acoustic backscatter calculated using power analysis for 

different combinations of α (0.05, 0.1, and 0.25) and β for 2015 (a) and 2017 (b) surveys. 
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4.3.2.3 Theoretical power spectra 

 The representative range of backscatter variance corresponds to the scale at which 95% of the 

maximum variance (21.9 dB2 in 2015 and 2.4 dB2 in 2017) was measured. Differences of one order 

of magnitude were observed in representative ranges between years (Figure 4.7). The relative 

variance exceeded the 95% maximum threshold at a period of 2,524 m in 2015 (Figure 4.7a) and 

259 m in 2017 (Figure 4.7b) and negligible increases in variance are expected beyond these 

distances. 

 

Figure 4.7. Theoretical power spectra for 2015 (a) and 2017 (b) acoustic backscatter datasets. 

 

4.3.2.4 Equivalent scales of spatial and temporal variability 

Spatial and temporal spectral power increased with period (Figure 8). Units of space and time were 

set relative to the 8 m and 1 minute resolution of the spatial and temporal datasets. In both years 

the spatial spectra (y2015 = -0.58 + 1.25x and y2017 = 0.30 + 0.99x) increased more rapidly than the 
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temporal spectra (y2015 = 0.16 + 0.96x and y2017 = -0.197 + 0.92x). In 2015, the modeled maximum 

temporal variance at the Nyquist frequency, equivalent to a period of 21 days, was 4.46 log10(dB2). 

The corresponding spatial variability was observed at a period of 86,152 m. Equal spatial and 

temporal variance was observed at a range of 1.5–3 units (250–8000 m) (Figure 4.8a). In 2017, the 

modeled maximum temporal variance was 3.92 log10(dB2) and the corresponding spatial 

variability was observed at a period of 35,780 m (Figure 4.8b). 

 

Figure 4.8. Equivalent scales of spatial and temporal variability of acoustic backscatter for 

2015 (a) and 2017 (b) datasets. 

 

4.3.2.5 Representative ranges of CEO’s acoustic measurements 

The spatial representative range of point source acoustic measurements at the CEO was dependent 

on the metric property (mean or variance), analytic method, and year (Table 4.1). The 

representative range of mean backscattering strength varied over one to two orders of magnitude 
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among methods with values ranging from 305 to 49,817 m in 2015 and from 756 to 30,101 m in 

2017. Similar magnitude differences were observed for the representative range of backscattering 

strength variance with values ranging from 2,524 to 86,152 m and from 258 m and 35,780 m for 

2015 and 2017 datasets, respectively. Variations in representative range were also observed 

between years but these differences were smaller (two to tenfold differences between years) than 

those observed among methods. 

 

Table 4.1. Summary of spatial representative ranges of the mean and variance of backscattering 

strength measured at the Chukchi Ecosystem Observatory in 2015 and 2017. Representative range 

values for power test correspond to α=0.05 and β=0.09. 

Method Description and reference Metric 

property 

Representative 

range 2015 (m) 

Representative 

range 2017 (m) 

1. Spatial autocorrelation Distance for independent samples. 

Anttila et al. (2008)  

mean 49817 30101 

2. Sample size calculations Required sample size to detect 

minimum threshold of change.  

   

    2.1. Gray’s sample size calculation  Gray et al. (1992) mean 12271 19325 

    2.2. T-test sample size calculation Sullivan (2006) mean 305 756 

    2.3. T-test power analysis Zar (2010) mean 2677 4215 

3. Theoretical power spectra Scale with maximum spatial 

variance from modeled power 

spectra. Gilman et al. (1962) 

variance 2524 258 

4. Equivalent spatial and temporal 

scales 

Spatial and temporal scales with 

equal variance from wavelet 

decomposition. Wiens (1989) 

variance 86152 35780 
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4.4 DISCUSSION 

The approach comparing two data years and multiple methods to calculate spatial representative 

ranges at the CEO illustrates the occurrence of: (1) relatively large representative ranges (up to ~ 

90 km), (2) variations in range estimates between years (1–10-fold differences), and (3) large 

variations in range estimates among methods (1–2 orders of magnitude differences). Each of these 

observations impacts the choice of representative range calculation method and the interpretation 

and application of results derived from point source observing systems such as the CEO in the 

Chukchi Sea. 

Relatively large representative ranges of CEO’s acoustic measurements, compared to 

similar studies, could be a result of low spatial heterogeneity in physical and/or biological 

characteristics, low abundance of organisms, and/or potential limitations of the sampling approach. 

Representative ranges calculated by Horne and Jacques (2018) for a stationary echosounder 

deployed in Admiralty Inlet, WA were much smaller (representative ranges of up to 1.4 km) than 

those observed in this study (representative ranges up to ~ 90 km) but were calculated over a much 

smaller area (8 km2), in an environment with different physical characteristics and dynamics 

(temperate latitude, high tidal current speeds, estuarine dynamics) and at a much higher spatial 

resolution (transects placed every 0.25–0.5 km).  

Large representative ranges observed in this study could be expected in environments with 

tight bio-physical associations and large characteristic environmental length scales. For instance, 

large representative ranges may occur when spatial variability of physical characteristics that shape 

biological distributions is low, or in environments characterized by weak bio-physical associations 

when biological distributions are homogeneous and independent of the spatial structure of the 

physical environment. In the Chukchi Sea, fish and zooplankton distributions are tightly coupled 
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with environmental factors that vary over scales consistent with calculated representative ranges. 

In particular, zooplankton abundances, species compositions, and spatial distributions are 

primarily influenced by water mass properties (e.g. Hopcroft et al. 2010; Ershova et al. 2015; 

Pinchuk and Eisner 2017; Spear et al. 2019). Water masses in the study region often retain 

distinguishing characteristics over scales ranging from ~ 20 to 100 km (Day et al. 2013; Gong and 

Pickart 2015; Danielson et al. 2020) and depend in part on the inflow of water masses from lower 

latitudes and the presence of sea ice and melt water in the summer (Spear et al. 2019). The length 

scale of lateral boundaries between oceanic water masses is set by the internal Rossby radius of 

deformation, which in the Chukchi Sea is often on the order of 1–5 km (Nurser and Bacon 2014). 

Frontal zones in the Chukchi are found between water masses associated with sea ice melt, winter 

water, and summer shelf water (Lu et al. 2020). Fish distributions in the Chukchi Sea are also 

influenced by physical environmental factors including bottom depth, water temperature, and 

salinity (Norcross et al. 2010; De Robertis et al. 2017; Iken et al. 2019; Forster et al. 2020). Iken 

et al. (2019) observed that distributions of demersal fish assemblages contained little spatial 

structure with variations in species composition and abundances observed mainly between coastal 

and offshore areas from samples collected during the 2015 AMBON survey. Day et al. (2013) 

reported variability in zooplankton and fish biomass across three regions located ~ 40 km apart in 

the NE Chukchi Sea. Large representative ranges could also be a result of weak spatial patterns 

due to low abundances and diversity of pelagic organisms in the benthic-dominated Chukchi Sea 

(Grebmeier et al. 2006a).  

Limitations of the sampling approach might also contribute to large representative ranges 

observed in this study. The lower sensitivity of ADCPs, compared to scientific echosounders, 

could result in weak biological spatial patterns that result in large representative ranges. In 
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addition, acoustic backscatter measured using a 300 kHz ADCP includes small particle aggregates, 

bubbles, and electrical or mechanical noise that would reduce signal to noise ratios, and potentially 

obscure biological patterns. I observed strong biological scattering layers throughout all transects 

and biological patterns are not expected to be affected by the ADCP’s sensitivity or by the 

inclusion of non-biological backscatter sources in this study. Finally, acoustic backscatter 

measurements integrate all sources of energy reflected from particles and animals in the water 

column. These values correspond to assemblages of zooplankton and fish species of different 

age/size classes where each category potentially has a different spatial distribution. As a result, 

strong heterogeneous spatial patterns of some species could be masked by homogeneous 

distributions of abundant species. A higher discrimination of integrated backscatter measurements 

into species and/or groups of species using calibrated, multi-frequency scientific echosounders 

could enable a more accurate characterization of spatial patterns and provide representative ranges 

specific for taxa of interest. 

Differences in representative range values between years are expected due to changes in 

the timing and spatial distribution of environmental structure (e.g. sea ice melt fronts) and 

processes (e.g. water inflow from the Bering Sea) that determine water mass characteristics and 

associated species assemblages in the region (Spear et al. 2019). Interannual variations in sea ice 

extent and water inflow from the Bering Sea (Chen and Zhao 2017; Zhang et al. 2020) results in 

interannual variations in water mass spatial distributions (Yang and Bai 2020). Zooplankton 

assemblages in the Chukchi Sea can vary from predominance of small zooplankton species of 

Pacific origin (e.g. copepods Neocalanus spp., Eucalanus bungii) to large lipid-rich Arctic 

zooplankton species (e.g. Calanus hyperboreus) depending on interannual changes in advection 

pathways into the Arctic (Pinchuk and Eisner 2017). Variations in water mass distributions and 
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associated species composition result in changes in acoustic backscatter spatial patterns that affect 

calculated representative range values. In the study area, differences were observed in current 

direction and water column characteristics (e.g. surface and near-bottom temperatures and salinity, 

primary production, (Danielson 2021) between the two survey years which could be contributing 

to differences in the spatial distribution of pelagic organisms and estimated representative ranges. 

Differences in estimated representative ranges among methods are attributed to differences 

in the methodologies, rationale and associated assumptions of each approach. Variations of 1–2 

orders of magnitude in the estimates are consistent with differences of up to 2 orders of magnitude 

(~ 30 to 1400 m) observed by Horne and Jacques (2018) in a much smaller study domain. A 

comparison of methods to calculate representative ranges of air quality monitoring stations in EU 

countries also resulted in variations of 1–3 orders of magnitude in estimated ranges that were 

attributed to differences in the basic principles of the methods, in the definitions of similarity 

criteria and thresholds, and in the underlying definitions of representative ranges (Kracht et al. 

2017). The choice of method will depend on the purpose of the study and the available data. Horne 

and Jacques (2018) provide a decision tree for method selection depending on the study/monitoring 

objective including detection of change (sample size calculation approach), mapping of spatial 

distributions (autocorrelation function approach), characterization of spatial variance 

(maximization of spatial variance approach), and interpolation of temporal variability over space 

(equivalent scales of spatial and temporal variability approach).  

Monitoring programs using stationary platforms in the Arctic will play a key role in the 

detection of biological responses to climate change, oil and gas exploration and exploitation, 

increased marine traffic and other ongoing environmental changes in high latitudes. Biological 

monitoring in remote areas needs to be efficient and cost-effective in order to be sustainable in the 
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long term. Stationary sensors are assumed to be more cost-effective than repeated, mobile surveys 

and enable year-round sampling in areas with limited access due to seasonal sea ice cover. 

Quantifying the representative range removes uncertainty in the monitoring network design and 

reduces monitoring costs by identifying the minimum number of sensor packages for complete 

coverage of a site and provides a quantitative measure of the spatial scope of ongoing monitoring 

efforts. Stationary acoustic measurements at the CEO are representative of circular areas up to 

7000 nm2, depending on the calculation method, which correspond to areas of up to 46% of that 

covered by the spatial surveys. The study/monitoring goals, including the extent of the spatial 

domain, will determine the number of monitoring packages and their spatial distribution. 

Representative range calculation and monitoring network system design are best completed 

as part of a baseline characterization of spatial and temporal biological patterns in the study 

domain. All methods used in this study require a synchronous spatial and temporal characterization 

of biological distributions prior to the calculation of representative range(s). Spatial datasets used 

in this study come from surveys conducted in the vicinity of the CEO but were not explicitly 

designed for the purpose of this study. One of the methods (equivalent spatial and temporal scales) 

requires a temporal characterization of the variable of interest. In that case, spatial and temporal 

data should be collected simultaneously. In this study, representative ranges were calculated based 

on spatiotemporal patterns of biological characteristics and did not consider physical features (e.g. 

depth, water mass characteristics) that may influence biological distributions. Also, best practice 

dictates that temporal and spatial data should be collected using instruments with the same 

characteristics, in the case of acoustic data, using calibrated, scientific echosounders operating at 

the same frequencies. In all cases, a prior delineation of the study domain and a definition of what 

constitutes “similar” or “representative” should be defined to meet the purpose of the study. 
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Although there has been considerable interest in understanding spatial and temporal 

biological patterns, little attention has been paid to the consequences of observed patterns for 

monitoring design (Rhodes and Jonzén 2011). The concept of representative ranges was initiated 

and predominantly used in association with meteorological (e.g. Ciach and Krajewski 2006; 

Milewska and Hogg 2010) and air quality (e.g. Piersanti et al. 2015; Yatkin et al. 2020) monitoring. 

Attempts to evaluate and standardize methods to calculate representative ranges have been 

advocated in air quality measurements (Martín et al. 2015; Kracht et al. 2017). However, this 

renewed interest is not evident within the oceanographic community. Despite continued use of 

moorings and increased use of ocean observing systems, quantifying spatial representative ranges 

of stationary sensors is not commonly used to optimize sensor layout nor to quantify the spatial 

scope of monitoring measurements. The results emphasize the importance of defining the 

study/monitoring spatial domain in conjunction with study objectives to ensure that representative 

samples are obtained for analyses. A calculation of representative ranges improves monitoring and 

characterization of biological communities and enables the design of cost-effective monitoring 

including the number, location, and spacing of sensors. Understanding how representative ranges 

of point measurements change depending on the timing of the survey, the location of stationary 

platforms, and the design of baseline spatial characterization (e.g. grid resolution and extent) is 

key to ensure the collection of representative samples and/or data. Research to understand how 

spatial representative ranges are affected by these factors could be achieved using simulated 

sampling schemes. Ensuring the collection of representative samples in a cost-efficient way 

becomes even more relevant in the face of environmental changes that are driving shifts in species 

distributions in high latitude environments. 
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Chapter 5. TEMPORAL VARIABILITY IN PELAGIC BIOMASS 

DISTRIBUTIONS AT WAVE AND TIDAL SITES AND 

IMPLICATIONS FOR STANDARDIZATION OF 

BIOLOGICAL MONITORING3 

5.1 INTRODUCTION 

Effects of Marine Renewable Energy (MRE) wave and tidal development and operation on 

biological communities remain uncertain (Boehlert and Gill 2010; Frid et al. 2012; Copping et al. 

2016), and the ecology of many MRE sites has been traditionally understudied due to dynamic 

environmental conditions. As a result, regulators have taken a precautionary approach and 

evidence of no (or minor) measurable effects associated with MRE development is required before 

approval of a MRE license (Copping 2018). As part of the permitting/consenting process, 

biological characterization of pre-installation conditions (e.g. abundance, diversity, and 

fluctuations of biological communities), and post-installation monitoring that ensures detection of 

change in biological attributes are mandatory conditions for every MRE project. 

Environmental monitoring plans are industry sector, site, and project specific. No standard 

monitoring requirements exist for wave or tidal energy projects in the world. This makes it difficult 

to assess environmental impacts (i.e. detection of change above a threshold), impedes 

permitting/consenting, and hampers industry development (Maclean et al. 2014; Wright 2014). 

Standardized monitoring goals and methods would expedite project development, enable 

assessment of MRE device effects on the environment, and facilitate comparisons of impacts 

among sites and sectors to evaluate if changes are site/device specific. 

 
3 Published as: Gonzalez S, Horne JK, Ward EJ (2019) Temporal variability in pelagic biomass distributions at wave 
and tidal sites and implications for standardization of biological monitoring. Int Mar Energy J 2:15–28 
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Within MRE sectors, sites are primarily chosen by similarities in their physical characteristics 

such as current velocities for tidal sites, and favorable wind conditions for wave sites, but this does 

not mandate that biological characteristics (e.g. fish and zooplankton biomass and biomass 

distributions) among sites are also similar. A comparison of fish and zooplankton densities and 

vertical distributions at two tidal sites showed that similarities exist and that a common method to 

determine thresholds for environmental monitoring is possible (Wiesebron et al. 2016b). To 

establish if standard methods could be applied across MRE industry sectors, comparisons of sites 

with different physical environments are needed. The next logical step is to compare biological 

characteristics at wave (open coastal area) and tidal (tidally dynamic) MRE sites. Observations 

from this comparison will highlight general similarities and site/sector-specific differences that 

can be considered when developing monitoring strategies for the MRE industry. 

Stationary active acoustic methods can be used to monitor the water column in a wide range 

of environmental conditions. Wave and tidal energy sites are typically located in relatively shallow 

water (<60 m), that maximize amplitudes of ocean surface waves and tidal currents. Traditional 

biological sampling (i.e. vessel-based net deployments) can be operationally challenging in these 

environments due to high flows, turbulence, and the presence of energy conversion devices. 

Deployment of active acoustic packages overcomes these sampling challenges and is not subject 

to net availability/selectivity, increased sampling mortality, or large investments in time and 

resources. 

The objectives of this study were to: (1) characterize and compare temporal variability in 

densities and distributions of fish and macrozooplankton at a wave and a tidal energy test site; (2) 

identify environmental variables influencing observed patterns; and (3) discuss the potential for 

standardizing analytic methods to acoustically monitor biomass across MRE industrial sectors. 
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5.2 METHODS 

5.2.1 Study area 

I investigated the dynamics of marine animals living in the water column (i.e. pelagic organisms) 

at two sites that have been selected for testing and developing MRE from tidal currents and waves 

in the United States (Figure 5.1). The tidal site was selected by the Snohomish Public Utility 

District 1 (SnoPUD) for the deployment of two OpenHydro (http://openhydro.com/home.html) 

turbines in northern Admiralty Inlet, the main entrance to Puget Sound, Washington, characterized 

by currents reaching circa 3 ms-1 (Gooch et al. 2009; Jacques 2014). This project obtained a 

Federal Energy Regulatory Agency (FERC) license in 2014 but due to funding constraints it was 

discontinued that same year. 

The second site is at the PacWave test site (formerly known as the Pacific Marine Energy 

Center South Energy Test Site) (Figure 5.1). PacWave is a planned grid-connected test facility for 

wave energy converters (WECs), located circa 11 km off the coast of Newport, Oregon. This wave 

energy pilot site (hereafter wave site) is currently in the permitting process and is expected to be 

available for device testing in 2019. 
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Figure 5.1. Study sites showing locations of the acoustic deployments at SnoPUD’s tidal 

energy pilot site in Admiralty Inlet, WA (triangle) and PacWave test site (circle), a wave energy 

test site off the coast of Newport, OR. 

 

5.2.2 Data acquisition 

Active acoustic data collected at fixed locations were used to quantify temporal variability of 

pelagic fish and macrozooplankton at both study sites. The approach focused on communities in 

the area of a site rather than on individual animals in the area of a device, as impacts to populations 

will affect long term viability of MRE sites. Acoustic backscatter (i.e. ensemble reflected energy) 

data were collected using bottom-mounted Sea Spider platforms 

(http://www.teledynemarine.com/sea-spider) with upward looking echosounders. Tidal site data 

were collected using a BioSonics DTX echosounder operating at 120 kHz with a 7° (between half 
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power points) beam. The echosounder was placed at 55m depth about 750 m to the west of 

Admiralty Head at the SnoPUD tidal turbine site from May 9th to June 8, 2011. The echosounder 

sampled at 5 Hz for 12 minutes every 2 hours. The bottom package located at the wave site 

consisted of a Simrad WBAT (www.simrad.com) operating at 70 kHz, with an 18° beam at a depth 

of 61 m. The WBAT echosounder sampled 175 pings at 1 Hz (~ 3 min) every hour from April 19th 

to September 30, 2016. Acoustic sampling parameters are listed in Table 5.1. Both echosounders 

were calibrated prior to deployment following standard procedures outlined by Demer et al. 

(2015). 

Table 5.1. Echosounder sampling parameters used in Admiralty Inlet (tidal site) and at 

PacWave (wave site) deployments. 

 Tidal site Wave site 

Manufacturer BioSonics Kongsberg/Simr
ad  

Model DTX WBAT 

Frequency 120 kHz 70 kHz 
Pulse form CW CW 
Pulse length 500 µs 512 µs 
Pulse rate 5 Hz 1 Hz 

 

At both sites, no energy conversion devices were deployed during field measurements. 

Therefore, collected data characterize pre-installation conditions and may be used in the future to 

assess biological changes associated with the installation and operation of energy devices. 

5.2.3 Data processing 

Processing of tidal site backscatter data were completed prior to this study and is described in 

(Jacques 2014). A threshold of -75 dB re 1 m-1 (hereafter dB) (MacLennan et al. 2002) was applied 

to remove background noise and data were limited to 25 m from the bottom to minimize 

backscatter from surface turbulence. The original 12-minute samples collected at the tidal site were 

subsampled to match the ~ 3 min samples acquired at the wave site. From each 12 min sample, 4 
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different data sections can be analyzed. Using continuous acoustic data from a tidal site in the Fall 

of Warness, Scotland, Wiesebron et al. (2016) demonstrated that there were no significant 

differences between equal length subsets from the original series. Thus, the first 875 pings (175 

pings x 5 Hz) were selected and analyzed from each data series. 

Acoustic data from the wave site was processed in Echoview (version 7.1). The data range 

was also constrained to 25 m from the bottom and a threshold of -75 dB was applied to match the 

Admiralty Inlet data. Echoes within 3 m from the face of the transducer were excluded from the 

analysis to avoid the integration of echoes in the acoustic nearfield. Background noise was 

estimated from passive acoustic measurements collected during a mobile surface survey conducted 

in the area. Noise level was obtained by finding the value that minimized the sum of the squared 

differences between observed and expected mean volume backscattering strength (mean Sv). 

Noise was estimated using (1) where NL is the noise level at 1 m (dB), r the range in m, and α the 

absorption coefficient (dB/m). The estimated noise level at 1 m (-136.24 dB) was then used to 

subtract noise from the water column:  

 2@(A) = 2@ + 20!"#!"(A) + 25(A − 1) (5.1) 

 

To align sampling density at both sites, one of the two samples collected in a 2-hour period at 

the wave site (i.e. hourly samples) was selected to match the sampling frequency of the tidal site 

(a sample every 2 hours). A t-test was performed between mean acoustic backscatter when 

selecting the 1st versus the 2nd hour of each 2-hour period. No significant difference was found 

so the 1st hour was arbitrarily selected for analysis. A one-month period (May 8th to June 9th) 

from the wave site dataset was used to match calendar dates of the tidal site. 
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5.2.4 Data analysis 

5.2.4.1 Biological descriptors: echometrics 

A suite of metrics derived from acoustic data, collectively referred to as echometrics (Burgos and 

Horne 2008; Urmy et al. 2012), was used to describe temporal variations in density and vertical 

distributions of fish and macrozooplankton in the water column. The echometrics suite includes: 

(1) mean Sv, proportional to mean density of organisms (MacLennan et al. 2002); (2) center of 

mass (units: m), the mean weighted location of backscatter in the water column relative to the 

bottom; (3) inertia (units: m2), a measure of organism dispersion (i.e. variance) from the center of 

mass; and (4) an aggregation index (units: m-1), which measures vertical patchiness of backscatter 

through the water column. The aggregation index is calculated over a scale from 0 to 1, with 0 

being evenly distributed throughout the water column and 1 being aggregated. 

Echometrics can be used to summarize temporal (and spatial) variability in abundance and 

behavior in large datasets and to detect and quantify variability in animal densities across temporal 

scales (e.g. transient events, diel vertical migrations, interannual changes). 

Time series of metrics were tabulated to summarize biological characteristics at each site. 

Mean density (i.e. mean Sv) was obtained by integrating backscatter through the entire water 

column within 3 min bins. Computed metrics for each 3 min sample resulted in a time series with 

1 datapoint every 2 hours (n=362 datapoints). Mean and variance of normally-distributed metrics 

(mean Sv, center of mass, and inertia) were compared using t-tests and F-tests (α = 0.05). For the 

non-normally distributed aggregation index, non-parametric Kolmogorov-Smirnov (Massey 1951) 

and Bartlett’s (Bartlett 1947) tests were used to compare means and variances. 
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5.2.4.2 Scales of variation in biological characteristics 

Wavelet analysis (Torrence and Compo 1998) was used to describe and compare dominant 

periodicities in biological characteristics (i.e. density and vertical distribution of pelagic 

organisms) at both study sites. A wavelet transform decomposes a time series across time and 

frequency domains. The result is a 2-dimensional heat-map, called a scalogram, that represents the 

wavelet power (i.e. variance) contributed by each temporal period (i.e. scale) at each time step. 

Therefore, a wavelet transform allows, not only the detection of constituent periods or frequencies 

(analogous to a Fourier Transform), but also the location of frequency components in the time 

series (Torrence and Compo 1998; Cazelles et al. 2008). 

A continuous Morlet mother wavelet function (Torrence and Compo 1998) was applied to 

each time series from both sites. Continuous wavelets enable the localization of transient patterns 

in variance and have been previously used for the analysis of temporally-indexed acoustic data 

(e.g. Urmy 2012; Jacques 2014; Viehman and Zydlewski 2017)). Temporal scales analyzed ranged 

from 4 hours (2 times the data resolution) to 256 hours. Wavelet power was calculated using the 

R package biwavelet (version 0.20.11, Gouhier et al. 2016). Statistical significance in localized 

wavelet power was tested against a white noise (constant value, equal to the time series variance) 

null hypothesis at a 95% confidence level (Torrence and Compo 1998). 

Horizontal integration of wavelet power at each scale over the entire deployment—the global 

wavelet spectrum—allows the measurement of variance contributed by each scale across the entire 

series. Significance of this time-averaged variance was tested against both white and red (modelled 

as a first order autoregressive process with the variance and autocorrelation empirically derived 

from the time series) noise at a 95% confidence level (Torrence and Compo 1998). 

Wavelet coherence was calculated to compare dominant periodicities in biological descriptors 

of density and vertical distributions between the two study sites. Coherence is a measure of the 
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local correlation between two time series in the time-frequency domain, taking values between 0 

and 1 (Grinsted et al. 2004). Statistical significance in wavelet coherence was tested against a white 

noise null hypothesis at a 95% confidence level. 

5.2.4.3 Selection of environmental predictors and time series models 

To select environmental predictors for temporal patterns in density and vertical distribution 

of pelagic organisms at both study sites, linear regression models were fit using different sets of 

covariates. Mean Sv, center of mass, inertia, and a log10-transformed aggregation index were used 

as response variables. Only covariates available for both sites were included in the regression 

models: Julian day, daily tidal range (daily difference between high and low tide), 24-hour 

periodicity introduced as a Fourier series, and day-tidal range interactions representing the phase 

of the moon. Tidal data were obtained from the NOAA tide and current database 

(https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels). The best fit model was 

identified using the corrected Akaike Information Criterion (AICc) (Akaike 1987). Residual plots 

and the variance inflation factor (VIF) (Belsley et al. 1980) were examined to evaluate model fit 

and multicollinearity.  

Autoregressive Moving Average (ARMA) models (Box and Jenkins 1976; Chatfield 1989) 

were used to model density and vertical distribution of pelagic organisms over time at both study 

sites. These models include an autoregressive, AR(p), component which regresses a process on p 

past values, and a moving average, MA(q), component which models the error based on q previous 

values (Box and Jenkins 1976). Modelling the errors with MA(q) components is often used to 

model unexplained variability in the environment. 

ARMA models can be formatted as a Regression-ARMA model (Reg-ARMA)—a linear 

regression with autocorrelated errors—to model dependent data using environmental predictors in 
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addition to lagged dependent values (Hyndman et al. 2017). Linder et al. (2017) used Reg-ARMA 

models as candidate models for the characterization of acoustic data from the Admiralty Inlet tidal 

energy site. These models are structured as shown in (2) and (3), where DE is the error remaining 

from the linear regression model, -1--F represents the parameters multiplied by the autoregressive 

error terms, and G1−GH represents the parameters multiplied by the moving-average error term. 

 4$ = + + -!8!$ +⋯--8-$ + D$ (5.2) 

 D$ = -!D$*! +⋯--D$*- + :$ + G!:$*! +⋯G.:$*.; 	:$~2"AL+!(0, N) (5.3) 

 

The auto.arima function of the R package forecast, version 8.2 (Hyndman et al. 2017), was 

used to fit and select Reg-ARMA models for each metric and site. Environmental predictors from 

the selected linear regression model (see section D3) were included in the Reg-ARMA model 

selection. Response variables and covariates were standardized using a z-score transformation to 

enable comparison of relative effects of the variables at both sites. The non-normally distributed 

aggregation index was log10 transformed prior to being transformed to a z-score. 

Autocorrelation plots of model residuals were visually inspected for statistically significant 

values (i.e. autocorrelation values outside the 95% critical value bounds). A seasonal component 

was included in the Reg-ARMA model when significance was observed at a lag of 12 hours that 

corresponds to daily cycles in the data. 

5.3 RESULTS 

5.3.1 Echometrics time series 

There were both similarities and clear differences in density and vertical distributions of pelagic 

organisms between wave and tidal sites (Figure 5.2 and Table 5.2). Mean density values (mean 
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Sv) were lower at the tidal site than at the wave site, where an increasing trend was present. 

Location of organisms in the water column (i.e. center of mass) was, on average, higher off bottom 

at the wave site than at the tidal site but there were no significant differences in the dispersion (i.e. 

inertia) from the mean location between sites. Standard deviations for all metrics except the 

aggregation index were significantly (p < 0.05) greater at the wave site than at the tidal site (Table 

5.2). The aggregation index remained close to zero throughout most of the time series for both 

sites, punctuated by episodic occurrences of high aggregation values at the tidal site. 

 

Figure 5.2. Time series (N=362) of mean volume backscattered energy (mean Sv), center of 

mass (CM), inertia, and aggregation index (AI) from a tidal energy pilot site located in Admiralty 

Inlet (WA) (left panel) and a wave energy pilot site located off the coast of Newport (OR) (right 

panel). 
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Table 5.2. Means and standard deviations of four metrics representing biological 

characteristics and tidal range at the Admiralty Inlet (WA) tidal site and the PacWave (OR) wave 

energy site. 

 Mean  Standard Deviation 

 
Tidal 
Site 

Wave 
Site p-Value  Tidal Site 

Wave 
Site p-Value 

Mean Sv (dB) -77.26 -68.36 < 2.20e–16  4.06 6.18 4.00e–15 
Center of mass (m) 11.62 19.05 < 2.20e–16  2.76 3.24 2.26e–03 

Inertia (m2) 46.94 46.16 0.38  10.48 13.56 1.13e–06 

Aggregation Index (m-1) 0.074 0.070 1.00e–07  0.08 0.03 < 2.20e–16 
Tidal range (m) 8.88 8.43 5.09e–03  2.37 1.91 5.24e–05 

 

5.3.2 Scales of variation in biological characteristics 

Dominant periodicities in density and vertical distributions of pelagic organisms were observed at 

both sites (Figure 5.3). All metrics varied at the 24-hour diel period at both sites but the 

significance of this periodicity was more consistent through time in mean Sv and center of mass 

at the tidal site (Figure 5.3, left panel). Significance at a 12-hour periodicity was also detected at 

the tidal and wave sites suggesting the importance of tidal processes in both environments. Site-

specific periodicities were also observed. Longer-period variability—between 64 and 256-hour 

(~2 weeks) periods—was observed at the wave site in mean Sv, center of mass and aggregation 

index (Figure 5.3, right panel). At the tidal site, there was variability at the 128 and 256-h periods 

in mean Sv, corresponding to lunar phase and neap-spring tidal cycles (Figure 5.3, left panel). 

Inertia had significant variability at the 64 and 128-hour (~1 week) periods at both sites. 

Significant peaks in the global wavelet spectrum were observed at the 24-hour period for 

density and center of mass at the tidal site only (Figure 5.4, left panel) suggesting a major influence 

of diel cycles at the tidal site. Significant peaks at longer periods (128-256 hours) were observed 
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when contrasted with white noise for mean Sv, aggregation index, and center of mass at the wave 

site (Figure 5.4, right panel), and only mean Sv at the tidal site (Figure 5.4, left panel).  

Both sites were in phase (i.e. high coherence) at 12-h and 24-h periods in all metrics and at 

the 64-h period for inertia (Figure 5.5). These periods are consistent with observations from the 

wavelet analyses for each site (Figure 5.3). 

 

Figure 5.3. Wavelet decomposition of the temporal variability in pelagic fish and 

macrozooplankton characteristics (Mean Sv, center of mass, inertia, and aggregation index) at 

Admiralty Inlet (WA) tidal site (left panel) and the PacWave energy site (right panel). Areas of 

significance are traced with a black line. Color bar represents wavelet power (N/). 
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Figure 5.4. Time averaged variance (global wavelet spectrum) of biological descriptors at the 

Admiralty Inlet (WA) tidal site (left panel) and the PacWave Energy Test Site (OR) wave energy 

site (right panel). Dashed black line represents white noise and the red solid line represents red 

noise. 
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Figure 5.5. Wavelet coherence in biological characteristics (Mean Sv, center of mass, inertia, 

and aggregation index) between the Admiralty Inlet (WA) tidal site and the PacWave energy site. 

Areas of significance are traced with a black line. Color bar represents coherence. 

 

5.3.3 Selection of environmental predictors and time series models 

Common environmental predictors explained patterns in metrics at tidal and wave sites (Table 

5.3). The regression model selected for mean Sv as the response variable included all covariates 

at both sites (Table 5.3). Tidal range and moon phase (tidal range-Julian day interaction; TR:D) 

were included in regression models for center of mass and inertia of both sites. Aggregation index 

models for both sites included the 24-hour period. Selected models for all metrics at the wave site 

included day of year as a predictor, whereas tidal range was included in all selected models for the 

tidal site (Table 5.3). 
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Reg-ARMA orders and standardized coefficients that best explained the structure of the time 

series are presented in Table 5.4 and fits of the selected models are shown in Figure 5.6. Overall, 

selected models accurately described periodicity and amplitude of mean Sv and center of mass 

values at both sites. The amplitude of inertia values for both sites and aggregation index for the 

tidal site were not well described by the models. AR and MA orders differed for each metric and 

site. In general, higher AR orders at the wave site suggest smoother changes and longer ‘memory’ 

(i.e. dependence on 1-5 previous time steps) in biological characteristics than at the tidal site (i.e. 

generally dependent only on the previous time step). Higher MA orders were observed at the tidal 

site compared to the wave site (MA components generally explain autocorrelation in the 

unexplained residual variation of the model). Seasonal components (1-day lag) were only included 

in mean Sv models, indicating the presence of daily cycles in organism density at both sites. 

Table 5.3. Covariates and p-values from linear regressions for Admiralty Inlet tidal site and 

the PacWave site time series. * indicates significant p-values (< 0.05). TR:D is the interaction 

between tidal range and Julian day, and represents the moon phase. 24H sin and cos are the sine 

and cosine components of a 24-hour periodicity. 

 

 Tidal site Wave site 

 Estimate p-value Estimate p-value 

Mean Sv     

Tidal range 4.22e–02 4.16e–09* -1.53e–02 0.034* 

Julian day 3.33e–01 6.07e–12* 4.42e–01 4.53e–16* 

TR:D -2.91e–04 8.61e–09* 9.38e–05 0.05* 

24H sin -1.30 3.48e–07* -1.044 0.000732* 

24H cos 2.13 6.05e–16* 1.47 2.42e–06* 

Center of mass     

Tidal range -8.14e–03 0.000483* -1.84e–02 0.000517* 

Julian day – – -2.39e–01 9.25e–10* 

TR:D 5.34e–05 0.000908* 1.25e–04 0.000501* 

24H sin -1.40 2.87e–13* – – 

24H cos 7.57e–01 4.94 e–05* – – 

Inertia     
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Tidal range -2.44e–02 0.01* 4.95e–02 0.0273* 

Julian day – – 7.03e–01 1.76e–05* 

TR:D 1.74e–04 0.0099* -3.25e–04 0.0320* 

24H sin – – -1.48 0.1215 

24H cos – – 2.4 0.0124* 

Aggregation index     

Tidal range -9.72e–05 0.05* – – 

Julian day – – -0.02 <2e-16* 

TR:D – – – – 

24H sin 7.58e–02 3.44e–02* 0.04 0.07447 

24H cos -9.82e–02 6.20e–03* -0.13 2.27e–08* 

 

 

Table 5.4. Estimated significant coefficients for Regression Autoregressive Moving Average 

models that describe biological characteristics of tidal and wave energy pilot sites. 

 
Mean Sv Center of Mass Inertia Aggregation Index 

  Tidal Site Wave Site Tidal Site Wave Site Tidal Site Wave Site Tidal Site Wave Site 

ARMA coefficients         

AR1 0.15 1.33 – 1.28 0.10 0.20 – 0.70 

AR2 – -0.62 – -0.42 – 0.00 – – 

AR3 – 0.23 – -0.03 – -0.07 – – 

AR4 – – – 0.10 – -0.06 – – 

AR5 – – – – – 0.14 – – 

MA1 – -0.66 -0.87 -0.77 – – -0.05 -0.31 

MA2 – – -0.21 – – – 0.08 – 

MA3 – – -0.07 – – – 0.09 – 

MA4 – – 0.17 – – – 0.11 – 

SAR1 0.25 0.18 – – – – – – 

Covariate coefficients         

Tidal range 0.05 -0.12 -0.06 -0.05 0.07 0.08 0.00 – 

Julian day 0.18 0.71 – -0.37 – 0.30 – -0.45 

TR:D -0.29 0.03 0.08 0.11 0.17 -0.09 – – 

24H sin -0.32 -0.17 -0.50 – – -0.11 0.15 0.12 

24H cos 0.53 0.24 0.28 – – 0.18 -0.20 -0.36 

24H total 0.62 0.29 0.58 – – 0.21 0.25 0.38 
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Figure 5.6. Regression Autoregressive Moving Average models for mean Sv, center of mass, 

inertia and aggregation index for a tidal and a wave energy site. Raw data are in grey and in red 

are shown the mean model predictions. 

 

5.4 DISCUSSION 

Understanding temporal patterns in changes to biological characteristics at wave and tidal energy 

sites is essential to inform MRE development and operation. Monitoring strategies that ensure 

detection of biological changes associated with the installation, operation, and decommissioning 

of MRE devices are required to ensure sustainable development of the industry and to meet 
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regulatory requirements (Copping 2018). But, detecting biological changes in highly variable 

aquatic environments is challenging. Densities and distributions of aquatic populations vary across 

a wide range of spatial and temporal scales as a result of multiple physical and biological processes 

acting and/or interacting across an equally wide range of scales (e.g. Stommel 1963; Haury et al. 

1978). Therefore, characterization of “natural” or pre-installation variability in the biological 

characteristics of a site (e.g. abundance, diversity, vertical distributions) maximizes the probability 

of detecting changes associated with MRE deployment and operations from natural variability 

(Linder et al. 2017). After installation of MRE devices, departures from expected variations in 

biological characteristics based on pre-installation data can be detected, and quantified; after which 

action plans to modify, mitigate, or cease operations can be developed and implemented. 

Quantification of temporal patterns in biological characteristics and the identification of 

environmental drivers can be used to design environmental monitoring plans. To ensure detection 

of biological changes, monitoring plans should include all relevant variables and corresponding 

sample designs. Understanding temporal biological patterns is therefore essential to establishing 

appropriate sampling resolutions, regulations, and reporting requirements for MRE environmental 

monitoring. 

Despite differences in physical characteristics of tidal and wave site environments, similarities 

in biological characteristics were observed. A primary criterion for wave and tidal energy 

development site selection is their physical attributes: high tidal flows at tidal sites and open coastal 

areas with favorable wind conditions at wave energy sites. Since biological communities are 

shaped by the physical characteristics of their environment (Stommel 1963), it is expected that 

biological characteristics of two MRE sites with distinctive physical attributes would differ. I 

found numerous common biological characteristics at the studied wave and tidal sites. Dispersion 
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(i.e. inertia) magnitudes and dominant periodicities were similar at both sites, and at least one 

regression covariate was shared between the sites for all metrics. For example, density and location 

of fish and microzooplankton metrics indicated common diel and/or tidal cycles at both sites. Diel 

and tidal patterns have also been reported as dominant variables in studies of fish density in the 

Fall of Warness (Scotland) (Wiesebron et al. 2016b) and fish counts at Cobscook Bay (Maine, US) 

(Viehman and Zydlewski 2017) tidal sites. 

Differences in biological characteristics between tidal and wave energy sites (i.e. sector-

specific characteristics) were also observed. One major difference between sites was the dominant 

periods of variation in biological characteristics. At the tidal site, dominant periodicities were 

shorter and more consistent through time compared to the wave site. In contrast, longer period 

processes dominated at the wave site as shown by significant peaks at longer periodicities and 

higher order autoregressive component in ARMA models. This difference in temporal variability 

is attributed to differences in the hydrodynamics of the sites. Admiralty Inlet is located at the 

confluence of waters with different oceanographic properties coming from Deception Pass, the 

Hood Canal basin, and the Puget Sound main basin (Moore et al. 2008). Each of these water masses 

potentially carries distinctive species assemblages, so differences in biological characteristics 

could be expected between ebb and flood tides when different water masses are transported 

through the study site. The PacWave site is located in an open coastal area where water masses are 

more uniform during tidal cycles and changes in water masses occur over longer periods in 

response to changes in wind-driven circulation patterns (Kosro 2005; Sigleo et al. 2005). Diel 

patterns in density and location of organisms were relatively more important than tidal cycles at 

both sites as illustrated by greater wavelet power at the 24- compared to the 12-hour period. Fish 

and zooplankton species undergo vertical and horizontal diel (24-hour) migrations for feeding and 
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predator avoidance in response to environmental cues such as changes in light intensity (e.g. 

Axenrot et al. 2004; Benoit-Bird and Au 2006; Kaltenberg and Benoit-Bird 2009).  

Although diel patterns were dominant at both sites, the influence of diel cycles on biological 

characteristics was not consistent within or between sites through the deployment. Density changes 

were more intermittent and lower in magnitude at the wave site compared to the tidal site. Changes 

in the relative importance of diel fluctuations could be due to multiple factors such as episodic 

decreases in light intensity (e.g. cloud cover), or occurrence of storms that can mix the water 

column and attenuate diel migration patterns. Diel patterns are species and life-stage specific 

(Nilsson et al. 2003; Becker et al. 2011), so changes in species and size composition of the 

community could also explain changes in dominant periodicities of biological fluctuations 

observed in this study. At the wave site an increasing trend in biomass density suggests that 

sampling may have occurred during a transition with new species or size groups entering the study 

area. Sampling at the wave site (May-June) corresponds to the formation (April-May) and 

establishment (May-July) of seasonal upwelling off the Oregon coast (Peterson et al. 1979). 

Occurrence of seasonal coastal upwelling enhances nutrient availability and primary productivity, 

which ultimately translates into increased zooplankton and fish abundances (Cury et al. 1995; 

Parrish and Mallicoate 2007). Acoustic observations of species ensembles may obscure the 

detection of diel patterns of individual species (Viehman and Zydlewski 2017). 

The study of temporal variability using stationary platforms including acoustic and other 

environmental sensors has great potential for biological monitoring at MRE sites (e.g. Jacques 

2014). Stationary active acoustics can detect biological changes and trends in short (e.g. diel 

migrations) to long (e.g. tidal dynamics, seasonal) period fluctuations at highly variable and 

energetic environments where traditional sampling is constrained. Autonomous acoustic sensors 
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also provide advantages over shipboard spatial surveys by reducing or eliminating: (1) long term 

cost and effort required to acquire data; (2) bias in measurements due to ship avoidance behaviors 

by marine animals; and (3) convolution of temporal and spatial variability that occurs during 

mobile, spatial surveys (Godø et al. 2014). A previous comparison of active acoustic technologies 

showed that scientific echosounders can identify patterns not present in data from ADCPs or 

acoustic cameras, and were therefore recommended to monitor fish density at tidal energy sites 

(Jacques 2014). Internationally accepted calibration protocols for scientific echosounders (Foote 

et al. 1987; Demer et al. 2015) ensure equivalency among datasets, which is crucial to make 

progress in understanding effects of the MRE industry on marine environments. For instance, if 

effects are not site-specific but device-specific, then alternate device designs can be selected or 

mitigation measures can be regulated to minimize impacts. 

Acoustic sampling technologies are constrained like any other sampling device. Acoustic data 

alone rarely provides sufficient information for species identification (Horne 2000). For the MRE 

industry, species discrimination and identification are particularly relevant when addressing 

regulations for species of special status. Supplementary information from literature, increased 

acoustic frequency spectrum, direct net sampling, and optical sampling can be used to verify 

acoustic targets. The quality of acoustic data can also be affected by entrained air (Simmonds and 

MacLennan 2005) in surface layers typically found in the high velocity environments of tidal 

energy sites. Although automated methods to remove turbulence are being developed (e.g. Fraser 

et al. 2017), methods to filter or predict backscatter in turbulent areas are still needed to allow a 

full characterization of the water column using acoustics. Despite covering a wide spectrum of 

temporal scales (e.g. seconds to months or years), point source measurements using stationary 

acoustics do not include a large range of spatial scales when characterizing variability in animal 
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densities or behaviors. By quantifying the spatial area that is represented by a point source 

measurement (i.e. representative range, Horne and Jacques 2018), I can ensure an appropriate 

characterization and monitoring of biological communities, and at the same time, optimize the 

cost-effectiveness of remote monitoring. Pre-installation spatial characterization through 

concurrent acoustic mobile surveys and point source measures can be used to calculate the spatial 

representative range and define the number of monitoring packages needed to optimize sampling 

for environmental monitoring goals. 

Data processing that reduces acoustic data volumes and automates analysis is required to 

ensure timely responses to changes in biomass distributions during MRE monitored operations. 

Storage, processing, and analysis of large volumes of acoustic data over long-term deployments 

can be challenging (Godø et al. 2014). Advantages of using distributional metric suites include the 

reduction of large acoustic data volumes into a manageable and informative form. Metric suites 

can be used as ecological indicators. Ecological indicators are intended to examine composition 

(e.g. number and variety of species), structure (e.g. vertical distribution pattern) and function (e.g. 

ecological processes) of ecosystems to assess the magnitude of stress, degree of exposure, and 

ecological responses to stress (Dale and Beyeler 2001; Niemi and McDonald 2004). Mean Sv and 

center of mass monitor ecosystem structure whereas inertia and the aggregation index track 

changes in ecosystem function (Wiesebron et al. 2016b). These metrics can also be used to detect 

and describe potential responses of fish and macrozooplankton to MRE devices. Moving devices 

generate noise and electromagnetic fields that can be evaded or avoided by fish (Boehlert and Gill 

2010; Viehman and Zydlewski 2014). Aggregation behaviours can also be expected as new 

structure in a homogeneous seascape can potentially act as fish aggregation devices (FADs) and 

can provide refuge from high speed currents in the wake of the device (Inger et al. 2009; Boehlert 
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and Gill 2010; Cada and Bevelhimer 2011). Removal of hydrokinetic energy may change local 

hydrodynamics affecting turbulence and stratification patterns that in turn, can affect vertical 

movements of organisms (Boehlert and Gill 2010). Avoidance and aggregation effects can be 

measured as a decrease or increase in mean Sv values, and changes in vertical distribution patterns 

can be measured as changes in center of mass, inertia, and aggregation index. 

Wavelets and Reg-ARMA enabled the detection of generic and specific biological features of 

the MRE sites and are therefore recommended as standard tools for the analysis of biological 

monitoring data. Wavelet analysis detected differences in biological patterns across sites, which 

illustrates its potential for detecting changes before and after the installation of MRE devices—a 

required attribute to be an effective tool for environmental monitoring. Reg-ARMA models were 

used to identify relevant environmental factors that shape biological patterns and are important in 

the forecast of biological responses (e.g. Linder and Horne 2018). These models quantified 

amplitudes and periodicities of all metrics except inertia (at both sites) and amplitudes of the 

aggregation index (at the tidal site). Other environmental covariates (e.g. current speed, 

temperature, stratification) or alternate models may be needed to capture amplitudes of all 

biological fluctuations. A set of models have been recommended to quantify pre-installation 

conditions (Linder et al. 2017) and measure environmental change (Linder and Horne 2018), based 

on the statistical properties of ecological indicators (normal and non-normal distributions), 

quantity of interest (mean or variance), and application (detection, quantification, or forecast of 

change). 

A standard approach for pre-installation characterization and post-installation monitoring 

enables comparisons among sites, and will streamline the current, long and expensive MRE 

permitting process (Polagye et al. 2011; Wright 2014; Magagna and Uihlein 2015; Fox et al. 2018). 
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To date, monitoring plans have been designed for individual sites and species of special status (e.g. 

harbor seal populations at the SeaGen tidal site and southern resident killer whales at Snohomish 

Public Utility District 1 tidal site). Moreover, choices of monitoring technologies and sampling 

resolutions have differed among tidal energy sites within the U.S. (e.g. Coobscook Bay (MA) 

(Viehman and Zydlewski 2014) vs Admiralty Inlet (WA) (Jacques 2014). Near identical acoustic 

sampling used at the Admiralty Inlet (US) and the Fall of Warness (UK) tidal energy sites enabled 

the characterization and comparison of fish and macrozooplankton densities, with results 

suggesting that standardization of biological monitoring within the tidal MRE sector is feasible 

(Wiesebron et al. 2016b). In this study a comparison of wave and tidal energy sites representing 

two sectors of the MRE industry suggests that standard remote sensing technologies (stationary 

active acoustics), biological indicators (echometrics), and analytic methods (wavelets and Reg-

ARMA models) could be used for biological monitoring across all sectors in the MRE industry. 

While standard monitoring practices are desirable to facilitate sustainable development of the 

MRE industry, site-specific characteristics should be used to tailor monitoring plans. Pre-

installation characterization data are needed to identify dominant temporal scales in biological 

characteristics and then used to set sampling resolutions to minimize monitoring costs while 

maximizing the quality of monitoring data (i.e. optimization). Timing of post-installation sampling 

can also be determined using pre-installation characterization data. For instance, if natural 

variations in a monitoring metric are associated with tidal states, then sampling should occur at the 

same tidal state or averaged across tidal states to detect change rather than patterns being 

convolved over time due to sampling. This approach using continuous acoustic data can also be 

used to design discrete sampling (e.g. net tows) (Blauw et al. 2012). Identification of 

environmental covariates is important when forecasting and discriminating sources of biological 
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change. During pre-installation monitoring, environmental variables believed to influence 

biological temporal patterns should be measured and included in data analyses to identify 

environmental forcing of natural variability at each site. Identified variables should then be 

monitored along with response variables during post-installation monitoring to help distinguish 

biological changes associated with MRE from natural variability. Assuming that representative 

data are obtained, pre-installation acoustic data can be used to define thresholds of change in 

monitored variables at a site (Wiesebron et al. 2016a). 

5.5 CONCLUSION 

Stationary active acoustics is a cost-effective tool to sample biological communities through the 

entire water column over long periods of time in variable or high-energy aquatic environments. 

Acoustic-derived density measurements are a strong candidate as a common/standard data stream 

to be used for biological monitoring across sectors of the MRE industry. Standard practices (e.g. 

sampling methods and analytic approaches) are possible for biological monitoring at MRE sites 

but should be adapted to site/sector-specific characteristics (e.g. major influencing covariates and 

periodicity). Pre-installation characterization is important to quantify natural variability and to tune 

monitoring strategies to include site-specific characteristics for post-installation monitoring. This 

approach will maximize cost-effective detection, understanding, and prediction of MRE 

development impacts on the environment. Current climate change and declines in non-renewable 

energy sources accentuate the need for alternatives to fossil fuels to meet energy demands. 

Monitoring strategies that facilitate the development of MRE industry while preserving aquatic 

ecosystems are required to sustain environmental viability.  
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Chapter 6. SYNTHESIS 

6.1 SYNTHESIS AND SIGNIFICANCE 

Marine environments are changing, and further changes are expected in response to climate 

change, industry development (e.g. oil and gas explorations and marine renewable energy), 

pollution, and fishing (e.g. Halpern et al. 2008; Duarte et al. 2012; Doney et al. 2012). There is an 

urgent need to understand impacts of these stressors on marine ecosystems and to adopt effective 

management measures that minimize detrimental effects. Accomplishing this goal requires a 

comprehensive understanding of “natural” or baseline temporal patterns of biological components 

and underlying processes that influence observed patterns.  

High-latitude environments and marine renewable energy (MRE) sites have been 

particularly understudied due to sampling challenges (e.g. presence of sea ice, and high current 

velocities). This lack of baseline information required to measure biological responses to 

environmental change has increased the difficulty to document impacts and to predict effects of 

further change. This dissertation provides a high-resolution, continuous characterization of fish 

and zooplankton dynamics in the Chukchi Sea and at sites selected for marine renewable energy 

development. This characterization increases the ability to detect and predict biological responses 

to environmental change, ensure the collection of representative samples, and to assist the design 

of standard strategies for biological monitoring of aquatic ecosystems. Comparison of multi-year, 

high resolution, stationary acoustic data from the Chukchi Ecosystem Observatory (CEO) and 

concurrent measurements from a large set of environmental sensors (Chapters 2 and 3) increased 

our understanding of temporal variability in the abundance and behavior of fish and zooplankton 

in the Chukchi Sea. Increased understanding of temporal patterns and environmental drivers of 

key components of Arctic ecosystems, including Arctic cod, increases our ability to predict 
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biological responses to further changes in high latitude environments. Quantification of the spatial 

area that is represented by point source measurements (Chapter 4) informs design of cost-efficient, 

distributed monitoring networks (i.e. maximizing the amount of data collected while minimizing 

the cost of collecting measurements) that can be used to monitor any aquatic ecosystem. 

Comparisons of temporal variability in biological characteristics at sites selected for tidal and wave 

energy, with very distinct environmental characteristics (Chapter 5), allows us to assess the 

potential for applying standard methods and analytic tools for biological monitoring, and to tune 

standard strategies to specific characteristics of the system. Identifying and defining standard 

monitoring goals and sampling methods is necessary to expedite Marine Renewable Energy 

projects development, reduce monitoring costs, detect environmental impacts, and to enable 

comparison of impacts among sites. 

In summary, this dissertation provides knowledge and tools that can be used to assess 

biological responses to climate change, to design cost-effective ecosystem assessment of aquatic 

resources, and to define monitoring strategies for MRE, oil and gas exploration or other projects 

with potential impacts on aquatic ecosystems. 

6.2 IMPLICATIONS FOR BIOLOGICAL MONITORING AND RESOURCE ASSESSMENT 

This dissertation provides baseline information and methodological approaches that can be used 

to optimize sampling (i.e. minimizing sampling costs while maximizing data quality) in 

monitoring and resource assessment efforts. The calculation of representative ranges (Chapter 4) 

quantifies the spatial scope of measurements from stationary sensors and informs strategies for 

monitoring programs and sampling designs. Method selection to quantify representative ranges is 

key and should be tied to the study/monitoring objective(s). A delineation of the study domain and 

a definition of what constitutes “similar” or “representative” must be aligned to meet 
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study/monitoring goals. Once goals are defined, concurrent stationary and mobile measurements 

should be conducted using comparable technologies (e.g. calibrated scientific echosounders with 

the same frequencies). After representative ranges are calculated, we can use those ranges/areas to 

define the number and spacing of sensors in a study domain. 

The comparison of wave and tidal energy sites representing two sectors of the MRE 

industry demonstrated that a combination of stationary active acoustics, echometrics, wavelets and 

Regression-Autoregressive Moving Average models can be used as a standard approach for 

biological monitoring across sectors of the MRE industry. A standardization of sampling 

techniques, biological metrics, and analytic methods reduces monitoring costs and streamlines 

permitting process for MRE projects. Observations from this comparison also highlight similarities 

and site/sector-specific differences that should be considered when developing monitoring 

strategies for the MRE industry. Dominant scales of variation and autocorrelation of biological 

characteristics assessed pre-device installation can be used to set sampling resolutions to minimize 

monitoring costs while maximizing the quality of monitoring data. Sample timing during post-

device installation monitoring, including collection of direct samples using nets or other tools, can 

also be determined using pre-device installation data. To illustrate by example, if natural variation 

in a monitoring metric is associated with tidal states, then sampling should occur at the same tidal 

state or averaged across tidal states to detect change. Identifying environmental drivers of observed 

biological patterns is important when forecasting and discriminating sources of biological change. 

Candidate environmental variables believed to influence biological temporal patterns should be 

measured during pre-device installation sampling and included in data analyses to identify 

dominant environmental drivers of natural variability at each site. Identified variables should then 

be monitored along with response variables during post-device installation monitoring to 
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distinguish biological changes associated with MRE development from natural variability. 

Assuming that representative samples are collected, pre-device installation acoustic data can be 

used to define thresholds of change in monitored variables at a site (Wiesebron et al. 2016b). 

Additionally, concurrent acoustic mobile and stationary measurements during pre-device site 

characterization can be used to calculate the spatial representative range of point source 

observations and to define the number of monitoring packages needed to optimize sampling for 

environmental goals (see Chapter 4). These approaches and procedures are recommended in the 

context of the MRE developing industry but are applicable to monitoring efforts associated with 

numerous activities that are conducted over a range of environments; oil and gas exploration, 

offshore mining, fishing. To date, mandated MRE environmental monitoring plans have been 

typically specified within industry sector, at a specific site, and for a specific project. This approach 

precludes industry and project development, assessment of MRE device effects on the 

environment, and comparison of impacts among sites and industry sectors. 

Quantifying temporal patterns in fish and zooplankton densities and their environmental 

drivers can also be used to optimize sampling. A thorough characterization of temporal patterns 

can be used to inform appropriate timing, frequency, and extent of continuous and discrete 

sampling needed to effectively monitor patterns and processes at any location. Dominant scales of 

temporal biological variability can be used to define sampling periodicity to quantify variability in 

any process of interest. For instance, observed differences in the duration of “seasons” for fish and 

zooplankton in the NE Chukchi Sea should be considered when defining the timing and frequency 

of sampling if the goal is to characterize changes within annual patterns in each community. Also, 

the timing and amplitude of key environmental processes (e.g. phytoplankton blooms, fish 

production) can be used to define the timing of sampling surveys. As an example, the amplitude 
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and timing of peaks in Arctic cod density in the summer, a proxy of gadid annual recruitment 

(Bouchard et al. 2017), has been strongly linked to the timing of sea ice retreat, which is associated 

with transport of water through the Bering Strait (Chapter 3). Therefore, time of sea ice retreat can 

be used to define the appropriate timeframe for summer surveys to provide accurate estimations 

of Arctic cod production and recruitment that can be used to inform resource management 

decisions.  

6.3 PREDICTING BIOLOGICAL RESPONSES TO ENVIRONMENTAL CHANGE: 

MANAGEMENT AND CONSERVATION PLANNING OF MARINE ECOSYSTEMS. 

The characterization of fish and zooplankton temporal patterns and environmental drivers in the 

NE Chukchi Sea advances the mechanistic understanding of high-latitude marine ecosystem 

dynamics. This mechanistic understanding can be used to predict potential impacts of climate 

change and inform ecosystem-based management and conservation planning for the Arctic. 

Potential shifts in biomass, species compositions, phenology, and distribution of endemic Arctic 

species along with northward expansion of subarctic populations may result in the displacement 

and/or replacement of current subsistence food resources for coastal human communities (cf. 

Grebmeier et al. 2006b). Northward expansion of subarctic fish species may lead to the northward 

extension of commercial boreal fisheries and introduce the potential for both spatial and temporal 

conflicts with traditional subsistence activities, environmental disturbance (e.g. bottom trawling), 

and overfishing of target stocks (Thorson et al. 2021). Timely understanding of ecosystem 

responses to current environmental change and examination of potential changes given future 

climate scenarios enables identification of sustainable activities and the planning of conservation 

or management responses to help ensure food security, cultural continuity, and economic well-

being of Artic Indigenous People (Huntington et al. 2021). Characterization of current 
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environmental patterns in the Chukchi Sea within this dissertation can be combined with projected 

climate trajectories to identify and increase understanding of potential ecosystem spatiotemporal 

shifts that may require changes to current ecosystem-based management and conservation 

planning at local and regional scales. 
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 APPENDIX A 
 

Wavelet coherence between hourly values of fish and zooplankton metrics of density and vertical 

distributions derived from acoustic backscatter (mean Sv: mean volume backscattering strength, 

CM: center of mass, inertia, and aggregation index) and sun altitude from Chapter 2. Data was 

collected at the Chukchi Ecosystem observatory from September 1st, 2015 to August 18th, 2019. 

In the plots, the color bar represents wavelet coherence. The shaded area represents the cone of 

influence (edge effects) and the areas of significance are traced with a black line (95% confidence 

against white noise). Arrows indicate the phase difference between the two variables of the wavelet 

spectra (right arrows indicate series are in phase, left arrows indicate series are completely out of 

phase (180°), and an arrow pointing vertically upward means the second series lags the first by 

90°. 
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Figure A1. Wavelet coherence between hourly values of fish metrics and sun altitude. 
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Figure A2. Wavelet coherence between hourly values of zooplankton metrics and sun altitude. 



 

 

157 

APPENDIX B 
 
Wavelet coherence between daily values of fish and zooplankton metrics of density and vertical 

distributions derived from acoustic backscatter (mean Sv: mean volume backscattering strength, 

CM: center of mass, inertia, and aggregation index) and environmental variables from Chapter 2. 

Data was collected at the Chukchi Ecosystem Observatory from September 1st, 2015 to August 

18th, 2019. In the plots, the color bar represents wavelet coherence. The shaded area represents the 

cone of influence (edge effects) and the areas of significance are traced with a black line (95% 

confidence against white noise). Arrows indicate the phase difference between the two variables 

of the wavelet spectra (right arrows indicate series are in phase, left arrows indicate series are 

completely out of phase (180°), and an arrow pointing vertically upward means the second series 

lags the first by 90°. 
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Figure B1. Wavelet coherence between fish mean volume backscattering strength and 

environmental variables. 
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Figure B2. Wavelet coherence between fish center of mass and environmental variables. 
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Figure B3. Wavelet coherence between fish inertia and environmental variables. 
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Figure B4. Wavelet coherence between fish aggregation index and environmental variables. 
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Figure B5. Wavelet coherence between zooplankton mean Sv and environmental variables. 
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Figure B6. Wavelet coherence between zooplankton center of mass and environmental 

variables. 
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Figure B7. Wavelet coherence between zooplankton inertia and environmental variables. 
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Figure B8. Wavelet coherence between zooplankton aggregation index and environmental 

variables. 
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APPENDIX C 
 
Wavelet decomposition of environmental variables from Chapter 2. 

 
Figure C1. Time-scale decomposition of environmental variables. Data was collected at the 

Chukchi Ecosystem observatory from September 1st, 2015 to August 18th, 2019. The color bar 

represents the wavelet power (s2). The shaded area represents the cone of influence (edge effects) 

and the black contour lines indicate areas of significance (95% confidence against white noise). 
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APPENDIX D 
 
Additional results and figures for Chapter 3. 

Water masses 

Fish backscatter in association with midwater water masses (33 m depth) recorded at the CEO 

during 2016–2019 are shown in Figure D1. Fish backscatter was observed in both, Bering Chukchi 

Winter Water (BCWW) and Bering Chukchi Summer Water (BCSW) but highest backscatter 

values were recorded in Modified Winter Water (MWW), cool Shelf Water (cSW), and warm 

Shelf Water (wSW) with temperatures above -1 °C and salinities of 31.5–32.5 (Figure D1). Warm 

Shelf Water was only present in 2017 and 2019 when overall temperatures were higher in the study 

area (Figure D1). Days with an empty water column only occurred in presence of WW. 



 

 

168 

 

Figure D1. Daily averages of midwater temperature and salinity measured at 33 m depth at the 

Chukchi Ecosystem Observatory during 2016–2019. Color bar represents mean volume 

backscattering strength (mean Sv, dB) corresponding to fish. Classification of water masses was 

based on Danielson et al. (2017, 2020). Abbreviations include: MWW = Modified Winter Water; 

WW = Winter Water; wSW = warm Shelf Water; cSW = cool Shelf Water; AW = Anadyr Water. 

The orange and blue areas represent Bering-Chukchi Summer Water (BCSW) and Bering-Chukchi 

Winter Water (BCWW), respectively. 

 

Primary production 

Average chlorophyll a concentration from in situ fluorescence measurements were higher in 2017 

(1.04 mg m-3) and 2019 (1.16 mg m-3) than in 2016 (0.64 mg m-3) and 2018 (0.82 mg m-3) (Figure 

D2a). Peaks in chlorophyll a occurred earlier and persisted over longer periods in “warm” years 
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than in “cold” years (Figure D2a). Multiple chlorophyll peaks were observed from mid-May to 

August/September in 2017/2019 with the first peak in early June (8th–10th), 5–29 days after sea 

retreat (Figure D2a). This indicates that earlier sea ice retreat triggers earlier phytoplankton blooms 

but not before June. In “cold” years highest chlorophyll concentrations were observed from mid-

July/June to mid-August in 2016/2018 with peak concentrations occurring once there was no sea 

ice in the area (Figure D2a). Nitrate concentrations are relatively high throughout the year in both 

“cold” and “warm” years (Figure D2b). Pre-bloom nitrate concentrations (April and May averages) 

were 9.44–10.97 µmol L-1 in “warm” years and 12.10–18.20 µmol L-1 in “cold” years. In “warm” 

years, declines in chlorophyll a by the end of the summer/early fall coincide with a decline in 

nitrate concentrations to values approaching zero suggesting a depletion of nutrients and cease of 

primary production by the time irradiance is minimal (Figure D2b and Figure D2c). In “cold” years 

nutrients remain at relatively high concentrations for ~ 2–3 months after the decline of chlorophyll 

concentrations (Figure D2b). Peaks in photosynthetically active radiation were higher in “warm” 

years (3.13–7.15 µmol photons m-2 s-1) than in “cold” years (0.70–2.02 µmol photons m-2 s-1) 

(Figure D2c).  
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Figure D2. Daily averages of in situ midwater (33 m depth) measurements of (a) chlorophyll 

a fluorescence, (b) nitrate concentration, and (c) photosynthetically active radiation (PAR) at the 

Chukchi Ecosystem Observatory during 2016–2019. Lines represent weekly moving averages. 

 

Zooplankton 

Zooplankton backscatter was higher in spring and summer in “warm” than in “cold” years (Figure 

D3). In 2019 when sea ice retreat occurred in May, zooplankton densities were lower than in 2017, 

when sea ice retreat was in June (Figure D3). The medians of zooplankton backscatter distributions 

were -89.64 dB (2016) and -83.74 dB (2018) in “cold” years, and -77.13 dB (2017) and -82.42 dB 

(2019) in “warm” years, with 2019 being higher but more similar to the median in “cold” years. 
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Figure D3. Daily averages of mean volume backscattering strength (Mean Sv) corresponding 

to zooplankton at the Chukchi Ecosystem Observatory during 2016–2019. Lines correspond to a 

seven-day moving average. 

 

Environmental variables included in Generalized Additive models are shown in Figure D4 and 

Figure D5. Only covariates that were not colinear were included at the same time in candidate 

models. Correlation matrix for all variables is shown in Table D1 and Variance Inflation Factor 

for variables included in the selected GAM are shown in Table D2. Residuals diagnostic plots are 

shown in Figure D6 and Figure D7. 
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Figure D4. Daily averages of environmental covariates measured in situ at the Chukchi 

Ecosystem Observatory during 20162019 and included in candidate Generalized Additive Models. 

Equipment and measurement descriptions are detailed in the main text. (a) Chlorophyll-a 

fluorescence, (b) photosynthetically active radiation (PAR), (c) nitrate concentration, (d) midwater 

salinity, (e) near-bottom salinity, (f) midwater temperature, (g) near-bottom temperature. 
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Figure D5. Daily averages of environmental covariates included in candidate Generalized 

Additive Models. Source of each covariate is described in the main text. (a) Sea ice concentration, 

(b) wind speed, (c) daylength, (d) air temperature. 
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Table D1. Correlation matrix for all environmental variables included in Generalized Additive Models. 

 

 

 

 

 

 

  B. Temp. B. Sal. MW Temp. MW Sal. PAR Sea ice 
Wind 
speed Air temp. 

Wind 
speed3 Nitrate Daylength 

Days after 
retreat Julian day 

B. Temperature                           

B. Salinity -0.09652                         

MW Temperature 0.983559 -0.089181                       

MW Salinity -0.224484 0.889225 -0.197093                     

PAR 0.139831 0.022824 0.161192 -0.003083                   

Sea ice -0.571836 -0.051549 -0.58799 0.091302 -0.310773                 

Wind speed 0.025251 -0.085074 0.014807 -0.070506 -0.070898 0.049848               

Air Temperature 0.166432 0.267191 0.204711 0.234488 0.33833 -0.708982 -0.071431             

Wind speed3 0.024895 -0.11032 0.01119 -0.088681 -0.081083 0.08058 0.913746 -0.116176           

Nitrate -0.64132 0.346964 -0.644619 0.44869 -0.228205 0.391167 -0.002146 -0.063683 -0.011379         

Daylength -0.326908 0.255321 -0.276575 0.361458 0.235286 -0.225634 -0.116408 0.656354 -0.153637 0.364764       

Days after retreat -0.320009 0.085467 -0.335881 0.262847 -0.278622 0.747287 0.033071 -0.417652 0.051081 0.35268 -0.008713     

Julian day 0.627572 0.030439 0.600273 -0.118621 0.123351 -0.61927 -0.033325 0.346928 -0.037431 -0.431195 -0.14801 -0.418928   

Chl-a -0.262486 0.078561 -0.220675 0.107582 0.058434 -0.167426 -0.024359 0.347486 -0.049604 0.149189 0.503367 -0.104232 -0.114208 



 

Table D2. Variable inflation factor (VIF) for covariates included in selected Generalized 

Additive Model. 

Feature VIF factor 
Bottom temperature 2.074741 
Days after ice retreat 4.763959 
Midwater salinity 7.443915 

Wind speed3 1.679815 
PAR 1.306611 
Daylength 3.8671 

 

 

Figure D6. Residual diagnostics for the selected Generalized Additive Model. 
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Figure D7. Residuals (top) and Autocorrelation Function (ACF) of the residuals (bottom) from 

the selected Generalized Additive Model. 
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