Student performance predictive models using LMS data in Primary Schools

Ignacio Alvarez-Castro

Instituto de Estadística (IESTA) Universidad de la República, Uruguay.

International Data Science Conference, Santiago de Chile, Nnovember 2023.

y evaluación de uso de las plataformas educativas"

Ceibal Program

- "One laptop per child"model in primary education (2007)
- Extended to secondary schools
- Key role during COVID-19 pandemic
- webpage: https://ceibal.edu.uy

Learning managment system (LMS)

3 lines of work

- LMS Monitor: Shiny app, draft version: http://164.73.240.157:3838/App-Ceibal/
- Key drivers of LMS use: measure student engagement
- Predictive modeling
 - Little Bridge data (LMS)
 - Predict English results

Project Team: Natalia da Silva, Oscar Montañez, Bruno Tancredi, jimena Padín

Introduction

Data sources

Predictive modeling

Performance data

English adaptive test

- 2 components: Vocabulary-Grammar (VG) and Reading (R)
- End of academic year (November-December)
- \blacktriangleright \approx 35000 students, randomly selected

Performance data

12% of students below A1.1 level

LSM data

Little Bridge

- Interactive LSM to learn English
- Automatic evaluation
- In children from 4°, 5° y 6° grades (9-11 years old)

2021 data

- \approx 70000 students
- LB activity per child-day
- Some information about teachers

LB snapshot

##		Act	min.pts	max.pts	ActTot	Preguntas	Correctas
##	1	act_32	0.50	0.50	1	10	5
##	2	act_32	0.50	0.50	1	10	5
##	3	act_33	1.00	1.00	1	2	2
##	4	act_402	1.00	1.00	1	1	1
##	5		NA	NA	NA	NA	NA
##	6	act_16	0.30	0.60	2	20	9
##	7	act_18	1.00	1.00	1	12	12
##	8	act_19	1.00	1.00	1	5	5
##	9	act_20	0.88	0.88	1	8	7
##	10	act_21	1.00	1.00	1	5	5

Other variables: school, socioconomic level ...

Monthly attemps

Introduction

Data sources

Predictive modeling

Right answers and English level

— A2.2 — A1.2 — Pre_A1.1

Clasification problem

Children in 6th grade are *expected* to reach **A2.1** level.

Sample size: \approx 3000 students

Response:

$$Y_i = \begin{cases} 1 & \text{reaches A2 level or higher} \\ 0 & \text{otherwise} \end{cases}$$

- Use LB acumulated work up to July
- Fit several statistical learning methods
- Include school random effect

Bayesian additive regression trees

Picture from: Hill, J., Linero, A., & Murray, J. (2020). Bayesian additive regression trees: A review and look forward. Annual Review of Statistics and Its Application, 7, 251-278. Predictive modeling

BART model

A single tree is denoted as

$$g(x|T,M) = \sum_{k} \mu_k I(x \in R_k)$$

having two basic parameters: tree structure T and set of leaves values $M = (\mu_1, \ldots, \mu_b)$.

BART: sums of trees model

$$\begin{array}{ll} Y_i &= f(X_i) + \epsilon_i \\ &= \sum_j g_j(X_i | T_j, M_j) + \epsilon_i \\ &\epsilon_i \sim \mathcal{N}(0, \sigma^2) \end{array}$$

Is possible to add random effects, $f(X_{ig}) + \alpha_g$.

Clasification results

Calibration plot

Accuracy \approx 70 %, Specificity \approx 58 %

Random effects results

There are schools with positive effetcs in most quintile groups

Future (present?) steps

- Include effects for other levels (class)
- Extend school effects to slope for selected variables

Thank you!