
Universidad ORT Uruguay
Facultad de Ingenieŕıa

Analysis, Evaluation and
Improvement of Active Regular
Inference Algorithms for Neural

Sequence Acceptors

Entregado como requisito para la obtención del
t́ıtulo de Ingenieŕıa en Sistemas

Alejo Garat - 219610

Juan Pedro da Silva - 229475

Mart́ın Iturbide - 241107

Tutores: Sergio Yovine y Franz Mayr

2024

Declaración de Autoŕıa

Nosotros, Alejo Garat, Juan Pedro da Silva y Mart́ın Iturbide declaramos que
el trabajo que se presenta en esta obra es de nuestra propia mano. Podemos
asegurar que:

- La obra fue producida en su totalidad mientras realizábamos el Proyecto Final
de Ingenieŕıa en Sistemas;

- Cuando hemos consultado el trabajo publicado por otros, lo hemos atribuido
con claridad;

- Cuando hemos citado obras de otros, hemos indicado las fuentes. Con ex-
cepción de estas citas, la obra es enteramente nuestra;

- En la obra, hemos acusado recibo de las ayudas recibidas;
- Cuando la obra se basa en trabajo realizado conjuntamente con otros, hemos

explicado claramente qué fue contribuido por otros, y qué fue contribuido por
nosotros;

- Ninguna parte de este trabajo ha sido publicada previamente a su entrega,
excepto donde se han realizado las aclaraciones correspondientes.

Mart́ın Iturbide Juan Pedro da Silva

Alejo Garat

21-03-2024

2

Agradecimientos

Dedicado a nuestras familias, quienes nos han acompañado en esta etapa y
fueron nuestros soporte.

Agradecemos a nuestros tutores, Dr. Sergio Yovine y Mag. Franz Mayr, por
las largas discusiones que dieron fruto a este trabajo.

3

Abstract Español

El presente trabajo contribuye al campo de la Inteligencia Artificial Explicativa
(XAI, por sus siglas en inglés). Nuestro objetivo es mejorar algoritmos, optimizar
procesos y realizar una revisión exhaustiva del estado del arte. En concreto, se
proponen optimizaciones para los algoritmos de extracción, probados en la com-
petencia internacional TAYSIR, y proponemos la implementación del algoritmo
Observation Pack con el fin de mejorar la eficiencia de los algoritmos existentes.
Además, se lleva a cabo una revisión detenida de los algoritmos L∗ y Kearns Vazi-
rani, aśı como de los diferentes oráculos utilizados para la extracción de modelos.

Abstract

This work contributes to the field of Explainable Artificial Intelligence (XAI).
Our aim is to enhance algorithms, optimize processes, and conduct a thorough
review of the state of the art. Specifically, optimizations are proposed for the
extraction algorithms used in the TAYSIR international competition, and the im-
plementation of the Observation Pack algorithm is proposed to enhance the effi-
ciency of existing algorithms. Additionally, a detailed review is conducted on the
L∗ and Kearns Vazirani algorithms, as well as the various oracles used for model
extraction.

4

Palabras clave

Inteligencia Artificial; Máquina finita determińıstica; Autómata finito deter-
mińıstico; Explicabilidad; Oráculo; Inferencia Regular; L∗; Árbol de Discrimi-
nación

Key words

Artificial Intelligence; Finite state machine; Deterministic finite automata; Ex-
plainability; Oracle; Regular Inference; L∗; Discrimination Tree

5

Contents

1 Introduction 9

2 Learning Regular Languages 11
2.1 Languages and Automatons . 11

2.1.1 Formal Languages . 11
2.1.2 Regular Languages . 11
2.1.3 Deterministic Finite Automaton 12
2.1.4 Equivalence . 14
2.1.5 Minimization of a DFA . 15

2.2 Learning regular languages: L∗ . 16
2.2.1 Initialization and Data Structures 16
2.2.2 Properties . 18
2.2.3 DFA construction and counterexample processing 20
2.2.4 Putting it all together . 22
2.2.5 Example run . 23

3 Learning Moore & Mealy Machines 26
3.1 Moore Machines . 26

3.1.1 Extending L* for Moore Machines 28
3.2 Mealy Machines . 32

3.2.1 Learning Mealy Machines via Moore Machines 34

4 Algorithmic improvements 39
4.1 Neural-Checker . 39
4.2 L* . 40

4.2.1 Optimizations . 40
4.2.2 General L* . 42
4.2.3 Partial approach . 42
4.2.4 Restart approach . 43

4.3 Benchmarks . 44
4.3.1 L∗ optimization . 44

6

4.3.2 Restart & Partial approach 47

5 Implementing Discrimination Tree-Based Learning Algorithms 50
5.1 Learning with a Discrimination tree 50

5.1.1 Formal Notation . 50
5.1.2 Access Strings and Distinguishing Strings 51
5.1.3 The Algorithm for Learning Finite Automata 52
5.1.4 Initialization and Data Structures 52
5.1.5 Sift operation . 53
5.1.6 Tentative Hypothesis . 53
5.1.7 Lowest common ancestor . 54
5.1.8 Update Tree . 55
5.1.9 Putting it all together . 55
5.1.10 Example run . 56
5.1.11 Counterexample Exhaustion 59
5.1.12 Spanning-Tree Hypothesis 59

5.2 Smart Counterexample Processing 60
5.3 Observation Pack Algorithm . 61

5.3.1 Initialization and Data Structures 61
5.3.2 Refinement . 63
5.3.3 Putting it all together . 64
5.3.4 Example Run . 65

5.4 Benchmarks . 68
5.4.1 Experiment 1 . 68
5.4.2 Experiment 2 . 69

5.5 Profiling . 70

6 Oracles & Equivalences 73
6.1 Hopcroft-Karp . 73
6.2 BFS Comparison Strategy . 73
6.3 Probably Approximately Correct learning 74

6.3.1 PAC-learning setting for languages 74
6.3.2 PAC-learning for ANN . 75

6.4 Dataset Driven . 75
6.5 Random Walk . 75
6.6 State Prefix Random Walk . 76
6.7 Sampling techniques . 76
6.8 Benchmarks . 77

6.8.1 Experiment 1 . 77
6.8.2 Experiment 2 . 79
6.8.3 Experiment 3 . 79

7

6.8.4 Experiment 4 . 80

7 TAYSIR 2023 Competition 82
7.1 Description of the competition . 82
7.2 Description of the tools used . 82
7.3 Extraction Approach . 82
7.4 Experimental Results . 83

8 Conclusions 84
8.1 Future Work and Open Problems 84

9 Bibliography 86

8

1 Introduction

Nowadays, information systems increasingly incorporate artificial intelligence
agents equipped with the ability to learn, so called learning-enabled components [1].
Learning, in this context, is understood as the system’s capability to improve
its performance through experience [2]. To achieve this, the agent possesses a
representation (model) of its knowledge of the interacting environment, which is
“trained” using data and the outcomes of interactions. In this scenario, artificial
neural networks (ANN) stand out as one of the most successful models due to
their capacity to learn from extensive datasets and their consequent predictive
effectiveness [3].

The focus of explainable artificial intelligence (XAI) is to develop artifacts
capable of delivering intelligent outcomes along with comprehensible justifications.
This means not only optimizing model performance metrics like accuracy but also
providing transparent and convincing explanations for the decisions in a human-
understandable manner [4].

Despite their efficacy, ANN are often considered opaque models [5], posing
challenges in understanding the underlying decision-making processes. This lack
of transparency is particularly critical in fields like medicine, risk assessment, and
intrusion detection, where human interpretation is paramount [6, 7, 8].

To enhance the explainability of ANN, extensive research has been dedicated
to addressing this limitation [9, 10]. One significant approach involves the use of
automata, a model that provides a language-independent mathematical founda-
tion for studying dynamical systems. In particular, automata are well-suited for
characterizing systems that produce sequences of events corresponding to words
in a regular language [11].

In the context of automata-theoretic approaches, the challenge of constructing
an automaton when the internal structure of the system is unknown is referred
to as identification or regular inference [12]. Practical constraints often make it
unfeasible to precisely solve this problem, leading to the exploration of approximate
solutions within the Probably Approximately Correct (PAC) framework [13].

In the pursuit of addressing this challenge, the team of Artificial Intelligence
and Big Data at Universidad ORT has developed an extraction framework called
Neural-Checker [14].

9

Our goal in this thesis explores the intersection of artificial intelligence and
automata theory to advance in the field of verification and analysis of ANNs,
contributing both algorithmic advancements and a comprehensive overview of the
current state of the art.

Outline

In Chapter 2, we introduce the problem of language identification as a means
to provide an overview of automata theory, a crucial concept for this thesis. Chap-
ter 3 presents another families of automata that are analyzed in this work, while
Chapter 4 focuses on the algorithmic enhancements made to the Neural-Checker [14]
tool. In Chapter 5, we explain in detail tree-based algorithms that have been imple-
mented in the tool. Chapter 6 is dedicated to present various oracles designed for
inference algorithms and equivalence of black-box and white-box models. Chap-
ter 7 showcases the results achieved using some of the algorithms in an online
competition called TAYSIR [15] in which the team participated in 2023. Lastly,
Chapter 8 summarizes the achievements of our work.

10

2 Learning Regular Languages

2.1 Languages and Automatons

2.1.1 Formal Languages

As seen in [16], a formal language L is defined as a collection of words (symbol
sequences) derived from a non-empty finite set of symbols Σ, referred to as the
alphabet. It is important to note that not every sequence formed by the alphabet
necessarily belongs to the language. For each language, there exists a set of rules
that precisely determine which sequences are considered part of it.

Each word formed by an alphabet can be seen as a concatenation of symbols
starting from the empty symbol (also seen as the identity symbol) ϵ.

For example, the English language is a set of words that can be formed with
symbols of the modern Latin-alphabet. As mentioned before, not all the words that
can be constructed by the modern Latin-alphabet belong to the English language.
For instance, the sequence “aaaab” can be formed with the symbols from the
modern Latin-alphabet but does not belong to the English language.

It is interesting to mention that every alphabet is also a language, more specif-
ically one that only contains unitary symbols.

The empty language, denoted as ∅, is the language that contains no words at
all (not even the empty word, ϵ /∈ ∅).

The language formed by all the possible sequences over an alphabet Σ is called
universal language and is denoted by Σ∗.

2.1.2 Regular Languages

Regular languages belong to the same family of formal languages compared to the
ones represented by a finite state automaton or regular expressions.

This language family is generated by Type-3 grammars (so called regular gram-
mars), defined in Chomsky’s hierarchy [17].

11

A language L over Σ is regular if it can be defined by one of the following rule
sets:

Left-regular grammar

- S → ϵ

- S → s1

- S → s2S

Right-regular grammar

- S → ϵ

- S → s1

- S → Ss2

Where S is non terminal and s1, s2 are terminal such that s1, s2 ∈ Σ.

An example of a regular language S, only containing words ending with a, over
the alphabet Σ = {a, b} can be defined with:

- S → a

- S → aS

- S → bS

Note that this language can be represented by the regular expression (a | b)∗a.

2.1.3 Deterministic Finite Automaton

A deterministic finite automaton (from now on DFA) is a tupleD = ⟨Q, Σ, τ ∗, q0, F ⟩,
where:

• Q is a set of states,

• Σ is an alphabet,

12

• τ ∗ : Q×Σ∗→ Q is the transition function,

• q0 ∈ Q is an initial state,

• F ⊆ Q is a set of final states.

Let a sequence s = s1s2 ... sn, the definition of qn = τ ∗(q1, s) means that qi =
τ(qi−1, si) for 2 ≤ i ≤ n. To put it in words, the state qn is the result of the
composition of the function τ for every symbol of the sequence s starting from the
state q1.

Now acceptance can be defined. A DFA ⟨Q, Σ, τ ∗, q0, F ⟩ accepts the sequence
s if and only if qn = τ ∗(q0, s) and qn ∈ F .

In the same context, given two states q1 and q2, it is stated that q2 is a reachable
state from q1 if and only if it exists a sequence s so that τ ∗(q1, s) = q2. A reachable
state for a DFA is a state qi ∈ Q that can be reached from q0.

Lastly, a DFA is complete if and only if the function τ ∗ is a complete function
(τ is defined for every tuple symbol-state). In other words, it is an automaton in
which all transitions for each state are defined. Moreover, a DFA is called partial
when its function τ ∗ is not a complete function.

The language defined by a DFA D is the set of words that are accepted by D
and is called L(D).

As mentioned before the set of all languages that can be defined by a DFA is
the set of all Regular Languages.

2.1.3.1 Example

Consider a scenario where a content management system uses a specific naming
convention for articles. The convention requires that each article title begins with
the letter ‘a’ and can be followed by zero or more subsections, each denoted by
the letter ‘b’. For instance:

• Main article: “a”.

• Article with subsections: “abb”.

This scenario can be represented with the DFA in Figure 2.1 which represents
the language ab∗.

13

1. Q = {q0, q1 q2} as the set of states.

2. Σ = {a, b} as the alphabet.

3. τ ∗ the transition function defined as showed in the 2.1.

4. q0 as the initial state (indicated by the incoming arrow).

5. F = {q1} as the set of final states (indicated by a double circle).

q0

q1

q2

a

b

b

a

a, b

Figure 2.1: DFA which represents the language ab∗

2.1.4 Equivalence

Equivalence in DFAs is defined by: D1 ≡ D2 ⇐⇒ L(D1) = L(D2) meaning both
automatons define the same language. Note that is it possible that two DFAs
D1 = ⟨Q1, Σ, τ ∗1, q1, F1⟩ and D2 = ⟨Q2, Σ, τ ∗2, q2, F2⟩ so that D1 ≡ D2 but
Q1 ̸= Q2 ∨ τ ∗1 ̸= τ ∗2 ∨ q1 ̸= q2 ∨ F1 ̸= F2. In other words it is possible for two
different DFAs to be equivalent: ∃ D1, D2 so that D1 ̸= D2 ∧ D1 ≡ D2.

Another interesting aspect worth mentioning is that if two DFAs are equal,

14

then they are equivalent, denoted as D1 = D2 =⇒ D1 ≡ D2. Equivalence in fi-
nite automata is fundamental in theoretical computer science. Hopcroft-Karp [18]
algorithm is widely known for its effectiveness in determining the equivalence be-
tween finite automata.

It is worth noting that there exists a unique minimal automaton that is equiv-
alent to a given one. This concept of minimality is crucial in various aspects of
automata theory.

2.1.5 Minimization of a DFA

Minimization/optimization of a DFA involves identifying states whose presence or
absence does not affect the language accepted by the automaton. These states can
be eliminated or merged without altering the language recognized by the automa-
ton [19]. This process includes:

• Detection of unreachable states: states that cannot be reached from the
initial state. Eliminating unreachable states has no impact on the language
accepted by the automaton.

• Identification of non-distinguishing states: states with indistinguish-
able behavior regarding language acceptance for any input sequence. This
concept is formalized by the Nerode congruence, which identifies states that
exhibit the same behavior in terms of language recognition. Merging non-
distinguishing states reduces the overall number of states without changing
the language recognized.

• Detecting dead states: states from which no accepting state can be
reached. This states contribute no information to the language recognized
by the automaton and can be removed unless is required for the DFA to be
complete. Moreover, multiple dead states also fit in the category of non-
distinguishing states and can be merged following that rule.

There exist algorithms to minimize a DFA, such as Hopcroft’s algorithm [20],
which is a widely-used method. By reducing the number of states, a minimized
DFA processes input more efficiently, leading to faster language recognition.

15

2.2 Learning regular languages: L∗

Grammatical inference is a task where the goal is to learn or infer a grammar
(or some device that can generate, recognise or describe strings) for a language
of which we are given an indirect presentation through strings, sequences, trees,
terms or graphs [12].

There are two settings that the learning processes could adopt, and those are
active learning and passive learning [21].

Passive automata learning infers an automaton from a given dataset [22]. Gold
demonstrated that the task of deducing a DFA with k states from a provided
dataset is proven to be NP-complete [23].

In the context of active learning, the learner has the capability to actively
choose examples and make membership queries to the teacher. A well known
algorithm in the category of active learning is Angluin’s L∗ [24]. This algorithm is
polynomial in the number of states of the minimal DFA and the maximum length
of any sequence exhibited by the teacher.

L∗ constructs a DFA by interacting with a Minimum Adequate Teacher (MAT)
that exposes two operations: a membership query (MQ), that is a boolean re-
sponse if a given sequence is accepted by the language known by the teacher, and
an equivalence query (EQ), that is a function that compares the target language
and the inferred one, if they are equivalent the test returns true, if not it returns a
counterexample (a word belonging to one of the languages but not the other) [21].

The different routines are explained in the following subsections based on [21]
and [12].

2.2.1 Initialization and Data Structures

From now on, the target automaton is represented asM and the inferred DFA as
H . The way the algorithm achieves the learning is as follows. It builds a table
of observations by interacting with the MAT. This table is used to keep track of
which words are and are not accepted by the target language. The construction
of this table is done in an iterative way by asking the teacher membership queries
of different words in order to fill the Observation Table (OT).

The information that is in the Observation Table has three characteristics:

16

• a nonempty finite prefix-closed set of strings (every prefix of every member
is also a member of the set),

• a nonempty finite suffix-closed set of strings (every suffix of every member
is also a member of the set),

• and a finite function that maps a string to either 1 or 0 if it is a member of
our target language or not, respectively.

The Observation Table is composed of two sets of rows: the ‘upper’ rows (or
top part, that we call RED following De la Higuera’s notation [12]), that represent
the elements of the prefix-closed set of strings mentioned earlier, and the ‘lower’
rows (or bottom part, that we call BLUE), which represent the same elements
of this set but concatenated with the set of symbols in the language alphabet.
On the other hand, columns represent a suffix-closed set of strings, and each cell
represents the membership relationship, both also mentioned earlier. An example
of the Observation Table is presented in Table 2.1.

We use two operations of the Observation Table:

• OT [s] represents the row in the Observation Table defined by s, where s is
a string.

• OT [s1][s2] represents the cell in the Observation Table defined by the row
s1 and the column s2, where s1 and s2 are strings.

The Observation Table is first initialized by building one RED row (for the
empty word ϵ) and one BLUE row for each symbol in the alphabet Σ (length-one
words) as shown in Algorithm 1. Then the iterative process begins.

Algorithm 1 Initialization routine

1: procedure L∗-Init(M)
2: OT ← Build-Observation-Table(M)
3: OT [ϵ][ϵ] = MQ(ϵ)
4: for each a ∈ Σ do
5: OT [a][ϵ] = MQ(a)
6: end for
7: end procedure

17

2.2.2 Properties

In order to make sense out of the table, it needs to comply with two properties.
First of all, it needs to be closed. The table is considered closed if, for every row
in BLUE, there is an equal row in RED, as indicated in Algorithm 2.

The second property is consistency. A table is considered consistent if for every
pair of rows in RED with the same values (same order of 0s and 1s), then all pairs
of extensions with the same symbol of the alphabet must have the same row in the
table (Algorithm 3). Precisely, a table is consistent if for all v, w in RED with
v ̸= w and for every symbol a in Σ, if OT [v] = OT [w], then OT [va] = OT [wa].

Algorithm 2 Check if OT is closed

1: function Is-Closed(OT)
2: for each v ∈ BLUE do
3: if OT [v] /∈ RED then
4: return False
5: end if
6: end for
7: return True
8: end function

Algorithm 3 Check if OT is consistent

1: function Is-Consistent(OT)
2: for each v ∈ RED do
3: equal rows← Get-Rows-With-Equal-Value(v)
4: for each w ∈ equal rows do
5: for each a ∈ Σ do
6: if OT [va] ̸= OT [wa] then
7: return False
8: end if
9: end for

10: end for
11: end for
12: return True
13: end function

18

If the table is not closed, the algorithm moves to RED a row in BLUE that
does not have an equal row inRED and adds to BLUE all the rows corresponding
to the extensions of its associated word with every symbol of the alphabet, as
illustrated in Algorithm 4.

Let c be the column for which the inconsistency has been found. To make it
consistent, the algorithm expands the original set of suffixes with the symbol that
makes their corresponding extensions different (an a ∈ Σ such that OT [v] = OT [w]
but OT [va] ̸= OT [wa]) concatenated with c (ac) as demonstrated in Algorithm 5.
This is done to differentiate between the two words that had the same row values.

Algorithm 4 Make OT closed

1: procedure Close(OT)
2: for each v ∈ BLUE do
3: if OT [v] /∈ RED then
4: Add-To-RED(v)
5: Remove-From-BLUE(v)
6: for each a ∈ Σ do
7: Add-To-BLUE(va)
8: OT [va] = MQ(va)
9: end for

10: end if
11: end for
12: end procedure

19

Algorithm 5 Make OT consistent

1: procedure Make-Consistent(OT)
2: for each v ∈ RED do
3: equal rows← Get-Rows-With-Equal-Value(v)
4: for each w ∈ equal rows do
5: for each a ∈ Σ do
6: if OT [va] ̸= OT [wa] then
7: Add-OT-Column(ac)
8: for each r ∈ OT do
9: OT [r][a] = MQ(ra)

10: end for
11: end if
12: end for
13: end for
14: end for
15: end procedure

2.2.3 DFA construction and counterexample pro-
cessing

Once the table is closed and consistent, the algorithm proceeds to construct the
conjectured DFA (Algorithm 6). To build an automaton out of the table, the
states are represented by every unique row in RED. The final states are those
corresponding to the rows w where OT [w][ϵ] = 1, and rejecting states are those
rows v where OT [v][ϵ] = 0 (lines 4–7). Finally, the transition function is defined
as: τ ∗(qv, a) = w if OT [va] = OT [w], as showed in lines 8–14.

20

Algorithm 6 Construct conjectured DFA

1: function Construct-DFA(OT)
2: H ← Create-DFA(Σ)
3: for each r ∈ RED do
4: if r /∈ H then
5: accepts← OT [r][ϵ]
6: s← Create-State(H, s, accepts)
7: end if
8: for each s ∈ H do
9: for each a ∈ Σ do

10: ŝ value← OT [sa]
11: ŝ← Key(ŝ value) ▷ Key denotes the row of ŝ value
12: Create-Transition(H, a, s, ŝ)
13: end for
14: end for
15: end for
16: return H
17: end function

Once the DFA is built, the algorithm asks the teacher whether it is equivalent
to the target one. If the answer is yes, it terminates and returns the learned DFA. If
the answer is no, then it receives a counterexample that proves the DFA is wrong,
and it proceeds to extend the Observation Table with this new counterexample
(Algorithm 7). This extension is done by adding every prefix of the counterexample
to RED, and for each prefix, its concatenation with every symbol in Σ to BLUE
(given that the concatenation is not a prefix).

21

Algorithm 7 Counterexample processing

1: procedure Process-Counterexample(OT,φ)
2: ps← Get-Prefixes(φ)
3: for each p ∈ ps do
4: Add-To-RED(p) ▷ Remove from BLUE if it already exists in OT
5: Fill-Row(p)
6: for each a ∈ Σ do
7: if pa /∈ RED then
8: Add-To-BLUE(pa)
9: Fill-OT-Row(pa)

10: end if
11: end for
12: end for
13: end procedure
14:

15: procedure Fill-OT-Row(p)
16: for each c ∈ columns do
17: OT [p][c] = MQ(pc)
18: end for
19: end procedure

2.2.4 Putting it all together

Having presented all the necessary functions and procedures included in the L∗

algorithm, the complete algorithm can now be introduced. We begin by initializing
the Observation Table. Subsequently, we generate an hypothesis by executing the
closure and consistency procedures on the table. The algorithm then follows with
the processing of counterexamples and the generation of a new hypothesis until it
is equivalent to the target.

It is noteworthy that, making OT consistent may cause the table to be not
closed and making OT closed may cause the table to be not consistent. For this
reason, we have to make sure the table is both closed and consistent before making
an EQ.

22

Algorithm 8 L∗ algorithm

1: function L∗-algorithm(M)
2: OT ← L∗-Init(M)
3: Close(OT)
4: Make-Consistent(OT)
5: H ← Construct-DFA(OT)
6: are eq, φ← EQ(H,M)
7: while not(are eq) do
8: Process-Counterexample(OT,φ)
9: while not (Is-Closed(OT)) and not (Is-Consistent(OT)) do

10: Close(OT)
11: Make-Consistent(OT)
12: end while
13: H ← Construct-DFA(OT)
14: are eq, φ← EQ(H,M)
15: end while
16: return H
17: end function

The time L∗ consumes depends on the length of the counterexample presented
by the teacher [24]. Angluin defines n as the number of states of M and m as
the maximum length of any counterexample presented by the teacher during the
running of L∗. The total running time can be bounded by a polynomial function
of m and n as reported in [24].

2.2.5 Example run

Let’s take the DFA of Figure 2.1 as an example to run L∗.

First, the algorithm constructs the table as presented in Table 2.1a. As the
table is not closed (not every row in BLUE has a representation in RED), the
algorithm proceeds to close it. To do that, the unique element (a) in BLUE that
has not a representative in RED is selected, and moves it to RED, adding to
BLUE its concatenation to every symbol (aa and ab, then the holes are filled).
The resulting table can be seen in Table 2.1b.

As the Observation Table is now closed and consistent, an automaton can be
built. This automaton is presented in Figure 2.2.

This automaton is then presented to the teacher via the EQ, which can be

23

qϵ qa
a

b b

a

Figure 2.2: DFA in a L∗example run.

implemented by the table-filling algorithm [16]. This query results negative, as
the regular language that the conjectured automaton represents is not the same as
the target one. Let us suppose that the counterexample returned by the teacher
is ‘ba’.

Now, the learner proceeds to process the counterexample. This is done by:

• Adding the counterexample and all its prefixes to RED. In this case ba and
b are added.

• Adding for each prefix v and for all symbol w, vw to BLUE, given that vw
is not a prefix of the counterexample. In this case the prefixes are b and ba;
so ba, bb, baa and bab are the candidates to be added to BLUE. However,
since ba is the counterexample, only bb, baa and bab need to be added to
BLUE.

Then holes are filled, resulting in the Table 2.1c.

The table remains closed, however it is not consistent, as two RED rows have
different resulting rows if they are added a symbol. To be concrete, OT [ϵ] = OT [b],
however OT [ϵa] ̸= OT [ba]. This can be informally interpreted as ‘they seem
to be the same state in the table, however they are not’, so they have to be
separated. This separation is achieved by adding the symbol that makes them
differ concatenated with the sequence ϵ (the column in which the inconsistency
was found) to the columns of the Observation Table (in this case sequence a). The
sequence is added, holes are filled, the result is Table 2.1d.

The last table is closed and consistent, the conjectured automaton is finally
equivalent to the target one, so EQ outputs ⊤, L∗ finishes and the DFA presented
in Figure 2.3, which is equivalent to the target one, is returned.

24

OT0 ϵ
ϵ 0
a 1
b 0

(a)

OT1 ϵ
ϵ 0
a 1
b 0
aa 0
ab 1

(b)

OT2 ϵ
ϵ 0
a 1
b 0
ba 0
aa 0
ab 1
bb 0
baa 0
bab 0

(c)

OT3 ϵ a
ϵ 0 1
a 1 0
b 0 0
ba 0 0
aa 0 0
ab 1 0
bb 0 0
baa 0 0
bab 0 0

(d)

Table 2.1: Observation Tables during a L∗ run

qϵ

qa

qb

a

b

b

a

a, b

Figure 2.3: Output DFA in a L∗ example run.

25

3 Learning Moore & Mealy
Machines

3.1 Moore Machines

A Moore Machine, introduced by Edward F. Moore [25], is a type of finite-
state machine with inputs and outputs. It can be formally defined as a 6-tuple
⟨Q,Σ, O, τ ∗, G, q0⟩, where:

• Q is a finite set of states,

• Σ is the input alphabet,

• O is the output alphabet,

• τ ∗ : Q × Σ∗ → Q represents the transition function

• G : Q→ O is a function that maps each state to an output symbol,

• q0 ∈ Q is the initial state.

In Moore Machines, like other finite-state machines, the output always depends
on the current state, but not on the current input. These machines are typically
characterized by being both deterministic and complete, meaning that for any
given state and input, the next state is defined and unique, and the output is also
uniquely determined.

An example of a Moore Machine is presented in Figure 3.1. This automaton
models a simple elevator control, with 3 floors: Ground (GR), First Floor (F1) and
Second Floor (F2). Transitions between states are triggered by symbolic inputs,
where ‘Up’ represents a request to move up, ‘Down’ represents a request to move
down, and ‘Emergency’ indicates an emergency run to GR, and once there the
elevator is blocked. This Moore Machine can be described by:

1. Q = {q0, q1, q2, q3}

2. Σ = {“Up”, “Down”, “Emergency”} and ϵ being the empty sequence

26

3. O = {GR, F1, F2}

4. τ ∗ as represented graphically in Table 3.1

5. G = {q0 → GR, q1 → F1, q2 → F2, q3 → GR}

6. q0 ∈ Q is the initial state.

Moore Machines can exhibit two different behaviours. First, they can be re-
garded as transducers, producing a sequence of output symbols ρout given a se-
quence of input symbols ρin. Alternatively, one may seek only the last symbol
produced by the machine when provided with a sequence of input symbols. The
latter is the one we will focus on.

A DFA can be seen as a special case of a Moore Machine where we observe the
last symbol and its output alphabet is binary, say O = {⊤,⊥}. In this context,
the last symbol returned by the machine can be interpreted as acceptance (⊤) or
rejection (⊥).

q0/GR q1/F1

q2/F2q3/GR

Up

Down

Emergency Up

Down

Em
er
ge
nc
y

Up

Down

Emergency

Up,Down,Emergency

Figure 3.1: Example Moore Machine.

27

ϵ Up Down Emergency
q0 q1 q0 q3
q1 q2 q0 q3
q2 q2 q1 q3
q3 q3 q3 q3

Table 3.1: Table of transition function τ ∗ of automaton in Figure 3.1

3.1.1 Extending L* for Moore Machines

The L∗ algorithm enables the inference of a DFA from a black-box target by
interacting with the MAT teacher. The MAT essentially informs us whether the
target accepts or rejects specific input sequences. To extend this concept to work
with Moore Machines, one approach is to consider the comparison of the last
symbol output and evaluate it against the hypothesis model.

It is evident that when considering a Moore Machine with a binary output
alphabet, such as O = {⊤,⊥}, the process of comparing the last symbols is fun-
damentally analogous to what the MAT accomplishes in DFA L∗. In other words,
this extension retains compatibility with DFAs.

Following this, we further explore these modifications, with a particular focus
on the tables, MATs, and adaptations to the learner algorithm for this extended
L∗ approach customized for Moore Machines.

3.1.1.1 A Moore Machines L* run

Consider the Moore Machine defined in Figure 3.1 and its transition function τ ∗

specified in Table 3.1. Additionally, refer to the L∗ algorithm outlined in sec-
tion 2.2, which serves as the foundation for this process.

Firstly, the algorithm constructs the table presented in Table 3.2a. Here, it
can be observed that the initial distinction between DFA L∗ and Moore Machines
L∗: the values in the table do not represent {⊤,⊥} (rejection and acceptance) but
rather the symbols in the output alphabet of the Moore Machine, which in this
case are {GR,F1, F2}.

Next, following the algorithm, we check if the table is closed, which it is not.

28

Consequently, the algorithm proceeds to close it, and the resulting table can be seen
in Table 3.2b. However, even after closing, the table remains not closed. Therefore,
the algorithm once more attempts to close the table, resulting in Table 3.2c.

After the table is closed the algorithm checks if the table is consistent. If not
it proceeds to make it consistent in the same way as the DFA L∗.

As the Observation Table is now closed and consistent, an hypothesis automa-
ton can be built. This automaton is presented in Figure 3.2

qϵ/GR qUp/F1 qUp,Up/F2

Up

Emergency, Down

Up

Down

Emergency

Up

Down
Emergency

Figure 3.2: Hypothesis Moore Machine

This automaton is then presented to the teacher via the EQ. The teacher
returns a counterexample, showing that the hypothesis is not the same as the
target. Let us suppose that the counterexample returned by the teacher is ‘Emer-
gency,Up’1. We can see that the output of the target given the sequence ‘Emer-
gency,Up’ is GR, but the output of the hypothesis is F1

Now, the learned proceeds to process the counterexample, resulting
in Table 3.2d

The table remains closed, however is not consistent, sinceOT [Emergency, Up] =
OT [ϵ] but OT [Emergency, Up, Up] ̸= OT [ϵ, Up]. This separation is achieved by
adding the symbol that makes them differ to the columns of the Observation Table.
The result is Table 3.2e

The last table is both closed and consistent, an hypothesis automaton is built
and presented to the teacher. Consequently, EQ outputs ⊤, indicating that the
conjectured automaton is finally equivalent to the target one, so the L∗ algorithm
concludes. The Moore Machine showed in Figure 3.3, which is equivalent to the
target machine, is then returned.

1For ease of reading, concatenated symbols are coma separated, so ‘Emergency,Up’ represents
a sequence of the concatenated symbols ‘Emergency’ and ‘Up’.

29

ϵ/GR Up/F1

Up, Up/F2Emergency
Up/GR

Up

Down

Emergency Up

Down

E
m
er
ge
nc
y

Up

Down

Emergency

Up,Down,Emergency

Figure 3.3: Moore Machine returned by L∗

30

OT0 ϵ
ϵ GR
Up F1

Down GR
Emergency GR

(a)

OT1 ϵ
ϵ GR
Up F1

Up, Up F2
Up,Down GR

Up,Emergency GR
Down GR

Emergency GR

(b)

OT2 ϵ
ϵ GR
Up F1

Up, Up F2
Up,Down GR

Up,Emergency GR
Up, Up, Up F2

Up, Up,Down F1
Up, Up,Emergency GR

Down GR
Emergency GR

(c)

OT3 ϵ
ϵ GR
Up F1

Up, Up F2
Emergency, Up GR

Up,Down GR
Up,Emergency GR

Up, Up, Up F2
Up, Up,Down F1

Up, Up,Emergency GR
Emergency, Up, Up GR

Emergency, Up,Down GR
Emergency, Up,Emergency GR

Down GR
Emergency GR

(d)

OT4 ϵ Up
ϵ GR F1
Up F1 F2

Up, Up F2 F2
Emergency, Up GR GR

Up,Down GR F1
Up,Emergency GR GR

Up, Up, Up F2 F2
Up, Up,Down F1 F2

Up, Up,Emergency GR GR
Emergency, Up, Up GR GR

Emergency, Up,Down GR GR
Emergency, Up,Emergency GR GR

Down GR F1
Emergency GR GR

(e)

Table 3.2: Observation Tables during a Moore Machines L∗ run

31

3.2 Mealy Machines

A Mealy Machine is a type of finite-state machine named after George H. Mealy,
who introduced the concept in the following article [26].

In contrast to Moore Machines, Mealy Machines determine their output values
based on both their current state and the current input, rather than relying solely
on their current state.

Mealy Machines can be formally defined as a 6-tuple ⟨Q,Σ, O, τ ∗, G, q0⟩, which
includes the following components:

• A finite set of states Q,

• an input alphabet Σ,

• an output alphabet O,

• τ ∗ : Q × Σ∗ → Q, representing the transition function between states,

• G : Q × Σ → O, denoting the output function that maps pairs of (state,
input symbol) to the corresponding output symbol.

• q0 ∈ Q is the initial state.

It is worth noting that the transition function τ ∗ and the output function G
can be unified into a single function T : Q × Σ∗ → Q×O.

Similar to Moore Machines, Mealy Machines can exhibit two distinct behaviors:
they can return all the output symbols for every transition the machine undergoes,
given the input, or they can return only the last output symbol. As Moore and
Mealy Machines are both types of finite state machines, they are equally expressive
and are capable of parsing regular languages [?].

An example of a Mealy Machine is presented in Figure 3.4. This automaton
models the same elevator system as the Moore Machine presented in Figure 3.1.
It can be formally defined by:

1. Q = {q0, q1, q2, q3}

2. Σ = {“Up”, “Down”, “Emergency”} and ϵ being the empty sequence

3. O = {GR, F1, F2},

32

4. τ ∗ as represented graphically in Table 3.3a

5. G as represented in Table 3.3b

6. q0 ∈ Q is the initial state.

q0 q1

q2q3

Up/F1

Down/GR

Emergency/GR Up/F2

Down/GR

Em
er
ge
nc
y/
G
R

Up/F2

Down/F1

Emergency/GR

Up,Down,Emergency/GR

Figure 3.4: Example Mealy Machine.

ϵ Up Down Emergency
q0 q1 q0 q3
q1 q2 q0 q3
q2 q2 q1 q3
q3 q3 q3 q3

(a) Table of transition function τ∗

ϵ Up Down Emergency
q0 F1 GR GR
q1 F2 GR GR
q2 F2 F1 GR
q3 GR GR GR

(b) Table of output function map G

Table 3.3: Table of functions of automaton in Figure 3.4

33

3.2.1 Learning Mealy Machines via Moore Ma-
chines

It is possible to convert a Mealy Machine to a Moore Machine and vice versa,
in a fairly simple process [27, 28]. If we compare Figure 3.1 and Figure 3.4 it
can be seen that they are quite similar. From this observation, we can create a
simple algorithm for converting a Moore Machine to a Mealy Machine by adding
the output symbol of the state it goes to, to every transition. For example, in state
q0 we have a transition for Up that goes to state q1 which outputs the symbol F1.
To convert it to a Mealy Machine, we can take the output symbol F1 from state
q1 and add it to the transition going from q0 to q1 through the symbol Up.

This process generates a Mealy Machine, but does not ensure that the result-
ing Mealy Machine is minimal. Mealy Machines can represent the same language
using less states than a Moore Machine as they can use inputs to determine out-
puts without needing a state change. However, this may not always be the case,
depending on the input-output relation and the state encoding.

q0/GR q1/F1
Up

Down

Down

Up

(a) Simplified elevator control Moore
Machine

q0 q1
Up/F1

Down/GR

Down/Gr

Up/F1

(b) Simplified elevator control con-
verted to Mealy Machine

Figure 3.5: Illustration of conversion of Moore to Mealy and minimal Mealy ma-
chines

An example of this can be observed in Figure 3.5a where we present a simplified
version of the elevator control shown in Figure 3.1. In this simplified version we
have only two floors: ground (GR) and first floor (F1) with the options to go either
Up or Down. When applying our algorithm to convert this Moore Machine into a
Mealy Machine, the resulting diagram is illustrated in Figure 3.5b. Nevertheless,
it is important to note that this Mealy Machine is not minimal. The minimal
Mealy Machine that represents the same language can be seen in Figure 3.6.

34

q0

Up/F1

Down/GR

Figure 3.6: Minimal Mealy Machine of the simplified elevator control

3.2.1.1 Moore to Mealy Algorithm

The algorithm to convert a Moore Machine into a Mealy Machine is now presented.

3.2.1.2 Initialize table for Mealy Machine

Algorithm 9 initializes the Mealy Machine table (MT) and the state mapping
(state map). The Mealy Machine table represents transitions in the Mealy Ma-
chine, while the state mapping associates Moore Machine states with their cor-
responding Mealy Machine states. M represents the Moore Machine we want to
convert.

To properly construct the Mealy Machine table and ensure the resulting Mealy
Machine is minimal, we adhere to the following property, which establishes a re-
lationship between Moore States and Mealy States: ∀q, q′ ∈ M,∀s ∈ Σ, τ(q, s) =
τ(q′, s)⇒ q ∧ q′ can be represented by the same Mealy State.

The algorithm traverses all states in the Moore Machine to build the table.
For each state, it creates a transition info structure, which includes, for every
symbol in the alphabet, a set containing: the symbol, the name of the state in
the Moore Machine it transitions to (referred to as next state), and the output
symbol of that transition state.

The transition info will be the key in the MT, so, if two states have the
same transition info then they are the same and we do not add it. The value
in the table will be the name of the new Mealy State. In the algorithm presented,
we use the same name as the Moore State we are processing, but it can be any
name.

35

The purpose of the state map is to map the Moore States names into the
new Mealy States names. This is necessary because the next state stored in the
transition info is a Moore State. Therefore, when adding transitions later, we
must follow the transition info. However, we need to map the name in the
transition info to the corresponding Mealy State.

Adding a new state in the state map goes as follow: if the transition info

was not in the MT, we will map the Moore State to the same name we choose for
the Mealy State (in this case they have the same name). If the transition info

is already in the MT, then the state map will save, for the Moore State we are
processing, the Mealy State that has the same transition info indicating that
they represent the same state in the Mealy Machine.

Algorithm 9 Initialize table for Mealy Machine

1: function Init-MT(M)
2: MT ← Build-Mealy-Table()
3: state map← Build-State-Map()
4: for each state ∈M do
5: transition info← Create-Transition-Info
6: for each symbol ∈M.alphabet do
7: next state← state.next state for(symbol)
8: transition info.append((symbol, next state.value, next state.name))
9: end for

10: if transition info /∈MT then
11: MT [transition info]← state.name
12: state map[state.name]← state.name
13: else
14: state map[state.name]←MT [transition info]
15: end if
16: end for
17: return MT, state map
18: end function

3.2.1.3 Build Mealy Machine States

Now we have to implement a function that creates a list of Mealy states (Algo-
rithm 10). For each state name in the MT, a Mealy state is constructed using the
Create-Mealy-State function.

36

Algorithm 10 Create Mealy States

1: function Build-Mealy-States(MT)
2: states list← Create-States-List()
3: for each state name ∈MT.values() do
4: states list[state name]← Create-Mealy-State(state name)
5: end for
6: return states list
7: end function

3.2.1.4 Add Transitions to Mealy States

An algorithm now is needed in order to add transitions to the Mealy states based
on the information stored in the Mealy Table (Algorithm 11), state mapping
(state map), and the list of Mealy states (states list).

Algorithm 11 Add Transitions to the states

1: function Add-Transitions(MT, state map, states list)
2: for each state tranistions, state name ∈MT do
3: current state← states list[state name]
4: for each symbol, output, next moore state ∈ state transitions do
5: next mealy state← states list[state map[next moore state]]
6: Create-Transition(current state, symbol, output, next mealy state)
7: end for
8: end for
9: end function

3.2.1.5 Putting it all together

The final algorithm, Convert-Moore-To-Mealy, orchestrates the entire conversion
process. It uses the previously initialized Mealy Table (Algorithm 9), created
Mealy states (Algorithm 10), and added transitions (Algorithm 11) to construct
the Mealy Machine.

37

Algorithm 12 Convert Moore to Mealy machine

function Convert-Moore-To-Mealy(M)
MT, state map← Init-MT(M)
states list← Build-Mealy-States()
Add-Transitions(MT, state map, states list)
mealy machine← Construct-Mealy(states list)
return mealy machine

end function

38

4 Algorithmic improvements

4.1 Neural-Checker

The three authors of this thesis actively contribute to Neural-Checker [14], a tool
developed by the Artificial Intelligence and Big Data team of Universidad ORT.
Its main goal is to provide implementations for the structures needed for working
in the Model Extraction Framework and enable the explainability and checking of
complex systems in a black box context.

The codebase is separated into two principal libraries: pythautomata and py-
ModelExtractor as we can see in Figure 4.1. The first one contains the different
automata definitions and the second one contains the different learning algorithms.
There are also other private repositories for experiments and benchmarks.

Figure 4.1: Component diagram

From the beginning, we were interested in finding optimization opportunities
in the existant automata learning algorithms of the tool and also contribute with
other learning algorithms. The execution of extraction algorithms was conducted
on specific hardware and software configurations.

Model extractions were conducted on a JupyterHub workstation provided by
Universidad ORT with the following hardware configuration:

• Processor: Intel(R) Xeon(R) W-2195 CPU @ 2.30GHz (with a boost clock
of 4.30GHz).

• RAM: 503 gigabytes.

39

• Storage: 1.8 terabytes (overlay).

The software environment used for model extractions is detailed below:

• Operating System: Ubuntu 18.04.6 LTS.

• Development Environment: Python 3.9.7.

• pythautomata version: 0.38.5.

• pyModelExtractor version: 0.36.6.

All the contributions made can be found in a GitHub repository1. This repos-
itory contains a user guide documenting all the contributions made to the tool.
Future work will involve adding the remaining features implemented by other au-
thors.

To initiate our interaction with the tool, we started by implementing Moore
Machines and Mealy Machines. This explains our discussion about them in the last
chapter, wherein we introduced new definitions and, of course, adapted extraction
algorithms to be compatible with these finite state machines.

Following that, we dived into our initial algorithm: L∗. Our aim was to extend
its applicability to other finite state machines and to improve the efficiency of
this widely used extraction algorithm. The subsequent section elaborates on these
optimizations.

4.2 L*

In this section, optimizations and improvements of the L∗ algorithm are presented,
all included in the Neural-Checker tool.

4.2.1 Optimizations

Before our contributions to the tool, the algorithm was implemented similar to
what was presented in the algorithm overview. Upon analysis, we recognized
that key procedures, namely Close and Make-Consistent, could benefit from
optimization.

1https://github.com/neuralchecker/Neural-Checker-User-Guide

40

https://github.com/neuralchecker/Neural-Checker-User-Guide

In the first place, the Close operation takes O(n × m) in the best, average,
and worst cases, where n is the size of BLUE and m is the size of RED. This
could be improved by maintaining a set of all the values of RED, implemented
with a hash table. This allows us to achieve an average-case time complexity of
O(n+m), which drastically improves performance.

Secondly, we analyze the Make-Consistent procedure. To identify inconsis-
tencies, the procedure iterates through all the rows in RED and invokes the
Get-Rows-With-Equal-Value function. This function essentially involves, for each
RED entry, another iteration through RED to identify rows with the same value
as the current row. Furthermore, it traverses these identified rows to check if,
when concatenated with some symbol from Σ, they do not have the same value in
OT. This process has a significant computational cost, and there is an alternative
approach to address this issue.

To solve it, a hash table can be used to store the different values as keys and
the corresponding row of RED as elements. Only the first unique row is added
to the hash table, the repeated tuple (key, value) is ignored. This is because we
know that if two values with the same row are consistent, then they represent the
same state, so it is not necessary to compare a third with both of them because it
is redundant.

When traversingRED, if the value of the current row is not present in the hash
table, then it is stored with the value being the current row. If the value is already
present, then it needs to be checked if the element stored in that key is consistent
with the current row. If there is an inconsistency, it is returned; otherwise, the
traversal of RED continues.

Consider the following example: three rows in RED a, b, and ba, all of which
have the same value. Thus, the inconsistency has to be checked between all of
them. Without this optimization, what would have been done is to compare each
of them with the rest, resulting in O(m2) complexity in the worst case. However,
using the hash table, if a is encountered while traversing RED, it will be added
to the hash table. Then, b is discovered and compared to the row stored in RED
(which represents a). If they are consistent, the process can continue to find ba
since it is not necessary to add b to the hash table because it represents the same
state as a. In this case, the comparison only needs to be done with the row in the
hash table (a). This makes the entire operation of finding inconsistencies be done
in O(m) worst case.

41

4.2.2 General L*

Another improvement we made to enhance L∗ was to generalize the algorithm for
other types of finite state machines. Before, separate algorithms were implemented
exclusively for DFA and others for different types of state machines.

Recognizing this, we considered it advantageous to develop a unified algorithm.
Consequently, we initiated the analysis to extend the algorithm to incorporate both
Moore Machines and Mealy Machines, as detailed in Chapter 3.

4.2.3 Partial approach

As mentioned earlier, the L∗ algorithm consistently maintains the Observation
Table as a prefix, ensuring closure and consistency. However, when the algorithm
is stopped by time bounds, various approaches can be considered, as mentioned
in [29].

One option is to return the last built model although it failed an EQ. It is
crucial to note that this model is distinctly different from the target due to the
presence of a counterexample. Furthermore, adopting this approach guarantees
that the resulting model is complete. However, it presents a problem: if the run
never encountered an EQ, no model will be returned.

Moreover, this approach does pose a challenge. What if the execution time is
predominantly consumed in the closure and/or consistency operations?

This would make the algorithm throw away all the progress since the last EQ
was made. To address this challenge, the concept of a partial model is introduced.
A partial automaton is an automaton that may not have all transitions defined.
When a non-defined transition is encountered, the automaton simply rejects the
sequence, utilizing what we refer to as a hole state. A hole state is a state used
for all transitions that are not explicitly defined, where all transitions from this
state lead back to itself. This hole state is a non-acceptance state. Figure 4.2a
illustrates a DFA in which the state q does not have defined the a transition.
Nonetheless, internally, we can handle this DFA as a complete DFA by employing
the hole state, as can be seen in Figure 4.2b.

At this point, if the algorithm reaches the time bound, it generates an au-
tomaton based on the current state of the table rather than returning the last
constructed model.

42

q

b

(a) Partial DFA example.

q hole
a

b a, b

(b) Complete DFA example using the
hole state.

Figure 4.2: Illustration of the hole state in a real DFA example.

This approach may lead to the construction of an automaton from a table that
might not be closed or consistent. To tackle this issue, we can apply the recently
introduced concept of a partial automaton.

When the table is not closed it could imply the existence of values in BLUE
that may not have a corresponding state in RED. In other words, there is a
transition that does not have a target state. To solve this, the partial automaton
defines such transitions to the hole state.

When the table is no consistent, the partial translation will ignore this inconsis-
tency and assume all the inconsistent sequences in RED translate to an equivalent
state.

This approach is an improvement based on the assumption that each modifi-
cation to the table will guide us towards a more precise model compared to the
target. It allows us to work with large models such as Recurrent Neural Net-
works, where the counterexamples may be long. Without imposing a time limit on
the generation process, ensuring closure and consistency in the Observation Table
could potentially consume a significant amount of time.

It is important to note that this enhancement does not alter the L∗ algorithm;
rather, it modifies the Observation Table Translator responsible for constructing
a target model from an Observation Table. This algorithm’s applicability extends
to any model that can be completed from an Observation Table, including Moore
or Mealy Machines.

4.2.4 Restart approach

The introduction of the partial approach has led to another idea to help us learn
over large target models. The restart approach allows to initiate a L∗ run with a

43

pre-filled Observation Table. This approach helps when learning over large models
as it enables us to save the last Observation Table obtained in a previous run
(with the same target model) and continue the run without having to start with
an empty Observation Table. Thus, we now can start a run without having to
learn all the sequences from previous iterations. This allows us to resume runs
and derive multiple partial models, enabling us to measure the accuracy of each
and retain the best-performing one.

Note that the Observation Table can potentially be not closed or not consistent.
This does not pose a problem, since the algorithm will just continue closing the
table and making it consistent.

Additionally, the restart technique plays a key role in refining the accuracy
of learnt models, especially when employing non-deterministic EQ strategies like
Random Walk or PAC2. This method facilitates resuming a run with parameter
adjustments, providing a practical way to optimize and enhance the precision of
the acquired models.

It is crucial to note that using the restart without the partial model in time
bounded L∗ may result in duplicate models, as the Observation Table may not
differ between runs, and there may have been no EQ in one run.

4.3 Benchmarks

To assess the effectiveness of these improvements, we employed Nicaud’s Automa-
ton Generator [30] that generates automata of a given nominal size for bench-
marking purposes, which it was already implemented in the Neural-Checker tool.

4.3.1 L∗ optimization

In order to measure and analyze the efficiency of the proposed versions of L∗ al-
gorithms compared to the previous implementation, three experiments were con-
ducted to determine if the optimizations are noticeable.

2These strategies are employed in active black-box model extraction algorithms, where EQ
cannot be guaranteed with 100% security. Chapter 6 provides a detailed discussion of each oracle
for both black-box and white-box models.

44

4.3.1.1 Experiment 1

In this experiment, DFAs and Moore Machines of 200, 500 and 1000 states were
generated using a binary alphabet. The algorithms tested were the previous L∗ ver-
sion (DFA L∗), L∗ for Moore Machines (MooreMachines L∗), and the new General
L∗ set to learn DFAs (General DFA L∗) and Moore Machines (General MooreMachines L∗).

As it can be observed in Figure 4.3, the new version of the L∗ algorithm for
DFAs outperforms the older version, and this difference increments as the number
of states of the target increases. However, in the case of Moore Machines, the
difference is not noticeable, as both algorithms already have the optimizations
mentioned before. Therefore, it can be concluded that the optimizations and
enhancements implemented in the algorithms result in significantly faster execution
times.

Figure 4.3: Experiment 1 execution time.

4.3.1.2 Experiment 2

For experiment two, we aimed to analyze the behavior of the new, more efficient
General L∗ algorithm across a higher number of states in the target, for learning
both DFAs (General DFA L∗) and Moore Machines (General MooreMachines L∗).
To achieve this, DFAs and Moore Machines with 2000, 3000, and 5000 states were
generated.

As showed in Figure 4.4, the time curves for both algorithms continue to in-

45

crease. However, a significant difference in learning time between DFAs and Moore
Machines becomes apparent. We suspect that this discrepancy comes from the im-
plementation details: Moore Machines, as implemented in the tool, involve more
abstraction layers, which as discussed in section 5.5 can lead to longer execution
times.

Figure 4.4: Experiment 2 execution time.

4.3.1.3 Experiment 3

In this experiment, we seek to evaluate the impact of alphabet size on efficiency of
all algorithms. A DFA and a Moore Machine of 100 states were generated using
alphabets of sizes 2, 16, 32, 64 and 128.

The Moore Machines algorithms maintained consistent performance. However,
unexpectedly, as the alphabet size increased, the General DFA L∗ algorithm showed
a tendency to require more time and the results are similar to the original DFA
L∗.

It is imperative to conduct further investigation on future works into the un-
derlying causes of this behavior.

46

Figure 4.5: Experiment 3 execution time.

4.3.2 Restart & Partial approach

For this experiment, we set two instances of the General DFA L∗ algorithm with
the objective of extracting a 50.000 states DFA target. One of these instances
utilized the partial approach (for ease of reading we call it partial L∗), as out-
lined in subsection 4.2.3. Both algorithms had a time bound of five minutes (300
seconds), and returned the last DFA they constructed.

To continue with the run, we implemented a restart approach by using the
last OT obtained. We repeated this process five times. To show the experiment,
we track the Accumulated Time of each algorithm, so for example, after the first
restart finished (second run) the Accumulated Time of an algorithm is 600 seconds.

Analyzing the results, in Figure 4.6a, we can observe that the partial approach
consistently delivers a higher number of extracted states compared to the General
L∗ in each restart iteration. It can be noted that after 900 seconds of Accumu-
lated Time, the partial approach stops growing at approximately 35.000 states. A
possible explanation for this behaviour is that the algorithm is blocked at building
a new hypothesis to make an EQ, a procedure that takes a lot of time when the
number of states is high, thus making no changes to the OT. This can also be
the explanation for the General L∗ not achieving to extract any more states. This
should be further explored in future works.

In Figure 4.6b it can be observed that at 600 seconds of Accumulated Time,

47

the partial model has a slightly lower accuracy than the complete one, although
the first has more states. This scenario is plausible to happen, but not common.
Furthermore, it can be seen that the model learned from the partial L∗ achieves
an accuracy of over 0.82 in the first iteration, whereas the General L∗ achieves it
in the second iteration. Moreover, after 900 seconds, the model learned by the
partial L∗ achieves 0.88 accuracy, a feat not accomplished by the General L∗ in
this experiment. The results obtained in this experiment validates that models
extracted from partial L∗ exhibit higher accuracy.

As mentioned earlier, both algorithms are stopped by time bounds. Partial
L∗, in contrast to General L∗, after it is stopped by time it proceeds to build the
model resulting in additional processing time as it can be seen in Figure 4.6c.

48

(a) Restart & Partial experiment ex-
tracted states by accumulated run time

(b) Restart & Partial accuracy of ex-
tracted models by accumulated run
time

(c) Restart & Partial total time of execution per al-
gorithm by accumulated time

Figure 4.6: Experiment 5 results.

49

5 Implementing Discrimination
Tree-Based Learning Algorithms

Up to this point, we have discussed one of the two predominant data structures
employed in an active automata learning context: the Observation Table. The
second one, discrimination trees, is presented in the following chapter.

5.1 Learning with a Discrimination tree

Kearns and Vazirani [31] proposed employing a decision tree, referred to as a
discrimination tree, for classification in the context of active automata learning.
This approach is crucial for achieving efficiency in the learning process due to the
inherent redundancy-freeness of discrimination trees [32].

To formalize, letM represent the target automaton, and size(M) denote the
number of states in M. The algorithm’s core concept involves the continuous
exploration of new states withinM, specifically those states that exhibit distinct
behavior from the ones already discovered. The algorithm operates in phases,
wherein each phase involves constructing a tentative hypothesis automaton H
with states corresponding to the presently discovered states ofM.

Kearns and Vazirani’s algorithm is able to learn a model by using membership
queries and equivalence queries. In each phase of the algorithm an EQ is made on
H. The counterexample from this EQ allows the algorithm to use MQ to discover
a new state ofM. The algorithm finishes when H ≡M.

5.1.1 Formal Notation

Let Σ be an input alphabet. A discrimination tree is a directed binary tree T ,
where:

• The set of nodes is denoted by NT , and can be written as the disjoint union
of the set of inner nodes DT and the set of leaves ST .

• The designated root node is denoted by rT ∈ NT .

50

• Each inner node n is labeled with a discriminator v, referred to via n.discriminator.

• Each inner node has exactly two children, a 0-child and a 1-child. For n ∈
DT , the 0-child is referred to via n.children[0].

5.1.2 Access Strings and Distinguishing Strings

The learning algorithm mantains a set S consisting of at most size(M) state
access strings, and a set D of distinguishing strings in order to discover
information about the states ofM [31].

An access string is a string s ∈ S so that when it is executed from the start
state ofM leads to a unique state. We denoteM[w], ∀w ∈ Σ∗ to the operation of
executing any string from the start state ofM. For each pair of strings s, s′ ∈ S
such that s ̸= s′ there is a distinguishing string d ∈ D such that only one of sd
and s′d reaches an accepting state ofM, i.e., exactly one ofM[sd] andM[s′d] is
an accepting state.

In the algorithm, the sets ST and DT are maintained in a binary discrimination
tree, where each internal node is labeled by a string in D and each leaf is labeled
by a string in S.

In Figure 5.1, a DFA and its corresponding discrimination tree are illustrated.
Both were taken from [31].

q0 q1 q2 q3

0 1 0 1 0 1 0

1

(a)

ϵ

1

11

ϵ 1

110

1101

(b)

Figure 5.1: (a) DFA counting the number of 1’s in the input 3 mod 4. (b) A
discrimination tree for this automaton.

51

5.1.3 The Algorithm for Learning Finite Automata

In this section we describe each subroutine of the algorithm with the corresponding
pseudocodes.

5.1.4 Initialization and Data Structures

The initialization of the algorithm is straightforward. A hypothesis automaton is
constructed consisting in a single (accepting or rejecting depending on the result of
MQ(ϵ)) state with self-loops for all the possible transitions (∀b ∈ Σ). After that,
an EQ is performed on this automaton and a counterexample φ is obtained. If the
result ofMQ(ϵ) was ⊥, it means that ϵ is a rejecting state so it has to be the 0-child
of the root node. If the result was ⊤, it means that ϵ is an accepting state so it has
to be the 1-child of the root node. The discrimination tree T is initialized having
the root labeled with the distinguishing string ϵ and two leaves with access
strings ϵ and φ. In the following pseudocode it is assumed that a counterexample
is obtained. Take into account that it is possible that H ≡M.

Algorithm 13 Initialization routine

1: function Kearns-And-Vazirani-Init
2: is accepting ←MQ (ϵ)
3: H ← Create-Single-StateDFA(is accepting)
4: are eq, φ← EQ (H,M)
5: rT ← Root-Node(ϵ)
6: epsilon node← Node(ϵ)
7: counterexample node← Node(φ)
8: if is accepting then
9: rT .right = epsilon node

10: rT .left = counterexample node
11: else
12: rT .right = counterexample node
13: rT .left = epsilon node
14: end if
15: T ← Init-Tree(rT)
16: return are eq,H, T
17: end function

52

5.1.5 Sift operation

The Sift subroutine takes as input a string s and the current discrimination tree
T , and outputs the access string in T of the equivalence class ofM[s], the state
ofM accessed by s.

Starting at rT , if we are at an internal node labeled with a distinguishing
string d, we make a MQ on the sequence sd and go to the left (0-child) or right
subtree (1-child) as indicated by the query answer (left on reject, right on accept).
We continue until we reach a leaf l, which it is the output of the operation.

Algorithm 14 Sift operation

1: function Sift(s, T)
2: n← Root-Node()
3: while n ∈ DT do
4: d← n.discriminator
5: o←MQ (sd)
6: n← n.children[o]
7: end while
8: return n
9: end function

5.1.6 Tentative Hypothesis

The Tentative-Hypothesis operation describes the construction of a hypothesis
automaton H. The states of this automaton can be identified with the access
strings in the discrimination tree. Once the states of the automaton are created,
transitions have to be defined. For each state access string s, the transition b ∈ Σ
is created sifting the sequence sb.

53

Algorithm 15 Tentative-Hypothesis operation

1: function Tentative-Hypothesis(T)
2: H ← Create-DFA()
3: ST ← Get-Tree-Leaves(T)
4: for each l ∈ ST do
5: Create-State(H, l)
6: end for
7: for each s ∈ H do
8: for each b ∈ Σ do
9: s′ ← Sift(sb, T)

10: Create-Transition(H, b, s, s′)
11: end for
12: end for
13: return H
14: end function

5.1.7 Lowest common ancestor

The lowest common ancestor of two nodes in a binary tree is the shared ancestor
that is located farthest from the root [33]. An efficient way of computing this
operation is achieved if every node stores a pointer to their parent node, so that
it has an average time complexity of O(log n).

Algorithm 16 Lowest-Common-Ancestor operation

1: function Lowest-Common-Ancestor(a, b)
2: if a.depth < b.depth then
3: temp← a
4: a← b
5: b← temp
6: end if
7: while a.depth > b.depth do
8: a← a.parent
9: end while

10: while a ̸= b do
11: a← a.parent
12: b← b.parent
13: end while

return a
14: end function

54

5.1.8 Update Tree

When an EQ is made with H, a counterexample φ can be obtained. This is the
reason why the Update-Tree operation must be introduced.

The key concept here is understanding why φ was obtained as a counterexample
and how the tree is changed. The operation finds a new access string, and
updates T by adding a new leaf node labeled with the new access string.

This procedure first finds the string which makes M and H output different
results. This is achieved by traversing a list of prefixes γ of φ and finding the first
prefix for which Sift(γ[i], T) is different from H[γ[i]], being γ[i] the corresponding
prefix.

Let si be Sift(γ[i], T), ŝi be H[γ[i]] and j the least i such that si ̸= ŝi. The
node labeled with the access string sj−1 has to be replaced with an internal node
with two leaves. One is labeled with the access string sj−1 and the other with
the access string γ[j − 1]. The newly created internal node is labeled with the
distinguishing string φjd, where d is the correct distinguishing string for sj
and ŝj, and can be obtained with the Lowest-Common-Ancestor operation.

Algorithm 17 Update-tree operation

1: procedure Update-Tree(φ, T)
2: γ ← Get-Prefixes(φ)
3: for i← 0 to γ.length do
4: si ← Sift(γ[i], T)
5: ŝi ← H[γ[i]]
6: if si ̸= ŝi then
7: j ← i
8: d← Lowest-Common-Ancestor(sj, ŝj)
9: Replace-Node(sj−1, γ[j − 1], d, T)
10: end if
11: end for
12: end procedure

5.1.9 Putting it all together

With the initialization, the Tentative-Hypothesis and the Update-Tree opera-
tions, the complete algorithm can be presented. We first start by performing the
initialization routine.

55

Subsequently, the main loop begins. The functionTentative-Hypothesis(T)
is invoked to obtain a new hypothesisH. During each iteration, the tree is updated
using Update-Tree(T , φ). The loop continues until H andM are equivalent.

Algorithm 18 Kearns and Vazirani’s Algorithm

1: function Kearns-And-Vazirani
2: are eq,H, T ← Kearns-And-Vazirani-Init()
3: while not(are eq) do
4: H ← Tentative-Hypothesis(T)
5: (are eq, φ)← EQ(H,M)
6: if are eq then
7: return H
8: end if
9: Update-Tree(T , φ)

10: return H
11: end while
12: end function

The number of times the main loop of the algorithm is executed is exactly
size(M) because in each iteration a new state of H is discovered and the loop
finishes when H ≡M [31].

Each of the loop executions requires O(size(M)+n) sifting operations, where
n is the length of the longest counterexample.

5.1.10 Example run

Now that the formal algorithm was introduced, we can see how an automaton H
can be obtained running the algorithm with the automaton in figure Figure 5.1.
First of all, a single state hypothesis automaton is constructed with self-loops for
both the 0 and 1 transitions (Figure 5.2a). A MQ is performed with ϵ getting ⊥
as result and thus the single state hypothesis automaton is a rejecting one.

An EQ is performed on this automaton, getting a counterexample 1101. The
discrimination tree is initialized having the root node rT labeled with the distin-
guishing string ϵ and two leaves labeled with access strings ϵ and 1101. As
the result of the MQ of ϵ is ⊥, ϵ is the left child of rT and 1101 is the right child
of rT .

Now the main loop starts. A new H is obtained after calling the Tentative-

56

Hypothesis function (Figure 5.2c). An EQ is performed on this automaton,
getting the same counterexample 1101. The list of prefixes γ of this counterexample
is [1, 11, 110, 1101]. For this stage of the algorithm remember that for each prefix
γ[i]1 of γ we have the following:

• si ← Sift(γ[i], T).

• ŝi ← H[γ[i]].

If we execute the Update Tree procedure, we observe that the smallest index
i for which si ̸= ŝi is j = 4, with the prefix 1101 since si = 1101 and ŝi = ϵ.
Following this, the node labeled with the access string sj−1, which is ϵ, needs to
be replaced. This node becomes one of the children of the new internal node. The
other leaf is γ[j − 1], which is 110.

To determine the label of the newly created internal node the
Lowest-Common-Ancestor operation is applied to the nodes ϵ and 1101, resulting
in ϵ. This indicates that the concatenation of 1101j (1) and ϵ, which is 1, serves as
the label for the new internal node. Additionally, ϵ is the correct distinguishing
string for 1101 and ϵ.

Finally, an MQ can be executed using either 1ϵ or 1110. Assuming it is
performed with 1110, the output of the MQ is ⊤. Therefore, the 1-child of 1 is
1110, and the 0-child is ϵ.

A new H is obtained, but it is still not equal to M, and the counterexample
is once again 1101. Now, si = 11 and ŝi = ϵ. The node to be replaced is labeled
with the access string sj−1, which is ϵ, and the other leaf is γ[j − 1], which is
1. The Lowest-Common-Ancestor operation is invoked with the nodes ϵ and 110,
resulting in 1. This indicates that the concatenation of 1101j (1) with 1 (11) is
the label of the new internal node, and 1 is the correct distinguishing string for
110 and ϵ.

Finally, an MQ can be performed using either 11ϵ or 111. Asumming it is
with 111, the output of the MQ is ⊤, so the 1-child of 11 is 1 and the 0-child is ϵ.

The H obtained is equivalent to M so H is returned (Figure 5.2g) and the
algorithm finishes.

1With 1 ≤ i ≤ 4.

57

ϵ

0, 1

(a) Single state DFA

ϵ

ϵ 1101

(b) Discrimination tree after initial-
ization

ϵ 1101

0, 1

1

0

(c) Hypothesis after first counterex-
ample

ϵ

1

ϵ 110

1101

(d) Discrimination tree after second
counterexample

ϵ 110 1101

0, 1 0 1 0

1

(e) Hypothesis after second coun-
terexample

ϵ

1

11

ϵ 1

110

1101

(f) Discrimination tree after third
counterexample

ϵ 1 110 1101

0 1 0 1 0 1 0

1

(g) Final hypothesis automaton

Figure 5.2: Evolution of hypothesis and discrimination tree during a run of Kearns
and Vazirani’s algorithm

58

5.1.11 Counterexample Exhaustion

One of the most expensive processes in terms of execution time for the algorithm
is the EQ. In the example run, it can be observed that the counterexample given
is always 1101. For this reason, we can optimize the algorithm by reusing the
counterexample and avoiding the EQ until MQ (φ) is not equal to Accepts(φ)2.
This way, unnecessary EQ calls can be reduced, leading to improved efficiency in
the algorithm’s execution.

Algorithm 19 Kearns and Vazirani’s optimized Algorithm

1: function Kearns-And-Vazirani
2: are eq,H, T ← Kearns-And-Vazirani-Init()
3: if not(are eq) then
4: H ← Tentative-Hypothesis(T)
5: are eq, φ← EQ (H,M)
6: while not(are eq) do
7: Update-Tree(T , φ)
8: H ← Tentative-Hypothesis(T)
9: if MQ(φ) = Accepts(φ) then

10: are eq, φ← EQ (H,M)
11: end if
12: end while
13: end if
14: return H
15: end function

5.1.12 Spanning-Tree Hypothesis

Kearns and Vazirani and other authors such as Rivest and Schapire [34] or An-
gluin [24] describe that the observation data structure is what is being built during
the actual learning phase, and the hypothesis is then constructed in a separate step,
from the information stored in the observation data structure [32].

Howar [35] proposed that rather than constantly reconstruct the hypothesis
from scratch (a problem we have in the Kearns and Vazirani algorithm), it is
more effective to use the hypothesis as a primary representation of the learner’s
knowledge [32].

2We call Accepts to the function that receives a counterexample and returns ⊥ if the hypoth-
esis H does not accept the counterexample and ⊤ if the counterexample is accepted.

59

5.2 Smart Counterexample Processing

In their paper, Rivest-Schapire [34] present a procedure to find a suffix e that
exposes the difference between two rows in an Observation Table. The process
of finding the desired suffix is now explained in detail and it is based on the
explanation of Rick ten Tije [36].

We have two DFAs: M, the target automaton we are learning, and H, the
hypothesis. Assuming we have a counterexample φ that distinguishes these two
DFAs, we check if φ is accepted byM.

For each iteration, we split φ into two parts. Let u be the first part of φ, and v
be the remaining part. We then pass u through H and observe the state it ends in.
Recall that each state has its own prefix representing the state. We take the prefix
of that state, denoted as p. We append v to p and put it throughM, denoted as
MQ(pv). One of the following two scenarios can occur:

• MQ(pv) = MQ(φ), indicating that v or one of its suffixes distinguishesM
and H. To pinpoint the exact suffix, we proceed to split φ at index u + 1

2
v.

This means that in the next iteration, u will have more symbols from φ and
v will have fewer symbols.

• MQ(pv) ̸=MQ(φ), indicating that v and all of its suffixes do not distinguish
M fromH. In this case, a part of u is needed to find the correct suffix. Thus,
for the next iteration, we split φ at index 1

2
u.

The splitting process resembles a binary search. The first split of φ occurs at
index 1

2
φ. The second split, depending on MQ(pv) and MQ(φ), will be at either

3
4
φ or 1

4
φ. This entire process is repeated until we find the exact suffix v of φ

for which a one-symbol longer suffix or one-symbol shorter suffix of φ changes the
outcome of MQ(pv) = MQ(φ) to MQ(pv) ̸= MQ(φ) or vice versa. Due to the
binary search approach, we require log(φ) MQs to find the desired suffix.

60

Algorithm 20 Rivest - Schapire counterexample processing

1: function Rivest-Schapire(φ,H)
2: cex out←MQ(φ)
3: lower ← 1
4: upper ← φ.length− 2
5: while True do
6: mid← (lower + upper)//2 ▷ // denotes Integer division
7: u = φ[: mid]
8: final state← H.getF inalState(u)
9: p← final state.prefix

10: v ← φ[mid :]
11: mq ←MQ(pv)
12: if mq = cex out then
13: lower ← mid+ 1
14: if upper < lower then
15: return v[1 :]
16: end if
17: else
18: upper ← mid− 1
19: if upper < lower then
20: return v
21: end if
22: end if
23: end while
24: end function

5.3 Observation Pack Algorithm

The Observation Pack algorithm by Howar is a combination of the discrimina-
tion tree data structure with the counterexample analysis proposed by Rivest and
Schapire. In this section we explain in detail the algorithm based on the pre-
sentation made by Isberner [32]. We refer to the referenced work as Isberner’s
thesis.

5.3.1 Initialization and Data Structures

First of all we have to create a new single-state hypothesis and a discrimination
tree consisting of an inner node (labeled with ϵ) and two nil leaves, and determine

61

the leaf corresponding to the initial state by sifting ϵ into the tree. If the leaf is in
the 1-subtree of the root it means that now the right node of the root is labeled
with ϵ and corresponds to the initial state. If the leaf is in the 0-subtree it means
that now the left node of the root is labeled with ϵ and corresponds to the initial
state.

For this reason we have to make a change in the Sift operation, because we
have to handle the case in which a nil leaf is reached. This new version is specified
in the following algorithm.

Algorithm 21 New version of the Sift operation

1: function Sift(s, T)
2: n← Root-Node()
3: while n ∈ DT do
4: d← n.discriminator
5: o←MQ (sd)
6: n← n.children[o]
7: end while
8: if n = nil then
9: Create-Node(s)

10: end if
11: return n
12: end function

Something important to mention is that Isberner points out that “the represen-
tative prefix associated with a state is called access sequence, and it can be obtained
by concatenating all transition labels on the path from the root of the spanning tree
to the respective state”. This will be referred to as aseq.

Subsequently, we have to create a link between the leaf l and the created node
q. This is refered as the Link(l, q) operation. Every state q has a pointer to its
corresponding node in the discrimination tree (referred as q.node), and conversely,
every leaf has a pointer to the state it corresponds to (referred as l.state, which
may be nil).

Finally, before concluding the initialization of the algorithm we have to take
a look to the Close-Transitions(H, T) operation (Algorithm 22). We assume
that the outgoing transitions of every state q ∈ H can be accessed as q.trans[a]
for a ∈ Σ. Every outgoing transition t can either be a tree or non-tree transition.

62

Non-tree transitions point to the root node of the discrimination tree3. For a non-
tree transition, this target node is referred to via t.tgt node. On the other hand,
for a tree transition t, t.tgt node refers to the leaf associated with its target state.
The target state of a transition t is referred as t.tgt state.

As the t.tgt node of a non-tree transition is not a leaf, the t.tgt state will be
nil. This is referred as an open transition and Open(H) denotes the set of all open
transitions in H.

Algorithm 22 Close transition procedure

1: procedure Close-Transitions(H, T)
2: while Open(H) ̸= ∅ do
3: t← choose(Open(H))
4: tgt← sift(t.aseq)
5: t.tgt node← tgt
6: if t.tgt node = nil then
7: q ← Create-State(t)
8: Link(t.tgt node, q)
9: end if

10: end while
11: end procedure

Algorithm 23 Observation Pack Initialization routine

1: function ObservationPack-Init
2: H ← Create-Hypothesis() ▷ create new hypothesis with single state ϵ
3: T ←Make-Inner(ϵ, nil, nil)
4: l← sift(ϵ)
5: Link(l, ϵ,H)
6: Close-Transitions(H, T)
7: return H, T
8: end function

5.3.2 Refinement

Now comes the part where a suffix-based counterexample analysis (Rivest Schapire)
is introduced in order to refine the hypothesis and discrimination tree. The corre-
sponding pseudocode is shown as Algorithm 24.

3This is a change from Isberner’s thesis, where he specifies that non-tree transitions point to
nodes in the discrimination tree.

63

The idea is that a counterexample φ can be decomposed into φ = (û, â, v̂)
with the following property: qpred = H[û] and qold = qpred.trans[â], we then have
MQ(qpred.aseq, â, v̂]) ̸= MQ(qold.aseq, v̂). Thus, the â-successor of qpred must be
different from qold, which calls the introduction of a new state qnew.

It is important to note that all the incoming and outgoing transitions of qold
must be reset. Moreover, the link between qold and the leaf that formerly corre-
sponded to qold in the tree must be removed. This leaf is replaced by an inner node
with discriminator v̂ and two leaves. The states qold and qnew are then linked to
these leaves, according to their future behaviour after doing MQ(qold.aseq, v̂).

Finally, the open transitions in H are closed concluding the refinement of H
and T .

Algorithm 24 Realization of refinement in the Observation Pack algorithm

1: procedure ObservationPack-Refine(φ)
2: û, â, v̂ ← Analyze-OutIncons(φ)
3: Split(H, T , û, â, v̂)
4: Close-Transitions(H, T)
5: end procedure

1: procedure Split(H, T , û, â, v̂)
2: qpred ← H[û]
3: qold ← qpred.trans[â]
4: qnew ← Create-State(qold.aseq)
5: l0, l1 ← Split-Leaf(qold.node, v̂)
6: if MQ(qold.aseq, v̂) = ⊥ then
7: Link(l0, qold)
8: Link(l1, qnew)
9: else
10: Link(l0, qnew)
11: Link(l1, qold)
12: end if
13: end procedure

5.3.3 Putting it all together

With the initialization and refinement algorithms the complete algorithm can be
presented. We first start by initializing H and T . Subsequently, until H andM
are equivalent, H and T are refined. It can happen that the counterexample is the
same as before or that an EQ has to be executed to get a new counterexample.

64

Algorithm 25 Observation Pack Algorithm

1: function ObservationPack
2: H, T ← ObservationPack-Init()
3: (are eq, φ)← EQ(H,M)
4: while not(are eq) do
5: ObservationPack-Refine()
6: if MQ(φ) = Accepts(φ) then
7: (are eq, φ)← EQ(H,M)
8: end if
9: end while

10: return H
11: end function

In Table 5.1, the worst-case complexity of Observation Pack algorithm is re-
ported defining first some parameters [32]:

• n = size of target DFAM.

• k = size of input alphabet.

• m = length of the longest counterexample returned by an equivalence query.

Query Complexity Symbol Complexity Space Complexity
O(kn2 + n logm) O(kn2m+ nm logm) O(kn+ nm)

Table 5.1: Worst-case complexity of the Observation Pack algorithm

5.3.4 Example Run

Now that the complete algorithm was introduced, we can see how an automaton
H can be obtained running the algorithm with the automaton in figure Figure 5.1.

First of all, the spanning-tree hypothesis is initialized as a single state DFA
with the access sequence ϵ (Figure 5.3a) and the discrimination tree with an ϵ
labeled root node with two nil leaves (Figure 5.3b) . In second place, Sift(ϵ) is
executed, creating a new leaf labeled with ϵ in the 0-subtree (Figure 5.3d). This
means that the single DFA state is a rejecting one. During initialization, both
symbols 0 and 1 are found to lead to the ϵ state (Figure 5.3c).

65

ϵ

(a) Single state DFA

ϵ

nil nil

(b) Discrimination tree with nil leaves

ϵ

0, 1

(c) Single rejecting state DFA

ϵ

ϵ nil

(d) Discrimination tree with ϵ leave

Figure 5.3: Initialization of hypothesis and discrimination tree during a run of
Observation Pack

The initial hypothesis H classifies some sequences incorrectly. One of these
sequences is φ = 1101, since Accepts(φ) = ⊥ but MQ(φ) = ⊤. Applying
suffix-based counterexample analysis, a decomposition (û, â, v̂) = (ϵ, 1, 101) is de-
termined. Thus, the 1-transition of qpred = H[ϵ] = ϵ is converted into a tree
transition, resulting in the introduction of a new state. Furthermore, the leaf in
the discrimination tree corresponding to qold = H[1] = ϵ is split, using 101 as the
discriminator. The resulting data structures, after closing all transitions are shown
in Figure 5.4a and Figure 5.4b

This new refined hypothesis still classifies φ incorrectly. A second suffix-based
counterexample analysis returns the decomposition (û, â, v̂) = (1, 1, 01). Convert-
ing the 1-transition of qpred = H[1] = 1 into a tree transition, and splitting the
leaf associated with qold = H[11] = ϵ using 01 as discriminator results in the dis-
crimination tree shown in Figure 5.4d. If we close transitions without taking into
account the transitions of the new state 11, it will result in the DFA shown in
figure Figure 5.4c. The 1-transition of this state will result in the introduction of
a new state 111, which will be an accepting one (inferred from the sift operation).
Closing the rest of transitions results in the final hypothesis shown in Figure 5.4e
and the final discrimination tree shown in Figure 5.4f.

66

ϵ 1

0 1 0

1

(a) Hypothesis after first refine-
ment

ϵ

101

ϵ 1

nil

(b) Discrimination tree after first
refinement

ϵ 1 11

0 1 0 1

(c) Hypothesis after discovering the
new state 11

ϵ

101

01

ϵ 11

1

nil

(d) Discrimination tree after dis-
covering the new state 11

ϵ 1 11 111

0 1 0 1 0 1 0

1

(e) Hypothesis after second refine-
ment

ϵ

101

01

ϵ 11

1

111

(f) Discrimination tree after second
refinement

Figure 5.4: Evolution of hypothesis and discrimination tree during a run of Ob-
servation Pack

67

5.4 Benchmarks

The Kearns and Vazirani and Observation Pack algorithms are implemented in the
Neural-Checker tool. As it is shown in this section, these algorithms use significantly
more EQ s than the Observation Table algorithms. Therefore, the portions where
they consume additional time are primarily in the EQ phase.

The Kearns and Vazirani algorithm was already implemented in the tool. Our
goal was to optimize it because its runtime was significantly longer compared to the
L∗ algorithm. As a result of this, we implemented the counterexample exhaustion
techique. Our investigation led us to discover the Observation Pack algorithm,
which employs a smart counterexample processing method. We proceeded to im-
plement it and conducted a comparison based on the following factors:

• Runtime duration.

• Number of model states.

• Alphabet size.

We conducted two experiments utilizing the BFS oracle (section 6.2) for the
EQ operation. For a deeper understanding of oracles, please refer to Chapter 6.
This will be crucial for comprehending the results of the experiments.

5.4.1 Experiment 1

In this experiment we compared Observation Pack, Kearns and Vazirani and L∗.
For this, 9 random DFAs over a binary alphabet of nominal sizes 200, 500 and 1000
were generated, and each algorithm was run 9 times for each DFA. Figure 5.5a
shows the learning time medians for every actual size. Observation Pack and
Kearns and Vazirani execution time grows much faster than L∗. As the difference
is so noticeable, Figure 5.5b shows that for 1000 states the running time of L∗

is approximately 4 seconds, whereas for the other two algorithms, it exceeds 800
seconds.

We looked more closely at the observed differences, and it was not surprising to
find that L∗ uses fewer EQs than the tree algorithms, as illustrated in Figure 5.6a.
In contrast, the tree algorithms having fewer MQ, as shown in Figure 5.6b, was
also as expected.

68

(a) Tree algorithms and L∗. (b) L∗.

Figure 5.5: Experiment 1 execution time.

(a) EQs count. (b) MQs count.

Figure 5.6: Experiment 1 membership queries and equivalence queries.

5.4.2 Experiment 2

In this experiment 9 random DFA of nominal size 100 were generated for alphabet
sizes 2, 32 and 64. We compared Observation Pack, Kearns and Vazirani and

69

L∗. Each algorithm was run 9 times for each DFA. Figure 5.7 shows the learning
time medians for every alphabet size. As it can be seen, once again the difference
between the algorithms is noticeable.

Figure 5.7: Execution time of Observation Pack, Kearns and Vazirani, and L∗

algorithms with different alphabet sizes.

5.5 Profiling

As mentioned earlier, the Observation Pack and Kearns and Vazirani’s algorithms
uses more EQs than L∗ as the number of states increases. This is the primary
motivation behind conducting profiling to identify the specific function responsible
for consuming significant time, leading to differences in running time.

We used the cProfile4 profiler from the Python standard library. A random
DFA with a nominal size of 500 was generated using a binary alphabet for the anal-
ysis of the Observation Pack algorithm. Figure 5.8 illustrates that the algorithm
required 252 seconds, with the EQ operation specifically taking 251 seconds.

This challenge is something we need to address in the future because it is
making our algorithm less efficient when working with time consuming oracles.
Our algorithm involves a lot of EQ, which are closely tied to the oracle. If these
queries take too much time, it is affecting how long our entire process takes, and
we are already seeing that impact.

4https://docs.python.org/3/library/profile.html

70

Figure 5.8: Observation Pack profiling.

We suspect that the issue might be related to abstractions in Python. To
investigate, we conducted an experiment comparing the performance of a simple
operation, summing two numbers, with and without the use of abstractions in the
code. Two functions are defined for direct and abstracted sums. The experiment
involves iterating through a total of 200 million iterations, measuring the execution
time at intervals of 20 million iterations. The results, illustrated in Figure 5.9,
reveal that the abstracted version consistently takes longer within each interval.

Figure 5.9: Summing two numbers with and without abstractions.

One potential solution involves a deeper investigation to optimize the imple-
mentation of the oracle used or to find other ones.

Another more challenging option discussed is to migrate the codebase to an-

71

other language that offers faster performance, such as Golang. However, this poses
difficulties as it would require not only migrating all the extraction algorithms but
also all the automata and other implementations included in the used tool.

72

6 Oracles & Equivalences

An Oracle is just some abstract machine that knows the target and answers some
queries [12]. In active learning algorithms, the teacher uses an oracle to process
the EQ. In this chapter, some of the oracles that are used for model extractions
are presented. These oracles are implemented in the Neural-Checker tool.

6.1 Hopcroft-Karp

This algorithm [18] defines an equivalence between two finite automatons using a
set merging method, and can be used as an oracle for inference algorithms.

This equivalence algorithm has some limitations, both, the extracted model
and the target models must be finite automatons; and can be harmful for the
performance on inference algorithms that use lots of EQs.

A positive aspect of this algorithm is that it can compare a DFA with a NFA
(Non-Deterministic Finite Automaton) [12].

6.2 BFS Comparison Strategy

The BFS Comparison Strategy is an algorithm initially designed for DFA that our
team extended its implementation to cover Moore and Mealy Machines.

The algorithm uses a breadth-first search strategy to explore pairs of states
from two automatons and check if there is a pair with different final states. If such
a pair is found, it returns a counterexample sequence. If no such pair is found, it
concludes that the two automatons are equivalent.

73

6.3 Probably Approximately Correct learn-
ing

The active black-box model extraction algorithms introduced require some con-
siderations when working with ANNs as there is no direct way of computing an
EQ, and there is no termination guarantees, as the target languages may be more
complex than automata [37]. In this scenario we need to use a sampling technique.

6.3.1 PAC-learning setting for languages

To understand PAC-learning for ANN, we first need to describe the setting for
languages, as explained by Mayr and Yovine [4].

Let D be an unknown distribution over Σ∗, and the languages L1,L2 ⊆ Σ∗. We
call the symmetric difference between L1 and L2 to the set of sequences that only
belong to one of the languages and is denoted as L1⊕L2. Formally, the symmetric
difference is defined as the following: L1 ⊕ L2 = (L1 \ L2) ∪ (L2 \ L1)

PD(L1⊕L2) is defined as the probability that a sequence (chosen following the
distribution D) belongs to the symmetric difference. This could also be defined as
the prediction error of L1 with respect to L2. L1 is ϵ-approximately correct with
respect to L2 if PD(L1 ⊕ L2) < ϵ with ϵ ∈ (0, 1).

The oracle EXD(L1) draws an example sequence x ∈ Σ∗ following distribution
D and tags it as ⊤ or ⊥ according to whether it belongs to L1 or not. Each call
to EXD is independent of each other.

If a PAC-Learning algorithm terminates, it outputs, with at least a probabil-
ity of 1 − δ, a language that is ϵ-approximately correct with respect to a target
language. The approximation ϵ, the confidence δ, the target language Lt and the
oracle EXD(Lt) are the input parameters of the algorithm with ϵ, δ ∈ (0, 1).

A PAC-learning algorithm can incorporate an approximate equivalence test EQ
which, in this setting, is defined as: using a sufficiently large sample of tagged se-
quences S generated by EXD(Lt), checks a candidate output Lo against the target
language Lt. If the sample is such that ∀x ∈ S, x /∈ Lo⊕Lt, the algorithm success-
fully stops and outputs Lo. Otherwise, it means that S∩(Lo⊕Lt) is not empty, so
the algorithm picks any sequence from the intersection as a counterexample and
continues. The algorithm may also be allowed to call directly a MQ.

74

6.3.2 PAC-learning for ANN

Mayr and Yovine [4] asks whether it is possible to: given an ANN N , build a DFA
such that its language is ϵ-approximately correct with respect to L(N).

An active learning algorithm can be used to build this DFA, defining MQ as
querying N itself, and EQ as checking whether N and the hypothesis automaton
completely agrees in a sample set of sequences Si, as defined earlier.

It is demonstrated [4] that if L∗ terminates, it outputs a DFA A in which L(A)
is ϵ-approximately correct with respect to L(N) with probability at least 1 − δ.
Moreover, if L(N) is a regular language, L∗ is proven to terminate.

6.4 Dataset Driven

Another approach for the oracles could be using a fixed dataset. An EQ is suc-
cessful if all the sequences in the fixed dataset have the same result in the target
model and in the model to check equivalence.

This could be useful when we want to make sure the result model algorithm is
equal to the target model inside a subset of Σ∗.

This technique can also be combined with PAC, so the samples that PAC uses
come from the dataset.

6.5 Random Walk

A random walk is known as a random process which describes a path including
a succession of random steps in the mathematical space [38]. It has increasingly
been popular in various disciplines such as mathematics and computer science.

Random walks can be used to analyze and simulate the randomness of objects
and calculate the correlation among objects, which are useful in solving practical
problems.

More specifically, when using Random Walk as an EQ technique, random
symbols from Σ are sampled and a test is made to see if both models have the same
result. To do this we have to specify two important parameters, steps and reset
probability. The steps is the total amount of symbols that are concatenated, while

75

the reset probability is the probability to substitute the accumulated sequence with
the empty sequence. In every step, a weighted coin is flipped to determine whether
to continue or restart. Then, a symbol is selected using a uniform distribution over
Σ. It is important to mention that when a restart occurs, the step count is not
reset, only a new sequence is initiated.

When choosing the reset probability there is a trade-off between the amount
and the average length of the sequences that will be tested. Using a larger re-
set probability will end up in testing with shorter sequences, while a lower reset
probability will end up testing with larger but fewer sequences.

It is important to note that while using a large amount of steps the algorithm
ends up covering a larger portion of Σ∗ but it takes more time. And in algorithms
where a lot of EQs are made (such as Kearns and Vazirani or Observation Pack)
it could be time consuming.

6.6 State Prefix Random Walk

The problem with Random Walk is the fact that it is random and we do not have
control over the sequences that get used for the EQ. This sometimes results in
states that do not get explored. As it was discovered in [39], the State Prefix
Random Walk oracle was introduced to solve this problem. This oracle is similar
to Random Walk but instead of performing only one random walk, it conducts a
random walk for every state the automaton has. To do this, the access sequence
of every state is needed to use it as a suffix for every random walk process made.

The State Prefix Random Walk costs more than the normal Random Walk but
it does a better job exploring the automaton. It makes sure that the EQ checks
at least once every state.

6.7 Sampling techniques

Some EQ techniques (such as PAC) need to define a distribution over sequences
to sample from. The following cases are evaluated: uniform length, sampling from
length distribution in a validation data and uniform word.

Uniform length and sampling from given length distribution samplings
are similar. Both techniques consist in sampling a word length. The first one does

76

this with a uniform distribution between a minimum and maximum length while
the latter does this sampling over a given distribution. Then, both techniques
create every word with the sampled lengths choosing every symbol from an uniform
distribution over Σ.

In the uniform word case, the sample is drawn from a uniform distribution
over all possible words in Σ∗ within specified length bounds.

6.8 Benchmarks

In the following experiments, two objectives are pursued: to measure the per-
formance of the oracles mentioned in this chapter and analyze their relationship
with the learning algorithm, and to test the EQ techniques that do not guarantee
an equivalent automaton, such as Random Walk, State Prefix Random Walk or
PAC. To test the latter, the BFS Comparison Strategy is used against the target
automaton.

6.8.1 Experiment 1

For this experiment, automatons of 100, 300 and 500 states with a binary alphabet
were generated and the runs were repeated three times over these generated DFAs.
The algorithms used for the learning were General L∗ and Observation Pack. The
oracles used for the process were Hopcroft-Karp, PAC, BFS Comparison Strategy,
Random Walk and State Prefix Random Walk.

In Figure 6.1a and Figure 6.1b, it can be seen that PAC is an oracle with poor
performance, specially with Observation Pack, being practically unusable.

Moreover, Observation Pack gets highly influenced by the oracle used, as pre-
viously stated on Chapter 5. This is a consequence of the amount of EQs that
the algorithm needs to perform the learning. L∗ theoretically is a less effective
learning algorithm but empirically (as seen in Figure 6.1)it performs better than
tree algorithms when using a “slow” oracle such as BFS Comparison Strategy Fig-
ure 6.1c. When using a “fast” oracle such as Random Walk we can safely state
that Observation Pack performs better than L∗.

Finally, in Figure 6.1d Hopcroft-Karp shows some interesting behaviour since,
unexpectedly, L∗ with Hopcroft-Karp is similar than oracles that do not assure an

77

equivalent result on automatons such as Random Walk or State Prefix. However,
it can be observed in Figure 6.1d that Random Walk sometimes incurs significant
costs due to the length of the counterexamples, leading to an increase in the median
time.

(a) Experiment 1 with all oracles. (b) Experiment 1 without PAC - Obser-
vation Pack.

(c) Experiment 1(b) without PAC -
General DFA L∗.

(d) Experiment 1(c) without BFS - Ob-
servation Pack.

Figure 6.1: Experiment 1 results.

78

6.8.2 Experiment 2

Here, we aim to compare Random Walk with State Prefix Random Walk (SP
Random Walk) using L∗ and Observation Pack as the learning algorithms. DFAs
with 200, 500 and 2000 states with a binary alphabet were generated.

The results in Figure 6.2 show that State Prefix Random Walk is a much better
oracle overall; since it finishes the learning process in less time and outperforms
Random Walk when comparing the result model.

Additionally, it can be observed in Figure 6.2a that L∗ has more variance in
the learning time than Observation Pack. Results illustrated in Figure 6.2b could
be affected by the latter. This should be further explored in future work.

(a) Experiment 2 learning time. (b) Experiment 2 truly equivalent re-
sult.

Figure 6.2: Experiment 2 results.

6.8.3 Experiment 3

In this experiment it is analyzed how the size of the automaton affects the learning
result. 156 DFAs of different sizes between 100 and 1000 states with a binary
alphabet were generated. The selected oracles were Random Walk with 3000 steps
and 0.001 of reset probability and State Prefix Random Walk with 50 steps per
state.

79

The results shows that as the amount of states grows, the learning with Random
Walk becomes less precise. This could be explained because the Random Walk
steps does not change as the complexity of the automaton increases. Furthermore,
this issue does not seem to affect the State Prefix Random Walk as expected.

(a) Experiment 3 Random Walk. (b) Experiment 3 State Prefix Random
Walk.

Figure 6.3: Experiment 3 results.

6.8.4 Experiment 4

Experiment 4 shows how the Random Walk and State Prefix hyper-parameters
affect the learning result and time. 100 DFAs of 200 and 2000 states with a
binary alphabet were generated, and L∗ was used as the learning algorithm. The
parameters for Random Walk were 3000, 6000 and 10000 steps with 0.001, 0.0005,
0.00025 of reset probability respectively. For State Prefix, the parameters were 2,
10 and 50 steps per state.

The results in Figure 6.4b show that, as expected, as the number of steps grows
and the reset probability decreases, the probability of not reaching an equivalent
model using Random Walk falls. However, this comes with a downside, as seen in
Figure 6.4a, the duration of the learning process increases. As the number of steps
increases and the reset probability decreases, the variance of the learning time also
increases.

Moreover, the results in Figure 6.5b show that State Prefix oracle behaves in
a similar way. It can be observed that as we increase the amount of steps, the
accuracy increases. From 50 steps onwards, the learning results are almost always
equivalent to the target automaton. In Figure 6.5a it can be seen that, in contrast
to Random Walk, the duration while using State Prefix only decreases when using
two steps.

80

(a) Experiment 4 learning time. (b) Experiment 4 equivalent result.

Figure 6.4: Experiment 4 Random Walk results.

(a) Experiment 4 learning time. (b) Experiment 4 equivalent result.

Figure 6.5: Experiment 4 State Prefix results.

81

7 TAYSIR 2023 Competition

The chapter discusses how the Neural-Checker tool was tested [15] in the TAYSIR
competition.

7.1 Description of the competition

TAYSIR is an on-line competition about model inference form Neural Networks.
The 2023 challenge was divided in two tracks. In this thesis we only describe the
first track since the second one is out of scope. The goal of Track 1 was to learn
language acceptors from Recurrent Neural Networks and Transformer classifiers.
The three authors of this thesis contributed to Track 1.

7.2 Description of the tools used

We utilized Neural-Checker as the primary tool, employing version 0.38.1 of pythau-
tomata and version 0.35.2 of pyModelExtractor. For the competition we used a
representation of a DFA implemented in the tool pythautomata. Whereas the ex-
traction algorithms used are implemented in the tool pyModelExtractor

7.3 Extraction Approach

For the extraction we used L∗ algorithm for DFA with PAC since we are trying to
learn ANN. For the EQ we need to define a distribution over sequences to sample
from. We evaluated the following cases: uniform length, sampling from length
distribution in validation data, and using the full prefix set of words up to some
given length.

To guarantee termination, a maximum running time was set. This implies stop-
ping an extraction if the run surpasses a given duration. To extract the automaton
we used both the traditional and partial approach.

Finally, to lower the CPU time of the submitted model we used a new automata

82

implementation, FastDFA, which reduced the models inference time and memory
usage. However, this structure is not as general as the type of models provided by
pyhtautomata, since symbols are only restricted to integer type and do not allow
for more complex data structures.

7.4 Experimental Results

We present the best results regarding the competition score, however, they are
mainly focused in the ER (error rate: ER = 1

n

∑n
i=1 1[yi ̸= ŷi]) and CT (CPU

time the submitted model lasts processing a given sequence). In track 1, see
Table 7.1, the datasets 2, 3, 4, 5, 6 and 7 ended up with a perfect submission
ER. For these cases EQ was implemented with PAC, using a sampling technique
that generated words with a fixed length of 22. In this setting we did not fix a
maximum running time as L∗ execution finished with EQ passing the PAC test.
All PAC tests were performed with ϵ = δ = 0.01 parameters. For dataset 1, 9,
10 and 11, PAC was not passed, and we resorted to use a a continuous run that
stopped every 3 hours, outputted a partial DFA and then continued running with
the same Observation Table. Best results were obtained on 5 to 7 iterations of
this process (15-21 hours runs). For datasets 9, 10 and 11 sampling from length
distribution in validation led to better results. For dataset 8 we tried all mentioned
techniques but none ended with positive results. The result became more complex
the longer we trained the model, making the memory usage bigger and the ER
greater. We ended up submitting a trivial model that rejects (returns False) every
given sequence. This turned out to be the best model.

Dataset
Duration

(s)
EQs MQs

Extracted
States

Validation
ER

Submission
ER

CT
(ms)

1 18.0 9 11.8M 38,400 0.071 0.0844 0.068
2 1.1 5 10.8k 9 0 0 0.072
3 2.0 3 3.02k 10 0 0 0.074
4 2.6 3 2.89k 5 0 0 0.057
5 1.1 2 1.16k 6 0 0 0.056
6 0.8 1 129 2 0 0.00001 0.054
7 0.3 1 129 2 0 0 0.055
8 - - - 1 0.342 0.327 0.030
9 1080.0 3 5.13M 33,700 0.013 0.0307 0.057
10 1080.0 1 3.09M 18,300 0.182 0.0523 0.059
11 1260.0 0 4.81M 16,000 0.249 0.0220 0.086

Table 7.1: Track 1 results

83

8 Conclusions

We discussed, implemented and empirically evaluated and analyzed different au-
tomata learning algorithms for black-box models, aligning with our research ob-
jectives. The intention was to create a comprehensive guide for those entering this
domain, helping them to understand the principles of neural language acceptors
verification and analysis through automata models.

Exploring both theory and practice made possible the comprehension of fun-
damental concepts, enabling us to find improvements and discover new algorithms
and opportunities for optimizing existing implementations. The L∗ algorithm was
improved in terms of time efficiency. We evaluated the enhancements showing that
the optimizations implemented have resulted in a significant improvement.

Moore and Mealy Machines have been studied and integrated into the tool,
expanding the potential applications. Additionally, an extension of L∗ designed for
learning Moore Machines was implemented, alongside an algorithm for converting
Moore Machines to minimal Mealy Machines. These enhancements increase the
scope and utility of the tool.

Furthermore, we introduced the Observation Pack algorithm in the Neural-
Checker tool, presenting a new discrimination tree algorithm that needs to be
tested in future competitions and case studies.

Participating in TAYSIR offered us a practical driver for evaluating and propos-
ing enhancements for the Neural-Checker tool.

We explored a wide variety of oracles and evaluated the performance of the
algorithms using different types of them. We were able to gain insights into the
strenghts and weaknesses of each algorithm in various oracle settings. By analyzing
factors such as time efficiency and accuracy, we could evaluate the most appropriate
algorithm and oracle for different scenarios.

8.1 Future Work and Open Problems

As future work and open problems, we identify two aspects: first, reduce the
time execution efficiency of the currently implemented extraction algorithms; and
second, improve the expressiveness of the extracted models.

84

When it comes to the first point, we discovered that the Observation Pack al-
gorithm works really fast when using certain tools for black-box models. However,
there is a downside, when using non-exact EQ methods such as PAC or Ran-
dom Walk, it finishes more often than other extraction algorithms with a model
that might not be exactly the same as the target one. Another issue is that the
length of the queries gets longer as the teacher provides longer counterexamples,
as explained in [32].

Because of these challenges, Isberner, Howar, and Steffen came up with the
TTT algorithm [40]. The plan was to implement it and compare it with the Ob-
servation Pack algorithm. Unfortunately, due to the complexities associated with
understanding and implementing the TTT algorithm, our original idea to directly
compare it with Observation Pack was not possible. However, we still plan to
improve the current implemented algorithms, which includes giving a second try
to the TTT algorithm.

Turning to the second aspect, the extracted models may vary depending on the
level of interpretability, verification, and complexity. Currently, Neural-Checker has
models belonging to regular-grammars. These models are the least expressive. It
has been demonstrated in [41, 42] that the most commonly used architectures today
for LM (Language Model) implementation have a higher level of expressiveness
than the models currently extracted by the team.

While there are algorithms for extracting more expressive models [43, 44, 45]
at present, to the best of our knowledge, these are in their early development
stages, and practical results have not been demonstrated, nor have stable tools
been created for public use.

In the given context, the upcoming efforts are directed towards extracting more
expressive models. This involves the initial development of efficient algorithms,
followed by their subsequent implementation into the Neural-Checker tool.

Acknowledgments

Research reported in this thesis has been partially funded by ANII-Agencia Na-
cional de Investigación e Innovación under grant IA 1 2022 1 173516.

85

9 Bibliography

[1] S. Chen, Y. Sun, L. D., Q. Wang, Q. Hao, and J. Sifakis, “Runtime safety
assurance for learning-enabled control of autonomous driving vehicles,”
CoRR, vol. abs/2109.13446, 2021, accessed: March 21th, 2024. [Online].
Available: https://arxiv.org/abs/2109.13446

[2] T. Mitchell, Machine Learning, ser. McGraw-Hill International Editions.
McGraw-Hill, 1997, accessed: March 21th, 2024. [Online]. Available:
https://books.google.com.uy/books?id=EoYBngEACAAJ

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org, Accessed: March 21th, 2024.

[4] F. Mayr and S. Yovine, “Regular Inference on Artificial Neural Networks,”
in 2nd International Cross-Domain Conference for Machine Learning and
Knowledge Extraction (CD-MAKE), ser. Machine Learning and Knowledge
Extraction, A. Holzinger, P. Kieseberg, A. M. Tjoa, and E. Weippl, Eds.,
vol. LNCS-11015. Hamburg, Germany: Springer International Publishing,
Aug. 2018, pp. 350–369, part 5: MAKE Explainable AI, Accessed: March
21th, 2024. [Online]. Available: https://inria.hal.science/hal-02060043

[5] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural predictions,”
in Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, J. Su, K. Duh, and X. Carreras, Eds. Austin, Texas:
Association for Computational Linguistics, Nov. 2016, pp. 107–117, accessed:
March 21th, 2024. [Online]. Available: https://aclanthology.org/D16-1011

[6] A. Holzinger, C. Biemann, C. S. Pattichis, and D. B. Kell, “What do we need
to build explainable ai systems for the medical domain?” 2017.

[7] T. G. Calderon and J. J. Cheh, “A roadmap for future neural
networks research in auditing and risk assessment,” International Journal
of Accounting Information Systems, vol. 3, no. 4, pp. 203–236, 2002,
second International Research Symposium on Accounting Information
Systems, Accessed: March 21th, 2024. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1467089502000684

86

https://arxiv.org/abs/2109.13446
https://books.google.com.uy/books?id=EoYBngEACAAJ
http://www.deeplearningbook.org
https://inria.hal.science/hal-02060043
https://aclanthology.org/D16-1011
https://www.sciencedirect.com/science/article/pii/S1467089502000684
https://www.sciencedirect.com/science/article/pii/S1467089502000684

[8] C. Zhang, J. Jiang, and M. Kamel, “Intrusion detection using
hierarchical neural networks,” Pattern Recognition Letters, vol. 26, no. 6,
pp. 779–791, 2005, accessed: March 21th, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167865504002624

[9] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Ex-
plaining explanations: An overview of interpretability of machine learning,”
2019.

[10] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, D. Pedreschi, and F. Gian-
notti, “A survey of methods for explaining black box models,” 2018.

[11] M. Grzes and M. Taylor, “Proceedings of the adaptive and learning agents
workshop,” 2010.

[12] C. de la Higuera, Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, 2010, accessed: March 21th, 2024. [Online].
Available: https://books.google.com.tr/books?id=XAOE5V9B4dUC

[13] L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27, no. 11,
pp. 1134–1142, 1984.

[14] F. Mayr, S. Yovine, F. Pan, and F. Vilensky, “Neural checker,” https://github.
com/orgs/neuralchecker/, 2021, accessed: March 21th, 2024.

[15] F. Mayr, S. Yovine, M. Carrasco, A. Garat, M. Iturbide, J. da Silva,
and F. Vilensky, “Results of neural-checker toolbox in taysir 2023
competition,” in Proceedings of 16th edition of the International Conference
on Grammatical Inference, ser. Proceedings of Machine Learning Research,
F. Coste, F. Ouardi, and G. Rabusseau, Eds., vol. 217. PMLR, 10–13
Jul 2023, pp. 295–298, accessed: March 21th, 2024. [Online]. Available:
https://proceedings.mlr.press/v217/mayr23b.html

[16] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory,
Languages, and Computation, ser. Addison-Wesley series in computer science.
Addison-Wesley, 2001, accessed: March 21th, 2024. [Online]. Available:
https://books.google.com.uy/books?id=omIPAQAAMAAJ

[17] N. Chomsky, “Three models for the description of language,” IRE Transac-
tions on Information Theory, vol. 2, no. 3, pp. 113–124, 1956.

[18] J. E. Hopcroft and R. M. Karp, “A linear algorithm for testing equivalence
of finite automata.” 1971, accessed: March 21th, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:120207847

87

https://www.sciencedirect.com/science/article/pii/S0167865504002624
https://books.google.com.tr/books?id=XAOE5V9B4dUC
https://github.com/orgs/neuralchecker/
https://github.com/orgs/neuralchecker/
https://proceedings.mlr.press/v217/mayr23b.html
https://books.google.com.uy/books?id=omIPAQAAMAAJ
https://api.semanticscholar.org/CorpusID:120207847

[19] O. Kakde, Theory of Computation. Laxmi Publications Pvt Limited, 2008,
accessed: March 21th, 2024. [Online]. Available: https://books.google.com.
uy/books?id=y11InQEACAAJ

[20] J. Hopcroft, “An n log n algorithm for minimizing states in a finite
automaton,” in Theory of Machines and Computations, Z. Kohavi and
A. Paz, Eds. Academic Press, 1971, pp. 189–196, accessed: March 21th,
2024. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/B9780124177505500221

[21] F. Mayr Ojeda, “Regular inference over recurrent neural networks as a method
for black box explainability,” 2019.

[22] B. K. Aichernig, E. Muškardin, and A. Pferscher, “Active vs. passive:
A comparison of automata learning paradigms for network protocols,”
Electronic Proceedings in Theoretical Computer Science, vol. 371, p.
1–19, Sep. 2022, accessed: March 21th, 2024. [Online]. Available:
http://dx.doi.org/10.4204/EPTCS.371.1

[23] E. M. Gold, “Complexity of automaton identification from given data,”
Information and Control, vol. 37, no. 3, pp. 302–320, 1978, accessed: March
21th, 2024. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0019995878905624

[24] D. Angluin, “Learning regular sets from queries and counterexamples,” Tech.
Rep., 1987, accessed: March 21th, 2024. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/0890540187900526?via%3Dihub

[25] E. F. Moore, Gedanken-Experiments on Sequential Machines, C. E.
Shannon and J. McCarthy, Eds. Princeton: Princeton University
Press, 1956, accessed: March 21th, 2024. [Online]. Available: https:
//doi.org/10.1515/9781400882618-006

[26] G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell System
Technical Journal, vol. 34, no. 5, pp. 1045–1079, 1955.

[27] A. El-Maleh, “A note on moore model for sequential circuits,” ResearchGate.
com. Published on July, 2016.

[28] A. Klimowicz and V. Solov’ev, “Transformation of a mealy finite-state ma-
chine into a moore finite-state machine by splitting internal states,” Journal
of Computer and Systems Sciences International, vol. 49, pp. 900–908, 12
2010.

88

https://books.google.com.uy/books?id=y11InQEACAAJ
https://books.google.com.uy/books?id=y11InQEACAAJ
https://www.sciencedirect.com/science/article/pii/B9780124177505500221
https://www.sciencedirect.com/science/article/pii/B9780124177505500221
http://dx.doi.org/10.4204/EPTCS.371.1
https://www.sciencedirect.com/science/article/pii/S0019995878905624
https://www.sciencedirect.com/science/article/pii/S0019995878905624
https://www.sciencedirect.com/science/article/pii/0890540187900526?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0890540187900526?via%3Dihub
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.1515/9781400882618-006

[29] F. Mayr, S. Yovine, M. Carrasco, F. Pan, and F. Vilensky, “A
congruence-based approach to active automata learning from neural language
models,” in Proceedings of 16th edition of the International Conference
on Grammatical Inference, ser. Proceedings of Machine Learning Research,
F. Coste, F. Ouardi, and G. Rabusseau, Eds., vol. 217. PMLR, 10–13
Jul 2023, pp. 250–264, accessed: March 21th, 2024. [Online]. Available:
https://proceedings.mlr.press/v217/mayr23a.html

[30] C. Nicaud, “Random deterministic automata,” in Mathematical Foundations
of Computer Science 2014, E. Csuhaj-Varjú, M. Dietzfelbinger, and Z. Ésik,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 5–23.

[31] M. J. Kearns and U. Vazirani, An Introduction to Computational Learning
Theory. The MIT Press, 08 1994, accessed: March 21th, 2024. [Online].
Available: https://doi.org/10.7551/mitpress/3897.001.0001

[32] M. Isberner, “Foundations of active automata learning: An algorithmic
perspective,” der Technischen Universität Dortmund, Germany, Tech.
Rep., 2015, accessed: March 21th, 2024. [Online]. Available: https:
//core.ac.uk/download/pdf/46916458.pdf

[33] GeeksforGeeks. (2023) Lowest common ancestor in a binary tree —
set 1. Accessed: January 14th, 2024. [Online]. Available: https:
//www.geeksforgeeks.org/lowest-common-ancestor-binary-tree-set-1/

[34] R. Rivest and R. Schapire, “Inference of finite automata using homing
sequences,” Tech. Rep., 1993, accessed: March 21th, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0890540183710217

[35] F. M.Howar, “Active learning of interface programs,” der Technischen
Universität Dortmund, Germany, Tech. Rep., 2012, accessed: March 21th,
2024. [Online]. Available: https://eldorado.tu-dortmund.de/handle/2003/
29486

[36] R. T. Tije, “A comparison of counterexample processing techniques in
angluin-style learning algorithms,” Tech. Rep., 2022, accessed: March 21th,
2024. [Online]. Available: https://www.cs.ru.nl/bachelors-theses/2022/
Rick ten Tije 1005826 A comparison of counterexample processing
techniques in Angluin-style learning algorithms.pdf

[37] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133,
1943.

89

https://proceedings.mlr.press/v217/mayr23a.html
https://doi.org/10.7551/mitpress/3897.001.0001
https://core.ac.uk/download/pdf/46916458.pdf
https://core.ac.uk/download/pdf/46916458.pdf
https://www.geeksforgeeks.org/lowest-common-ancestor-binary-tree-set-1/
https://www.geeksforgeeks.org/lowest-common-ancestor-binary-tree-set-1/
https://www.sciencedirect.com/science/article/pii/S0890540183710217
https://eldorado.tu-dortmund.de/handle/2003/29486
https://eldorado.tu-dortmund.de/handle/2003/29486
https://www.cs.ru.nl/bachelors-theses/2022/Rick_ten_Tije___1005826___A_comparison_of_counterexample_processing_techniques_in_Angluin-style_learning_algorithms.pdf
https://www.cs.ru.nl/bachelors-theses/2022/Rick_ten_Tije___1005826___A_comparison_of_counterexample_processing_techniques_in_Angluin-style_learning_algorithms.pdf
https://www.cs.ru.nl/bachelors-theses/2022/Rick_ten_Tije___1005826___A_comparison_of_counterexample_processing_techniques_in_Angluin-style_learning_algorithms.pdf

[38] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random
walks: A review of algorithms and applications,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 4, no. 2, p.
95–107, Apr. 2020, accessed: March 21th, 2024. [Online]. Available:
http://dx.doi.org/10.1109/TETCI.2019.2952908

[39] E. Muškardin, B. K. Aichernig, I. Pill, A. Pferscher, and M. Tappler, “Aalpy:
An active automata learning library,” in Automated Technology for Verifica-
tion and Analysis, Z. Hou and V. Ganesh, Eds. Cham: Springer International
Publishing, 2021, pp. 67–73.

[40] M. Isberner, F. Howar, and B. Steffen, “The ttt algorithm: A
redundancy-free approach to active automata learning,” in Runtime
Verification, 2014, accessed: March 21th, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:15853481

[41] J. Pérez, J. Marinkovic, and P. Barceló, “On the turing completeness of
modern neural network architectures,” CoRR, vol. abs/1901.03429, 2019,
accessed: March 21th, 2024. [Online]. Available: http://arxiv.org/abs/1901.
03429

[42] H. Siegelmann and E. Sontag, “On the computational power of neural
nets,” Journal of Computer and System Sciences, vol. 50, no. 1,
pp. 132–150, 1995, accessed: March 21th, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000085710136

[43] J. Michaliszyn and J. Otop, “Learning Deterministic Visibly Pushdown
Automata Under Accessible Stack,” in 47th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2022), ser. Leibniz
International Proceedings in Informatics (LIPIcs), S. Szeider, R. Ganian,
and A. Silva, Eds., vol. 241. Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022, pp. 74:1–74:16, accessed: March 21th,
2024. [Online]. Available: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.MFCS.2022.74

[44] B. Barbot, B. Bollig, A. Finkel, S. Haddad, I. Khmelnitsky, M. Leucker,
D. Neider, R. Roy, and L. Ye, “Extracting context-free grammars from
recurrent neural networks using tree-automata learning and a* search,”
in Proceedings of the Fifteenth International Conference on Grammatical
Inference, ser. Proceedings of Machine Learning Research, J. Chandlee,
R. Eyraud, J. Heinz, A. Jardine, and M. van Zaanen, Eds., vol. 153.
PMLR, 23–27 Aug 2021, pp. 113–129, accessed: March 21th, 2024. [Online].
Available: https://proceedings.mlr.press/v153/barbot21a.html

90

http://dx.doi.org/10.1109/TETCI.2019.2952908
https://api.semanticscholar.org/CorpusID:15853481
http://arxiv.org/abs/1901.03429
http://arxiv.org/abs/1901.03429
https://www.sciencedirect.com/science/article/pii/S0022000085710136
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.74
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.74
https://proceedings.mlr.press/v153/barbot21a.html

[45] D. M. Yellin and G. Weiss, “Synthesizing context-free grammars from
recurrent neural networks (extended version),” CoRR, vol. abs/2101.08200,
2021, accessed: March 21th, 2024. [Online]. Available: https://arxiv.org/
abs/2101.08200

91

https://arxiv.org/abs/2101.08200
https://arxiv.org/abs/2101.08200

	Introduction
	Learning Regular Languages
	Languages and Automatons
	Formal Languages
	Regular Languages
	Deterministic Finite Automaton
	Equivalence
	Minimization of a DFA

	Learning regular languages: L
	Initialization and Data Structures
	Properties
	DFA construction and counterexample processing
	Putting it all together
	Example run

	Learning Moore & Mealy Machines
	Moore Machines
	Extending L* for Moore Machines

	Mealy Machines
	Learning Mealy Machines via Moore Machines

	Algorithmic improvements
	Neural-Checker
	L*
	Optimizations
	General L*
	Partial approach
	Restart approach

	Benchmarks
	L optimization
	Restart & Partial approach

	Implementing Discrimination Tree-Based Learning Algorithms
	Learning with a Discrimination tree
	Formal Notation
	Access Strings and Distinguishing Strings
	The Algorithm for Learning Finite Automata
	Initialization and Data Structures
	Sift operation
	Tentative Hypothesis
	Lowest common ancestor
	Update Tree
	Putting it all together
	Example run
	Counterexample Exhaustion
	Spanning-Tree Hypothesis

	Smart Counterexample Processing
	Observation Pack Algorithm
	Initialization and Data Structures
	Refinement
	Putting it all together
	Example Run

	Benchmarks
	Experiment 1
	Experiment 2

	Profiling

	Oracles & Equivalences
	Hopcroft-Karp
	BFS Comparison Strategy
	Probably Approximately Correct learning
	PAC-learning setting for languages
	PAC-learning for ANN

	Dataset Driven
	Random Walk
	State Prefix Random Walk
	Sampling techniques
	Benchmarks
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	TAYSIR 2023 Competition
	Description of the competition
	Description of the tools used
	Extraction Approach
	Experimental Results

	Conclusions
	Future Work and Open Problems

	Bibliography

