Student performance predictive models using LMS data in Primary Schools

Ignacio Alvarez-Castro

Joint Statistical Meetings. Toronto, Canada

August 2023

IESTA

Ceibal Program

- "One laptop per child"model in primary education (2007)
- Extended to secondary schools
- Key role during COVID-19 pandemic
- webpage: https://ceibal.edu.uy

Learning managment system (LMS)

Plataformas

- LMS Monitor: Shiny app, draft version: http://164.73.240.157:3838/App-Ceibal/
- Key drivers of LMS use: measure student engagement
- Predictive modeling
- Little Bridge data (LMS)
- Predict English results

Project Team: Natalia da Silva, Oscar Montañez, Bruno Tancredi, jimena Padín

Introduction

Data sources

Predictive modeling

English adaptive test

- 2 components: Vocabulary-Grammar (VG) and Reading (R)
- End of academic year (November-December)
- ≈ 35000 students, randomly selected

12% of students below A1.1 level

Little Bridge

- Interactive LSM to learn English
- Automatic evaluation
- In children from $4^{\circ}, 5^{\circ}$ y 6° grades (9-11 years old)

2021 data

- ≈ 70000 students
- LB activity per child-day
- Some information about teachers

LB snapshot

\# \#	Act	min.pts	max.pts	ActTot	Preguntas	Correctas
\# \# 1	act_32	0.50	0.50	1	10	5
\#\# 2	act_32	0.50	0.50	1	10	5
\#\# 3	act_33	1.00	1.00	1	2	2
\#\# 4	act_402	1.00	1.00	1	1	1
\#\# 5		NA	NA	NA	NA	NA
\# \# 6	act_16	0.30	0.60	2	20	9
\#\# 7	act_18	1.00	1.00	1	12	12
\#\# 8	act_19	1.00	1.00	1	5	5
\#\# 9	act_20	0.88	0.88	1	8	7
\#\# 10	act_21	1.00	1.00	1	5	5

Other variables: school, socioconomic level ...

Monthly attemps

- Quintil $1-$ Quintil $2-$ Quintil $3-$ Quintil $4-$ Quintil 5

Introduction

Data sources

Predictive modeling

Right answers and English level

B 1	$\mathrm{~A} 2.1=\mathrm{A} 1.1$
A 2.2	$\mathrm{~A} 1.2=\mathrm{Pre}$-A1.1

Clasification problem

Children in 6th grade are expected to reach A2.1 level.

- Sample size: ≈ 3000 students
- Response:

$$
Y_{i}= \begin{cases}1 & \text { reaches A2 level or higher } \\ 0 & \text { otherwise }\end{cases}
$$

- Use LB acumulated work up to July
- Fit several statistical learning methods

Clasification results

Showing some results from a random forest (ranger)

Confusion matrix

Accuracy $\approx 66 \%$

Calibration plot

Variable importance

Most relevant variables are not individual specific

- Include class effect: learning occurs in class envioroment, so

$$
E\left(Y_{i j}\right)=\text { class }_{j}+f\left(x_{i j}\right)
$$

for instance: BART with random effects

- Data exploration suggests separation occurs in linear combinations. We plan using Projection pursuit methods.

Thank you!

