Fine-tuning thermostats for coarse-grained simulations
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Melting peptides with SIRAH

What is this work about and which methods have been used?
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designing a protocol, among another relevant choices, the one of which - g AS ‘
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we want to reproduce melting temperatures. CG- MD Langevin® and CSVR*
. . . SIRAH! FF and AMBER? as MD engine Are two stochastic thermostats
Key aspects to consider regarding this work: implemented in AMBER
* Simulations were performed using SIRAH 2.0 as forcefield and ANALYSIS
AMBERZ20 as MD engine
* This assessment involves Langevin (varying its collision frequency value
to fine-tune 1t) and Canonical Sampling Velocity Rescaling (CSVR) Clusteting
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* Molecular case studies chosen for this work were pure water, Crambin T;;‘;fggﬁggﬁf TEMPERATURE ( AmberToolsZJ3)
(PDB: 1CRN), Chignolin (PDB ID: 1TUAO), SYR,E,, p31-43 (PDB ID: | SIMULATIONS
COAX For Crambin and p31-43, For WT4, SYR/,E, and
Q ) using Langevin and CSVR Chignolin, using Iangevin
thermostats. d CSVR th tats.
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Performing coarsegrained molecular dymamics simulations (CGMD) over]
protein systems moditying the thermostat choice to study its effects on 100 —tgggggm 0.3 A parameter whose value must be stated
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A cluster analysis was performed over the generated trajectories to cxperimenal  CAMPING  effect on - the velocities.  The
compare both thermostats regarding their effect on conformational data. Dotted analysis  performed for Fig. 1 uses
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