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We continue our investigation of the QCD dynamics in terms of the Curci-Ferrari effective La-
grangian, a deformation of the Faddeev-Popov one in the Landau gauge with a tree-level gluon
mass term. In a previous work we have studied the dynamics of chiral symmetry breaking at the
level of the quark propagator and, in particular, the dynamical generation of a constituent quark
mass. In the present article, we study the associated Goldstone mode, the pion, and we compute the
pion decay constant in the chiral limit. Our approach exploits the fact that the coupling (defined
in the Taylor scheme) in the pure gauge sector is perturbative, as observed in lattice simulations
which, together with a 1/Nc-expansion, allows for a systematic, controllable approximation scheme
in the low energy regime of QCD. At leading order, this leads to the well-known rainbow-ladder
resummation. We study the region of parameter space of the model that gives physical values of
the pion decay constant. This allows one to constrain the gluon mass parameter as a function of
the coupling using a physically measured quantity.
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I. INTRODUCTION

The most prominent aspects of the QCD dynamics at
large distances, namely confinement and dynamical chi-
ral symmetry breaking, are of intrinsic nonperturbative
nature in terms of the elementary (quark and gluon) de-
grees of freedom of the theory. This common wisdom has
two aspects. The first, rather trivial one is simply that
describing phenomena such as bound states of quarks and
gluons (as required by confinement) or dynamical quark
mass generation (as implied by chiral symmetry break-
ing) require resumming diagrams at infinite loop orders.
The second, deeper aspect follows from the fact that the
standard perturbative approach, based on the Faddeev-
Popov (FP) Lagrangian, predicts a Landau pole, where
the running coupling constant diverges, and is thus not
applicable in the infrared regime. Even though the first
problem can be overcome, at least in principle, by stan-
dard resummation techniques, as done, e.g., to describe
QED bound states, the second problem kills this hope be-
cause of the lack of a proper expansion scheme to select
the diagrams to be resummed.

The above, apparently hopeless description, however,
suffers from a serious loophole. On the formal level, first,
the FP approach to gauge theories is known to be plagued
by the issue of Gribov ambiguities [1, 2], which inherently
limits its validity to, at best, the deep ultraviolet (UV)
regime. In fact, no nonperturbative version of the FP
gauge-fixed Lagrangian (say, in the Landau gauge) or of
any BRST-invariant Lagrangian has been constructed so
far [3, 4]. Moreover, on a practical level, actual lattice
calculations of gauge-dependent quantities in the (lattice)

Landau gauge1 have revealed stringent features of the in-
frared QCD dynamics [5–17]. In the pure gauge sector,
one observes, first, that the gluon propagator saturates
at vanishing (Euclidean) momentum, signaling the dy-
namical generation of a nonzero screening mass (whereas
the ghost propagator remains massless) and, second, that
the coupling constant is finite in the infrared, showing
no sign of a Landau pole. In fact, the (Taylor) coupling
in the pure gauge sector remains moderate at infrared
momenta and even vanishes in the deep infrared. This
strongly advocates for the possibility of a modified per-
turbative approach to infrared QCD dynamics.

As a completely justified gauge-fixed Lagrangian in the
continuum is still lacking,2 one can resort to model La-
grangians motivated by phenomenological (lattice) ob-
servations. The simplest such proposal [22, 23] consists
in adding a bare gluon mass term to the FP Lagrangian
(in the Landau gauge), which is a particular case of the
class of Curci-Ferrari (CF) Lagrangians [24, 25]. Such
a soft deformation of the FP theory remains perturba-
tively renormalizable and does not modify the well-tested
ultraviolet regime of the theory. Most importantly, the

1 Existing lattice gauge fixing procedures involve an extra ingredi-
ent than the sole (e.g., Landau) gauge fixing condition in order
to solve the Gribov problem. For instance, one explicitly selects
one Gribov copy or one averages over a subset of copies, etc. It is
not known, however, how to formulate such procedures by means
of a local, renormalizable, gauge-fixed action.

2 Quantization procedures which aim at solving the Gribov issue
of the FP approach have been proposed [18–21], although none
of them is completely satisfactory so far.
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model possesses infrared safe renormalization group tra-
jectories, with no Landau pole [23, 26–28], allowing for
a well-defined perturbative expansion down to arbitrary
infrared scales. A large body of work in the past decade
has put this modified perturbative approach to test and
has demonstrated that it efficiently captures various as-
pects of the infrared dynamics of both Yang-Mills theo-
ries and QCD-like theories with heavy quarks [22, 23, 29–
41]. One- and, in some cases, two-loop calculations of
numerous infrared sensitive quantities (two- and three-
point functions, phase diagram at nonzero temperature
and densities, etc.) compare very well with actual lat-
tice calculations. The CF model also leads to interesting
neutron star phenomenology [42–44].

The light quarks dynamics is more intricate because,
as lattice simulations demonstrate, the quark sector (in
the Landau gauge) becomes strongly coupled at infrared
momenta [45, 46] (no Landau pole is observed however).
Remarkably, one-loop calculations in the CF model also
exhibit the increase of the quark-gluon coupling in the
infrared relative to the pure gauge coupling [33]. This
suggests the self-consistent picture of a strongly interact-
ing quark sector coupled to a perturbative gauge sector.
In a recent article [47], we have proposed a systematic
expansion scheme in the infrared regime based on a per-
turbative treatment of the pure gauge coupling together
with an expansion in the inverse number of colors, 1/Nc.
At leading order, this results in the well-known rainbow-
ladder resummation in the quark sector [48–59], which
correctly captures the essential aspects of dynamical chi-
ral symmetry breaking. The advantages of the proposed
expansion scheme is, first, that the rainbow-ladder re-
summation is obtained in a controlled manner and, sec-
ond, that one can systematically implement standard
QFT tools, such as renormalization and renormalization
group (RG) improvement. The rainbow resummation of
the quark propagator has been implemented in this con-
text in Ref. [47] using a simple model for the running
quark-gluon coupling—a simplification which has been
removed in Ref. [60], where we have implemented a com-
plete treatment of the RG running at leading order in the
“rainbow-improved” loop expansion. Our results for the
quark mass function are in very good agreement with lat-
tice simulations for all values of the (degenerate) quark
mass.

Although the state of the art technology for han-
dling the light quark sector of QCD with continuum ap-
proaches goes far beyond the rainbow-ladder resumma-
tion (see, for instance, [61–65]), our work provides an
important new aspect in that it identifies relevant small
parameters that one can use to obtain various levels of
approximations in a systematic and controlled manner
with, in principle, no need for ad-hoc parametrizations
of the gluon propagator or the quark-gluon vertex. It
is thus of interest to investigate to what extent our ap-
proach is able to describe other aspects of the light quark
sector. One important application concerns the study of
hadronic observables, which we undertake in the present

work. In particular, we aim here at computing the pre-
diction of the CF model for the pion decay constant fπ
at leading order in the rainbow-improved loop expan-
sion, where the pion bound state corresponds to the re-
summation of ladder diagram with one-(massive)-gluon
exchange.

As a technical simplification, we shall compute fπ in
the chiral limit m2

π → 0, whose value can be accu-
rately deduced from the actual physical value with chi-
ral perturbation theory at two-loop order [66]: fπ(m2

π =
0) ≈ 86 MeV. This presents important advantages.
First, this allows us to use a small momentum expan-
sion of Euclidean quantities (without the need for an-
alytical continuation to Minkowski momenta) and, sec-
ond, we can reduce the bound state problem to a set
of coupled one-dimensional integral equations, allowing
for a rather transparent and simple implementation of
RG improvement—essential to correctly describe the UV
tails—and for a simple numerical solution. We study
the region of the (two-dimensional) parameter space for
which fπ equals its physical value, which allows us to fix
in a physical manner the gluon mass parameter in terms
of the coupling. The typical values we obtain are in agree-
ment with previous results based on fitting lattice results
for, say, the two-point functions in the Landau gauge.
The present work is the first one where we constrain the
parameter space using a physically measured quantity.

The article is organized as follows. Section II reviews
the essentials of the rainbow improved expansion scheme
at leading order. In Sec. III we derive an exact expres-
sion for the decay constant fπ(m2

π = 0) in terms of the
Lorentz components of the quark propagator and of the
components of the quark-antiquark-pion vertex in the
limit of vanishing Euclidean pion momentum. The latter
satisfy a set of coupled one-dimensional linear integral
(Bethe-Salpether) equations derived in Sec. IV. At the
present order of approximation, the kernel of these inte-
gral equations—corresponding to a one-gluon exchange—
can be computed analytically. The renormalization and
RG improvement of these integral equations is discussed
in Sec. V and the ultraviolet behavior of the solutions is
analyzed in Sec. VI. The numerical solution of the BS
equations and our results for fπ(m2

π = 0) in terms of the
parameters of the model (the gluon mass and the quark-
gluon coupling) is detailed in Sec. VII. In Sec. VIII we
discuss the conclusions and perspectives of the work. Fi-
nally, a series of technical details and results are gathered
in Appendices A–E.
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II. THE RAINBOW-IMPROVED LOOP
EXPANSION

We work with the Euclidean QCD action in the Landau
gauge, supplemented with a gluon mass term

S =

∫
d4x

[
1

4
F aµνF

a
µν + iha∂µA

a
µ + ∂µc

a(Dµc)
a

+
1

2
m2

Λ(Aaµ)2 +

Nf∑
i=1

ψ̄i( /D +MΛ)ψi

]
.

(1)

Here, F aµν = ∂µA
a
ν − ∂νA

a
µ + gΛf

abcAbµA
c
ν is the field-

strength tensor and the covariant derivative is defined
as DµX = ∂µX − igΛAµX, with Aµ the matrix gauge
field in the appropriate representation. Also, /D = γµDµ,
where the Euclidean Dirac matrices are chosen Hermitian
and satisfy {γµ, γν} = 2δµν . Finally, the parameters gΛ,
MΛ and mΛ are the bare coupling constant, quark mass,
and gluon mass, respectively, defined at some ultraviolet
regulator scale Λ. In the present paper, we are interested
in the pion properties in the chiral limit and therefore,
we only consider the case of Nf = 2 degenerate quark
flavors.

Thanks to the gluon mass term, the—otherwise
standard—action (1) possesses a well-defined perturba-
tive expansion down to infrared scales. In perturbative
calculations, this mass appears only in the bare gluon
propagator, Gabµν(p) = δabGµν(p)

Gµν(p) =
1

p2 +m2
Λ

(
δµν −

pµpν
p2

)
. (2)

The latter is not modified at leading order in the RI loop
expansion. Instead, the quark propagator gets dressed
by rainbow diagrams and assumes the general form

S(p) = Z(p2)
i/p+M(p2)

p2 +M2(p2)
, (3)

where the quark field strength and mass functions as-
sume the tree-level values Z = 1 and M =MΛ. Finally,
the main quantity of interest in the present work is the
quark-antiquark-pion vertex Γiπ(q, q′; p), where i is the
pion isospin index and where q and −q′ denote the out-
going quark and antiquark momenta, whereas p = q − q′
is the incoming pion momentum. Here, the composite
pion field is defined as πi(x) = ψ̄(x)iγ5σ

iψ(x) (properly
renormalized), with σi the Pauli matrices in flavor space

and γ5 = γ1γ2γ3γ4 such that γ†5 = γ5 and {γ5, γµ} = 0.
Dirac, color, and flavor indices are left implicit.

The RI loop expansion relies on treating both the cou-
pling in the pure gauge (ghost-gluon) sector gg and the
inverse number of colors 1/Nc as small parameters, while
keeping the quark gluon coupling gq arbitrary. 3 In

3 Strictly speaking, we need gq to remain, at most, of order one.

−1 −1
+=

,

FIG. 1. The integral equation for the quark propagator
(thick line) at leading order in the RI-expansion: This gen-
erates the infinite series of rainbow diagrams in terms of the
tree-level propagators (thin lines) and vertices.

practice, given a vertex function with E external (quark,
gluon or ghost) legs, the RI `-loop order is obtained as
follows. Include first all standard diagrams up to ` loop.
Each `-loop diagram involves given numbers of quark-
gluon and pure gauge vertices and a given power of Nc
resulting from the color algebra. In terms of the rescaled
(t’Hooft) couplings4 ĝ = g

√
Nc, it scales as ĝkq ĝ

k′

g /N
p
c ,

with k + k′ = 2` + E − 2 and 0 ≤ k ≤ 2` + E − 2,
and where p ≥ E/2 − 1. The rule is then to include as
well and resum all higher loop diagrams with arbitrar-
ily more quark-gluon vertices but with the same order
in ĝg and in 1/Nc, that is, all (` + n)-loop diagrams of

order ĝk+n
q ĝk

′

g /N
p
c , with n ≥ 0. In particular, this sys-

tematically includes, at least, dressing the quark lines
with the infinite series of rainbow diagrams, which are
all ∼ ĝk≥0

q (ĝg/Nc)
0 and, hence, of the same order as the

tree-level quark propagator. Moreover, it allows one to
reproduce the correct perturbative behaviour in the in
ultraviolet regime.

As detailed in Ref. [47], at leading order, the tree-
level gluon propagator (2) does not receive any correc-
tion. In contrast, as just explained, the whole series of
rainbow diagrams contributes at the same order as the
tree-level quark propagator and is thus to be resummed
as the leading order in the RI loop expansion. Similarly,
the infinite series of one-gluon exchange ladder diagrams
with dressed quark lines contributes at the same order
∼ (ĝg/Nc)

0 as the tree-level value to the quark-antiquark-
pion vertex and thus constitute the RI leading order. The
fact that both resummations come along is a manifesta-
tion of the axial Ward identities (see Appendix A), which
are thus consistently satisfied at this order of approxima-
tion. These resummations can be formulated in terms of
the integral equations represented diagrammatically in
Figs. 1 and 2. The quark propagator equation has been
studied in detail in Refs. [47, 60], to which we refer the
reader for details. The equation for the pion vertex is the
central focus of the present work.

4 The t’Hooft couplings are to be held fixed while taking the large
Nc limit.
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FIG. 2. The integral equation for the pion-quark-antiquark
vertex function (black disk) at leading order in the RI-
expansion: This generates the infinite series of ladder dia-
grams with rungs given by the tree level gluon propagator
and quark-antiquark-gluon vertices and sides given by the
leading-order (rainbow-resummed) quark propagator. The
first term on the right-hand side is the tree-level vertex iγ5σ

i.
The present ladder resummation is directly relatedto the rain-
bow resummation for the quark propagator through the chiral
Ward identities (see the Appendix A).

III. PION DECAY CONSTANT IN THE
CHIRAL LIMIT

Let us first specify some conventions and normaliza-
tions. As recalled in Appendix A, the pion decay constant
fπ is related to the normalization of the axial current op-
erator Aiµ(x) = ψ̄(x)iγµγ5σ

iψ(x) and naturally appears
in correlation functions involving the latter. For instance,
the correlator GijAµπ(x − y) = 〈Aiµ(x)πj(y)〉 presents, in

momentum space, a simple pole at the pion mass. With
our choice of normalization (see Appendix A), we have,
for p2 → −m2

π,

GijAµπ(p) ∼ −ipµδij
m2
π

MΛ

2f2
π

p2 +m2
π

. (4)

The ratio m2
π/MΛ, introduced here for convenience, re-

mains finite and nonzero in the chiral limit, see Eq. (A11).
The correlator (4) is related to the (bare) pion-quark-
antiquark vertex Γiπ(q, q′) (see Fig. 3 for conventions) as

GijAµπ(p) = −
∫
q

tr
[
iγµγ5σ

iS(q)Γjπ(q, q′)S(q′)
]

(5)

where the trace involves color, flavor, and Dirac indices
and where p = q − q′. Writing

Γiπ(q, q′) = iγ5σ
i m

2
π

MΛ

γπ(q, q′)

p2 +m2
π

, (6)

where γπ(q, q′) is regular when p2 → −m2
π, we deduce

−ipµf2
π = Nc

∫
q

tr [γµS(−q)γπ(q, q′)S(q′)]p2=−m2
π
,(7)

with a trace over Dirac indices. The symmetries of the
problem (Lorentz, parity, charge conjugation invariance
and K-symmetry, see for instance [67]) constrain the
Lorentz structure of the pion vertex residues as

γπ(q, q′) = γP (q, q′) + iσµνqµq
′
νγT (q, q′)

+ iγµ
[
qµγA(q, q′)− q′µγA(q′, q)

]
(8)

=

q

q′

Γj
π

Ai
µ πj

p p

FIG. 3. The Aµ − π correlator (black square) in momentum
space in terms of the quark propagator and of the pion-quark-
antiquark vertex. The vertex on the left is the tree-level one:
iγµγ5σ

i. A similar expression with the dressed axial current-
quark-antiquark vertex on the left and the bare pion–quark-
antiquark one (iγ5σ

i) on the right holds.

with σµν = i
2 [γµ, γν ] and where γP,T,A are real scalar

functions. Furthermore, the functions γP (q, q′) and
γT (q, q′) are symmetric under q ↔ q′. In general, one
thus has to compute those scalar vertex functions, which
depend on three scalar variables and which satisfy a set of
coupled linear integral equations involving the resummed
quark propagator (see Appendix B).

In the chiral limit, where m2
π → 0, the problem greatly

simplifies and can be formulated in terms of three func-
tions of one variable only. In particular, Eq. (7) becomes

−ipµf2
π = Nc

∫
q

tr [γµS(−q)γπ(q, q′)S(q′)]p2→0 (9)

and it is thus sufficient to expand the right-hand side
at linear order in p. Introducing the quark-antiquark
relative momentum r = (q + q′)/2, so that q = r + p/2
and q′ = r − p/2, we have

γP,T (q, q′) = γP,T (r2) +O(p2) (10)

γA(q, q′) = γA(r2) +
p · r
r2

[
γA(r2)− γB(r2)

]
+O(p2),

(11)

where the RHSs define our notations. Expanding the
quark propagator as well in Eq. (7), we have, in the chiral
limit,

f2
π =

Nc
4π2

∫ ∞
0

dx
xZ2(x)

[x+M2(x)]
2

{
γP (x)

[
M(x)− x

2
M ′(x)

]
+

3

2
M(x)[xγT (x)−M(x)γA(x)] +

x+M2(x)

2
γB(x)

}
.

(12)

As recalled in Appendix A, the axial Ward identities im-
ply that

γP (x) =
M(x)

Z(x)
. (13)

Equation (12) is exact in the chiral limit. Retaining
only the first line corresponds to the Pagel-Stokar ap-
proximation [61, 68], which, thanks to the relation (13),
provides an expression involving only the quark propa-
gator. As we shall see below, the functions γT,A,B(x)
satisfy a set of coupled one-dimensional integral equa-
tions. These bare functions are to be renormalized and
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we shall discuss this issue together with the necessary RG
improvement of the integral equations in the following.
Note that Eq. (12) implies that the integral on the RHS
is finite and RG invariant.

IV. BETHE-SALPETER EQUATION FOR THE
VERTEX

At leading order in the present expansion scheme, the
quark-antiquark-pion vertex Γiπ(q, q′; p) resums the infi-
nite series of ladder diagrams with rungs given by the
tree-level one-gluon exchange Eq. (2) and stiles given by
rainbow-resummed quark propagators Eq. (3); see Fig. 1.
This can be cast into the linear integral equation depicted
in Fig. 2, which reads

Γiπ(q, q′) = iγ5σ
i − λΛ

∫
k

Gµν(k)γµS(`)Γiπ(`, `′)S(`′)γν ,

(14)

where λΛ = CF g
2
Λ, with CF = (N2

c − 1)/(2Nc) ∼ Nc/2
for N2

c � 1, ` = q − k and `′ = q′ − k.

Using the definition (6) and the Lorentz decomposi-
tion (8), one obtains a set of coupled integral equations
for the scalar functions γP,T,A,B(q, q′). Expanding the
latter around p2 = 0 up to linear order in pµ, this re-
duces to a set of one-dimensional integral equations for
the functions γP,T,A,B(r2) defined in Eqs. (10) and (11).
These equations are explicitly derived in the Appendix B.
The equation for γP (r2) actually decouples and reads, in
the chiral limit

γP (r2) = 3λΛ

∫
s

Z2(s2)

s2 +M2(s2)

γP (s2)

(r − s)2 +m2
Λ

. (15)

We recover the equation for the ratio M(r2)/Z(r2) [54],
as expected from the Ward identity (13). The remaining
equations read.

γT (x) =
λΛ

16π3

∫ ∞
0

dy

(
x+ y

2x
fm2

Λ
(x, y) +

(x− y)2

2x
∆fm2

Λ
(x, y) + ∆Im2

Λ
(x, y)

)
N(y) (16)

γA(x) =
λΛ

16π3

∫ ∞
0

dy
{[

fm2
Λ

(x, y)−∆Im2
Λ

(x, y)
]
H(y)−

[
2Im2

Λ
(x, y) + (x− y)∆Im2

Λ
(x, y)

]
L(y)

}
(17)

γB(x) = − 3λΛ

16π3

∫ ∞
0

dy
{

∆Im2
Λ
(x, y)H(y)−

[
yfm2

Λ
(x, y)− 2Im2

Λ
(x, y) + y∆Im2

Λ
(x, y)

]
L(y)

}
, (18)

where

N(x) =

[
Z(x)

x+M2(x)

]2 {
γP (x) + [x−M2(x)]γT (x)− 2M(x)γA(x)

}
(19)

H(x) =

[
Z(x)

x+M2(x)

]2 {
M(x)γP (x) + 2xM(x)γT (x) +

[
x−M2(x)

]
γA(x)

}
(20)

L(x) =

[
Z(x)

x+M2(x)

]2{
M ′(x)γP (x) +M(x)γT (x) +

[
2 +

M2(x)

x

]
γA(x)−

[
1 +

M2(x)

x

]
γB(x)

}
, (21)

and where we defined the functions

fm2(x, y) =
π

2x

(
b−

√
b2 − xy

)
(22)

Im2(x, y) =
π

2x

(
by +

2

3x

[
(b2 − xy)3/2 − b3

])
, (23)

with b = (x+ y +m2)/2, as well as

∆fm2(x, y) =
fm2(x, y)− f0(x, y)

m2
(24)

and similarly for ∆Im2(x, y).

V. RENORMALIZATION AND RG
IMPROVEMENT

The above equations involve bare quantities and need
to be properly renormalized. Also, a proper description
of the ultraviolet regime requires to implement a RG im-
provement. As discussed in Ref. [47], this also ensures to
get a proper solution of the rainbow integral equation for
the quark propagator. As we shall see below, this is also
crucial so that the right-hand side of Eq. (12) is finite.
We refer the reader to Refs. [47, 60] for the treatment
of the quark propagator equation and briefly recall the
main necessary ingredients here.

We introduce the renormalized fields Aaµ =
√
ZAA

a
R,µ,
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ψ =
√
ZψψR, and ψ̄ =

√
Zψψ̄R, as well as the renor-

malized parameters5 m2
Λ = Zm2m2, MΛ = ZMM, and

gΛ = Zgqgq. The renormalized quark propagator is ob-
tained as

S(p) = Zψ(µ2
0)SR(p;µ2

0), (25)

where µ0 is an arbitrary renormalization scale. Clearly
the mass function M(p2) is not renormalized, whereas we
can define

Z(p2) = Zψ(µ2
0)ZR(p2;µ2

0). (26)

We choose the renormalization condition

ZR(p2 = µ2
0;µ2

0) = 1, (27)

from which it follows, evaluating Eq. (26) at µ2
0 = p2,

that

Z(p2) = Zψ(p2). (28)

We now come to the Bethe-Salpether equations (16)–
(18). These can be formally written as the following in-
tegral matrix equation

γ(x) = g2
Λ

∫ ∞
0

dyK(x, y)γ(y), (29)

where γ ≡ (γP , γT , γA, γB) and the matrix kernel K(x, y),
which can be read off Eqs. (16)–(21), is proportional to
one gluon propagator and two quark propagators, K ∝
GS2; see Eq. (14). Here, we made explicit the bare quark-
gluon coupling constant but we leaved the gluon mass
dependence of the kernel K implicit for the sake of the
argument. We shall re-introduce it at the end. Upon
introducting renormalized quantities as before as well as
a renormalization factor Zπ for the composite pion field,
the renormalized kernel reads

K(x, y) = Z2
ψ(µ2

0)ZA(µ2
0)KR(x, y;µ2

0) (30)

while the renormalized quark-antiquark-pion vertex is

γ(x) = Z−1
ψ (µ2

0)ZM(µ2
0)Zπ(µ2

0)γR(x;µ2
0). (31)

The quark condensate operator σ(x) = ψ̄(x)ψ(x) is the
chiral partner of the pion field and, thus receives the same
renormalization factor: Zσ = Zπ, Moreover, this opera-
tor is sourced by the tree-level quark mass MΛ, which
implies that ZMZσ = ZMZπ is finite. Choosing a renor-
malization scheme with ZMZπ = 1, we have

γ(x) = Z−1
ψ (µ2

0)γR(x;µ2
0). (32)

5 As mentioned before the quark-gluon and pure gauge couplings
differ significantly in the infrared. It is, therefore, relevant to
introduce different renormalization factors as gΛ = Zgggg =
Zgqgq . This is discussed in detail in Ref. [60] but will be of
no direct relevance to the discussion below.

The equation for the renormalized vertex then reads

γR(x;µ2
0) = Z2

gq (µ
2
0)Z2

ψ(µ2
0)ZA(µ2

0)×

g2
q (µ2

0)

∫ ∞
0

dyKR(x, y;µ2
0)γR(y;µ2

0). (33)

As explained in Ref. [60], at the present order of approx-
imation, we have ZgqZψ

√
ZA = 1, so that, finally,

γR(x;µ2
0) = g2

q (µ2
0)

∫ ∞
0

dyKR(x, y;µ2
0)γR(y;µ2

0) (34)

This equation is finite but involves potentially large log-
arithms, which can be resummed using renormalization
group methods. First, we can set µ2

0 = x in (34) to get

γR(x;x) = g2
q (x)

∫ ∞
0

dyKR(x, y;x)γR(y;x), (35)

with gq(x) the running quark-gluon coupling, to be deter-
mined from the appropriate beta function [60]. Then, we
relate the functions KR and γR at different scales through
Eqs. (30) and (32):

γR(y;x) =
Z−1
ψ (y)

Z−1
ψ (x)

γR(y; y) (36)

KR(x, y;x) =
Z2
ψ(y)

Z2
ψ(x)

KR(x, y; y), (37)

where we used the fact that, at the present order of ap-
proximation, the gluon propagator is at tree level so that
ZA = 1. We also note that, at this order, Zψ(x) is finite
[47].

Defining γ̂(x) = Zψ(x)γR(x;x), we obtain the RG-
improved equation

γ̂(x) = g2
q (x)

∫ ∞
0

dyKR(x, y; y)γ̂(y), (38)

where the renormalized kernel KR is computed as the
bare one but with the bare quark and gluon propagators
replaced by their renormalized counterpart at the scale
y, that is with Z(y)→ ZR(y; y) = 1. The previous argu-
ment is easily repeated to include the dependence of the
kernel K on the gluon mass m2

Λ = Zm2(µ2
0)m2(µ2

0), with
m2(µ2

0) the renormalized square mass. At the present or-
der of approximation, we have Zm2 = 1 and we conclude
that, just as for the quark-gluon coupling, Eq. (38) in-
volves the running gluon massm2(x), obtained by solving
the appropriate flow equation. The compete flow of the
parameters gq(x) and m2(x) at leading order in the RI
loop expansion has been discussed in Ref. [60], to which
we refer the reader for details. Here we shall make di-
rect use of the results presented there for these flows and
for the RG-improved quark propagator. We stress that,
having a systematic set of expansion parameters allows
us to properly justify the RG improvement without any
extra ad hoc hypothesis.

As clear from Eq. (15), the equation for γ̂P (x) de-
couples from the others and we check that the resulting
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RG improved equation is consistent with the Ward iden-
tity for the renormalized vertex. In particular, the latter
reads

γR,P (x;µ2
0) =

M(x)

ZR(x;µ2
0)
, (39)

from which it follows, using ZR(x;x) = 1, that

γ̂P (x) = Zψ(x)M(x). (40)

One can check that the pseudoscalar component of the
RG improved equation (38) coincides with the RG im-
proved equation for M(x) obtained in Ref. [60].

As a result, the equations for the remaining compo-
nents γ̂T,A,B(x) are linear integral equations with non-
homogeneous (source) terms given by the pseudoscalar
contribution. Defining λ(x) = CF g

2
q (x), these read, ex-

plicitly,

γ̂T (x) =
λ(x)

16π3

∫ ∞
0

dy

(
x+ y

2x
fm2(x, y) +

(x− y)2

2x
∆fm2(x, y) + ∆Im2(x, y)

)
N̂(y) (41)

γ̂A(x) =
λ(x)

16π3

∫ ∞
0

dy
{

[fm2(x, y)−∆Im2(x, y)] Ĥ(y)− [2Im2(x, y) + (x− y)∆Im2(x, y)] L̂(y)
}

(42)

γ̂B(x) =
3λ(x)

16π3

∫ ∞
0

dy
{
−∆Im2(x, y)Ĥ(y) + [yfm2(x, y)− 2Im2(x, y) + y∆Im2(x, y)] L̂(y)

}
, (43)

where, as explained above, the gluon mass is the running one at the scale x, m2 ≡ m2(x) and where

N̂(x) = N̂ source(x) +
[x−M2(x)]γ̂T (x)− 2M(x)γ̂A(x)

[x+M2(x)]
2 (44)

Ĥ(x) = Ĥsource(x) +
2xM(x)γ̂T (x) +

[
x−M2(x)

]
γ̂A(x)

[x+M2(x)]
2 (45)

L̂(x) = L̂source(x) +
xM(x)γ̂T (x) +

[
2x+M2(x)

]
γ̂A(x)−

[
x+M2(x)

]
γ̂B(x)

x [x+M2(x)]
2 , (46)

with

N̂ source(x) = Zψ(x)
M(x)

[x+M2(x)]
2 (47)

Ĥsource(x) = Zψ(x)
M2(x)

[x+M2(x)]
2 (48)

L̂source(x) = Zψ(x)
M(x)M ′(x)

[x+M2(x)]
2 . (49)

Accordingly, we shall refer to the nonhomogeneous
source terms γ̂source

T,A,B(x) as the right-hand-sides of

Eqs. (41)–(43), with N̂(x) → N̂ source(x), etc. These
equations can be solved numerically, e.g., by successive
iterations of the source terms until convergence.

Finally, the pion decay constant in the chiral limit
Eq. (12) reads, in terms of renormalized quantities,

f2
π =

Nc
4π2

∫ ∞
0

xdx

[x+M2(x)]
2

{
Zψ(x)M2(x)

[
1− x

2

M ′(x)

M(x)

]
+

3

2
M(x)[xγ̂T (x)−M(x)γ̂A(x)] +

x+M2(x)

2
γ̂B(x)

}
.

(50)

We stress again that this equation is exact in the chiral
limit. It reproduces Eq.(6.27) of Ref. [61] in the case were
we only consider the pseudoscalar tensor of the quark-
pion vertex (first line), which is an extension of Pagels-
Stokar formula [68].

For later use, we mention the following compact ex-
pression in terms of the functions (45) and (46)

f2
π =

Nc
4π2

∫ ∞
0

dxx
[
Ĥ(x)− x

2
L̂(x)

]
. (51)

The Pagel-Stokar formula then corresponds to keeping
only the source terms (48) and (49).

VI. ULTRAVIOLET BEHAVIOR

Before to present the numerical solution of the equa-
tions derived above, we analyze here the ultraviolet be-
havior of the solutions. We check explicitly that the inte-
grals obtained by successive iterations of the source terms
are ulraviolet convergent and we then solve for the lead-
ing large-momentum asymptotics of the vertex functions
γ̂T,A,B(x). The large momentum behaviors of the quark
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propagator in the chiral limit and of the quark-gluon cou-
pling are6 [60, 61]

Zψ(x) ∼ 1 , M(x) ∼ AM
x

(lnx)γM−1 , (52)

and

λ(x) ∼ CF
β0 lnx

, (53)

with

β0 =
11Nc − 2Nf

48π2
, (54)

and the quark mass anomalous dimension

γM =
9CF

11Nc − 2Nf
. (55)

The actual value of γM is of importance in the following.
In the large-Nc limit used here, γM = 9/22 ≈ 0.410. For
Nc = 3 and Nf = 2, γM = 12/29 ≈ 0.414.

We then have the following leading ultraviolet behav-
iors for the functions (47)–(49)

N̂ source(x) ∼ AM
x3

(lnx)γM−1 (56)

Ĥsource(x) ∼ A2
M

x4
(lnx)2γM−2 (57)

L̂source(x) ∼ −A
2
M

x5
(lnx)2γM−2. (58)

Inserting these in Eqs. (41)–(43) we obtain, for the source
terms,

γ̂source
T (x) ∼ AM

12x2
(lnx)γM−1 (59)

γ̂source
A (x) ∼ cA

x lnx
(60)

γ̂source
B (x) ∼ cB

x2 lnx
, (61)

with

cA =
γM
6

∫ ∞
0

dxx
Zψ(x)M2(x)

[x+M2(x)]
2

[
1− x

2

M ′(x)

M(x)

]
(62)

cB =
γM
4

∫ ∞
0

dxx2 Zψ(x)M2(x)

[x+M2(x)]
2

[
1− x

3

M ′(x)

M(x)

]
. (63)

In deriving these asymptotic behaviors, we have used
that, for x � m2, the various functions in Eqs. (41)–
(43) read, for arbitrary y,

f0(x, y) =
π

2x
[yθ(x− y) + (x↔ y)] (64)

I0(x, y) =
πy

4x

[
y
(

1− y

3x

)
θ(x− y) + (x↔ y)

]
(65)

∆f0(x, y) = − π

2x

[
y

x− y θ(x− y) + (x↔ y)

]
(66)

∆I0(x, y) = − π

4x2

[
y2θ(x− y) + (x↔ y)

]
, (67)

6 Of course, for dimensional reasons, the logarithmic terms must
be understood as ln(x/x0), with x0 an arbitrary (though not too
infrared) scale. We take x0 = 1 for simplicity.

and, thus, in the same range of x,

γ̂T (x) =
λ(x)

64π2

∫ x

0

dy
y2

x2
N̂(y) +

λ(x)

64π2

∫ ∞
x

dyN̂(y) (68)

γ̂A(x) =
λ(x)

32π2

∫ x

0

dy

{
y

x

[
Ĥ(y)− y

2
L̂(y)

]
+

y2

2x2

[
Ĥ(y)− y

3
L̂(y)

]}
+

3λ(x)

64π2

∫ ∞
x

dy

{
Ĥ(y) +

(
5x

9
− y
)
L̂(y)

}
(69)

γ̂B(x) =
3λ(x)

64π2

∫ x

0

dy
y2

x2

[
Ĥ(y)− y

3
L̂(y)

]
+

3λ(x)

64π2

∫ ∞
x

dy

{
Ĥ(y) +

(
2x

3
− y
)
L̂(y)

}
. (70)

Writing γ̂ = (γ̂T , γ̂A, γ̂B) and

γ̂ = γ̂source + λK̄R · γ̂, (71)

successive iterations of the source terms yield a formal
expansion in powers of λ(x)

γ̂ = γ̂source +
∑
n≥1

λnγ̂(n). (72)

One easily verifies that the first iteration of the source
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term yields, up to logarithms, γ̂
(1)
T ∼ x−2 and γ̂

(1)
A ∼

γ̂
(1)
B ∼ x−1 and that these power laws are stable against

further iterations. Assuming that this is indeed the lead-
ing power-law behavior, we have

N̂(x) ∼ M(x)

x2
+
γ̂T (x)

x
+O

(
x−4

)
, (73)

Ĥ(x) ∼ γ̂A(x)

x
+O

(
x−4

)
, (74)

L̂(x) ∼ 2γ̂A(x)− γ̂B(x)

x2
+O

(
x−5

)
. (75)

A detailed analysis of the leading ultraviolet behavior
of the solutions is presented in Appendix C. We give here
a brief summary. In all cases, the contributions y � x
to the integral equations are suppressed. The integrals
in Eq. (68) are dominated by y ∼ x, which yield contri-
butions of the same order as the source term (59). The
equation for γT decouples from those of γA and γB and is
driven by the source term, that is, in turn, by the quark
mass (52), with a modified coefficient AM/12→ AM/11
due from the integral contributions. Instead, the inte-
grals in Eq. (69) are dominated by y � x, but, as before,
these yield contributions of the same order as the source
term (60). It follows that γA is also driven also driven
by its source term with a modified coefficient cA → c̄A.
Finally, the integrals in (70) are dominated by y ∼ x
and the source term (61) is subdominant. As a conse-
quence γB decouples (at leading order) and is driven by
γA ∼ x−1(lnx)−1. We also find that the leading term
∼ x−1(lnx)−2 of each integral in Eq. (70) actually can-
cels out and that the resulting leading behavior of γB is
further suppressed by one inverse power of lnx. The final
result is

γ̂T (x) ∼ AM
11x2

(lnx)γM−1, (76)

γ̂A(x) ∼ c̄A
x lnx

, (77)

γ̂B(x) ∼ γM c̄A
4x(lnx)3

. (78)

Using these behaviors, we show in Appendix C that the
constant c̄A verifies c̄A = 4π2γMf

2
π/(6Nc). Interestingly,

we thus find that the UV asymptotics of both the pseu-
doscalar and the tensor components of the pion-quark-
antiquark vertex is governed by the (renormalized) quark
condensate AM ∝ 〈Ψ̄Ψ〉 (see Appendix D) and the corre-
sponding anomalous dimension γM , whereas that of the
vector and pseudovector components is governed by f2

π .
Finally, it is worth emphasizing that the enhanced log-
arithmic decay of γ̂B—with an exponent strictly larger
than one—is crucial for the expression (50) of fπ to be
finite.

This last remark brings a question about how accurate
the control of the UV tails must be to get a reliable de-
termination of fπ. The UV contribution to Eq. (50) can

be estimated as

f2
π,UV =

Nc
4π2

∫ ∞
Λ2

dxx
[
H(x)− x

2
L(x)

]
(79)

=
Nc
8π2

∫ ∞
Λ2

dxγ̂B(x) +O
(
A2
MΛ−4

)
, (80)

with Λ a UV scale. Using the asymptotic behavior (78),
we deduce

f2
π,UV

f2
π

=
γ2
M

96(ln Λ2)2
+O

(
A2
MΛ−4

)
. (81)

Despite the slow (logarithmic) convergence, the prefactor
γ2
M/96 ∼ 10−3 ensures that this contribution is negligi-

ble.

VII. RESULTS

In this section, we compute the pion decay constant
in the chiral limit as a function of the parameters of the
CF Lagrangian. We numerically solve Eqs. (41–43) and
we obtain fπ from Eq. (50). This requires prior knowl-
edge of the running parameters λ(x) and m2(x) and of
the quark propagator functions Zψ(x) and M(x). We
compute these quantities consistently within the present
approximation scheme using the techniques put forward
in Ref. [60]. For completeness, we shall briefly recall the
main aspects of the numerical procedure implemented
there.

At first, we need to set the scale of our calculation.
We use the same procedure as in Ref. [60], which corre-
sponds to fitting the quark propagator functions obtained
by lattice simulations for physical values of the pion
mass against the corresponding results in the present ap-
proach. In such a way our definition of the GeV corre-
sponds to that of the lattice.

As a first estimate, we can use the quark propaga-
tor functions obtained in this case—close to but not
quite in the chiral limit—to compute the value of fπ
using the expression derived above—valid in the chiral
limit. This should provide a good estimate of the physi-
cal fphys

π = 92 MeV as the chiral corrections are expected
to be relatively small, roughly of the order of 5%. We ob-
tain7 fπ = 87.9 MeV. For comparison the Pagel-Stockar
approximation for this case gives fPS

π = 83.5 MeV.
As for our numerical procedure, we use a regular grid in

the momentum p =
√
x with a lattice spacing of 0.1 GeV

divided in two regions. For momenta p ≤ Λ1 = 10 GeV,
we iterate the rainbow equations for the functions Zψ(x)
and M(x) together with the corresponding RG equa-
tions for λ(x) and m2(x) until convergence. As the in-
tegral rainbow equations involve integrating over large

7 This corresponds to the parameters (see below): g0 = 1.94, m0 =
0.15 GeV, and M0 = 3 MeV.
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FIG. 4. Evolution of fπ with the number of iterations for
g0 = 1.93 and m0 = 0.11 GeV.

momenta, we use an extension of Zψ(x) and M(x) for
Λ1 ≤ p ≤ Λ2 = 30 GeV determined by the UV expres-
sions

ZUV
ψ (x) = 1,

MUV(x) = b0

(
ln
x+m2

0

m2
0

)−γM
+
b2
x

(
ln
x+m2

0

m2
0

)γM−1

.

(82)

For the quark mass function we use a combination of
the UV behaviors in either the chiral limit (term propor-
tional to b2) or the nonzero bare quark mass (term pro-
portional to b0). The coefficients, b0 and b2, are chosen
in order to make M(x) continuous and differentiable at
Λ1. The iteration starts with the functions (82) extended
to both regions and is done at fixed values of the input
parameters M0 = M(Λ2

1), m0 = m(Λ2
1), and λ0 = λ(Λ2

1).
The chiral limit is reached by lowering the value of M0

until the contribution ∝ b0 in Eq. (82) becomes negligi-
ble over the whole range of momenta.8 We use the lowest
value for which our numerical algorithm is stable, that is,
M0 = 0.5 MeV and compute the functions Zψ(x), M(x),
λ(x), and m(x) for various values of m0 and λ0. In the
following we quote the results in terms of the coupling
g0 =

√
λ0/CF , with CF = 4/3.

We then compute the pion vertex components
γ̂T,A,B(x), over the range x ≤ Λ2

1 (in a grid in p =
√
x)

by solving the system (41)–(43) recursively, with initial
condition γ̂T (x) = γ̂A(x) = γ̂B(x) = 0. The iterative
process converges fast, typically after a few iterations
only. This is illustrated in Fig. 4, which shows the value
of fπ at each iteration for a typical choice of parame-
ters. We see that the zeroth iteration, which corresponds
to the Pagel-Stockar approximation, that is, which re-
tains only the pseudoscalar component of the pion-quark-
antiquark vertex, gives a relatively good approximation,

8 For instance, for g0 = 0.193 and m0 = 0.11 GeV, we have b0 =
4×10−4 GeV and b2 = 0.227 GeV3. We check that b0 � b2/Λ2

1.
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FIG. 5. The quark propagator functions Zψ and M as
functions of the momentum p for g0 = 1.93 and m0 = 0.11
GeV. All units are in GeV.

f
(0)
π = 81.4 MeV, and that the tensor and vector compo-

nents contribute about 5% of the final fπ = 85.9 MeV in
that case. The (converged) functions M , Zψ, and γ̂T,A,B
for this set of parameters are shown in Figs. 5 and 6.

Figure 7 shows the value of fπ in the chiral limit as
a function of the parameters m0 and g0. We also show
the same plot in terms of the running parameters m(µ2)
and g(µ2) evaluated at µ = 1 GeV. The first main obser-
vation is that there exists values of these parameters for
which fπ is close to its physical value f∗π = 86 MeV in the
chiral limit (deduced from the actual measured value by
means of chiral perturbation theory [66]). The second im-
portant observation is that the parameters for which fπ
is close to its physical value are clearly correlated. Hence,
fixing the value of g0 essentially fixes the (physical) value
of the mass parameter m0. The physically acceptable
values of the gluon mass parameter are then uniquely
determined in terms of the coupling only. In particular,
one can use these values to predict other quantities. As
an immediate example here, we can compare the corre-
sponding prediction for the quark mass function to the
existing lattice results (in the chiral limit). We show in
Fig. 8 the values of the parameters for which the overall9

9 The error functions are the ones defined in [60]
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FIG. 6. Scalar functions γ̂T,A,B as functions of the momen-
tum p for g0 = 1.93 and m0 = 0.11 GeV. All units are in
GeV.

agreement between the predicted M(x) and the lattice
results of Ref. [69] is less than 15%. This overlaps well
with the region where fπ is less than 5% away from its
expected value.

VIII. SUMMARY AND CONCLUSIONS

We have computed the pion-quark-antiquark vertex
function in the limit of vanishing pion momentum and
the pion decay constant in the chiral limit in the con-
text of the CF model approach to infrared QCD. The
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FIG. 7. Regions in parameter space where |fπ−f∗π |/f∗π , with
f∗π = 86 MeV, is less than 3%, 5%, and 8% (from darker to
lighter) in terms of the parameter m(µ2) and g(µ2) at µ =
10 GeV (upper plot) and at µ = 1 GeV (lower plot).

latter allows for a controlled expansion scheme in powers
of both the coupling in the pure gauge sector and the
inverse number of colors. At leading order, this leads
to the resummation of rainbow-ladder diagrams in the
quark sector with the tree-level (massive) gluon propa-
gator and quark-gluon vertex. In the chiral limit, this
results in a system of coupled one-dimensional integral
equations for the various Lorentz components of the pion
vertex. The RILO approximation allows us to implement
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FIG. 8. The region in parameter space where |fπ − f∗π |/f∗π
is less than 5% (MeV (dark blue) compared to that where
the overall error for the quark mass function compared with
lattice data from [69] is less than 15% (light blue).

the RG running of the parameters in a systematic and
controlled manner, which is crucial in order to get con-
sistent solutions and, in turn, a finite result for fπ. In
particular this implies that there is no reliable solution
in the limit m0 → 0 for which the RG running presents
a Landau pole.

We have obtained an exact expression for fπ in the chi-
ral limit that extends the known Pagel-Stockar approx-
imation in terms of the vector and tensor components
of the pion-quark-antiquark vertex. We have performed
a detailed analysis of the UV behavior of the relevant
functions with the interesting results that the power-law
decays in the chiral limit are controlled by either the
quark condensate or the pion decay constant. Finally we
have obtained a numerical solution of the RG-improved
coupled integral equations in terms of the parameters of
the model, namely the gluon mass parameter m0 and the
coupling g0.

Our main result is that there exist correlated values of
the parameters m0 and g0 for which the pion decay con-
stant fπ takes its physical value in the chiral limit. This

thus defines a physical constraint mphys
0 (g0) which allows

one to predict other quantities in terms of the coupling
only. Of course, it would be be extremely interesting to
fit a second experimental observable to fully determine
the two parameters directly from experimental data.

One possibility would be to use the transition tem-
perature associated to the QCD phase transition. Stud-
ies of the deconfinement transition exist within the CF
model [31, 32, 34] but they have been so far restricted to
the case of pure Yang-Mills theory or QCD in the limit
where all quarks are considered heavy. Those situations

are very far from the chiral limit addressed which pre-
vents us from combining the results. For this reason, it
becomes pressing to extend the study of the QCD phase
structure within the CF model to the light quark region.
Part of this analysis in under way.

A second quantity that could be used to fully deter-
mine the parameters of the CF model is the strong cou-
pling constant αS . However, to make the comparison
reliable it would be necessary to include two elements
that are beyond the scope of the present study. First,
one would need to establish the evolution of the coupling
constant in a realistic way (including the various heavier
quarks) up to the scales where the coupling αS is small
and well measured. In particular, this would require in-
cluding two loop corrections to the running, which has
already been done in the Nf = 2 case, see [39], and could
easily be extended above the heavier quark thresholds.
Second, it would be necessary to establish, in the weak
coupling regime, the correspondence between the running
calculated here in the Taylor scheme with the M̄S which
is the scheme usually reported in the literature.

Once the parameters are fully determined in that way,
one could envisage studying the predictions of our ap-
proach for the pion bound state at nonzero pion mass
or other light mesonic bound states. There exist well-
developed techniques to study the relevant integral equa-
tions (see, for instance,[65, 70–72]) which could be easily
implemented in the CF model.

Beyond these considerations, we stress that another in-
teresting take on the present work is that the CF model
in fact provides a well-defined notion of a gluon mass pa-
rameter that could serve as a benchmark for testing the
masslessness of the gluon. Giving reliable experimental
constraints on the gluon mass requires a proper defini-
tion of the latter. The situation is similar to the case
of the quark mass or of the gauge coupling, which being
unphysical, require a proper definition (e.g. defined at a
given scale in a given scheme) in order to be given exper-
imental constraints/values. Although the latter is well
understood and has been studied in great detail [73], the
theoretical status of the gluon mass is much less clear.
For instance, the particle data book [73] mentions limits
on a possible gluon mass that are based on ideas from
the early days of QCD, which are now completely ob-
solete, in particular, because the notion of gluon mass
used there is ill-defined. The CF model offers a proper
theoretical definition of a gluon mass parameter that can
be constrained by experimental data. The present work
makes a step in that direction.
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Appendix A: Axial Ward Identities and their
consequences

Introducing source terms for the chiral multi-
plets (σ, πi) and (Viµ,Aiµ), with the composite fields

σ(x) = ψ̄(x)ψ(x), πi(x) = ψ̄(x)iγ5σ
iψ(x), Viµ(x) =

ψ̄(x)iγµσ
iψ(x), andAiµ(x) = ψ̄(x)iγµγ5σ

iψ(x), the QCD

action is modified as10

SQCD → SQCD − Ss, (A1)

with

Ss =

∫
d4x

{
η̄ψ + ψ̄η + Jσ + J iπi + J iµViµ + LiµAiµ

}
.

(A2)

Using the invariance of the functional integration mea-
sure under infinitesimal axial SUA(Nf ) transformations
of the quark fields, δiχψ = iσiγ5ψ and δiχψ̄ = iψ̄σiγ5,
one derives the following (Ward) identity in terms of
the effective action Γ[ψ, ψ̄,J ] at nonzero sources J =
(J, J i, J iµ, L

i
µ):

(MΛ − J)
δΓ

δJ i
+ J i

δΓ

δJ
− εijk

[
Jjµ

δΓ

δLkµ
+ Ljµ

δΓ

δJkµ

]
− 1

2
∂µ

δΓ

δLiµ
+ ψ̄

iγ5σ
i

2

δΓ

δψ̄
− δΓ

δψ

iγ5σ
i

2
ψ = 0, (A3)

where the first term in the last line stems from the fact
that we considered gauged axial transformations. Taking
functional derivatives and evaluating at vanishing sources
yields the set of axial Ward identities relating various
vertex and correlation functions.

We first discuss the correlators

Gijππ(x− y) = 〈πi(x)πj(y)〉 = − δ2Γ

δJ i(x)δJj(y)

∣∣∣∣
J=0

(A4)

GijAµπ(x− y) = 〈Aiµ(x)πj(y)〉 = − δ2Γ

δLiµ(x)δJj(y)

∣∣∣∣
J=0

.

(A5)

Eq. (A3) implies the following identity, in momentum
space,

MΛG
ij
ππ(p) + i

pµ
2
GijAµπ(p) = −δijσ, (A6)

where σ = 〈ψ̄(x)ψ(x)〉 = −
∫
q

trS(q) is the quark con-

densate. With our convention, pµ is the outgoing (in-
coming) axial vector (pion) momentum for the correlator

GijAµπ(p); see Fig. 3.

10 Both the FP gauge-gixing terms and the CF gluon mass term
in the action are insensitive to chiral transformation and do not
alter the present discussion.
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=

q

q′

Γj
π

Ai
µ πj

p p

FIG. 9. The Aµ − π correlator (black square) in momentum
space in terms of the quark propagator and of the axial-vector-
quark-antiquark vertex. This is an expression equivalent to
the one shown in Fig. 3.

The pion decay constant fπ characterizes the ampli-
tude of the pion-to-lepton disintegration and is related to
the normalization of the axial vector operator11 Aµ. In
the chiral limit, one has an isolated one-particle (pion)
pole in the vicinity of p2 = 0 and the propagators in
Eq. (A6) have the analytic structures

Gijππ(p) ∼ δij Nπ
p2 +m2

π

(A7)

GijAµπ(p) ∼ −ipµδij
2fπ
√
NANπ

p2 +m2
π

(A8)

in a finite interval of p2, where Nπ and NA are some
normalization factors.12 Writing the identity (A6) for
p2 → −m2

π, we get the relation

MΛ

√
Nπ = m2

πfπ
√
NA. (A9)

The fact that ZMZπ is finite implies that the product
MΛ

√
Nπ is finite and, hence, NA as well. The standard

definition of fπ [74] corresponds to choosing NA = 1,
from which we arrive at Eq. (4). Also, in the chiral limit,
where m2

π → 0, the expressions (A7) and (A8) are valid
near p = 0. Writing the identity (A6) at p = 0 yields

MΛNπ
m2
π

= −σ, (A10)

where σ is the quark condensate in the chiral limit. To-
gether with Eq. (A9), this yields the famous Gell-Mann-
Oaked-Renner relation [75]

−σMΛ = f2
πm

2
π. (A11)

11 The amplitude of the matrix element of the axial vector operator
between the hadronic vacuum |0〉 and on-shell one-pion states
|πi(p̃)〉, with the Minkowskian 4-momentum p̃µ = (εp, ~p), where

εp =
√
~p2 +m2

π is fixed by using Lorentz invariance and isospin
symmetry. We write, with Lorentz-invariant normalizations of
the one-particle states,

〈0| π̃i(x̃) |πj(p̃)〉 = e−ip̃·x̃δij
√
Nπ

〈0| Ãiµ(x̃) |πj(p̃)〉 = −ip̃µe−ip̃·x̃δij2fπ
√
NA,

where the tildes refer to Minkowskian quantities.
12 Note that we are dealing with bare fields and, in particular, Nπ

is not to be confused with the renormalization factor Zπ which
defines the renormalized pion field in Eq. (31).

Next, consider the vertex Ward identity, derived from
Eq. (A3), relating the pion-quark-antiquark πqq̄ and the
Aµqq̄ vertices:

MΛΓiπ(q, q′)− ipµ
2

ΓiAµ(q, q′)

= S−1(q)
iγ5σ

i

2
+
iγ5σ

i

2
S−1(q′), (A12)

where p = q − q′ denotes the incoming pion or axial-
vector momentum.13 From Eqs. (6) and (8), we have
Γiπ(q, q) = iγ5σ

iγP (q2)/MΛ. Thus, taking the limit
p → 0 in Eq. (A12), and under the assumption that
ΓiAµ(q, q) is regular, this directly yields

γP (q2) =
M(q2)

Z(q2)
. (A14)

Another consequence of the chiral Ward identities is
the relation between the rainbow and the ladder inte-
gral equations for the quark propagator and the pion or
axial-vector vertices, respectively, see Figs. 1 and 2. The
former writes

S−1(q) = −i/q +MΛ + λΛ

∫
k

Gρσ(k)γρS(`)γσ, (A15)

13 Our conventions are such that, at tree level, Γiπ(q, q′) → iγ5σi

and ΓiAµ (q, q′) → iγµγ5σi. Note that isospin symmetry guar-

antees that the flavor structure of both the pion vertex is
Γiπ(q, q′) = iγ5σiΓπ(q, q′) and similarly for ΓiAµ . Finally, note

that the identity (A6) can be obtained from the vertex identity
(A12) using the exact relations

Gijππ(p) = −
∫
q

tr
[
Γiπ(q′, q)S(q)iγ5σ

jS(q′)
]
,

GijAµπ(p) = −
∫
q

tr
[
ΓiAµ (q′, q)S(q)iγ5σ

jS(q′)
]
,

where, by convention, p is the incoming pion momentum in both
cases, hence the outgoing axial-vector momentum. Figure 9
shows the diagrammatic representation of the second equation
above, equivalent to the one shown in Fig. 3. The relations above
express identities such as

δ2Γ

δJi(x)δJj(y)
= −

δ〈πj(y)〉
δJi(x)

= tr

[
iγ5σ

j δSJ (y, y)

δJi(x)

]

= −
∫
z,z′

tr

[
iγ5σ

jSJ (y, z)
δS−1
J (z, z′)

δJi(x)
SJ (z′, y)

]
,

(A13)

with SJ the quark propagator and δS−1
J /δJi is the pion vertex

in the presence of sources. A similar identity involving the the
axial-vector current holds.
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and the latter are14

Γiπ(q, q′) = iγ5σ
i − λΛ

∫
k

Gρσ(k)γρS(`)Γiπ(`, `′)S(`′)γσ,

(A18)

ΓiAµ(q, q′) = iγµγ5σ
i

− λΛ

∫
k

Gρσ(k)γρS(`)ΓiAµ(`, `′)S(`′)γσ,

(A19)

with ` = q − k and `′ = q′ − k. One easily verifies that
these satisfy the symmetry identity (A12).

Appendix B: Details of linear-order BSE

We present here the derivation of the on-shell Bethe-
Salpether equations in the chiral limit, Eqs. (16)–(18).
First, let us consider Eq. (14) at p2 = 0. Using the
definition (6), with (8) and (10), we have

γP (r2) =MΛ + 3λ

∫
s

G(k)
Z2(s2)

s2 +M2(s2)
γP (s2) , (B1)

with k = r−s, which is identical to the integral equation
corresponding to the resummation of rainbow diagrams
for the quantity M(x)/Z(x), as demanded by the axial
Ward identities for any value of MΛ; see Sec A.

Next, we evaluate Eq. (14) on the pion mass shell,
p2 = −m2

π, which gives

γπ(q, q′) = λ

∫
k

Gµν(k)γµS(−`)γπ(`, `′)S(`′)γν . (B2)

In the chiral limit, we expand at linear order in pµ around
p2 = 0. Using the definitions (10) and (11), the left-hand
side reads

γπ(q, q′) = γP (r2) + iσµνpµrνγT (r2)

+ i/pγA(r2) + 2i/r
p · r
r2

[γA(r2)− γB(r2)]

+O(p2), (B3)

whereas, upon writing ` = s+p/2 and `′ = s−p/2 for the
integrand on the right-hand side, we obtain, after some
algebra,

S(−`)γπ(`, `′)S(`′) =
Z(s2)M(s2)

s2 +M2(s2)

− iσµνpµsνN(s2)− i/pH(s2) + 2i/sp · sL(s2) +O(p2),

(B4)

where we used Eq. (13) in the first line and where the
functions N , H, and L are defined in Eqs. (19)–(21). We
then project out the scalar, tensor, and vector compo-
nents of Eq. (B2). As expected, the scalar part reduces
to Eq. (B1) in the limitMΛ → 0. The tensor and scalar
component yields

(pµrν − pνrµ)γT (r2) = λ

∫
s

G(k)N(s2)

[
pµsν − pνsµ − 2

k · s
k2

(pµkν − pνkµ)− 2
k · p
k2

(kµsν − kνsµ)

]
(B5)

and

pµγA(r2) + 2
p · r
r2

rµ[γA(r2)− γB(r2)] = λ

∫
s

G(k)

{
H(s2)

(
pµ + 2

k · p
k2

kµ

)
− 2p · sL(s2)

(
sµ + 2

k · s
k2

kµ

)}
. (B6)

To proceed, we exploit the Euclidean Lorentz symmetry and choose, with no loss of generality, rµ = (0, 0, 0, r) and
pµ = (0, 0, p3, p4). Accordingly, we write sµ = (~s⊥, s3, s4) and kµ = (−~s⊥,−s3, r− s4) and we note that the functions
G(k) = 1/(k2 + m2), N(s2), H(s2), and L(s2) are all even in s3. We can, thus, discard explicit odd powers of s3 in

14 The relation between rainbows and ladders follows directly from
the general relation

Γiπ(q, q′) = −
δS−1
J (q, q′)

δJi(p)

∣∣∣∣∣
J=0

(A16)

where S−1
J (q, q′) is the (nondiagonal) momentum space quark

propagator in presence of the source term (A2). The rainbow
resummation for the latter reads

S−1
J (q, q′) = S−1(q, q′)− Ji(p)iγ5σ

i

+ λΛ

∫
k
Gρσ(k)γρSJ (`, `′)γσ , (A17)

with ` = q − k and `′ = q′ − k and where S−1(q, q′) = (−i/q +

MΛ)(2π)4δ(4)(q−q′) is the tree-level propagator. Deriving with
respect to the source gives and setting it to zero gives Eq. (A18).
A similar treatment leads to Eq. (A19).
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the various integrals. Finally, we choose to systematically eliminate any explicit occurence of s4 in favour of s2, s2
3,

and s2
⊥. We obtain, after some algebra

γT (r2) = λ

∫
s

G(k)N(s2)

(
r2 + s2

2r2
−
(
r2 − s2

)2
2r2k2

− 2s2
3

k2

)
(B7)

γA(r2) = λ

∫
s

G(k)

{
H(s2)

(
1 +

2s2
3

k2

)
− 2L(s2)s2

3

(
2− r2 − s2

k2

)}
(B8)

γB(r2) = λ

∫
s

G(k)

{
H(s2)

4s2
3 + s2

⊥
k2

+ L(s2)

(
3s2 − 8s2

3 − 2s2
⊥ +

r2

k2
[2s2

3 − s2
⊥]− s2

k2
[4s2

3 + s2
⊥]

)}
(B9)

Choosing s, s⊥, and s4 as independent variables, we can
perform the integrals over s⊥ and s4 explicitly, using

∫
s

=
1

32π3

∫ ∞
0

ds2

∫ s2

0

ds2
⊥

∫ sB

−sB

ds4

s3
(B10)

where s3 =
√
s2 − s2

⊥ − s2
4 and sB =

√
s2 − s2

⊥. We
introduce the function

hm2(r2, s2, s2
⊥) =

∫ sB

−sB
ds4

s3

r2 + s2 +m2 − 2rs4

=
π

2r2

(
b−

√
b2 − r2(s2 − s2

⊥)

)
,

(B11)

with b = (r2 + s2 +m2)/2, in term of which, the relevant
integrals for our purposes read

fm2(r2, s2) =

∫ s2

0

ds2
⊥

∫ sB

−sB

ds4

2s3
G(k)

= −
∫ s2

0

ds2
⊥∂s2⊥hm2(r2, s2, s2

⊥)

= hm2(r2, s2, 0) (B12)

and

Im2(r2, s2) =

∫ s2

0

ds2
⊥

∫ sB

−sB

ds4

2s3
2s2

3G(k)

=

∫ s2

0

ds2
⊥hm2(r2, s2, s2

⊥), (B13)

whose explicit expressions are given in Eqs. (22) and (23).
We also note the identity

∫ s2

0

ds2
⊥

∫ sB

−sB

ds4

2s3
s2
⊥G(k)

= −
∫ s2

0

ds2
⊥s

2
⊥∂s2⊥hm2(r2, s2, s2

⊥)

= Im2(r2, s2) (B14)

We have, then,∫
s

f(s2)G(k) =
1

16π3

∫ ∞
0

ds2f(s2)fm2(r2, s2)

(B15)∫
s

f(s2)G(k)2s2
3 =

1

16π3

∫ ∞
0

ds2f(s2)Im2(r2, s2)

(B16)∫
s

f(s2)G(k)s2
⊥ =

1

16π3

∫ ∞
0

ds2f(s2)Im2(r2, s2)

(B17)

for any function f(s2). Also, writing G(k)/k2 = [1/k2 −
G(k)]/m2, one has∫

s

f(s2)G(k)
1

k2
= − 1

16π3

∫ ∞
0

ds2f(s2)∆fm2(r2, s2)

(B18)∫
s

f(s2)G(k)
2s2

3

k2
= − 1

16π3

∫ ∞
0

ds2f(s2)∆Im2(r2, s2)

(B19)∫
s

f(s2)G(k)
s2
⊥
k2

= − 1

16π3

∫ ∞
0

ds2f(s2)∆Im2(r2, s2)

(B20)

Inserting these in Eqs. (B7)–(B9), one finally arrives at
Eqs. (16)–(18).

Appendix C: Ultraviolet behavior

To analyze the leading ultraviolet behavior, we first
write

γ̂T (x) =
yT (lnx)

x2
, (C1)

γ̂A(x) =
yA(lnx)

x
, (C2)

γ̂B(x) =
yB(lnx)

x
, (C3)

where the functions yT,A,B(u) are expected to be some
power laws at large u = lnx. In this section we assume
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Eqs. (73)–(75) and check their validity a posteriori. Un-
der this assumption, the equation for γT decouples from
those of γA and γB . Let us analyze the former first.

First note (e.g. using the dominant iterated behav-
iors of γT,A,B) that the integral

∫ x
0

on the left-hand side
of Eq. (68) is dominated by its upper bound: Separate∫ x

0
=
∫ x0

0
+
∫ x
x0

with m2 � x0 � x and check that the

contribution
∫ x0

0
is suppressed by powers of lnx as com-

pared to that of
∫ x
x0

. We can thus neglect the former

and replace the various integrands by their UV behaviors
in the latter. Also, for the present analysis it is conve-
nient to momentarily introduce a UV cutoff by replacing∫∞
x
→
∫ Λ2

x
. Introducing u0 = lnx0 and uΛ = ln Λ2, we

get

yT (u) =
AM
12

uγM−1 +
γM
12u

∫ u

u0

dvyT (v)

+
γM
12u

∫ uΛ

u

dve2(u−v)yT (v). (C4)

This can be turned into a second order differential
equation. Introducing zT (u) = uyT (u), zs(u) =
(AM/12)uγM , and α = γM/12, we have

zT (u) = zs(u) + α

∫ u

u0

dv

v
zT (v) + α

∫ uΛ

u

dv

v
e2(u−v)zT (v),

(C5)

where we have introduced an ultraviolet cut-off uΛ. One
easily checks that

z′′T − 2z′T +
2α

u
zT = z′′s − 2z′s ∼ −2αAMu

12α−1,(C6)

with the boundary condition

z′T (uΛ) = z′s(uΛ). (C7)

The general solution at large u (keeping 1� u� uΛ) is,
for α > 0,

zT ∼
AM
11

u12α +ATu
α +BT e

2uu−α (C8)

with AT and BT some integration constants. All lead to
ultraviolet finite integrals. The term ∝ AT is negligible
as compared to the (always present) first term so we can
write

zT ∼
AM
11

u12α +BT e
2uu−α (C9)

The constant BT is obtained from the boundary condi-
tion (C7) as

BT = −αAM
22

u13α−1
Λ e−2uΛ (C10)

and thus vanishes in the limit uΛ →∞. We finally have

zT ∼
AM
11

u12α. (C11)

A similar analysis can be made for the coupled integral
equations in the A−B sector. In this case, the contribu-
tion

∫ u0

0
amounts to a constant term—called c̄A in the

following—that must be taken into account in the equa-
tion for zA and to a term ∝ 1/x = e−u that can be safely
neglected in the equation for zB . As before we use the
dominant UV behavior of the various integrands in the
contributions

∫ u
u0

and
∫ uΛ

u0
. Introducing the functions

I1(u) = α

∫ u

u0

dv

v
zB(v), (C12)

I2(u) = α

∫ u

u0

dv

v
ev−u[zA(v) + zB(v)], (C13)

I3(u) = α

∫ uΛ

u

dv

v
eu−v[zB(v)− zA(v)], (C14)

I4(u) = α

∫ uΛ

u

dv

v
e2(u−v)[2zA(v)− zB(v)], (C15)

we have

zA(u) = c̄A + I1(u) +
1

3
I2(u) + 3I3(u) +

5

3
I4(u) (C16)

zB(u) = I2(u) + 3I3(u) + 2I4(u) (C17)

One checks that these satisfy the following coupled dif-
ferential equations

zB + 2z′B = 3z′A (C18)

and

z′′′B − 2z′′B − z′B + 2zB =
6α

u

(zA
u
− z′A + zB

)
, (C19)

together with the condition

z′B(uΛ) = 3z′A(uΛ). (C20)

Alternatively, Eq. (C19) rewrites

z′′′B − 2z′′B −
(

1− 4α

u

)
z′B + 2

(
1− 2α

u

)
zB =

6αzA
u2

.

(C21)

It is an easy matter to find the solutions in an expansion
at large u. We obtain, for the dominant terms,

zA ∼ A1 +A2e
u +A3e

−uu4α/3 +A4e
2uu−4α/3 (C22)

zB ∼
3αA1

u2
+A2e

u + 3A3e
−uu4α/3 +

6

5
A4e

2uu−4α/3.

(C23)

Clearly, not all solutions of the above differential equa-
tions are solution of the original integral equation. To se-
lect the required solution, we plug the expressions (C22)
and Eqs. (C23) back in integral equations (C16) and
Eqs. (C17). A consistent solution requires A1 = c̄A and

A2 = 3αA4e
uΛ/(5u

4α/3+1
Λ ). Requiring a finite solution in

the limit uΛ → ∞ therefore implies A4 = A2 = 0. The
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FIG. 10. The large momentum behavior of the functions
M(x) and γ̂T (x) for g0 = 1.93 and m0 = 0.11 GeV compared
with the expected asymptotic behaviors (52) and (76). We fit
the value AM = 0.12 GeV3.

term ∝ A3 can be neglected because A1 = c̄A 6= 0 and
we arrive at

zA ∼ c̄A and zB ∼
3αc̄A
u2

. (C24)

Finally, the constant c̄A can be determined by inserting
these results back in Eq. (69). One easily checks that

γ̂A(x) =
λ(x)

32π2

∫ ∞
0

dyZψ(y)
y

x

[
Ĥ(y)− y

2
L̂(y)

]
+O

(
1

x(lnx)2

)
, (C25)

where one recognize the integral in Eq. (50). It follows
that

c̄A =
CF f

2
π

8Ncβ0
=

4π2γM
6Nc

f2
π . (C26)

Appendix D: Ultraviolet tails

We have tested the UV behavior of our numerical re-
sults against the analytical results (52), (76), (77), and
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FIG. 11. The large momentum behavior of the functions
γ̂A(x) and γ̂B(x) using g0 = 1.93 and m0 = 0.11 GeV com-
pared with the asymptotic behaviors asymptotic behaviors
(77) and (78). We fit the value c̄A = 0.01 GeV2.

(78). This is shown in Figs. 10–11. Although we do
not have more than essentially a decade in the square-
momentum x, our result reproduce well the expected
power laws and the logarithmic corrections for all the
functions but γ̂B(x). For instance, we observe that the
predicted ratio xγ̂T /M is well reproduced, but not the
ratio γ̂A/γ̂B . We understand this as due to the fact that,
as explained in Sec. VI, the behavior (78) arises from
a cancelation of the naive leading behavior in Eq. (70).
Because the UV tails contribution to fπ are negligible,
see Eq. (81), we have not attempted to resolve this issue
further.

From the UV behaviors of M and γ̂A, we fit the con-
stants AM and c̄A, although these should be taken with
a grain of salt because those fits are realized over a re-
stricted range of UV momenta. We simply check here
that this have the expected orders of magnitude. A de-
tailed analysis would require a dedicated study of the
deep UV regime. As recalled in Sec. E, the constant AM
is related to the renormalized RG-invariant quark con-
densate in the chiral limit σ̃R as (Nc = 3, γM ≈ 0.4)

AM = −21−γMπ2γM
Nc

σ̃R ≈ −1.99σ̃R. (D1)
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For the parameters g0 = 0.193 and m0 = 0.11 GeV
that give fπ ≈ 86 MeV, we fit AM ≈ 0.12 GeV3,
σ̃R ≈ (392 MeV)3, which is the correct order of mag-
nitude [76–79]. In the parameter space studied here, we

find 355 MeV . σ̃
1/3
R . 411 MeV.

As for the constant c̄A, we can compare it to the pre-
dicted value

c̄A
f2
π

=
4π2γM

6Nc
≈ 0.87 (D2)

For the same parameters as above, we obtain c̄A ≈
0.01 GeV2, that is, c̄A/f

2
π ≈ 1.35, roughly in the right

ballpark.

Appendix E: The quark condensate

For completeness, we briefly recall some aspects of the
quark condensate in the chiral limit and its relation to the
power-law decrease of the quark mass function at large
momentum [80]. The bare quark condensate σ = 〈Ψ̄Ψ〉 is
UV divergent and requires regularisation. Using a hard
cut-off, it reads, in terms of the renormalized quark prop-
agator,

σ = −NfNc
4π2

∫ Λ2

0

dxx
Zψ(x)M(x)

x+M2(x)
. (E1)

The integral is controlled by the large-x behavior (52) of
the integrand and reads

σ = −NfNc
4π2

AM
γM

(
ln

Λ2

Λ2
QCD

)γM
, (E2)

where the scale under the logarithm is arbitrary.

One defines the renormalized quark condensate as

σ = Zσ(µ2
0)σR(µ2

0) = Z−1
M (µ2

0)σR(µ2
0) , (E3)

where we used the renormalization condition
Zσ(µ2

0)ZM(µ2
0) = 1, with ZM the quark mass renormal-

ization factor, see the discussion below Eq. (31).
In the present scheme, the latter is defined as
MΛ = ZM(µ2

0)M(µ2
0), with MΛ the bare quark

mass. Although the bare quark mass MΛ vanishes
in the chiral limit, the renormalization factor ZM(µ2

0)
has a nontrivial limit, given by the standard RG
analysis [74]: At one-loop order, one has, in the UV,
d lnZM/d lnµ = 2γMβ0g

2(µ), with g(µ) the running
coupling. It follows that ZM ∝ g−2γM and thus that
σRg

2γM is RG invariant.
Choosing the renormalization condition σR(Λ2) = σ

and defining the RG-invariant condensate

σ̃R = σR(µ0)
[
2β0g

2(µ2
0)
]γM

=
σR(µ0)(

1
2 ln

µ2
0

Λ2
QCD

)γM ,(E4)

we deduce from Eq. (E2) that

AM = −21−γMπ2γM
Nc

σ̃R. (E5)

With these definitions, the large-momentum behavior of
the quark mass function writes

M(x) ∼ 2π2γM
NfNc

−σ̃R
x
(

1
2 ln x

Λ2
QCD

)1−γM (E6)

and the running quark condensate is given by

σR(µ2) = σ̃R

(
1

2
ln

µ2

Λ2
QCD

)γM
. (E7)

These reproduce the corresponding expressions in
Ref. [80].
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[47] M. Peláez, U. Reinosa, J. Serreau, M. Tissier, and
N. Wschebor, Phys. Rev. D 96, 114011 (2017),
arXiv:1703.10288 [hep-th].

[48] K. Johnson, M. Baker, and R. Willey, Phys. Rev. 136,
B1111 (1964).

[49] T. Maskawa and H. Nakajima, Prog. Theor. Phys. 52,
1326 (1974).

[50] T. Maskawa and H. Nakajima, Prog. Theor. Phys. 54,
860 (1975).

[51] V. A. Miransky, Nuovo Cim. A 90, 149 (1985).
[52] D. Atkinson and P. W. Johnson, Phys. Rev. D 37, 2290

(1988).
[53] D. Atkinson and P. W. Johnson, Phys. Rev. D 37, 2296

(1988).
[54] P. Maris, C. D. Roberts, and P. C. Tandy, Phys. Lett.

B 420, 267 (1998), arXiv:nucl-th/9707003.
[55] P. Maris and C. D. Roberts, Phys. Rev. C 56, 3369

(1997), arXiv:nucl-th/9708029.
[56] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12, 297

(2003), arXiv:nucl-th/0301049.
[57] M. Bhagwat, A. Holl, A. Krassnigg, C. Roberts, and

P. Tandy, Phys.Rev. C70, 035205 (2004), arXiv:nucl-
th/0403012 [nucl-th].

[58] C. Roberts, M. Bhagwat, A. Holl, and S. Wright, Eur.
Phys. J. ST 140, 53 (2007), arXiv:0802.0217 [nucl-th].

[59] G. Eichmann, R. Alkofer, I. C. Cloet, A. Krassnigg,
and C. D. Roberts, Phys. Rev. C 77, 042202 (2008),
arXiv:0802.1948 [nucl-th].
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