
Universidad ORT Uruguay
Facultad de Ingenieŕıa

Exploring Attention Patterns and
Neural Activations in

Transformer Architectures for
Sequence Classification in
Context Free Grammars

Entregado como requisito para la obtención del t́ıtulo de Ingeniero

en Sistemas

Mat́ıas Molinolo De Ferrari - 231323

Tutores: Dr. Sergio Yovine, Dr. Franz Mayr

2024

Declaración de Autoŕıa

Yo, Matias Molinolo De Ferrari, declaro que el trabajo que se presenta en esta
obra es de mi propia mano. Puedo asegurar que:

- La obra fue producida en su totalidad mientras realizaba el Proyecto Final
de Ingenieŕıa en Sistemas;

- Cuando he consultado el trabajo publicado por otros, lo he atribuido con
claridad;

- Cuando he citado obras de otros, he indicado las fuentes. Con excepción de
estas citas, la obra es enteramente mı́a;

- En la obra, he acusado recibo de las ayudas recibidas;
- Cuando la obra se basa en trabajo realizado conjuntamente con otros, he

explicado claramente qué fue contribuido por otros, y qué fue contribuido por mi;
- Ninguna parte de este trabajo ha sido publicada previamente a su entrega,

excepto donde se han realizado las aclaraciones correspondientes.

Matias Molinolo De Ferrari

01-10-2024

2

Agradecimientos

A mi familia y amigos, por su apoyo y acompañamiento constante en esta etapa
y por escucharme hablar horas y horas de una tesis y experimentos que saĺıan bien
(y no tan bien).

A mis tutores, Dr. Sergio Yovine y Dr. Franz Mayr, por su apoyo y las discu-
siones que dieron fruto a este trabajo.

Proyectos ANII
Esta tesis fue parcialmente financiada por ANII en el marco de los proyectos

IA_1_2022_1_173516 y FMV_1_2023_1_175864

3

Abstract
This work explores attention patterns and neural activations within Trans-

former architectures from a mechanistic interpretability point of view, specifi-
cally, on their application to sequence classification tasks related to context-free
grammars, focusing on Dyck-k languages. We investigate whether Transformers,
through their attention mechanisms, can effectively model and classify the afore-
mentioned languages, which serve as a canonical example of context-free grammars.
The work also addresses the broader issue of trainability of these models, analyz-
ing how the model architecture impacts its ability to learn recursive structures.
By employing Transformers trained on sequences of Dyck-k languages, this work
empirically shows the attention patterns that emerge align with the structural
dependencies within the sequences. Bidirectional masking was found to signifi-
cantly enhance the model’s performance, leading to perfect accuracy in classifica-
tion tasks, while causal masking introduced limitations in trainability and gener-
alization. The work further emphasizes the importance of attention mechanisms
in parsing and recognizing hierarchical languages, contributing to discussions on
the explainability and interpretability of neural networks. A detailed analysis of
experimental results and attention matrices provide insights into the internal work-
ings of these models, suggesting that these architectures, when properly trained,
are capable of capturing complex syntactical structures of context-free languages
without the need of recursion. A key outcome of this research is the development
of the transformer-checker library, a tool designed to facilitate the training,
evaluation, and visualization of transformers on formal language tasks. The tool
integrates an explainability module to visualize attention matrices. The code is
publicly available.

Abstract Español
Este trabajo explora los patrones de atención y activaciones neuronales dentro

de modelos con arquitecturas Transformer, desde un punto de vista de la interpre-
tabilidad mecańıstica, espećıficamente en clasificación de secuencias pertenecientes
a gramáticas libres de contexto, enfocándose en lenguajes Dyck-k. Se investigó
si los Transformers, a través de sus mecanismos de atención, pueden modelar y
clasificar efectivamente los lenguajes mencionados anteriormente, que sirven como
ejemplo canónico de las gramáticas libres de contexto. El trabajo apunta también
al problema más amplio de la entrenabilidad de estos modelos, analizando cómo
la arquitectura impacta su capacidad de aprender estructuras recursivas. Al usar

4

Transformers entrenados en secuencias de lenguajes Dyck-k, este trabajo mues-
tra de forma emṕırica que los patrones de atención que surgen se alinean con las
dependencias estructurales dentro de las secuencias. Se encontró que el uso de
una máscara bidireccional mejora significativamente la performance del modelo,
logrando una precisión perfecta en la tarea de clasificación, mientras que el uso
de máscaras causales introdujo limitaciones en la entrenabilidad y generalización.
Este trabajo subraya la importancia de los mecanismos de atención en el análi-
sis y reconocimiento de lenguajes jerárquicos, contribuyendo a la discusión acerca
de la explicabilidad e interpretabilidad de los modelos neuronales. Un detallado
análisis de los resultados experimentales y las matrices de atención provee infor-
mación acerca del funcionamiento interno de estos modelos, sugiriendo que estas
arquitecturas, cuando son entrenadas correctamente, son capaces de capturar las
estructuras sintácticas complejas de los lenguajes libres de contexto sin la nece-
sidad de recursión. Un resultado clave de esta investigación es el desarrollo de
la libreŕıa transformer-checker, una herramienta diseñada para facilitar el en-
trenamiento, evaluación y visualización de Transformers en tareas de lenguajes
formales. La herramienta integra un módulo de explicabilidad para visualizar las
matrices de atención. El código es de acceso público.

5

Key words
Artificial Intelligence; Transformers; Neural networks; Attention Mechanism;

Attention Patterns; Formal languages; Formal grammars; Pushdown automata;
Explainability; Interpretability; Expressivity

Palabras clave
Inteligencia Artificial; Transformers; Redes neuronales; Mecanismo de Atención;

Patrones de Atención; Lenguajes formales; Gramáticas formales; Autómatas a pila;
Explicabilidad, Interpretabilidad; Expresividad

6

Contents

1 Introduction 9

2 On Formal Languages 11
2.1 Chomsky’s Hierarchy . 12

2.1.1 Automata and Grammar Recognition 13
2.2 Context-free grammars . 13
2.3 Dyck-k Languages . 14

3 Transformer Architecture 17
3.1 Attention . 19
3.2 Attention Masks . 21

4 On Transformer Classifiers 23
4.1 Trainability . 23

4.1.1 Experiments on Dyck-1 Classifier Transformers 25
4.1.2 Experiments on Dyck-3 Classifier Transformers 29
4.1.3 Out-of-distribution experiments 32
4.1.4 Long-context Transformer experiments 33
4.1.5 General observations . 34

4.2 Explainability and Interpretability 35

5 Technical Implementation 38
5.1 Dataset . 38
5.2 Tokenizer . 40
5.3 Transformers . 41

5.3.1 TransformerClassifierConfig 41
5.3.2 TransformerClassifier . 42

5.4 Package Architecture and Dependency Management 42
5.5 Training and Evaluation . 44

5.5.1 Training Data and Batching 44
5.5.2 Hardware and Logging . 44

7

5.5.3 Hyperparameters and Metrics 45

6 Conclusions and Future Work 46

7 Bibliography 48

8 Annexes 52
8.1 DyckLanguageTokenizer Implementation 52
8.2 transformer-checker Class Diagram 54

8

1 Introduction

Large Language Models (LLMs) have been a topic of interest in the field of Com-
puter Science for the past few years, and more recently, with the release of Chat-
GPT [1] by OpenAI, they have become a topic of interest for the general public
too.

These models are based on an architecture called Transformer [2], a type of
Artificial Neural Network (ANN) well suited to process sequences, such as text.
These models have grown exponentially, as seen in Figure 1.1, both in size and
complexity, in the last years, and have shown to achieve state-of-the-art results
in a wide variety of Natural Language Processing (NLP) and Natural Language
Understanding (NLU) tasks.

Figure 1.1: Model Sizes (2018–2021) [3]

However, despite their state-of-the-art performance, the inner workings of these
models are not yet fully understood and these models are still considered opaque or

9

black-box [4], which is a problem for their adoption in critical applications, such as
healthcare or finance where decisions need to be explainable and interpretable. We
define explainability as the capacity to answer questions about a model’s particular
decision (i.e.: classification, object detection, etc.) [5].

Moreover, there is still a boundary to the capabilities of these models, regarding
which problems can or cannot be solved by them and what can be learned and
expressed by these models.

Strobl et al. [6] define two lines of work regarding this problem: expressivity
and trainability. This work will focus on the latter, through training different
Transformers and using a white-box approach to view the internal workings of
these models.

This approach will look at the attention mechanism and neural activations in
Transformers that are able to learn and classify sequences belonging to a formal
language, more specifically, context-free grammars (CFGs) such as Dyck languages,
to see whether we can gain an insight into the inner workings of these models.

Chomsky’s hierarchy [7] classifies CFGs as those languages that can be rep-
resented by a nondeterministic pushdown automaton, a class of automata that is
more expressive than finite-state machines but less so than Turing machines [8].
Pérez, Barceló and Marinkovic propose that architectures based on self-attention,
such as Transformers, are Turing complete [9], therefore, this leads us to believe
that CFGs can be expressed by these neural language models.

We aim to investigate whether attention patterns and neural activations in
these architectures can help explain the model’s classifications, using an approach
rooted in mechanistic interpretability, as we will look into the internal components
of the model. This concept can be likened to reverse-engineering a program, but
applied to neural models [10, 11]. Based on this approach, we will explore how
these explanations can be leveraged to enhance both the model’s performance and
its interpretability.

Outline
Chapter 2 will introduce the concepts behind formal languages and context-free

grammars, focusing especially on the Chomsky Hierarchy and Dyck-k languages.
Chapter 3 will introduce the Transformer architecture, with a focus towards

the attention mechanism.
Chapter 4 will discuss related works and the state-of-the-art in the field of

trainability, explainability and interpretability of Transformers, as well as obtained
results and their implications, comparing them with those obtained by other au-
thors.

Chapter 5 focuses on the experimental setup, engineering process, the dataset
used and the training process and results.

Chapter 6 will summarize the work done and propose future work.

10

2 On Formal Languages

Formal languages are a fundamental concept in computer science, as they allow us
to rigorously define and analyze the structure of different types of languages that
we may encounter in both natural and artificial systems.

Mateescu and Salomaa [12] explain a language as three possible explanations:

1. A body of words and systems for their use common to people of the same
community or nation, geographical area, or cultural tradition

2. A set or system of signs or symbols used in a more or less uniform fashion
by a number of people that enables them to communicate and understand
each other.

3. Any system of formalized symbols, signs, gestures, etc. used as a means of
communicating thought, emotion, etc.

However, these provide a notion of “language” that is general rather than
formal. When speaking of formal languages, it is essential to construct a systematic
definition, or grammar, rather than to consider a language as something given to
us by others.

To these effects, we will consider Hopcroft, Motwani and Ullman’s [13] defini-
tion of a language L, as a set of strings chosen from Σ∗, where Σ is a particular
alphabet. An alphabet is defined as a finite, nonempty set of symbols. Σ∗ denotes
the universal language, which is the language formed by all possible sequences over
an alphabet Σ. For example, if we were to work with binary strings, Σ = {0, 1}
and Σ∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, · · · }.

Formally, we define Σ∗ as the Kleene closure of Σ. The Kleene closure is defined,
for a set of symbols V ⊆ Σ, as the set of all strings over symbols in V , including
the empty string ϵ, which can be expressed by the following equation [14]:

V ∗ =
i=∞⋃
i=0

V i (2.1)

Furthermore, they define a string or word as a finite sequence of symbols chosen
from an alphabet Σ. Therefore, a word can also be seen as a concatenation of
symbols that start with the empty or identity symbol, ϵ.

However, not every word formed by the alphabet necessarily belongs to a lan-
guage, since for each language, a specific set of rules exist that define membership
- whether a word belongs to the language or not.

11

Once again, let us consider binary strings, but now we will restrict our language
to those strings of even length. In this case, Σ = {0, 1} and some valid strings
in L would be {ϵ, 00, 11, 0011, · · · }, but {0, 1, 010, 110, · · · } do not belong to L as
they are not of even length.

Furthermore, it is important to note the existence of the empty language, ∅,
that is, the language that does not contain any words, not even the empty one -
ϵ /∈ ∅. This is important, as it gives us a way to represent when a certain language
cannot be constructed.

Even though the set of strings in a language may be infinite, these all stem
from concatenations of a finite set, Σ, our alphabet. From this we can define a
single constraint on what constitutes a language: its alphabet, Σ, must be a finite
set [13].

2.1 Chomsky’s Hierarchy

A grammar, according to Chomsky, is a set of rules or device that defines and
enumerates the sentences of a languages. Also, these enumerators propose a set
of restrictions, which then map to different types of automata, in such a way that
languages that can be generated by a certain type of grammar are a proper subset
of the less restrictive grammars [7].

For this work, we will focus on Type-2, or context-free grammars, which can
be recognized by pushdown automata. The particularity of these grammars is
they have a recursive, hierarchical structure and notation [13]. For example,
palindromes are a context-free language, as the grammar that generates it is also
context-free.

Recursively Enumerable - Type 0

Context-sensitive - Type 1

Context-free - Type 2

Regular - Type 3
FSM

PDA

LBA

Turing Machines

Figure 2.1: Chomsky Hierarchy

12

2.1.1 Automata and Grammar Recognition

From Chomsky’s hierarchy, we gain insights into which type of automaton is ex-
pressive enough to recognize a particular type of language, as each type of grammar
maps to a class of automaton. As we move from less restrictive languages to more
restrictive languages, as seen in Figure 2.1, the automaton required to recognize
the language becomes simpler.

• Turing Machines: recognize any language.

• Linear-Bounded Automata (LBA): recognize context-sensitive languages.

• Pushdown Automata (PDA): recognize context-free languages. As these au-
tomata use a stack to keep track of symbols, they are particularly useful to
recognize recursive languages.

• Finite State Machines: recognize regular languages and are the simplest
automata.

2.2 Context-free grammars

This work will focus on extracting attention patterns from Transformers trained
on Type-2 grammars (context-free). We find these grammars of interest as they
are central to the parsing of many modern programming languages and formal
systems. Since they can represent recursive structures, they are particularly useful
for defining constructs such as expressions, loops and function calls.

A context-free grammar G has four main components [15, 16]:

1. A finite set of variables V - these variables represent a language (a set of
strings). We note V∗ as the Kleene closure of the set of variables, as defined
in Equation 2.1.

2. A finite set of symbols T, called terminals. Note that T ⊂ V. Once again,
T∗ is the Kleene closure of the set.

3. A start symbol S ∈ V −T.

4. A finite set of productions, P ⊂ (V−T)×V∗. These represent the recursive
definition of the language. Each production consists of the following:

(a) A variable, called the head that is partially defined by the production.

(b) A production symbol →
(c) A string of zero or more terminals and variables, called the body.

13

Therefore, a grammar G can be expressed as a four-tuple (V,T,P,S).
Given 2 words, u, v ∈ V∗, we say that u → v if there exists a derivation, or

sequence of words in V∗ such that ui−1 → ui for i = 1, . . . , k and u0 = u and
v = uk. The existence of a derivation is noted by u

∗−→ v
Usually, grammars are presented with a notable non-terminal symbol, also

called axiom, noted by S [13, 15]. The language generated by this variable in
the grammar is called the language L generated by G and can be defined as the
following set:

L(G) = {w ∈ T∗|S ∗−→ w} (2.2)

Should X be a variable in G, then:

LG(X) = {w ∈ T∗|X ∗−→ w} (2.3)

From Equations 2.2 and 2.3, we derive that L(G) = LG(S). If two grammars
generate the same language, they are considered equivalent [16].

2.3 Dyck-k Languages

Dyck-k languages are a canonical family of context-free languages, composed of
strings of balanced parentheses. Let A = {a1, . . . , ak} and Ā = {ā1, . . . , āk}. A
Dyck-k language is defined as a set of strings over the alphabet Σ = A∪ Ā, where
each string is a sequence of 2k parentheses, such that the parentheses are balanced.
That is, for each string w ∈ Σ∗, the number of opening parentheses is equal to the
number of closing parentheses, and for each prefix w′ of w, the number of opening
parentheses is greater than or equal to the number of closing parentheses.

The language of Dyck-k is denoted by Dk and is defined by the following
grammar:

V = {S} ∪T

T = {a1, . . . an} ∪ {ā1, . . . , ān}
P = {S → aiSāiS}i=1,...,n ∪ {S → ϵ}
S = S

In this case, T is called a matched alphabet, as each symbol ai has a corre-
sponding closing symbol āi.

14

Chomsky-Schützenberger Theorem

We say that Dyck-k languages are canonical because they are the simplest form of
context-free languages and can be used as a building block for all other context-
free languages. This is known as the Chomsky-Schützenberger Theorem [17] and
states that a language L over an alphabet Σ is context-free iff there exists:

• a matched alphabet T ∪ T̄ ,

• a regular language R over T ∪ T̄ ,

• a homomorphism h : (T ∪ T̄)
∗ → Σ∗

such that L = h(R ∩DT), where DT is the Dyck language over T .
It is useful to visualize a matched alphabet T ∪ T̄ as matched parentheses, with

T being the set of opening parentheses and T̄ the set of closing ones.
We find Dyck-k languages interesting to study as they can showcase subject-

verb agreement in common language (English, Spanish, etc.) [18], therefore we
can consider Dyck-k languages as a sort of building block for common language.
Furthermore, they are the canonical form of nested structures [8]. We can see an
example in the figure below:

(Laws (the lawmaker) [writes] [and revises]) [pass].

Figure 2.2: Subject-verb agreement [18]

We see that this subject-verb agreement can be expressed by the Dyck-2 word
(() [] []) [].

Furthermore, Dyck-k languages provide a way to easily parse and validate
modern programming languages, for example, if we consider a C-like language,
the expression shown in the figure below can be parsed by a Dyck-3 language:

foo(bar(arr[index]), { key: value }, x + y)

Figure 2.3: C-like expression

15

Shuffle-Dyck-k

A particular, less restrictive case of Dyck-k languages is given by the so-called
Shuffle-Dyck-k family of languages.

This family of languages is made up of k shuffles of Dyck-1 languages, with k
different types of brackets. Each type of bracket must be well balanced, but there
is no restriction to their relative order [19].

16

3 Transformer Architecture

Transformers [2] were proposed by Vaswani et al. in 2017. This novel architec-
ture achieved state-of-the-art results in machine translation tasks, while dispens-
ing with recurrent and convolutional architectures, which enabled parallelization
and speedup of natural language processing tasks. The Transformer employs an
encoder-decoder stack, each with multiple blocks, as can be seen in Figure 3.1. The
key mechanism behind this architecture is called attention, which we will discuss
in detail in a later section.

Figure 3.1: Transformer Architecture [2]

As we can see, the architecture lends itself to parallelization, since there are no
recurrences or dependencies between inputs, which in turn helps speed up training

17

and inference, but also increases the model’s complexity and reduces its inter-
pretability, due to the existence of residual paths, also called residual connections,
which are paths that add the input without processing to the output that stems
from processing that same input, similar to doing x = x+ f(x) , layer normaliza-
tions and attention mechanisms.

For our work, we will focus on Transformer encoder stacks (which we will call
encoder-only Transformers hereon forwards) with multi-head attention, as these
can be used for sequence classification rather than machine translation or sequence
modeling. In essence, Transformer encoder stacks map an input sequence s ∈ Σ∗

to a latent space l ∈ (Rd)∗.
Correspondingly, Transformer decoder stacks use this latent space, and an

output start sequence and convert these inputs to a new sequence s′ ∈ Σ
′∗. This

is a generative process, which we will not focus on.
These encoder-only Transformers, when used along a feed-forward layer and a

softmax layer, use this latent space l to output n-class classification probabilities,
which we will use to determine if a string belongs to a certain language, after being
trained on a dataset composed of strings of balanced and unbalanced parentheses.

Albeit Transformers are known for their state-of-the-art performance on natural
language processing tasks, they cannot process words as-is; these inputs need to
be mapped to a vector space Rd. To this effect, we will use Ströbl’s definition of a
word embedding, which is a length preserving function WE : Σ → Rd. This is part
of the input layer, which is defined in detail in Equation 3.1 [6].

Figure 3.1 displays the full architecture of the original Transformer, with an
encoder and decoder, each with its inner components, however, we will deal with
a simplified version of this architecture, shown in Figure 3.2, and we will proceed
to explain each part that makes up our encoder-only Transformers.

18

Figure 3.2: Transformer classifier Architecture

3.1 Attention

The attention mechanism is the most important part of this architecture and will
be the focus of our study. In short, this mechanism will let the model know the
importance of a token with respect to all other tokens in the sequence.

This concept was introduced by Badhanau et al. and is defined as an alignment
model [20] that scores matches between inputs at a given position to outputs at
another position. Even though this mechanism was applied to recurrent neural
networks (RNNs), it is equivalent to the mechanism we will describe next.

According to Vaswani et al., attention functions can be described as mappings
of queries and key-value pairs to an output, where queries, keys and values are
all vectors belonging to a vector space Rd, where d is called the embedding or
representation dimension.

19

Input layer

As mentioned previously, Ströbl defines these vectors as mappings that stem from
applying a length preserving function, called the input layer, f : Σ∗ → (Rd)∗ to
input strings1 [6]. This function consists of two components, the previously defined
word embedding and a positional encoding, PE, such that:

f(w0 . . . wn−1)i = WE(wi) + PE(i) (3.1)

Positional encoding

A positional encoding (or embedding) is a function that maps the position of a
token to our vector space Rd. Formally,

PEn : |n| → Rd for n ∈ N (3.2)

where |n| = {0, 1, . . . , n − 1} [6]. We note 2 positional encodings of interest,
absolute and sinusoidal.

Absolute positional encodings were defined by Yao et al. [18] and are defined
as follows:

PE(i,n) =
i

n
(3.3)

where i is the token position and n is the total token count (or length of the
sequence).

Sinusoidal positional encodings were defined in Vaswani et al. [2], and are the
seminal positional encoders for Transformers, defined as follows:

PE(pos,k) =

sin

(
pos

10000
k

dmodel

)
if k is even

cos

(
pos

10000
k

dmodel

)
if k is odd

(3.4)

Attention mechanism

The most commonly used attention mechanism is called scaled dot-product atten-
tion or soft(max) attention, which is defined as follows:

1Ströbl et al. use a different notation, Σ∗ → (Rd)∗, compared to Vaswani et al., who represent
these embeddings as Rd×n, to better align with conventions in formal language theory and
emphasize variability in input sequence lengths.

20

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (3.5)

In practice, Q,K, V in equation 3.5 refer to batched queries, keys and values
respectively, where individual queries, keys and values are packed into matrices
and processed simultaneously, speeding up computation.

Furthermore, this mechanism can be split and parallelized, which is then known
as multi-head attention, and represented by the following equation:

MultiHead(Q,K, V) = Concat(head1, . . . , headn)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i)

(3.6)

In this mechanism, W
{Q,K,V }
i are learned parameter matrices. Splitting the

attention mechanism into different heads allows for attending to information at
different positions using different representations, without incurring in severe com-
putational cost penalties, as the reduced dimensionality of each head allows for a
computational cost similar to single-head attention with full dimensionality [2].

We can also define hard attention, which we define with the following equation:

HardAttention(Q,K, V) = argmax

(
QKT

√
dk

)
V (3.7)

We also note the difference between leftmost-hard and average-hard attention
mechanisms, as the former looks for the first element with the maximum value,
whereas the latter averages these and allows them to share weight equally [6].

Finally, we introduce the concept of self-attention, which is simply applying the
mechanism to the input sequence, in essence, allowing us to see internal relations
within the sequence [2].

We find this mechanism (self-attention) of interest to our work, as we believe
it will provide information regarding if a certain string of parentheses is balanced,
and therefore, information about its membership to a Dyck-k language.

3.2 Attention Masks

We define an attention mask as a matrix Mi×j, such that:

Mi×j =

{
0 if condition is true

−∞ otherwise
(3.8)

This mask is applied to the attention matrix through element-wise summation.
We define 2 conditions of interest:

21

1. i ≤ j - we call this mechanism future or causal masking

2. tok[i] ̸= [pad] - we call this pad-token or bidirectional masking

The first condition allows the mechanism to attend only to previous positions,
such that the mechanism cannot get information on tokens it has not yet seen.

The second condition allows for the attention mechanism to “see” the sequence
as a whole, but considers only tokens that provide information, ignoring special
[pad] tokens, used to unify input sequence lengths. This masking is well known in
the field of Transformers, as it is used by Bidirectional Encoding Representations
from Transformers or BERT [21].

We will analyze in further detail whether different attention masks have an
effect on trainability in a later chapter.

22

4 On Transformer Classifiers

4.1 Trainability

Having already analyzed the Transformer architecture, we will now proceed with
a discussion on whether these architectures are capable of being trained to rec-
ognize context-free grammars. Firstly, we need to define what recognize means
in the context of our problem. In this case, we define recognition of a string as
determining whether or not the string belongs to the language in question. This
is essentially a membership test: is the string a valid member of the language?

However, before we dive into this analysis on the trainability of Transformers,
which will be backed by experimental data and experiments, we first must analyze
whether these architectures are capable of learning context-free grammars or not -
in essence, are they expressive enough to generate an internal model of a context-
free grammar?

In addition to discussing the expressiveness and trainability of these models on
the problem of classifying sequences on their membership to CFGs, we will also
focus on explainability. By analyzing key aspects of the Transformer architecture,
such as attention patterns, we aim to gain insights into the inner workings and
behaviour of the model when processing and encoding the underlying structures in
a CFG. Explainability is crucial, not only for improving transparency and trust-
worthiness of these complex models, but also for understanding the limits of their
trainability and expressiveness.

Bhattamistra et al. [19] prove that these architectures are expressive enough
to recognize the Shuffle-Dyck-k family of languages and notes the special case of
k = 1, where Shuffle-Dyck-k is equal to Dyck-1 languages.

Ströbl et al. [6] specify that this Transformer is one with soft-attention (i.e.:
softmax attention, as defined in Section 3.1) with future masking, positional en-
coding only, no layer normalization and no residual connections. However, Hahn
[22] proved that hard-attention Transformers cannot model Dyck-k, and that soft-
attention Transformers cannot model Dyck-k with perfect cross entropy.

Yao et al. [18] describe a Transformer with 3 layers, i
n
positional encoding,

soft-attention and causal masking that should be sufficient to recognize Dyck-k.
Table 4.1 presents the different architectures used by the authors.
The experiments conducted and detailed below are aimed towards validating

the work done by the aforementioned authors, through experimentation. Unless
otherwise stated, the experiments below were repeated at least 10 times, achieving
the same results each time.

23

Author Layers Attention PE Masking

Bhattamistra et al. Unspecified Soft-Attention Unspecified Unspecified
Ströbl et al. Unspecified Soft-Attention Sinusoidal Causal
Hahn Unspecified Hard-Attention Unspecified Unspecified
Yao et al. 3 Soft-Attention i

n
Causal

Table 4.1: Architectures used by different authors for classifying Dyck-k
languages with Transformers

Summary of experiments

The table below shows the parameters used to configure our different models.
Training hyperparameters will be discussed in a later chapter.

N dmodel dff h Pdrop masking PE Context length |Σ|

1 2 256 512 1 0.1 bidirectional none 16 2
2 2 256 512 1 0.1 causal none 16 2
3 2 256 512 1 0.1 bidirectional none 16 6
4 2 256 512 1 0.1 causal none 16 6
5 3 256 512 1 0.1 causal i

n
16 6

6 2 256 384 1 0.1 bidirectional none 128 6
7 2 384 768 1 0.1 bidirectional none 4096 6

Table 4.2: Transformer architectural parameters

Here, N represents the number of layers (or encoder blocks), dmodel is the
embedding dimension, dff is the dimension of the feed-forward network, h is the
number of attention heads, and Pdrop is the dropout probability [23].

The masking parameter allows us to specify the type of attention mask to use,
which can be either bidirectional or causal (see Section 3.2 for details). If no
mask is specified, a bidirectional mask is applied by default.

The PE (positional encoding) parameter lets us choose the type of positional
encoding, which can be either absolute or sinusoidal, as described in Equations
3.3 and 3.4. If the PE parameter is set to none, no positional encoding is applied.

Context length is the maximum sequence length accepted by the model and |Σ|
is the size of our alphabet, as defined in Section 2.3. For example, when |Σ| = 2,
we are referring to a Dyck-1 language, and with |Σ| = 6, we refer to a Dyck-3
language.

24

These experiments were done to visualize attention patterns in a manageable
way, as longer sequence lengths will only make the visualization more complex.
However, we also test the trainability of these Transformers on longer sequence
lengths, as seen in Experiment 7.

As we seek to explore these attention matrices and their patterns, should they
exist, we extract these matrices after training, to see whether patterns appear that
can help show Transformers are able to learn Dyck-k languages.

Before we jump into the analysis of attention patterns, we will first define a
systematic approach for interpreting these matrices. Attnm,k(i, j), refers to the
attention at layer m, (attention) head k of tok[i] with respect to tok[j], where
tok[i] and tok[j] are the tokens at position i and j, respectively. Furthermore,
Attnm,k(i) or the attention of tok[i] with respect to the sequence, refers to row i
in the attention matrix for layer m, head k.

Also, we find it important to note that all attention matrices shown below are
min-max normalized to the range [−1,+1], for easier visualization of attention
scores.

4.1.1 Experiments on Dyck-1 Classifier Trans-
formers

We will now describe the experiments conducted with two Transformers built to
classify Dyck-1 languages - these correspond to the first 2 experiments in Table 4.2.

4.1.1.1 Bidirectionally masked Transformer

Figure 4.1 shows two examples of attention matrices for the Transformer corre-
sponding to the first experiment in Table 4.2, trained on Dyck-1 samples that
achieved perfect (i.e.: 100%) accuracy over train, validation and test datasets, as
well as a near-zero loss.

Both sets of attention matrices display a distinct and meaningful pattern, il-
lustrating how certain tokens attend more strongly to specific others, which aligns
with the structure of the Dyck-1 language. Specifically, looking at Figure 4.1b, we
observe that in Layer 0, the first opening bracket (‘(’) primarily attends to the
other opening brackets in the sequence. This suggests that the model has learned
to recognize the structural importance of matching opening brackets, as it assigns
greater attention weight to those tokens. Also, these opening brackets are nega-
tively attending to the closing brackets in Figure 4.1b, which indicates the model
is distinguishing between different types of parentheses.

In Figures 4.1a and 4.1b, the closing brackets (‘)’) exhibit a strongly positive
attention towards the other closing brackets in the sequence, but not to the open-

25

(a) Attention matrices of string
)((((()(()((/∈ Dyck-1

(b) Attention matrices of string
()()()()()() ∈ Dyck-1

Figure 4.1: Attention matrices of a Transformer with a pad-token mask trained
on Dyck-1 strings

ing brackets. This consistent and structured behavior in Layer 0 highlights the
model’s understanding of grouping similar tokens, which reflects how it is captur-
ing the hierarchical nature of Dyck-1, where brackets must be correctly matched
and nested.

However, in Layer 1, the attention pattern undergoes a transformation. Here,
the first opening bracket now attends more strongly to the closing brackets, in-
verting the order with respect to Layer 0, Head 0, suggesting that the model in
this layer has begun learning the relationships necessary for pairing open and close
brackets. The first closing bracket, on the other hand, shifts its focus to attend

26

to the opening brackets in the sequence. This inversion of attention patterns in
Layer 1 may reflect the model’s mechanism for resolving bracket pairs, ensuring
that each opening parenthesis finds its corresponding closing counterpart.

This progressive change across layers demonstrates how the transformer is
leveraging the attention mechanism to first group similar tokens (Layer 0) and
then to learn the associations between these groups (Layer 1), effectively captur-
ing the hierarchical and nested structure of Dyck-1 sequences. This process mirrors
the parsing of formal languages, where early stages (lower layers) establish syn-
tactical groupings, while later stages (higher layers) work toward resolving more
complex relationships like matching parentheses.

This clear attention pattern is a key factor in the model’s ability to achieve
perfect accuracy across the train, validation, and test datasets. It highlights how
transformers can efficiently learn and represent formal languages by leveraging
attention mechanisms across layers to capture both token-level similarities and
dependencies across a sequence.

4.1.1.2 Causally masked Transformer

However, if we take a look at the attention matrices generated by the second
experiment in Table 4.2, we will see that no clear pattern is generated, as can be
seen in Figure 4.2.

In this case, the model can only “see” or attend to tokens behind the current
token position. A causal attention mechanism restricts the model to attend only to
tokens that have already been processed, avoiding future token information during
the current position’s attention computation, as defined in Section 3.2.

Figure 4.2 shows this limitation leads to less defined attention patterns com-
pared to the first experiment. In Layer 0, Head 0, for instance, the model primar-
ily attends to nearby tokens in the sequence, but with little variation in attention
strength. This could indicate that the model is not learning significant dependen-
cies between tokens, or it is being overly biased by the causal restriction, prevent-
ing it from fully capturing the structure of the input sequence, such as matching
parentheses.

This effect is more pronounced in deeper layers. In Layer 1, Head 0, the at-
tention values are also spread more diffusely, and while some tokens show slightly
stronger attention, the general trend reflects a failure to learn structured depen-
dencies, as seen in the minimal variation between attention weights. Furthermore,
as we traverse the sequence, attention scores become lower, showing that there is
a less of a learned dependency between opening and closing brackets, which is a
key part of learning to recognize Dyck-k sequences.

Moreover, there is no distinct pattern like the one observed in the first ex-
periment (refer to Table 4.2) where the model learned the dependency structure

27

(a) Attention matrices of string
)((()(/∈ Dyck-1

(b) Attention matrices of string
()(())() ∈ Dyck-1

Figure 4.2: Attention matrices of a Transformer with a causal mask trained on
Dyck-1 strings

between opening and closing parentheses more clearly. This lack of a pattern in
the attention matrices implies that the model may be struggling with generaliz-
ing the Dyck-1 rules, which we attribute to the causal restriction in the attention
mechanism.

In this experiment, we never reached an accuracy higher than ≈ 60% across
the train, validation and test datasets. Furthermore, the loss across training,
validation and evaluation seemed to increase, rather than decrease, as we will see
in Section 5.5.3.

In summary, the causal limitation imposed in this second experiment seems
to significantly impact the model’s ability to learn the intricate patterns required
for Dyck-1 language parsing. While the model does attend to previous tokens,

28

the attention matrices do not show the clear patterns needed for correctly pairing
parentheses, unlike in the first experiment. This leads to the conclusion, supported
by the low training and test accuracies, that causal attention alone may not be
sufficient for creating Transformers trainable enough to generalize certain formal
languages from limited samples, especially when bidirectional dependencies are
crucial, as is the case with Dyck-1.

4.1.2 Experiments on Dyck-3 Classifier Trans-
formers

We will now describe the experiments conducted with Transformers built to classify
Dyck-3 languages - these correspond to the third, fourth and fifth experiments in
Table 4.2.

4.1.2.1 Bidirectionally masked Transformer

In these experiments, both sets of attention matrices display meaningful patterns,
which illustrates how certain tokens in the sequence attend more strongly to spe-
cific others, in this case aligning with the structure of the Dyck-3 language.

Albeit not as clear as the patterns in the experiments done with Dyck-1 lan-
guages, similar behaviours can be seen in the matrices shown in Figure 4.3. This
decrease in the clarity of the pattern in the attention matrices was expected as the
language became much more complex, however, the Transformer still managed to
classify all sequences belonging to the language perfectly across train, validation
and test datasets, reaching an accuracy of 100%, with a near-zero loss.

This is similar to the work done by Ebrahimi et al. [24], where the authors em-
pirically show the self-attention mechanism captures these dependencies without
the need for recursion or positional encodings.

Even though these matrices do not have a pattern as clear as those in Figure 4.1,
we still can see elements that indicate the Transformer has learned relations be-
tween tokens in the sequences. If we look at the attention of [start] with respect
to the rest of the sequence in Figures 4.3a and 4.3b, we can see a similar pattern
to the one observed in the experiments carried out for Dyck-1 languages.

In the negative example, the attention values for this row never reach positive
values, whereas for the positive example, the last element of the first row in the
attention matrix reached a strongly positive attention value.

Also, the attention of the [pad] tokens with respect to [end] (i.e.: the column
for the [end] token) shows a pattern similar to that of Dyck-1, as the attention
values for the positive examples is higher than for the negative ones.

29

(a) Attention matrices of string
)[{[}[(} /∈ Dyck-3

(b) Attention matrices of string
[{()}[{()}]] ∈ Dyck-3

Figure 4.3: Attention matrices of a Transformer with a pad-token mask trained
on Dyck-3 strings

We can hypothesize that even for more complex languages such as Dyck-3,
the bidirectional attention mechanism is capable of effectively capturing the hi-
erarchical dependencies and structures present in these languages, even without
considering the position of the tokens themselves.

4.1.2.2 Causally masked Transformer

Once more, when the Transformer is trained with a causal mask rather than a
bidirectional one, we find that not only the patterns in the attention matrices are
lost, but also the model does not achieve generalization and near-perfect perfor-

30

mance over the data. For Dyck-3 sequences, we found the effect of the mask to
be even more pronounced, with variations of attention scores dropping drastically
with the token position, in essence, “losing” information on whether the string up
to that point was balanced or not.

(a) Attention matrices of string
)[{[}[(} /∈ Dyck-3

(b) Attention matrices of string
[{()}[{()}]] ∈ Dyck-3

Figure 4.4: Attention matrices of a Transformer with a causal mask trained on
Dyck-3 strings

Let us look at Figure 4.4b, more specifically at Layer 0, Head 0, where attention
values at the start of the sequence are much higher than attention values at the end
of the sequence, where they tend to be much nearer the (normalized) minimum
value of −1. For example, if we consider the attention of the first token with
respect to itself, we see a much higher attention value:

Attn0,0([, [) = 0.84 (4.1)

31

However, if we consider tokens towards the end of the word, such as the atten-
tion of the last token with respect to itself, we see it is much lower, and does not
follow the pattern seen in bidirectionally masked Transformers:

Attn0,0(],]) = −0.91 (4.2)

We attribute this to the causal restriction imposed by the mask, which limits
the ability of the model to “see”, generate internal pairings between brackets, and
thus train and generalize to recognize Dyck-3 strings from limited samples.

4.1.3 Out-of-distribution experiments

In this experiment, we investigate whether Transformer classifiers can maintain
their accuracy when processing sequences longer than those they were trained on.

We trained a 2-layer Transformer model with soft attention, no positional en-
coding, and bidirectional masking on sequences from the Dyck-3 language. Our
previous results already showed this model can generalize well, achieving perfect
classification of the Dyck-3 language with a limited number of training samples.
The training sequences had lengths ranging from 0 to 96 tokens. As shown in Table
4.2, the model’s context window was set to 128 tokens, meaning it was theoreti-
cally capable of handling sequences up to 128 tokens in length. During training,
the model quickly reached 100% accuracy and near-zero loss, which is consistent
with the results observed in previous experiments.

For evaluation, we used a different dataset containing Dyck-3 sequences with
lengths ranging from 32 to 128 tokens. Given the model’s (near) perfect perfor-
mance on both the training and validation sets, we expected it to perform well on
the test dataset. However, the model only achieved an accuracy of ≈ 75%. We
can visualize this in Figure 4.5.

This outcome suggests that the model struggles with sequences longer than 96
tokens, despite having a larger context window of 128 tokens. Since ≈ 75% accu-
racy could correspond to correctly classifying test sequences up to 96 tokens long,
assuming a uniform distribution of sequence lengths, we hypothesize that Trans-
former models can only effectively process sequences up to the maximum length
they were trained on, even if their context window supports longer sequences.

Therefore, we found an important limitation of these models, since even though
Transformers can generalize across different sequence lengths, their ability to clas-
sify sequences accurately is bounded by the lengths present in the training data.
In essence, for the model to perform well on longer sequences, the training dataset
must include samples that cover the full range of sequence lengths up to the desired
maximum.

32

Figure 4.5: Accuracy/Loss for Out-of-distribution Transformer classifier

4.1.4 Long-context Transformer experiments

In our final experiment, we aimed to assess whether these models could accurately
classify longer Dyck-3 strings, testing their ability to handle significantly longer
sequences. We conducted this experiment using sequences ranging in length from
0 to 4096, which allowed us to push the boundaries of sequence length beyond
what had been tested in previous experiments. The model we used was a 2-layer
Transformer with soft attention, no positional encoding, and bidirectional masking,
as in earlier setups.

The model demonstrated rapid learning, achieving an accuracy of 100% and
a near-zero loss in a short amount of time, similar to our previous experiments.
This quick convergence suggests that Transformer models do not struggle with
recognizing Dyck-k strings, even as sequence lengths increase significantly. In
fact, sequence length does not appear to pose a challenge, as long as the sequences
fall within the range of lengths seen during training.

These results indicate that the model’s architecture, particularly its use of
bidirectional masking and soft attention, is well-suited to the task of Dyck string
classification, handling long sequences just as effectively as shorter ones.

Due to the sheer size and complexity of the attention matrices, which in this
experiment are 4096×4096, we found it nigh impossible to visualize any meaningful
attention patterns. The vast amount of information stored in these matrices makes
it extremely difficult to interpret or identify specific trends or behaviors within

33

the attention mechanism. Each matrix element represents the attention weight
between every pair of tokens in the sequence, leading to over 16 million individual
data points per matrix.

As a result, the scale of the data makes visual inspection nearly impossible,
and even traditional visualization techniques, such as the heatmaps used in pre-
vious experiments, become ineffective due to the dense and intricate nature of
the attention distribution. This highlights one of the limitations of working with
very long sequences in Transformer models, where the complexity of the atten-
tion mechanism grows quadratically with sequence length, making it increasingly
harder to analyze and understand the model’s internal workings as the sequence
length increases.

4.1.5 General observations

In our experiments, we found that while the Transformer architecture described
by Ströbl et al. [6] is theoretically expressive enough to recognize this family of
languages, it may lack sufficient trainability.

However, a Transformer composed by 2 encoder layers (or blocks) with soft
attention, pad-token masking, no positional encoding, layer normalization, and
residual connections proved to be consistently trainable enough to not only rec-
ognize but also generalize effectively to both the training and test datasets. This
modified architecture achieved 100% accuracy and a loss of 0 on both sets, at least
for sequences of a given length, for Dyck-k languages (with different values of k).

This corresponds with results achieved by Yao et al. [18], in which they empir-
ically found Transformers are able to learn (through training) and achieve good
performance on finite samples of these languages. This highlights the difference
between expressivity and trainability.

However, when trying to train the model described by the authors (which
corresponds to Experiment 5 in Table 4.2), we found that it does not generalize
from limited samples, but instead falls into the same pitfalls our causally masked
Transformers (Experiments 2 and 4) had during training, where none could surpass
an accuracy of ≈ 60%.

Also, we found that the self-attention mechanism is capable enough to capture
the hierarchical dependencies between opening and closing brackets in Dyck-k lan-
guages, without taking the position of the token into account or relying on recursive
structures, as proposed by Ebrahimi et al. [24]. We find it worth noting that the
repeated values in the attention matrices of bidirectionally masked Transformers
(Figures 4.1 and 4.3) can be attributed to the lack of positional encoders in these
models.

It is of interest to note that we did observe some examples where a Transformer

34

with only 1 encoder block (or layer), with the aforementioned components, was
able to be trained to recognize the training and testing dataset with 100% accu-
racy, however, these results were sporadic and not consistently reproducible over
multiple runs.

4.2 Explainability and Interpretability

With regards to the explainability of Transformers, we have already discussed the
patterns present and absent in the attention matrices of the models trained in
our experiments, however, a discussion is needed as to what these patterns may
convey.

Explainability, as previously defined, is the capacity to answer “wh” (“why”,
“what”, etc.) or “how” questions about a model’s particular solution, be it classi-
fication, regression, object detection or another task [5].

Furthermore, we will tackle explainability using an approach rooted in mecha-
nistic interpretability [10, 11], which can be likened to reverse-engineering a neural
network by looking at its internal components, in our case, attention matrices and
neural activations.

We have already seen some of the internal workings and limitations of these
models by visualizing their attention matrices, in essence, peeking into the inner
workings of the key mechanism of a Transformer model - we have tested the in-
fluence of masking on the accuracy of the Transformer on the classification task,
which leads us to believe the causal restriction is too strong to allow for accurate
classification of Dyck-k sequences.

By examining the attention matrices in our Transformers, we can sometimes
visualize clear and defined patterns that offer insights into how the model classifies
sequences, particularly those belonging to a Dyck-k language. If we were to look at
Layer 0, Head 0 in Figures 4.1a and Figure 4.1b, we are able to see a key difference,
apart from the pattern - the value of the attention of the [end] token with itself. In
the positive example, this value is much higher compared to the negative example,
which leads us to believe the attention matrix may hold a preview into the model’s
prediction.

The key word here is preview, as this value is not an output the end user sees,
but rather an extra piece of information the model may use to output a probability
distribution that indicates membership of a sequence to a Dyck-k language.

We also explored the neural activations and weights of various components
in our models, but did not observe any meaningful patterns. These values were
automatically logged using Weights & Biases, a tool for tracking ML/AI experi-
ments [25].

In Figure 4.6, we present the weights of the fully connected layer from the

35

Figure 4.6: Fully-connected layer weights (Bidirectionally-masked Transformer)

model used in Experiment 1 (Table 4.2) across training, validation, and testing.
The figure illustrates how the weights of the fully connected layer evolve during
training—essentially presenting a top-down view of a histogram. If we were to
take vertical slices from this figure, we would get a traditional histogram of the
weights at training step i.

Since we do not see any significant changes during the training process, we
hypothesize the model is not relying heavily on this component to refine or adjust
its internal representations over time. If this were to be the case, we would be
able to visualize a meaningful pattern or shift in weight values, to correlate with
the model learning features from the data. In this case, however, the weights re-
main nearly static throughout, implying the model is much more reliant on other
mechanisms, such as self-attention, rather than the fully connected layer. Conse-
quently, visualizing this layer provides little information regarding explainability
or interpretability, making it minimally useful to analyze to gain insights into the
model’s decision making process.

Figure 4.7: Fully-connected layer weights (Causally-masked Transformer)

This is supported by the fact that a very similar pattern is observed in the

36

weights of the fully-connected layer of a casually-masked Transformer, as can be
seen in Figure 4.7, leading us to believe that analyzing this component and its
weights does not provide information on the model’s decision. Instead, it suggests
that other components within the model hold more valuable information regarding
the model’s decision. The fully connected layer appears to function primarily as
an output mechanism, mapping the model’s internal decisions to a probability
distribution.

Our observations are similar to Ebrahimi et al. [24], where they found self-
attention networks with bidirectional masking leverage the attention mechanism in
such a way that it can replace the recursion needed to learn hierarchical languages
such as Dyck-k, with an intelligent representation of the head or start token.

37

5 Technical Implementation

This chapter will discuss the technical aspects involved in the implementation
of our Transformer models for classification of Dyck-k sequences. We will cover
the dataset generation process, the tokenizer’s design and implementation of the
Transformer models. We will also discuss the package structure, dependency man-
agement and specific tools and libraries used.

5.1 Dataset

We built a dataset generator, which allows us to generate n samples of a Dyck-k
language with a certain distribution.

Balanced Strings

1 def␣_generate_balanced_string(order:␣int,␣length:␣int,␣seed:␣int␣=␣42)␣->␣str:

2 ␣␣␣␣"""Generate␣a␣string␣of␣‘length‘␣from␣the␣Dyck␣language␣of␣‘order‘.

3 ␣␣␣␣Args:

4 ␣␣␣␣␣␣␣␣order␣(int):␣The␣order␣of␣the␣Dyck␣language.

5 ␣␣␣␣␣␣␣␣length␣(int):␣The␣length␣of␣the␣string␣to␣generate.

6 ␣␣␣␣␣␣␣␣seed␣(int):␣The␣seed␣for␣the␣random␣number␣generator.

7 ␣␣␣␣Returns:

8 ␣␣␣␣␣␣␣␣str:␣A␣string␣of␣‘length‘␣from␣the␣Dyck␣language␣of␣‘order‘."""

9
10 ␣␣␣␣random.seed(seed)

11
12 ␣␣␣␣if␣length␣==␣0:

13 ␣␣␣␣␣␣␣␣return␣""

14
15 ␣␣␣␣length␣=␣length␣if␣length␣%␣2␣==␣0␣else␣length␣+␣1

16
17 ␣␣␣␣stack␣=␣[]

18 ␣␣␣␣word␣=␣""

19
20 ␣␣␣␣brackets␣=␣[(k,␣v)␣for␣k,␣v␣in␣list(c.BRACKETS.items())[:order]]

21
22 ␣␣␣␣half_length␣=␣length␣//␣2

23 ␣␣␣␣first_half␣=␣last_half␣=␣0

24
25 ␣␣␣␣while␣first_half␣+␣last_half␣<␣length:

26 ␣␣␣␣␣␣␣␣if␣first_half␣<␣half_length␣and␣(len(stack)␣==␣0␣or␣random.random()␣<␣

0.5):

27 ␣␣␣␣␣␣␣␣␣␣␣␣opening_bracket,␣closing_bracket␣=␣random.choice(brackets)

28 ␣␣␣␣␣␣␣␣␣␣␣␣stack.append(closing_bracket)

38

29 ␣␣␣␣␣␣␣␣␣␣␣␣first_half␣+=␣1

30 ␣␣␣␣␣␣␣␣␣␣␣␣word␣+=␣opening_bracket

31 ␣␣␣␣␣␣␣␣else:

32 ␣␣␣␣␣␣␣␣␣␣␣␣bracket␣=␣stack.pop()

33 ␣␣␣␣␣␣␣␣␣␣␣␣last_half␣+=␣1

34 ␣␣␣␣␣␣␣␣␣␣␣␣word␣+=␣bracket

35
36 ␣␣␣␣return␣word

Algorithm 5.1: Generate balanced string

We select a subset of k pairs of opening and closing brackets from all our
available brackets, which will be our alphabet.

Our algorithm to generate a Dyck-k word uses a stack, in which closing brackets
are added while the amount of opening brackets is less than the length of half the
word, the stack is empty or a random number from 0 to 1 is less than 0.5. We also
add the opening bracket to the word we are generating

If these conditions are not met, we add 1 to the counter of closing brackets,
add the closing bracket to the word we are generating and pop the bracket from
the stack.

This process is repeated while the length of the word is less than the desired
length.

Unbalanced Strings

1 ␣␣␣␣"""Generate␣a␣string␣of␣‘length‘␣that␣is␣not␣necessarily␣from␣the␣Dyck␣

language␣of␣‘order‘.

2 ␣␣␣␣Args:

3 ␣␣␣␣␣␣␣␣order␣(int):␣The␣order␣of␣the␣Dyck␣language.

4 ␣␣␣␣␣␣␣␣length␣(int):␣The␣length␣of␣the␣string␣to␣generate.

5 ␣␣␣␣␣␣␣␣seed␣(int):␣The␣seed␣for␣the␣random␣number␣generator.

6 ␣␣␣␣Returns:

7 ␣␣␣␣␣␣␣␣str:␣A␣string␣of␣‘length‘␣that␣is␣not␣necessarily␣from␣the␣Dyck␣

language␣of␣‘order‘."""

8
9 ␣␣␣␣random.seed(seed)

10
11 ␣␣␣␣word␣=␣""

12
13 ␣␣␣␣opening_brackets␣=␣[k␣for␣k,␣_␣in␣list(c.BRACKETS.items())[:order]]

14 ␣␣␣␣closing_brackets␣=␣[v␣for␣_,␣v␣in␣list(c.BRACKETS.items())[:order]]

15
16 ␣␣␣␣brackets␣=␣opening_brackets␣+␣closing_brackets

17
18 ␣␣␣␣first_char␣=␣random.choice(opening_brackets)␣if␣random.random()␣<␣0.5␣else␣

random.choice(closing_brackets)

19 ␣␣␣␣word␣+=␣first_char

39

20
21 ␣␣␣␣random_brackets␣=␣[random.choice(brackets)␣for␣_␣in␣range(length␣-␣1)]

22 ␣␣␣␣random.shuffle(random_brackets)

23 ␣␣␣␣unbalanced_str␣=␣word␣+␣"".join(random_brackets)

24
25 ␣␣␣␣if␣checker.is_dyck_word(unbalanced_str,␣order):

26 ␣␣␣␣␣␣␣␣del␣unbalanced_str

27 ␣␣␣␣␣␣␣␣del␣brackets

28 ␣␣␣␣␣␣␣␣return␣_generate_unbalanced_string(order,␣length)

29
30 ␣␣␣␣return␣unbalanced_str

Algorithm 5.2: Generate unbalanced string

We select a subset of k pairs of opening and closing brackets from all our
available brackets, and then convert it into a list for easier selection. We also
create lists of opening and closing brackets.

We first select the first character, which can be either an opening or closing
bracket with p = 0.5.

We then select a random item from the list until we generate a word with
the desired length, and check whether the generated string is balanced - since the
process to generate this sample is random, we may generate a balanced string. In
this case, we discard the result (to optimize memory usage) and recursively call
our function to generate a new unbalanced string.

In both algorithms, we define a seed for our random number generator, in order
to guarantee reproducible results.

Finally, we use these functions to generate a dataset composed by n samples
with probability p of being balanced (i.e.: n× p samples are balanced, n× (1− p)
samples are unbalanced). It is useful to note that this dataset class inherits from
torch.utils.data.Dataset, which will be of use later on when we are training
and evaluating our Transformers, as it allows us to easily split the dataset into
subsets used for training, validation and evaluation (our train-val-test split) and
use DataLoaders to easily and appropriately batch our data for training.

5.2 Tokenizer

We built a tokenizer that maps our sequences from Σ∗ → R|Σ|+3. In essence,
we convert our sequence of parentheses to a sequence of numbers, mapping each
parenthesis to a number and adding 3 special tokens to define the start and end
of the sequence, as well as any padding necessary to unify the sequence lengths.
This tokenizer partially conforms to HuggingFace’s tokenizer specification [26],
specifically exposing the .decode() and tokenize() methods.

40

We find it important to highlight the tokenize method in the implementation,
which can be seen in Annex 8.1, as this was done using numpy to allow for efficient,
vectorized tokenization of large datasets, which helped drastically reduce time
taken to build datasets.

5.3 Transformers

We now dive into the practical implementation of our Transformers. The practical
implementation of these models was done using Pytorch [27], for ease of training
using a GPU. We also implemented a way to easily define different Transformer
architectures, through our TransformerClassifierConfig class. Also, we high-
light device-specific nuances in Pytorch, that were considered in order to avoid
issues.

5.3.1 TransformerClassifierConfig

In order to make the process of creating different Transformers easier, we defined
a class TransformerClassifierConfig, which defines the model’s architecture -
i.e.: the context length, the hidden dimensions, the number of attention heads and
all other relevant architectural parameters.

1 class␣TransformerClassifierConfig:

2 ␣␣␣␣def␣__init__(self,␣vocab_size,␣d_model,␣n_heads,␣dim_ff,␣n_layers,␣

n_classes,␣max_seq_len):

3 ␣␣␣␣␣␣␣␣self.vocab_size␣=␣vocab_size␣+␣3

4 ␣␣␣␣␣␣␣␣self.d_model␣=␣d_model

5 ␣␣␣␣␣␣␣␣self.n_heads␣=␣n_heads

6 ␣␣␣␣␣␣␣␣self.dim_ff␣=␣dim_ff

7 ␣␣␣␣␣␣␣␣self.n_layers␣=␣n_layers

8 ␣␣␣␣␣␣␣␣self.n_classes␣=␣n_classes

9 ␣␣␣␣␣␣␣␣self.max_seq_len␣=␣max_seq_len␣+␣2

Algorithm 5.3: TransformerClassifierConfig definition

We find it useful to note that self.vocab_size is defined as vocab_size + 3

in order to consider the three special tokens present in our vocabulary: [pad],
[start] and [end]. Analogously, self.max_seq_len is defined as max_seq_len + 2

for the same reason.
As the purpose of these Transformers is to classify, we provide a way for users to

employ these Transformers for either binary or multi-class classification problems.

41

5.3.2 TransformerClassifier

In this section we will present particular aspects of our implementation that are of
use or interesting to readers from an engineering perspective, as other parts of the
implementation do not deviate significantly from a typical Pytorch implementation
of a Transformer encoder.

We find it of interest to discuss differences in implementation based on the
device used to store in memory and then train the Transformer. In Pytorch, we
must have both the model and dataset on the same device, which can be cpu,
cuda (if we are using an NVIDIA GPU) or mps (if we are using Apple Silicon).
However, behaviour of functions may differ based on the selected device - we
provide an example below.

1 ␣␣␣␣if␣device.startswith("cuda")␣or␣device␣==␣"cpu":

2 ␣␣␣␣␣␣␣␣preds␣=␣torch.argmax(predictions,␣dim=1)

3 ␣␣␣␣elif␣device␣==␣"mps":

4 ␣␣␣␣␣␣␣␣_,␣preds␣=␣predictions.max(1)

If we were to use torch.argmax on mps, we would see that the behaviour is
erratic and will not provide us with the expected result, instead, we must use
predictions.max() and specify we want to reduce over the first dimension by
specifying dim=1. This returns a tuple of (values, indices), where indices is
the index location of each maximum value found (argmax) [28].

5.4 Package Architecture and Dependency
Management

The project’s codebase was architected in such a way that it can easily extend the
model explainability tool already developed by the Universidad ORT Uruguay’s AI
research group. We kept external dependencies to a minimum, limiting ourselves
to only the strictly necessary. This was done in pursuit of an easier integration
with the already existing codebase. Furthermore, the codebase was developed
using Python 3.10. We used Github for version control, and the repository with
the codebase is public and accessible at https://github.com/matiasmolinolo/
transformer-checker.

We can see the package diagram in Figure 5.1, which shows multiple packages,
split by responsibilities, which will be detailed below. A class diagram is presented
in Annex 8.2.

The transformer package contains all the modules necessary to build a Trans-
formerClassifier and a TransformerClassifierConfig. Every module that makes up
a TransformerClassifier inherits from nn.Module, for easy training of our models
using Pytorch.

42

https://github.com/matiasmolinolo/transformer-checker
https://github.com/matiasmolinolo/transformer-checker

Figure 5.1: transformer-checker package diagram

Secondly, the dataset package contains both the tokenizer and Pytorch Dataset
definitions, which are used to build Dyck-k language datasets that can be easily
used to train our models.

The dyck_k_generator package contains an algorithmic checker to validate
whether a string belongs to a Dyck-k language or not, the raw data generator
that builds a JSON Lines file (.jsonl) with our labeled samples and the required
constants (i.e.: our alphabet).

Finally, the transformer_viz package provides helpful methods to visualize
the attention matrices extracted from our TransformerClassifier models.

Dependencies between packages are kept to a minimum to avoid breaking
changes in one package affecting others. This kept the development speed ag-
ile, as most changes in one package did not affect other packages and therefore,
development could continue. The only dependency is that the transformer_viz

package uses the dataset package to access the tokenizer and create an instance
of it, in order to decode the batch tokens back to strings, to label the plot axes.

We used poetry [29] to manage dependencies, as it manages dependencies
more cleanly and consistently than pip and allows us to easily publish a new
package version to PyPI, for easy sharing with other teams outside Universidad
ORT Uruguay’s AI research group. We automated publishing a new package
version using Github Actions, with a workflow that triggers when a new release is
created, which automatically bumps the project version to the one defined in the
aforementioned tag and updates the code in Github, and then publishes the release
to PyPI, where it can be accessed via pip, poetry or the PyPI web repository
(https://pypi.org/project/transformer-checker/).

Furthermore, we follow Pythonic conventions, making each folder a module by
adding an __init__.py file, which allows the contents of the folder to be imported
across the codebase and for easy access to functionalities in other projects.

43

https://pypi.org/project/transformer-checker/

Specifically, the dependencies used were: torch==2.3.0, matplotlib==3.8.4,
tqdm==4.66.4 and wandb==0.17.1

5.5 Training and Evaluation

We will now discuss the methodology used to train and evaluate our Transformer
models. We will discuss how we split our data into training, validation and test
datasets, the hardware used, how we logged metrics and artifacts, the hyperpa-
rameters used and our obtained metrics.

5.5.1 Training Data and Batching

Training and test data was synthetically generated using the methods described in
section 5.1. This allowed us to build several datasets with different characteristics,
which were then used for training different Transformers. This data was then
batched using a Pytorch DataLoader, using different batch sizes for training and
testing. For example, Experiment 1 (as defined in Table 4.2) used batch sizes of
32, 8 and 4 for training, validation and testing, respectively.

1 from␣torch.utils.data␣import␣DataLoader

2
3 train_dataloader␣=␣DataLoader(train_dataset,␣batch_size=32,␣shuffle=True)

4 val_dataloader␣=␣DataLoader(val_dataset,␣batch_size=8,␣shuffle=True)

5 test_dataloader␣=␣DataLoader(test_dataset,␣batch_size=4,␣shuffle=True)

Algorithm 5.4: DataLoader definition for Experiment 1

We use shuffle=True to introduce randomness into the training process, in
order to prevent the model from memorizing the order in which the sequences are
presented. By shuffling the data, we encourage the model to focus on learning
meaningful patterns within the sequences rather than overfitting to the specific
order of the training data. This approach ultimately enhances the model’s ability
to generalize to new, unseen data.

5.5.2 Hardware and Logging

We trained these models locally and logged the training artifacts using Weights &
Biases [25], which allowed us to capture key values such as the weights and biases
of the models’ internal components. The training was conducted on two systems:
one equipped with an NVIDIA RTX 3060 GPU with 12 GB of VRAM and 64 GB
of RAM, running Ubuntu 22.04, and the other on an M3 MacBook Pro with 8 GB
of unified memory, running macOS Sonoma 14.5.

44

5.5.3 Hyperparameters and Metrics

We will now discuss the hyperparameters and criteria used when training the
models. We can see the hyperparameter and criteria selection in Table 5.1 for the
experiments detailed in Table 4.2.

lr Epochs Optimizer Criteria

1 1× 10−5 20

Adam Cross-entropy Loss

2 1× 10−4 10
3 1× 10−5 15
4 1× 10−5 15
5 1× 10−5 15
6 1× 10−5 25
7 1× 10−5 100

Table 5.1: Training hyperparameters and criteria

Table 5.1 shows the learning rates (lr) and the number of epochs used during
the training of our experiments. All models were trained using the Adam optimizer
[30] and evaluated with the cross-entropy loss function, which is commonly used
for classification tasks.

Train Validation Test

Accuracy Loss Accuracy Loss Accuracy Loss

1 100.0 6× 10−5 100.0 1× 10−5 100.0 1× 10−5

2 50.425 0.7087 49.42 0.6860 52.25 0.7005
3 100.0 2× 10−5 100.0 1× 10−5 100.0 1× 10−5

4 49.62 0.6875 50.61 0.6933 49.92 0.6891
5 49.47 0.6725 49.72 0.6941 50.58 0.6941
6 100.0 1 × 10−5 100.0 0.0000 74.98 3.0529
7 100.0 2× 10−5 100.0 0.0000 100.0 0.0000

Table 5.2: Experimental results

Table 5.2 presents the accuracy and loss metrics for the experiments described
in Table 4.2. The highest metrics achieved are highlighted in bold, while the lowest
are italicized.

45

6 Conclusions and Future Work

Throughout this work, we carried out these experiments that focused on inter-
pretability and explainability of language models, more specifically, Transformer
classifiers. We discussed formal languages and the Chomsky Hierarchy, context-
free languages such as Dyck-k and Shuffle-Dyck-k, the Transformer architecture
and its components, the state-of-the-art of using these models to classify sequences
belonging to a formal language and the engineering process behind the develop-
ment of the transformer-checker tool. We discussed how expressive, trainable
and interpretable these models are, through the lens ofmechanistic interpretability,
which can be likened to seeing the execution of a program and trying to reverse-
engineer it. In our case, we looked at the model’s internal components (attention
matrices, weights) and tried to draw conclusions on the model’s decision from these
components.

We conducted a series of experiments using Transformer classifiers to deter-
mine whether sequences belong to a context-free language, such as Dyck-k. We
found these models to be computationally sufficient for this task, reaching per-
fect accuracies under certain conditions. We found that sequence length does not
hinder the performance of these models, as we tested sequence lengths of up to
4096. We did find, however, an important limitation of these models - their ability
to classify sequences accurately is bounded by the lengths present in the training
data.

Through these experiments, we discovered that the mask applied to the input
sequences plays a pivotal role in the model’s ability to learn effectively. The
correct use of masking ensures that the model focuses on the appropriate parts of
the sequence, which is critical for learning the hierarchical and nested structure
characteristic of Dyck-k languages.

Additionally, we found that the self-attention mechanism within the Trans-
former is central to the model’s decision-making process. The attention mechanism
appears to capture important dependencies between tokens, allowing the model to
learn which parts of the sequence relate to each other, when a pad-token mask is
used. Specifically, self-attention helps the model track the relationships between
opening and closing symbols, which is essential for determining membership in
Dyck-k languages. Thus, the information encoded in the self-attention weights
provides valuable insight into how the model arrives at its classification decisions.

We were able to visualize this by extracting and plotting the attention matrices
of these models, which gave us an intuitive way of looking inside the Transformer
and making sense of its output, effectively switching the black-box approach that
is more commonly used with language models for a white-box approach.

46

Furthermore, we explored the internal workings of other components in the
models, such as the weights of the feed-forward layer responsible of outputting the
classification probability distribution and found no useful information or patterns
that could help clarify the model’s decision process.

We compared our results with those obtained by Bhattamistra et al. [19], Ströbl
et al. [6], Yao et al. [18] and Ebrahimi et al. [24] and found similarities, differences
and limitations on the experiments conducted by the authors, aside from the find-
ings described above. Firstly, we found that albeit causally-masked Transformers
may be expressive enough to classify Dyck-k languages, they are not trainable
enough to do this consistently and with perfect accuracy. Secondly, we found
that one-layer Transformers do not consistently achieve perfect accuracy on this
task, and that a minimum of two layers are required to consistently achieve 100%
accuracy on Dyck-k sequence classification.

We developed transformer-checker, a tool that can be easily integrated
into neuralchecker, the existing explainability tool developed by the Univer-
sidad ORT Uruguay’s AI research group. Our tool expands the capability of
neuralchecker by providing a way to analyze complex models, such as Trans-
formers, with a novel, white-box approach.

Regarding future work, we look forward to combining this approach with au-
tomata extraction, similar to the work done by Weiss et al. [31], Carrasco et al. [32]
and Mayr et al. [33], as well as working with sparse autoencoders to extract in-
terpretable features [34, 35], in order to be able to work with larger models and
work on problems larger than toy examples of interpretability of language models
for formal languages.

47

7 Bibliography

[1] OpenAI, Nov 2022. [Online]. Available: https://openai.com/index/chatgpt

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023. [Online].
Available: https://arxiv.org/abs/1706.03762

[3] J. Simon, “Large language models: A new moore’s law?” Oct 2021. [Online].
Available: https://huggingface.co/blog/large-language-models

[4] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural predictions,”
in Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, J. Su, K. Duh, and X. Carreras, Eds. Austin, Texas:
Association for Computational Linguistics, Nov. 2016, pp. 107–117. [Online].
Available: https://aclanthology.org/D16-1011

[5] P. Gohel, P. Singh, and M. Mohanty, “Explainable ai: current status and
future directions,” 2021. [Online]. Available: https://arxiv.org/abs/2107.
07045

[6] L. Ströbl, W. Merrill, G. Weiss, D. Chiang, and D. Angluin, “What formal
languages can transformers express? a survey,” 2024. [Online]. Available:
https://arxiv.org/abs/2311.00208

[7] N. Chomsky, “On certain formal properties of grammars,” Information
and Control, vol. 2, no. 2, pp. 137–167, 1959. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0019995859903626

[8] N. Chomsky and M. Schützenberger, “The algebraic theory of context-
free languages*,” in Computer Programming and Formal Systems, ser.
Studies in Logic and the Foundations of Mathematics, P. Braffort and
D. Hirschberg, Eds. Elsevier, 1963, vol. 35, pp. 118–161. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0049237X08720238

[9] J. Pérez, P. Barceló, and J. Marinkovic, “Attention is turing-complete,”
Journal of Machine Learning Research, vol. 22, no. 75, pp. 1–35, 2021.
[Online]. Available: http://jmlr.org/papers/v22/20-302.html

[10] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec,
Z. Hatfield-Dodds, R. Lasenby, D. Drain, C. Chen, and et al.,
“Toy models of superposition,” Sep 2022. [Online]. Available: https:
//transformer-circuits.pub/2022/toy model/index.html

48

https://openai.com/index/chatgpt
https://arxiv.org/abs/1706.03762
https://huggingface.co/blog/large-language-models
https://aclanthology.org/D16-1011
https://arxiv.org/abs/2107.07045
https://arxiv.org/abs/2107.07045
https://arxiv.org/abs/2311.00208
https://www.sciencedirect.com/science/article/pii/S0019995859903626
https://www.sciencedirect.com/science/article/pii/S0049237X08720238
http://jmlr.org/papers/v22/20-302.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

[11] L. Bereska and E. Gavves, “Mechanistic interpretability for ai safety – a
review,” 2024. [Online]. Available: https://arxiv.org/abs/2404.14082

[12] A. Mateescu and A. Salomaa, Formal Languages: an Introduction and a
Synopsis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 1–39.
[Online]. Available: https://doi.org/10.1007/978-3-642-59136-5 1

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). USA: Addison-Wesley
Longman Publishing Co., Inc., 2006.

[14] P. Fletcher, H. Hoyle, and C. W. Patty, Foundations of discrete mathematics.
Florence, KY: Brooks/Cole, Nov. 1990.

[15] J.-M. Autebert, J. Berstel, and L. Boasson, Context-Free Languages and
Pushdown Automata. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997,
pp. 111–174. [Online]. Available: https://doi.org/10.1007/978-3-642-59136-5
3

[16] J. van Leeuwen, Ed., Handbook of Theoretical Computer Science, Volume
B: Formal Models and Semantics. Elsevier and MIT Press, 1990.
[Online]. Available: https://www.sciencedirect.com/book/9780444880741/
formal-models-and-semantics

[17] G. Rozenberg and A. Salomaa, Handbook of Formal Languages: Volume
1. Word, Language, Grammar, ser. Handbook of Formal Languages.
Springer, 1997. [Online]. Available: https://books.google.com.uy/books?id=
yQ59ojndUt4C

[18] S. Yao, B. Peng, C. Papadimitriou, and K. Narasimhan, “Self-attention
networks can process bounded hierarchical languages,” 2023. [Online].
Available: https://arxiv.org/abs/2105.11115

[19] S. Bhattamishra, K. Ahuja, and N. Goyal, “On the ability and limitations
of transformers to recognize formal languages,” 2020. [Online]. Available:
https://arxiv.org/abs/2009.11264

[20] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” 2016. [Online]. Available:
https://arxiv.org/abs/1409.0473

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” 2019. [Online].
Available: https://arxiv.org/abs/1810.04805

49

https://arxiv.org/abs/2404.14082
https://doi.org/10.1007/978-3-642-59136-5_1
https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-642-59136-5_3
https://www.sciencedirect.com/book/9780444880741/formal-models-and-semantics
https://www.sciencedirect.com/book/9780444880741/formal-models-and-semantics
https://books.google.com.uy/books?id=yQ59ojndUt4C
https://books.google.com.uy/books?id=yQ59ojndUt4C
https://arxiv.org/abs/2105.11115
https://arxiv.org/abs/2009.11264
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1810.04805

[22] M. Hahn, “Theoretical Limitations of Self-Attention in Neural Sequence
Models,” Transactions of the Association for Computational Linguistics,
vol. 8, pp. 156–171, 01 2020. [Online]. Available: https://doi.org/10.1162/
tacl a 00306

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.
[Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[24] J. Ebrahimi, D. Gelda, and W. Zhang, “How can self-attention networks
recognize Dyck-n languages?” in Findings of the Association for
Computational Linguistics: EMNLP 2020, T. Cohn, Y. He, and Y. Liu, Eds.
Online: Association for Computational Linguistics, Nov. 2020, pp. 4301–4306.
[Online]. Available: https://aclanthology.org/2020.findings-emnlp.384

[25] L. Biewald, “Experiment tracking with weights and biases,” 2020, software
available from wandb.com. [Online]. Available: https://www.wandb.com/

[26] A. Moi and N. Patry, “HuggingFace’s Tokenizers,” April 2023. [Online].
Available: https://github.com/huggingface/tokenizers

[27] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao,
P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia, W. Constable,
A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong, M. Gschwind,
B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. Lazos, M. Lezcano,
Y. Liang, J. Liang, Y. Lu, C. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso,
M. Saroufim, M. Y. Siraichi, H. Suk, M. Suo, P. Tillet, E. Wang, X. Wang,
W. Wen, S. Zhang, X. Zhao, K. Zhou, R. Zou, A. Mathews, G. Chanan,
P. Wu, and S. Chintala, “PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph Compilation,” in 29th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, Apr.
2024. [Online]. Available: https://pytorch.org/assets/pytorch2-2.pdf

[28] Pytorch Foundation and Pytorch Contributors, “torch.max; PyTorch
2.4 documentation - pytorch.org,” 2023. [Online]. Available: https:
//pytorch.org/docs/stable/generated/torch.max.html

[29] S. Eustace and The Poetry contributors, “Poetry: Python packaging
and dependency management made easy.” [Online]. Available: https:
//github.com/python-poetry/poetry

50

https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
http://jmlr.org/papers/v15/srivastava14a.html
https://aclanthology.org/2020.findings-emnlp.384
https://www.wandb.com/
https://github.com/huggingface/tokenizers
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/docs/stable/generated/torch.max.html
https://pytorch.org/docs/stable/generated/torch.max.html
https://github.com/python-poetry/poetry
https://github.com/python-poetry/poetry

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017. [Online]. Available: https://arxiv.org/abs/1412.6980

[31] G. Weiss, Y. Goldberg, and E. Yahav, “Extracting automata from recurrent
neural networks using queries and counterexamples (extended version),” Ma-
chine Learning, vol. 113, 06 2022.

[32] M. Carrasco, F. Mayr, S. Yovine, J. Kidd, M. Iturbide, J. P. da Silva, and
A. Garat, “Analyzing constrained llm through pdfa-learning,” 2024. [Online].
Available: https://arxiv.org/abs/2406.08269

[33] F. Mayr, S. Yovine, F. Pan, N. Basset, and T. Dang, “Towards efficient active
learning of pdfa,” 2022. [Online]. Available: https://arxiv.org/abs/2206.09004

[34] H. Cunningham, A. Ewart, L. Riggs, R. Huben, and L. Sharkey, “Sparse
autoencoders find highly interpretable features in language models,” 2023.
[Online]. Available: https://arxiv.org/abs/2309.08600

[35] T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly,
N. Turner, C. Anil, C. Denison, A. Askell, R. Lasenby, Y. Wu, S. Kravec,
N. Schiefer, T. Maxwell, N. Joseph, Z. Hatfield-Dodds, A. Tamkin, K. Nguyen,
B. McLean, J. E. Burke, T. Hume, S. Carter, T. Henighan, and C. Olah,
“Towards monosemanticity: Decomposing language models with dictio-
nary learning,” Transformer Circuits Thread, 2023, https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

51

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2406.08269
https://arxiv.org/abs/2206.09004
https://arxiv.org/abs/2309.08600

8 Annexes

8.1 DyckLanguageTokenizer Implemen-
tation

1 class␣DyckLanguageTokenizer:

2 ␣␣␣␣START_TOKEN,␣PAD_TOKEN,␣END_TOKEN␣=␣0,␣1,␣2

3 ␣␣␣␣base_vocab␣=␣{"[start]":␣START_TOKEN,␣"[pad]":␣PAD_TOKEN,␣"[end]":␣

END_TOKEN}

4
5 ␣␣␣␣def␣__init__(self,␣vocab:␣str):

6 ␣␣␣␣␣␣␣␣self.vocab␣=␣vocab

7 ␣␣␣␣␣␣␣␣self.tok_to_i␣=␣{

8 ␣␣␣␣␣␣␣␣␣␣␣␣**{tok:␣i␣+␣3␣for␣i,␣tok␣in␣enumerate(vocab)},

9 ␣␣␣␣␣␣␣␣␣␣␣␣**self.base_vocab,

10 ␣␣␣␣␣␣␣␣}

11 ␣␣␣␣␣␣␣␣self.i_to_tok␣=␣{i:␣tok␣for␣tok,␣i␣in␣self.tok_to_i.items()}

12
13 ␣␣␣␣␣␣␣␣#␣Precompute␣tokenization␣mapping

14 ␣␣␣␣␣␣␣␣self.char_to_token␣=␣np.zeros(256,␣dtype=np.float32)

15 ␣␣␣␣␣␣␣␣for␣char,␣token␣in␣self.tok_to_i.items():

16 ␣␣␣␣␣␣␣␣␣␣␣␣if␣len(char)␣==␣1:

17 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣self.char_to_token[ord(char)]␣=␣token

18
19 ␣␣␣␣def␣tokenize(self,␣strings:␣str␣|␣List[str],␣max_len=None):

20 ␣␣␣␣␣␣␣␣if␣isinstance(strings,␣str):

21 ␣␣␣␣␣␣␣␣␣␣␣␣strings␣=␣[strings]

22
23 ␣␣␣␣␣␣␣␣if␣max_len␣is␣None:

24 ␣␣␣␣␣␣␣␣␣␣␣␣max_len␣=␣max((max(len(s)␣for␣s␣in␣strings)),␣1)

25
26 ␣␣␣␣␣␣␣␣#␣Vectorized␣tokenization

27 ␣␣␣␣␣␣␣␣tokenized␣=␣np.full((len(strings),␣max_len␣+␣2),␣self.PAD_TOKEN,␣dtype=

np.float32)

28 ␣␣␣␣␣␣␣␣tokenized[:,␣0]␣=␣self.START_TOKEN

29
30 ␣␣␣␣␣␣␣␣lengths␣=␣np.array([len(s)␣for␣s␣in␣tqdm(strings,␣desc="Calculating␣

lengths")])

31 ␣␣␣␣␣␣␣␣for␣i,␣s␣in␣enumerate(tqdm(strings,␣desc="Tokenizing␣strings")):

32 ␣␣␣␣␣␣␣␣␣␣␣␣tokenized[i,␣1:lengths[i]+1]␣=␣self.char_to_token[[ord(c)␣for␣c␣in␣

s]]

33
34 ␣␣␣␣␣␣␣␣#␣Efficient␣end␣token␣placement

35 ␣␣␣␣␣␣␣␣tokenized[np.arange(len(strings)),␣lengths␣+␣1]␣=␣self.END_TOKEN

36
37 ␣␣␣␣␣␣␣␣return␣torch.from_numpy(tokenized)

52

38
39 ␣␣␣␣def␣decode(self,␣tokens,␣remove_special_tokens=True):

40 ␣␣␣␣␣␣␣␣if␣tokens.ndim␣<␣2:

41 ␣␣␣␣␣␣␣␣␣␣␣␣raise␣ValueError("Needs␣to␣have␣a␣batch␣dimension.")

42
43 ␣␣␣␣␣␣␣␣def␣i_to_c(i):

44 ␣␣␣␣␣␣␣␣␣␣␣␣if␣i␣<␣len(self.i_to_tok):

45 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣return␣self.i_to_tok[i]

46 ␣␣␣␣␣␣␣␣␣␣␣␣raise␣ValueError(f"Index␣{i}␣not␣in␣vocabulary")

47
48 ␣␣␣␣␣␣␣␣if␣remove_special_tokens:

49 ␣␣␣␣␣␣␣␣␣␣␣␣return␣[

50 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣"".join(i_to_c(i.item())␣for␣i␣in␣seq[1:]␣if␣i␣!=␣self.

START_TOKEN␣and␣i␣!=␣self.END_TOKEN)

51 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣seq␣in␣tokens

52 ␣␣␣␣␣␣␣␣␣␣␣␣]

53 ␣␣␣␣␣␣␣␣return␣["␣".join(i_to_c(i.item())␣for␣i␣in␣seq)␣for␣seq␣in␣tokens]

54
55 ␣␣␣␣def␣decode_single(self,␣tokens,␣remove_special_tokens=True):

56 ␣␣␣␣␣␣␣␣return␣self.decode(tokens.unsqueeze(0),␣remove_special_tokens=

remove_special_tokens)[0]

57
58 ␣␣␣␣def␣__repr__(self):

59 ␣␣␣␣␣␣␣␣return␣f"DyckLanguageTokenizer(vocab={self.vocab!r})"

Algorithm 8.1: DyckLanguageTokenizer implementation

53

8.2 transformer-checker Class Diagram

Figure 8.1: transformer-checker class diagram

54

	Introduction
	On Formal Languages
	Chomsky's Hierarchy
	Automata and Grammar Recognition

	Context-free grammars
	Dyck-k Languages

	Transformer Architecture
	Attention
	Attention Masks

	On Transformer Classifiers
	Trainability
	Experiments on Dyck-1 Classifier Transformers
	Experiments on Dyck-3 Classifier Transformers
	Out-of-distribution experiments
	Long-context Transformer experiments
	General observations

	Explainability and Interpretability

	Technical Implementation
	Dataset
	Tokenizer
	Transformers
	TransformerClassifierConfig
	TransformerClassifier

	Package Architecture and Dependency Management
	Training and Evaluation
	Training Data and Batching
	Hardware and Logging
	Hyperparameters and Metrics

	Conclusions and Future Work
	Bibliography
	Annexes
	DyckLanguageTokenizer Implementation
	transformer-checker Class Diagram

