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A B S T R A C T 

The warp is a well-known undulation of the Milky Way disc. Its structure has been widely studied, but only since Gaia DR2 has 
it been possible to reveal its kinematic signature beyond the solar neighbourhood. In this work, we present an analysis of the 
warp traced by Classical Cepheids by means of a Fourier decomposition of their height ( Z ) and, for the first time, of their vertical 
velocity ( V z ). We find a clear but complex signal that in both variables reveals an asymmetrical warp. In Z , we find the warp to 

be almost symmetric in amplitude at the disc’s outskirts, with the two extremes never being diametrically opposed at any radius 
and the line of nodes presenting a twist in the direction of stellar rotation for R > 11 kpc. For V z , in addition to the usual m = 1 

mode, an m = 2 mode is needed to represent the kinematic signal of the warp, reflecting its azimuthal asymmetry. The line of 
maximum v ertical v elocity is similarly twisted as the line of nodes and trails behind by ≈25 

◦. We de velop a ne w formalism to 

derive the pattern speed and change in amplitude with time Ȧ of each Fourier mode at each radius, via a joint analysis of the 
Fourier decomposition in Z and V z . By applying it to the Cepheids we find, for the m = 1 mode, a constant pattern speed in the 
direction of stellar rotation of 9.2 ± 3.1 km s −1 kpc −1 , a negligible Ȧ up to R ≈ 14 kpc and a slight increase at larger radii, in 

agreement with previous works. 

K ey words: stars: v ariables: Cepheids – Galaxy: disc – Galaxy: evolution – Galaxy: kinematics and dynamics – Galaxy: struc- 
ture.. 
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 I N T RO D U C T I O N  

he warp is an undulation in a galactic disc that makes its mean
ertical height deviate from the mid-plane in the outskirts of the 
alaxy. Between 40 –50 per cent of edge-on disc galaxies are found 
o be warped (Sanchez-Saavedra, Battaner & Florido 1990 ; Reshet- 
ikov & Combes 1998 ), which implies that warps should be long-
ived phenomena or the formation mechanism a very recurrent one 
n the history of galactic discs. The Milky Way is not an exception,
aving a warp whose structure has been widely studied with different 
racers like H I (Levine, Blitz & Heiles 2006 ), dust (Marshall et al.
006 ) as well as with different stellar populations (L ́opez-Corredoira 
t al. 2002 ; Chen et al. 2019 ; Romero-G ́omez et al. 2019 ; Skowron
t al. 2019a ; Cheng et al. 2020 ; Chrob ́akov ́a, Nagy & L ́opez-
orredoira 2020 ; Li et al. 2023 ). Although the Galactic warp has
een known for a long time (Burke 1957 ), its origin is still puzzling.
n order to elucidate the history and formation of the Milky Way’s
arp, it is important to characterize its main properties, as its structure 
nd kinematics. 
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Classical Cepheids have proven exceptionally useful in tracing the 
tructure and kinematics of the warp offering several key advantages 
o study the Galactic disc (Bobylev 2013 ; Chen et al. 2019 ; Skowron
t al. 2019a , b ). Being very young stars (with ages up to a few hundred
illion years, e.g. Catelan & Smith 2015 ), it is expected that they

ave recently inherited the warped structure of the H I gas where they
ave formed, while still having cold kinematics (vertical velocity 
ispersion < 5 km s −1 , Chen et al. 2019 ) making it easier to observe
he warp signal as secular dynamics has not had time to ‘heat’ or
isturb it, as it would have for older populations (Binney & Tremaine
008 , section 8.1). Also, belonging to such a young population means
here is no contamination from any other Galactic component, e.g. 
he thick disc or halo, which means the y e xclusiv ely trace the Galactic
hin disc. In addition, Classical Cepheids are well-known standard 
andles (Lea vitt 1908 ; Lea vitt & Pickering 1912 ), offering extremely
recise distance measurements ( ∼ 3 per cent errors); they can be 
eliably identified based on their variability, making contamination 
rom other stars negligible (e.g. Jayasinghe et al. 2019 ; Rimoldini
t al. 2019 , 2023 ); and being luminous (500 < L /L � < 20 000,
atelan & Smith 2015 ), makes them observable throughout a large
xtent of the disc even with the optical surv e ys used to identify
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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hem at present (Udalski et al. 2018 ; Ripepi et al. 2023 ). Their only
isadvantage is that they are relatively scarce, with fewer than 2500
lassical Cepheids in the deepest and most complete catalogues
f the Galactic disc to date provided by OGLE-IV (Udalski et al.
018 ) and the Third Gaia Data Release (DR3; Gaia Collaboration
020 ; Ripepi et al. 2023 ). For these reasons, Cepheids have been
sed to study the 3D structure of the warp in more detail than any
ther stellar population (Skowron et al. 2019b ), providing evidence
or a twisted line of nodes (Chen et al. 2019 ; Dehnen, Semczuk &
ch ̈onrich 2023 ) and asymmetry in height between both extremes
Skowron et al. 2019a ) similar to the H I warp (Levine, Blitz &
eiles 2006 ). The y hav e also been used to study the kinematics
f the warp revealing its characteristic bulk vertical motion in the
utskirts of the disc (Skowron et al. 2019a ). 
To describe the structure of the warp, several studies have shown

ourier series to be of great use due to their versatility to summarize
ny warp signal if enough modes are considered (e.g. Levine, Blitz &
eiles 2006 ; Chen et al. 2019 ; Skowron et al. 2019a ). These studies
ave focused on describing the structure of the warp, i.e. its mean
eight as a function of radius and azimuth. Using a catalogue of
lassical Cepheids identified mainly with OGLE-IV and combined
ith Gaia DR2 astrometry, Skowron et al. ( 2019b ) used a Fourier
ecomposition with up to 2 modes ( m ≤ 2) and a fixed line of nodes
LON) to present the first map of the Galactic warp in the young
opulation co v ering o v er half the disc. Chen et al. ( 2019 ), using
 compilation of optical plus Wide-field Infrared Survey Explorer
 WISE ; Chen et al. 2018 ) Cepheid catalogues, studied the azimuthal
ependence of the LON with radius finding it does not coincide
ith the Sun-Galactic Centre direction and that it presents a leading
attern, following Briggs’s rules for H I warps in spiral galaxies
Briggs 1990 ). For the kinematics, Fourier series have been used to
haracterize the changes in mean vertical velocity ( V z ) in simulations
Chequers, Widrow & Darling 2018 ; Poggio et al. 2021 ), but insofar
here have been no Fourier decomposition studies of the warp’s
inematic signal with Cepheids (or any tracer) which can reflect
nd quantify its plausible azimuthal asymmetries and changes with
adius. Previous studies with other – older – stellar populations
ave assumed the kinematic signal to be well represented by an
 = 1 mode (Cheng et al. 2020 ; Poggio et al. 2020 ; Wang et al.
020 ; Chrob ́akov ́a & L ́opez-Corredoira 2021 ; Dehnen, Semczuk &
ch ̈onrich 2023 ), as expected from a tilted rings model ( m = 1 mode),
ut Romero-G ́omez et al. ( 2019 ) argue this model is insufficient to
xplain the more complex kinematic signature they observed with
ed Clump stars. Works on external galaxies (Tsukui et al. 2024 ) and

imulations (Bland-Hawthorn & Tepper-Garc ́ıa 2021 ) have shown an
 = 2 mode in the bending waves of discs. 
In this work, we use a Fourier decomposition method to study

he structure and kinematics of the Galactic warp using Classical
epheids as tracers. We use the Cepheid catalogue from Skowron
t al. ( 2019b ) combined with kinematic data from Gaia DR3 (Gaia
ollaboration 2020 ) to explore the dependence of the amplitudes
nd the azimuths of the modes as free parameters as a function of
adius, which allows us to infer the position of the LON and line
f maximum vertical celocity (LMV z ) for a general warp model
hat accounts for the lopsidedness of the warp. The new method we
resent here (Section 5.2 ), based on a joint analysis of the Fourier
eries for Z and V z , allows us to infer the time evolution of the Fourier
omponents of the warp: i.e. their pattern speed and instantaneous
hange in amplitude. The inference of the evolutionary terms of the
alactic warp has been tackled recently using different tracers, but
ostly under the tilted rings model which assumes a symmetric warp.
oggio et al. ( 2020 ) and Cheng et al. ( 2020 ) have focused on inferring
NRAS 528, 4409–4431 (2024) 
he pattern speed, while Wang et al. ( 2020 ) derived the change in
mplitude. These works use general samples of stars with good
uality Gaia DR2 and DR3 astrometry and available radial velocities;
y not been focused on a specific tracer or having any age constraints,
hese parameters are representative of the general population of the
isc as weighed by its star formation history, i.e. a stellar population
f intermediate age (several Gyrs old). The recent work by Dehnen,
emczuk & Sch ̈onrich ( 2023 ) derives both evolutionary terms for
ifferent radii for a sample of Cepheids via a tilted rings model,
nding differential rotation and change in inclination of the rings.
ur work uses the same stellar population to derive the time evolution
arameters of the warp with a completely independent method. 
The structure of the present paper is as follows. In Section 2 ,

e present the Fourier decomposition method used to describe the
alactic warp’s height and v ertical v elocity (Section 2.2 ) and the
ethod showing how these are combined to derive each mode’s

attern speed and amplitude change (Section 2.3 ). In Section 2.4 ,
e present the inference model used to estimate the warp model’s
arameters, including main conclusions from the inference validation
erformed using a mock catalogue. In Section 3 , we describe the
atalogue of Classical Cepheids used in this work. In Section 4 , we
pply the methods to this sample and summarize our results for the
tructure and kinematics of the Cepheid’s warp (Section 4.1 ) and
hose for the time evolution (Section 4.2 ). In Section 5 , we discuss
ur results and compare with the previous literature. Our conclusions
re summarized in Section 6 . 

 FOURI ER  DECOMPOSI TI ON  M E T H O D  

.1 Reference frame 

e begin by describing the coordinate system and reference frame
e use throughout this paper. The origin of the reference frame is

t the galactic centre (GC), fixed with respect to an external inertial
rame. Positions can be given in Cartesian, or cylindrical coordinates.
he X-axis points from the GC away from the Sun, the Y -axis is
arallel to the rotation velocity of the disc at the Sun position and
he Z -axis is perpendicular to the Galactic plane forming a right-
anded triad. In cylindrical coordinates, we use the Galactocentric
zimuthal angle φ measured from the X-axis toward the Y -axis (i.e.
pposite to Galactic rotation). In this coordinate system, the Sun is
t R � = 8.277 kpc (GRAVITY Collaboration 2022 ), φ� = 180 ◦,
nd Z � = 0.027 kpc (Chen et al. 2001 ). F or v elocities, we use a
artesian system whose origin is at rest with the GC and their axes
arallel to the directions in which the X –Y –Z axes increase. This
s an inertial system and thus does not rotate with the Galaxy, the
un being along the ne gativ e X -axis only at present. This facilitates

he kinematical and dynamical descriptions. We assume the Sun
as Galactocentric cartesian velocity ( V x , V y , V z ) = (11.10, 232.24,
.25) km s −1 (Sch ̈onrich, Binney & Dehnen 2010 ; Bovy 2015 ). 

.2 Fourier decomposition of the structure and kinematics 

e implement the Fourier decomposition method following Levine,
litz & Heiles ( 2006 ) and Chequers, Widrow & Darling ( 2018 ). The
isc is divided into concentric Galactocentric rings, in each ring the
ean behaviour as a function of the azimuth for Z and V z described

y a Fourier sums up to M modes as 

( φ) = 

M ∑ 

m = 0 

A m 

sin ( mφ − ϕ m 

) , (1) 
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1 Using this framework with standard values allow us to conclude that 
the radial bulk motions and spiral arms can be ignored in a first-order 
approximation to derive the pattern speed and change in amplitude of the 
warp. 
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 z ( φ) = 

M ∑ 

m = 0 

V m 

sin ( mφ − ϕ 

V 
m 

) . (2) 

The amplitudes ( A m , V m ) and phases ( ϕ m 

, ϕ 

V 
m 

) are free parameters,
btained as a function of R . In what follows we describe the method
nly for Z ( φ), being analogous for V z ( φ). The Fourier representation
s flexible enough, even with a small number of modes, to describe
any known warp shapes: for example, a U-shaped warp will be 
ainly described by an m = 0 mode with increasing amplitude as
 function of radius; an integral or S-shaped warp, will be mainly
escribed by an m = 1 mode with increasing amplitude as a function
f radius, and asymmetries will be mainly described by a combination
f m = 1 and m ≥ 2 modes. 
As we will see in Section 2.4 , it is also convenient to rewrite

quation ( 1 ) in linear form with free parameters a m , b m as 

( φ) = 

M ∑ 

m = 0 

a m 

cos ( mφ) + b m 

sin ( mφ) , (3) 

here the transformation between a m , b m and A m , φm is given by 

 m 

= 

√ 

a 2 m 

+ b 2 m 

; ϕ m 

= arctan2 ( −a m 

, b m 

) . (4) 

.3 Deriving time evolution 

n this section, we present a new formalism to derive the evolutionary
erms from the warp, its pattern speed and the change in amplitude
f each mode at each radii, disentangled from the motion of the stars.
rom now on we denote the star’s vertical height and vertical velocity
s z and v z (lowercase) and the Fourier fits to the warp as Z and V z 

uppercase). 
We begin by taking a ring at a radius R and considering a star

hat has no radial motion and constant angular velocity �, that it
imply rotates around the Galactic Centre but following the warp of
 razor thin disc. These assumptions are reasonable for dynamically 
old populations such as the Cepheid stars we use in our analysis.
iven that the stars follow the warp’s shape, their height z( t ) at time

 is given by the functional expression of the warp Z ( φ, t ), which we
an express as a Fourier series e v aluated at the star’s azimuth φ( t ) as
ollows: 

( t) = Z 

(
φ( t) , t 

)
= 

M ∑ 

m = 0 

A m 

( t) sin ( mφ( t) − ϕ m 

( t)) . (5) 

We allow the amplitude and phase of each mode to evolve in
ime because we are interested in determining their instantaneous 
eri v ati ves Ȧ m 

and ϕ̇ m 

. If we take the total deri v ati ve of z( t ) with
espect to time we obtain the vertical velocity v z of the star – not the
arp – given by 

 z ( t) = 

M ∑ 

m = 0 

Ȧ m 

( t ) sin ( mφ( t ) − ϕ m 

( t)) 

+ A m 

( t) cos ( mφ( t) − ϕ m 

( t))[ m ̇φ( t) − ϕ̇ m 

( t)] . (6) 

As expected, equation ( 6 ) involves terms regarding the time 
volution of the warp ( Ȧ m 

and ϕ̇ m 

), and a term regarding the motion
f the star due to its own angular velocity ( ̇φ( t) = �). Now, we want
o link equation ( 6 ), which describes the velocity of just one star at
zimuth φ( t ), to the Z ( φ) and V z ( φ) fits from the previous section,
hich describe the mean motion of all stars in the ring at a given

ime t 0 (today). 
In a razor thin disc the height of the disc at an arbitrary azimuth

nd the position of a star at the same azimuth must exactly coincide.
hus, it follows that the vertical height z( t 0 ) and vertical velocity
 z ( t 0 ) of a star at t 0 and azimuth φ( t 0 ) = φ0 must coincide with the
ourier fits ( Z ( φ0 ), V z ( φ0 )) we obtained at that same t 0 time. Taking
 0 as today, A m ( t 0 ) = A m ,0 and ϕ m = ϕ m ,0 , the amplitudes and phases
btained from the Fourier fits from equations ( 1 ) and ( 2 ). 
Similarly, the vertical velocity v z ( t 0 ) of the star must also coincide

ith the mean vertical velocity obtained from our Fourier fit V z ( φ0 ),
 v aluated at the star’s azimuth. Setting V z ( φ0 ) = v z ( t 0 ) in the left-
and side of equation ( 6 ) and expressing V z ( t 0 ) as the Fourier fit for
 z in its linear form (as shown in equation ( 3 ) for Z ) we obtain 

M ∑ 

m = 0 

a V m 

cos ( mφ0 ) + b V m 

sin ( mφ0 ) 

= 

M ∑ 

m = 0 

Ȧ m 

( t 0 ) sin ( mφ0 − ϕ m 

) 

+ A m 

cos ( mφ0 − ϕ m 

)[ m� − ϕ̇ m 

( t 0 )] , (7) 

here a V m 

and b V m 

are the linear amplitudes resulting from the Fourier
ts in velocity, calculated from the V m and ϕ 

V 
m 

obtained via equation
 4 ). The terms sin ( m φ0 − ϕ m ) and cos ( m φ0 − ϕ m ) in the right-hand
ide of equation ( 7 ) can be rewritten as 

sin ( mφ0 − ϕ m 

) = sin ( mφ0 ) cos ( ϕ m 

) − cos ( mφ0 ) sin ( ϕ m 

) , (8) 

cos ( mφ0 − ϕ m 

) = cos ( mφ0 ) cos ( ϕ m 

) + sin ( mφ0 ) sin ( ϕ m 

) . (9) 

Regrouping the terms as a function of φ0 and using the orthog-
nality of the Fourier modes, we obtain that the amplitudes a V m 

, b V m 

rom the V z fit are related to the amplitudes A m and ϕ m from the Z
nd the warp evolutionary terms as 

 

V 
m 

= A m 

[ m� − ϕ̇ m 

( t 0 )] cos ( ϕ m 

) − Ȧ m 

( t 0 ) sin ( ϕ m 

) , (10) 

 

V 
m 

= A m 

[ m� − ϕ̇ m 

( t 0 )] sin ( ϕ m 

) + Ȧ m 

( t 0 ) cos ( ϕ m 

) . (11) 

Solving this linear system of equations for Ȧ m 

( t 0 ) and [ m ̇φ( t 0 ) −
˙ m 

( t 0 )] and writing back a V m 

, b V m 

in terms of the amplitude and phase
 V m 

, ϕ 

V 
m 

), the evolutionary terms of the warp are given by 

 m� − ϕ̇ m 

( t 0 )] = 

V m 

A m 

sin ( ϕ m 

− ϕ 

V 
m 

) (12) 

and 

˙
 m 

( t 0 ) = V m 

cos ( ϕ m 

− ϕ 

V 
m 

) . (13) 

Assuming that the m th mode has angular velocity ω m , then setting
 m = m ω m t + ϕ m ,0 in equation ( 12 ), we get the pattern speed for
ach mode as 

 m 

= � − V m 

mA m 

sin ( ϕ m 

− ϕ 

V 
m 

) . (14) 

Therefore, having connected the Fourier fits in Z and V z at a given
adius, equations ( 13 ) and ( 14 ) describe how each pattern speed and
mplitude change in time, allowing a reconstruct the time evolution 
f the warp as a function of radius. 
We leave for a future work the publication of a more general

ramework that consider an azimuthal dependence not only of the 
ertical motion of the stars, but also their radial and azimuthal
elocity, which would presumably result in a better inference of 
he time evolution of individual Fourier modes of the warp. 1 
MNRAS 528, 4409–4431 (2024) 
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.4 The inference 

e have used Bayesian Inference to infer the a m , b m (or A m , φm )
hat best describe the mean behaviour of the stars in a given ring
hen applying the methods from Sections 2.2 and 2.3 to a particular

ample. Bayes’ theorem (e.g. Sivia 2006 ) relates the Posterior
istribution to the Likelihood ( L ) and the Prior ( p ) probability
ensities functions (PDFs) as 

 ( X | D, I ) ∝ L ( D| X , I ) p( X | I ) , (15) 

here D refers to the data, X to the model parameters, and I stands for
ny other available information. In our case, X is a vector containing
he linear amplitudes: 

X = [ a 0 , a 1 , ..., a M 

, b 1 , ..., b M 

] . (16) 

For the model parameters, we assume uniform priors, with suffi-
iently and arbitrarily large limits. Assuming that the observations
re independent, the likelihood is expressed as the product of the
ndividual likelihood of each single data point z i , for which we
ssume a Gaussian distribution 

 ( { z}| X , I ) = 

N ∏ 

i= 1 

1 √ 

2 πσ 2 
i 

exp 

[
− ( z i − Z( φi , X )) 2 

2 σ 2 
i 

]
, (17) 

here we take σ 2 
i to be the square sum of the uncertainty in the

easurement z i and the intrinsic dispersion σ ID of the variable at
hat ring. This σ ID is introduced to take into account the natural
ispersion around the mean value that arises from the dynamics of
he Galactic disc; in v z , it measures the velocity dispersion and, in z,
t measures how thick the disc is at that ring. The intrinsic dispersion
s not a free parameter in the fit. We estimate it as the mean dispersion
n the variable of interest in equally spaced azimuthal bins, weighted
y the number of stars in each bin because low number statistics
ominate o v er observational errors. 
In our case, because the model is linear in all parameters and

e have assumed a uniform prior, the MAP X 0 coincides with the
aximum of L and the posterior is exactly a Gaussian distribution
ith mean X 0 and covariance matrix � (see e.g. section 1 in Hogg,
ovy & Lang 2010 , for a detailed discussion). The posterior PDF
an, therefore, be expressed as 

 ( X | D, I ) = 

exp 
[− 1 

2 ( X − X 0 ) T � 

−1 ( X − X 0 ) 
]

(2 π) N+ 1 / 2 [ det � ] 1 / 2 
. (18) 

here X 0 is given by 

 X 0 = p . (19) 

The covariance matrix � is the inverse of A : the matrix that
ontains in its entries the ‘projection’ of each mode into the other
nes [see equation ( A2 ) in Appendix A ] weighted by the dispersion
n the data, and the vector p has the ‘projection’ of the data in each
ode (see equation A4 ). 
Because we use a Fourier series to represent a variable, one would

xpect the modes to be mutually independent and therefore not
orrelated. This is not usually the case. When we have discrete
easurements, the modes are not mutually orthogonal unless the
easurements are equally spaced in azimuth and have the same σ i .

n this special case A is diagonal and, in consequence, the covariance
atrix is too. This particular distribution allows the modes to be
utually independent. Naturally, we will never get this configuration

rom the data itself, but this method shows analytically that data that
re more or less uniformly distributed in azimuth are preferred for a
ourier analysis of the whole disc: studies with a sparse and irregular
zimuthal co v erage will get modes that are not ‘fundamental’, in the
NRAS 528, 4409–4431 (2024) 
ense that they are not describing the modes of the warp itself . The
ffect gets worse with high-frequency modes m ≥ 2. This should
e kept in mind when interpreting results for individual modes,
evertheless, it will not affect our conclusions on the description
f the warp as a whole (the sum of the modes) in the regions well
ampled by the data. 

Finally, the disc is divided in rings such that we get a ‘continuum’
ie w of ho w the modes and the warp change with the radius. To do so
e take each ring to contain a fixed number N of stars out of the total
 tot stars, the first ring starting with the star at the smallest radius. The

econd ring will start at the radius of the second star and have a width
uch that it also contains N stars, and so on for subsequent rings. This
cheme implies that the rings will have a varying width, depending
n the sample’s radial distribution. We take the radius associated with
ach ring as the mean radius of the stars in it. This procedure allows
s to have a continuous view, with all rings having the same number
f stars N and, therefore, constant stochastic noise. It must be kept in
ind, ho we ver, that only one out of e very N consecuti ve rings will

e independent. Changing the number of stars in each ring changes
he smoothened parameters inferred as a function of the radius (the
igger N , the smoother it gets). Also, the change in N mo v es the mean
adius of each ring, the tendency is that a bigger N makes the rings
o mo v e inwards (smaller radius), as e xpected for a density profile
hat decreases with radius. 

.4.1 Validation with simulations 

ere, we present our main conclusions about the performance of
he methods described in the previous section, assessed by applying
hem to mock catalogues constructed from test particle simulations.
s discussed in detail in Section 2 , we used a test particle simulation
f a warped disc from Romero-G ́omez et al. ( 2019 ) to create a mock
atalogue affected by the Gaia DR3 selection function (SF) and
bservational errors. A fiducial model, unaffected by the SF or by
rrors, is used as a baseline for comparison of the results of the
ourier decomposition. The interested reader may find full details
nd discussion of these results in Section 2 . 

Our main results on how the SF affects the reco v ery of the warp
s a whole, in different regions of the disc, are summarized here as
ollows: 

(i) For Z the best sampled region, the quadrants I and III ( X <

 kpc) are reco v ered well (differences between the real and the
eco v ered warp are smaller than σ ID ) and the general tendency for
ll radii is reco v ered for both series summing up to M = 1 and M =
. For X > 0 kpc (quadrants I and IV), the SF causes the warp to be
xaggerated. This bias is reduced for outer radii as the main mode of
he warp ( m = 1) becomes greater than the intrinsic dispersion (see
ig. B2 ). 
(ii) For V z the recovery is better than Z , although for the inner

isc ( R � 9 kpc) the reco v ery is poor for X > 0. The reco v ery in the
ampled area is better than in Z for both M = 1 and M = 2 (differences
re smaller than σV 

ID 

in most of the disc area, see Fig. B2 ). 
(iii) Main conclusion: The reco v ery of the full model (the Fourier

um) in both variables is robust in the well sampled regions for R
 10 kpc, i.e. second and third quadrants. In this region, all the
arp features are well reco v ered within the uncertainties given by

he Posterior realizations . 

We also tested how the individual modes are reco v ered. Our main
onclusion are as follows: 

(i) The m = 0 mode is well reco v ered throughout the disc. 
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Table 1. Amplitudes and phases as a function of radius for the best fitting (MAP) models for Z and V Z . The first few rows of the table are shown to provide 
guidance regarding its form and content. The full version of the table is available in the electronic version. 

R A 0 sin ( − ϕ 0 ) A 1 A 2 ϕ 1 ϕ 2 V 0 sin ( −ϕ V 0 ) V 1 V 2 ϕ V 1 ϕ V 2 
(kpc) (kpc) (kpc) (kpc) (rad) (rad) (km s −1 ) (km s −1 ) (km s −1 ) (rad) (rad) 

5.171 −0.106 0.171 0.059 1.971705 2.337575 −0.422 2.638 1.976 −2.887806 −2.663989 
5.186 −0.107 0.176 0.063 1.979711 2.40411 −0.327 2.455 1.865 −2.875007 −2.720106 
5.202 −0.107 0.175 0.062 1.978782 2.403354 −0.363 2.296 1.941 −2.777056 −2.595807 
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(ii) The m = 1 mode tends to be o v erestimated in amplitude at the
nner disc. In the outer regions ( R > 10 kpc) its amplitude and phase
re well reco v ered in both variables (i.e. Z and V z ). 

(iii) The m = 2 mode captures the asymmetries and is well 
eco v ered where there is data, i.e. quadrants II and III and R >

0 kpc, but tends to be underestimated in amplitude and the general
rend of the phase is poorly reco v ered in the whole disc. 

(iv) Main conclusion: The uncertainty on the reco v ery of the 
ndividual modes stems from the correlations between the modes 
hich, in turn, appear as a consequence of the imperfect azimuthal 

o v erage. The de generacies introduced by the correlations mean that
ifferent combinations of amplitudes and phases for the individual 
odes can give the same sum model, in a finite azimuth range. A

ull azimuthal co v erage would break this de generac y and make the
nference on the individual modes unique. The mode less affected by 
his degeneracies is the m = 1 mode due to its large amplitude. 

The intrinsic dispersion in z is well reco v ered in the outer disc,
here the warp amplitude is larger than the dispersion. In the inner
isc σ ID tends to be off by 10 per cent. For v z , we find σV 

ID 

is
nderestimated by 3 per cent without dependency on the radius. 
Given these results, we decide to include up to the m = 2 mode

n the Fourier fits for this work because it offers the least biased
eco v ery for the region of the disc where the warp is most prominent
i.e. outer radii). Reliable results for the inner region of the disc are
imited to | φ| � 90 ◦, the region least affected by the SF with best
o v erage, where biases in the reco v ery are lowest. 

We also tested the inference of the time evolution parameters Ȧ m 

nd ω m . We concluded that the reco v ery of the Ȧ m 

for m = 2 is
nreliable due to the biases and noise. For the m = 1 mode, we
onclude a follows: 

(i) Ȧ 1 is well reco v ered within its uncertainties particularly for the 
uter disc. 
(ii) The reco v ered ω 1 tends to be o v erestimated due to a slight

 v erestimation in A 1 , but the mean difference is ≈4 km s −1 kpc −1 .
n the outer disc ( R > 14 kpc), we reco v er the values of the fiducial
odel within the uncertainty. 

 T H E  CEP HEIDS  SAMPLE  

e use the catalogue of Milky Way Cepheids from Skowron et al.
 2019a ). The catalogue contains 2385 Classical (Type I) Cepheids 
dentified mainly with the OGLE surv e y (for more details, see
kowron et al. 2019a , b ) with photometric distances computed 
ased on mid-IR photometry from the Wide-field Infrared Survey 
xplorer ( WISE ) and the Spitzer Space Telescope , resulting in
istance uncertainties of 3 per cent on average. We cross-matched the 
epheid catalogue (at 1 arcsec tolerance) with Gaia DR3 to retrieve 
roper motions for these stars. Out of the 2381 Cepheids with Gaia
roper motions, only 860 stars have radial velocities in DR3. In order
o curate a homogeneous catalogue with full velocity information 
llowing us to compute v z , we infer the missing line of sight velocity
or all stars in the catalogue by assuming the Cepheid rotation curve
rom Ablimit et al. ( 2020 ) which has a slope of −1.33 km s −1 kpc −1 

nd takes the value 232 km s −1 at the solar radius. 2 

We clean this sample by keeping stars with RUWE < 1.4, σ z 

0.1 kpc and σv z ≤ 13 km s −1 . These upper bounds in z and
 z uncertainties guarantee a significant amount of stars whose 
ncertainties are at most of the order of σ ID . To a v oid clear outliers
ue to probable contaminants and the Magellanic Clouds we restrict 
he analysis to stars with | z| ≤ 2 kpc, | v z | ≤ 30 km s −1 and 3 kpc <
 < 18 kpc. These are very broad cuts that only remo v e v ery few
 ≈ 3 per cent ) clear outliers (5 σ ) most of them due to the cut in V z 

only one star is remo v ed for the cut in Z ). These constraints reduce
he sample to a total of N tot = 1997 stars. 

 RESULTS  

ere, we present the results obtained by applying the methods 
escribed in Section 2 to the final sample with M = 2 and N =
00 stars in each ring. To calculate σ ID in both variables, we use 8
zimuth bins. The resulting amplitudes and phases as a function of
adius for the best fitting (Maximum a Posteriori, MAP) models for
 and V z are provided in Table 1 and 100 posterior realizations are
rovided in Table 2 . Figs C3 and C4 in the Appendix C show the
mplitudes and phase (respectively) of each mode in Z and in V z as
 function of the radius. 

.1 Structure and kinematics of the warp 

n the following sections, we analyse different features of the 
arp structure and kinematics. We analyse the full Fourier series 
btained. Since the validation with simulations indicated results for 
he individual modes are prone to be biased due to correlations
etween the modes, we discuss and summarize this in Appendix C
or the interested reader. 

.1.1 General structure of the warp 

e show in the upper panels of Fig. 1 the results of three fits in
 for different Galactocentric radii. Each panel shows, for rings of

ncreasing radius, the Cepheids present in the ring, the best Fourier
t (black curve) and 500 random realizations from the Posterior PDF,

he gre y curv es are fits to 200 bootstrapping realization. The plots
learly show a growth in amplitude typical of an S-shaped warp,
eaching a maximum of ≈1.1 kpc in the outskirts of the disc. The
ffect of the SF is evident, the azimuth range sampled increases
ith radius. Other features like the change of the warp as a function
f φ become clear in the second panel ( R = 11.0 kpc), where a
lateau is noticeable around φ = 180 ◦. The third panel ( R = 15 kpc)
MNRAS 528, 4409–4431 (2024) 
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Table 2. Amplitudes and phases as a function of radius for 100 posterior realizations for the Z and V Z models. The first few rows of the table are shown to 
provide guidance regarding its form and content. The full version of the table is available in the electronic version. 

R A 0 sin ( − ϕ 0 ) A 1 A 2 ϕ 1 ϕ 2 V 0 sin ( −ϕ V 0 ) V 1 V 2 ϕ V 1 ϕ V 2 
(kpc) (kpc) (kpc) (kpc) (rad) (rad) (km s −1 ) (km s −1 ) (km s −1 ) (rad) (rad) 

5.171 −0.109 0.163 0.042 2.000795 2.192443 −0.951 3.761 3.294 2.232128 1.993639 
5.171 −0.097 0.155 0.053 1.848048 2.048916 0.626 5.258 4.114 −2.853366 −3.10008 
5.171 −0.111 0.19 0.076 1.897841 2.256799 −3.56 3.122 1.602 2.53726 −2.602042 

Figure 1. The upper panels are the vertical height Z as a function of galactocentric azimuth φ for three different rings with radius 8.0 kpc (left), 11.0 kpc 
(middle), and 15 kpc (right). Grey dots represent the Cepheids in each ring, the black solid line represents the Fourier curve MAP fit to the grey dots, and 
the oranges curves are 500 random realizations of the Posterior PDF. The gre y curv es are fits to 200 bootstrapping realizations. The bottom panels show the 
residuals between the best fit and each bootstrap realization. 
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ho ws ho w from φ ≈ 60 ◦ to φ ≈ 240 ◦ the change in the warp
etween the extremes resembles a straight line more than a sinusoidal
urve corresponding to a pure m = 1 mode would. This feature is
orrectly reproduced by the model thanks to the m = 2 mode; a
imple tilted rings model ( M = 1) cannot reflect it. The fits to the
ootstrapping realizations shows that for R < 10 kpc the fits are
ffected by statistical noise as shown in the first panel of Fig. 1 at
 = 8 kpc in the first and fourth quadrant of the galactic plane, this
ecame more clear in the residuals plot in the bottom panels. For the
uter radii, the fits are less sensitive to statistical noise as we see in
he second and third panels where the posterior realizations coincide
ith the bootstrap realizations. For this reason, we focus our analysis
n the second a third quadrants. 
Fig. 2 shows V z as a function of φ for the same three rings shown

n Fig. 1 . The first panel ( R = 8.0 kpc) of this figure, as well as in
he previous one, shows how the few observed data points in regions

ost affected by the SF (e.g. φ ∼ 300 ◦) strongly drive the fit in
hose regions. As discussed in Section C , this makes the inference
nreliable for the inner disc at R < 10 kpc, except around the azimuth
f the solar neighbourhood. Therefore, in what follows we will
estrict our analysis to R ≥ 10 kpc. As radius increases (second and
hird panels) the amplitude of the warp in velocity grows but only

ildly, as it is at most of the order of the intrinsic dispersion σV 
ID 

≈ 8
m s −1 even at the outer disc. This is in contrast with Z , where the
mplitude of the warp exceeds the intrinsic dispersion by a factor
NRAS 528, 4409–4431 (2024) 
f ≈3 in the outer disc. This low amplitude in comparison with σV 
ID 

akes it harder to detect the kinematic signature of the warp, but at the
uter disc it is clear there is a complex and asymmetrical behaviour,
s seen in the third panel in Fig. 2 . The bootstrap realizations for V z 

how the same conclusions as in Z , but due to the low amplitude of
he kinematic signal in the first and fourth quadrant the realizations
how a greater dispersion than the posterior, illustrating that due
o low number statistics noise is larger. For this reason, we will
ocus the analysis of the kinematic signal to the second and third
uadrants. 

.1.2 Asymmetries in height 

irst, we explore the asymmetries of the warp in height abo v e and
elow the plane. The left panel of Fig. 3 shows the difference between
he maximum and minimum height reached by the warp abo v e
nd below the plane in the north and south Galactic hemispheres,
especti vely. Positi ve v alues in this plot, at any gi ven radius, imply
hat the northern extreme of the warp deviates more from the
alactic plane than the south. Up to R ≈ 12 kpc the northern

xtreme is larger than the southern, even within the uncertainties,
howing an asymmetrical warp. This asymmetry decreases towards
he outer disc, with the warp being almost symmetrical to within
he uncertainties ( ≈100 pc) at R � 13.5 kpc. We should keep in
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Figure 2. The upper panels are the vertical velocity V z as a function of galactocentric azimuth φ for three different rings with radius 8.0 kpc (left), 11.0 kpc 
(middle), and 15 kpc (right). Grey dots represent the Cepheids in each ring, the black solid line represents the Fourier curve MAP fit to the grey dots, and the 
oranges curves are 500 random realizations of the Posterior PDF. The gre y curv es are fits to 200 bootstrapping realization. The bottom panels show the residuals 
between the best fit and each bootstrap realization. 

Figure 3. Left: Difference between the north and south extreme of the warp as a function of galactocentric radii from our results (black curve), the same is 
calculated for the warp model by Skowron et al. ( 2019a ) (doted orange curve). Right: Least angular difference between the north and south extremes as a 
function of galactocentric radii from our results (black curve), the same is calculated for the warp model of Skowron et al. ( 2019a ) (doted orange curve). The 
grey dots are 500 random realization at each ring taken from the Posterior. 
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ind that because of the SF, the extremes of the warp tend to be
 v erestimated in the internal regions. Ho we ver, a more accurate and
eliable measurement of this asymmetry is expected at the outskirts 
f the disc from our validation tests (Section 2.4.1 ). 
Since we set the phases of each mode free, we can also track

he azimuth of each extreme of the warp to explore the azimuthal
symmetry as a function of R . The right panel of Fig. 3 explores the
zimuthal asymmetry of the extremes of the warp as a function of
adius by showing the smallest angular difference in the azimuths of
he warp extremes in Z . In a simple tilted rings model of an S-shaped
arp, these extremes are always separated 180 ◦, even if the line of
odes is twisted. The plot clearly shows the extremes of the Cepheid
arp are never diametrically opposed . The difference in azimuth 

tarts at its lo west v alue of ≈120 ◦ at R ≈ 10 −11.5 kpc and increases
p to ≈145 ◦ at R ≈ 12.5 kpc after which it remains approximately
onstant. This is a robust feature that cannot be reproduced by an
 = 1 warp, reinforcing the need for an m = 2 mode to describe the

ull warp. 

.1.3 Line of nodes and line of maximum V z 

he o v erall behaviour of the best fitting (MAP) warp model for the
epheids is shown in Fig. 4 in a face-on view of the disc with a colour

cale indicating the mean height abo v e/below the mid-plane. The line
f nodes (from now on LON) and line of maximum vertical velocity
LMV z ) are indicated with the black and green lines respectively. A
eading twist (i.e. in the direction of Galactic rotation) in both the
ON and LMV z is evident, as well as an offset between the two. 
Fig. 5 shows the LON and LMV z azimuths (for X < 0) as a

unction of radius. The figure shows that the azimuth of the LON
MNRAS 528, 4409–4431 (2024) 
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Figure 4. Face-on view of the best-fitting (MAP) warp model for the 
Cepheids (grey dots). The colour scale represents the mean Z of the disc 
(blue abo v e the plane and red below it). The line of nodes (LON, i.e. Z = 

0) is indicated with the black curve. The line of maximum vertical velocity 
(LMV z ) is indicated by the dark green curve. The different coloured lines 
correspond to lines of constant galactocentric azimuth. 

Figure 5. Azimuth as a function of galactocentric radius for: the LON from 

this work (black curve), Chen et al. ( 2019 ) (cyan dashed curve) and Dehnen, 
Semczuk & Sch ̈onrich ( 2023 ) (red curve); the LMV z (thick green curve) and 
ϕ 1 for m = 1 mode from our Z fits (red dots). The grey and olive green dots are 
500 realizations of the LON and the LMV z taken from the posterior at each 
ring, respectiv ely. The v ertical dashed line indicates the Holmberg radius for 
the Milky Way from Chen et al. ( 2019 ). The crosses indicate a sample of 
independent (disjoint) rings. 
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Figure 6. The change in amplitude Ȧ 1 for the m = 1 mode as a function of 
the galactocentric radii from our fits (black curve) and the Ȧ 1 by Dehnen, 
Semczuk & Sch ̈onrich ( 2023 ) (cyan curve). Red dots indicate measures for 
independent rings. The grey dots around each Ȧ 1 are 500 realization taken 
from the posterior at each ring. 
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3 We consider this result to be extended beyond R = 15 kpc and not only up 
to R = 15.5 kpc because the rings at this radius contain stars beyond R = 

15.5 kpc. 
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s well represented by the straight line (in the plane φ, R ) with the
arameters presented in equation ( 20 ), obtained from a fit to data
n independent rings with R > 11. The LMV z also follows a linear
endency, well described by an almost constant azimuthal difference
f 25.4 ◦ with respect to the LON. 

LON ( R) = ( −12 . 7 ± 0 . 3) 
deg 

kpc 
R 

+ (347 . ◦5 ± 3 . ◦5) for R > 11 kpc . (20) 
NRAS 528, 4409–4431 (2024) 
.2 The time evolution of the warp traced by Cepheid 

ere, we present results for the pattern speed (from equation 14 ) and
he change in amplitude with time (from equation 13 ) for the m = 1

ode obtained for the Cepheids. We ignore the m = 0 mode, since its
attern speed is ill-defined and its amplitude change is V 0 sin ( −ϕ 

V 
0 )

this is shown in the right panel of Fig. C3 ). 
Although the Fourier series for Z and V z have been fit with M = 2,

e focus this analysis in the m = 1 mode, because it is the dominant
ode of the warp and the reco v ery of the evolutionary terms for
 = 2 are biased and noisy due to SF effects (as shown in Section
1.2 ). From Section 2.4.1 , we recall that, for our simulation, ω 1 and

˙
 1 are well defined for R � 12 kpc where V 1 is non-zero and also
ell-defined (as shown in Section C ). Therefore, we will restrict this
art of the analysis to R � 12 kpc. 

.2.1 Amplitudes 

n Fig. 6 , we present results for Ȧ 1 as a function of R . In the range
 < 14.5 kpc, the change in amplitude is negligible, for R > 15 kpc

t shows a growing tendency, 3 reaching a maximum in the external
isc of ≈5 km s −1 ≈ 5 kpc Gyr −1 , this tendency is also present in
he results by Dehnen, Semczuk & Sch ̈onrich ( 2023 ). Based on our
alidation summarized in Section 2.4.1 , we expect these results to be
nbiased o v er this radial range. 

.2.2 Pattern speed 

ssuming the angular velocity � from the rotation curve by Ablimit
t al. ( 2020 ), we obtained the pattern speed for the m = 1 mode
rom equation ( 14 ). Because in our reference frame the stars rotate
n the direction in which φ decreases, the angular velocities in the
irection of stellar rotation are ne gativ e. To a v oid confusion, we
resent the angular velocities with their sign changed. Fig. 7 presents,
s a function of Galactocentric radius, the pattern speed of the m =
 mode ω 1 (black curve), the angular velocity of the rotation curve

(red curve), the upper and lower limit given by the measurements
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Figure 7. Minus the angular frequency as a function of the galactocentric 
radius for the pattern speed for the m = 1 mode ω 1 (black curve) from our 
fits, the angular velocity given by the rotation curve � (red curve) (Ablimit 
et al. 2020 ), the upper and lower limit found by Poggio et al. ( 2020 ), and 
results from Dehnen, Semczuk & Sch ̈onrich ( 2023 ). The dots around ω 1 are 
500 posterior realizations at each ring. 
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y Poggio et al. ( 2020 ) (dotted blue lines) and results from Dehnen,
emczuk & Sch ̈onrich ( 2023 ) (solid cyan line and dots). 
We find that ω 1 decreases for R � 11 kpc and shows a small

scillation for 13 < R /kpc < 16. This o v erall behaviour, both the
ecrease and the oscillation, are observed by Dehnen, Semczuk & 

ch ̈onrich ( 2023 ) but at a slightly different radius. This difference
ay arise from their use of guiding radius and also because we use
 mean radius to represent each ring, which tends to drive the results
rom the outer to the inner radii. We would need smaller uncertainties
o ensure this oscillation is a physical phenomenon in the disc and not
n artefact from our fits. Ho we ver, the fact that it is also observed by
ehnen, Semczuk & Sch ̈onrich ( 2023 ), with a sample that includes
igure 8. Vertical height of the warp as a function of galactocentric radius for slic
ummarized in Table 3 . The shaded region represents the uncertainty in the warp m
adial velocities, increases our confidence in the result. Our mean 
alue observed for R > 12 kpc is in agreement with the results from
revious works on measuring the pattern speed by Poggio et al.
 2020 ) and Cheng et al. ( 2020 ), who assumed rigid body rotation for
he warp. 

 DI SCUSSI ON  

.1 Structure and kinematics 

.1.1 Comparison with different warp observations 

n Fig. 8 , we compare different warp models in the literature to
ur results for φ = 90 ◦ (northern region) and φ = 270 ◦ (southern
egion) for R > 10 kpc. The various works cited here have different
zimuthal and/or radial co v erage, use different tracers, and have
sed different methods to fit for the warp. Table 3 summarizes this
nformation for the works presented in the figure. We have selected
hese works in order to compare against other dynamically young 
racers like the gas, dust and OB stars. We also include results from
 few warp models for dynamically older populations for which the
ime evolution of the warp has been inferred. Since the warp followed
y the older population may differ from that of the young, in Section
.2 we will discuss the effect due to the assumed structure on the
nference of the time evolution of the warp. 

We begin by comparing our results against those from Skowron 
t al. ( 2019a ), obtained for the same Cepheid sample as used here.
ithin the uncertainties the two coincide at almost all radii. The

kowron et al. ( 2019a ) model behaves like an average smooth model
round our results. The mean difference between both models for the
orthern region (for R � 10 kpc) is 0.054 kpc, and for the southern
egion is 0.043 kpc. This level of agreement is expected because
e are using a subset of their sample, the differences being in how
e model the w arp. Sk owron et al. ( 2019a ) model the warp as a
MNRAS 528, 4409–4431 (2024) 

es at φ = 90 ◦ and φ = 270 ◦, for this work and warp models in the literature 
odel from Wang et al. ( 2020 , see the text for more details). 
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Table 3. Models from the literature. The asterisk ( ∗) indicates the model shown in Fig. 8 . 

Work Tracer/Method Symmetric (yes or no) LON (fixed or free) Disc range 

Yusifov ( 2004 ) Pulsars Yes Fixed R � 15 kpc 
Levine, Blitz & Heiles ( 2006 ) HI No Fixed ∗/Free 10 < R /kpc < 30 
Marshall et al. ( 2006 ) Dust No Fixed [ d � 13] kpc l ∈ [ − 90 ◦, 90 ◦] 
Skowron et al. ( 2019a ) Cepheids No Fixed R < 20 kpc 
Chen et al. ( 2019 ) Cepheids Yes ∗/No Fixed ∗/Free 5 � R /kpc < 20 
Li et al. ( 2023 ) OB Yes Fixed 8.3 < R /kpc < 14 | z| < 1 kpc
Am ̂ ores, Robin & Reyl ́e ( 2017 ) 2MASS star counts No Fixed R < 18 kpc 
L ́opez-Corredoira et al. ( 2002 ) Red Clump Yes Fixed R < 13 kpc 
Wang et al. ( 2020 ) Red Clump Yes Fixed 8.3 < R /kpc < 14, | z| < 1 kpc 
Chrob ́akov ́a, Nagy & L ́opez-Corredoira ( 2020 ) Gaia DR2 Yes ∗/No Fixed ∗/Free R < 20 kpc 
Cheng et al. ( 2020 ) K type stars Yes Fixed R < 16 kpc 
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the A-type stars we cannot include it in Fig. 8 . 
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ourier sum with M = 2 (as we do) but assume a constant phase for
ach mode as a function of radius ( ∂ R ϕ i = 0) and a second-degree
olynomial for each amplitude ( A m ( R ) = γ m ( R − R d ) 2 where γ m is a
onstant) as a function of R . Under these assumptions, the resulting
odel has the form 

 ( φ, R ) = A 0 + ( R − R d ) 
2 

2 ∑ 

m = 1 

γm 

sin ( mφ − ϕ m 

) . (21) 

In consequence, there is a single Fourier sum that expresses the
ean azimuthal behaviour of the warp at all R > R d which is scaled

y the function ( R − R d ) 2 . In our model, without these assumptions,
e can represent how the azimuthal geometry of the warp changes
ith the radius, giving rise to the differences between both models.
he Skowron et al. ( 2019a ) model has the ability to reproduce the
ean asymmetries observed in the warp, but not the LON twist or

zimuthal changes in the different modes, which affect where the
axima are located. 
We also compare our results with those from other warp models

btained for dynamically cold tracers like H I (Levine, Blitz & Heiles
006 ), Dust (Marshall et al. 2006 ), OB stars (Li et al. 2023 ), Cepheid
Chen et al. 2019 ), and pulsars (Yusifov 2004 ). Because Cepheids
re a young population ( < 500 Myr, e.g. Catelan & Smith 2015 ), they
re expected to still retain the warp shape inherited from the gas and
ts star-forming regions, so the agreement among young tracers is
xpected. We also show the results from Am ̂ ores, Robin & Reyl ́e
 2017 ) selected for a young population with an age of 400 Myr
ompatible with that of Cepheids. In the northern region, within
ncertainties, we found excellent agreement with all previous results
or young tracers, and a clear disagreement with results from Am ̂ ores,
obin & Reyl ́e ( 2017 ) inferred from star counts modelling using the
esan c ¸on Galactic model. The warp model from pulsars departs the
ost from ours, with a mean difference of 0.14 kpc (less than the

ntrinsic dispersion of Cepheids, see Fig. C3 ). For the H I model,
e found differences for R < 12 kpc, which may be due to the
nderestimation by the amplitude fitted to its own results by Levine,
litz & Heiles ( 2006 ) between 10 < R < 12. Compared to our

esults in the southern region, these works tend to underestimate
he amplitude of the warp for R � 13 kpc. The warp traced by
ulsars underestimates the height the most, compared to ours, with
 maximum difference of 0.42 kpc. These differences may arise
ue to the symmetry imposed in the models for this radial range.
he models from Levine, Blitz & Heiles ( 2006 ), Chen et al. ( 2019 ),
nd Li et al. ( 2023 ) are strictly symmetric in this radial range, in
onsequence, the asymmetry given by the m = 2 mode between both
egions cannot be represented. The difference with the model from
NRAS 528, 4409–4431 (2024) 
arshall et al. ( 2006 ) may be due to its radial co v erage which does
ot extend beyond R ∼ 13. 
Although the degree of agreement in the southern region is not as

ood as in the north, its clear that all young tracers follow a similar
arp (Chen et al. 2019 ; Skowron et al. 2019a ; Li et al. 2023 ). The

lear exception to this agreement is the result from Am ̂ ores, Robin &
eyl ́e ( 2017 ). Although the disagreement with the Am ̂ ores, Robin &
eyl ́e results in the south is not as strong as in the north, they still

ound a warp amplitude that is systematically lower than ours as well
s all other works for Cepheids and similarly young tracers like dust
nd H I . 

We now focus our attention on the intermediate population: Red
lump stars (L ́opez-Corredoira et al. 2002 ; Wang et al. 2020 ), A type

tars (Ard ̀evol et al. 2023 ), K type stars (Cheng et al. 2020 ), and the
ull Gaia DR2 population (Chrob ́akov ́a, Nagy & L ́opez-Corredoira
020 ). Results from L ́opez-Corredoira et al. ( 2002 ) in the radial range
 � 13 kpc spanned by its observations (thick part of the line) shows
greement with our results and, as with the young populations, the
greement is better for the northern region. Ho we ver, extrapolating
his warp model (thin part of the line) for the outer region of the disc
ould yield increasing differences that would grow up to the order
f a few kpc. Also, the models by Cheng et al. ( 2020 ) and Wang et al.
 2020 ) for a 1–3 Gyr population are in agreement within uncertainties
or the northern region in R � 12. In the southern region both models
re in agreement with our results for R � 11.5 kpc, after this radius
he differences increase up to several kpc in the outer regions. The
arp model presented by Chrob ́akov ́a, Nagy & L ́opez-Corredoira

 2020 ) is in clear disagreement in both the northern/southern regions
ith all other warp models using similarly old tracers (like Cheng

t al. 2020 ) and with ours and all other results for young tracers.
s we will discuss in Section 5.2 , these differences in amplitudes
etween the models will become important in the determination of
he pattern speed of the warp. Results from Ard ̀evol et al. ( 2023 ) for
he kinematics of A-type stars population have shown a clear signal
f the warp in the anticentre direction ( φ = 180), the increasing
 ertical v elocity as a function of the radius from R ≈ 12 kpc, reaching
6 −7 km s −1 at R = 14 kpc, similar to our results. 4 

The issue of the warp’s dependence on age of the stellar tracer
emains an open question. Older stellar populations like RGB stars,
ed Clump stars and other tracers older than Cepheids may trace a

imilar warp considering the uncertainty in the parameters of each
odel and their validity range. Also, Cantat-Gaudin et al. ( 2020 )

eported that stellar clusters typically older than 1 Gyr trace the
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outhern region of the warp similarly to the Cepheids. Thus, it is
nclear whether there are significant discrepancies between the warps 
raced by older and younger populations. 

Among previous results available at present, either the predictions 
f models with age dependency deviate significantly from the warp 
bserved for bona fide young tracers like the Cepheids, as seen 
n the case of Am ̂ ores, Robin & Reyl ́e ( 2017 ), or there is not
nough discrepancy in the differences (considering uncertainties) 
o determine an age dependency for the warp, as in the case of results
rom Wang et al. ( 2020 ) shown in Fig. 8 . The uncertainties in the
arameters obtained by Wang et al. ( 2020 ) for all ages are large
nough to allow for the agreement of all models from 1 to 12 Gyr
ith our result with Cepheids. In particular the model for 9 Gyr

not shown), an age completely incompatible with that of Classical 
epheids, is the one in best agreement with our results. Taking into
ccount the restrictions present in some of the models regarding 
he asymmetry and radial dependence of the warp, each model’s 
alidity range in distance and azimuth, and the current precision of
he observed warp using different tracers, it remains unclear whether 
r not there is an age dependency in the warp. 

.1.2 Asymmetries and deviations from the tilted rings model 

ur results, as well as several previous ones, showed that a tilted
ings model ( Z = A ( R )sin ( φ − ϕ( R )) or M = 1) does not explain
any of the features observed at different radii in position and in

inematics. For Z , the presence of a plateau at 10 kpc � R � 11 kpc
nd φ ≈ 180 ◦ shown in the second panel of Fig. 1 , where the warp in
 is already present, cannot be explained without an m = 2 mode. At

hat distance, the tendency of the disc to warp towards the southern
emisphere is clear at φ ≈ 240 ◦, still far enough in azimuth from
he strong obscuration towards the bulge ( | φ| < 90) to be an effect
f the SF. The bootstrapping realizations shown in Figs 1 and 2 that
he plateau is well reco v ered, for this reason we consider unlikely
o be an artefact of statistical noise. The northern extreme lies in
he first quadrant and so its inference is more affected by SF effects
ue mainly to obscuration, hence, it is less well constrained than the
outhern e xtreme. Nev ertheless, the e xtremes of the warp (in Z ) are
ound to be ≈120 ◦ apart, while in a tilted rings model this difference
ust be 180 ◦ by construction. The observed shape resembles the ‘S-
opsided’ warp model presented by Romero-G ́omez et al. ( 2019 ).
 better azimuthal co v erage in the first quadrant and behind the
ulge (currently unavailable due to extinction) would provide better 
onstraints for this model. Our result is robust, ho we ver, since better
o v erage can only make the difference between the warp extremes
ven smaller if the northern extreme lies closer to the bulge. 

In the kinematics, a static warp (i.e. ω m = 0 and Ȧ m 

= 0) with
 plateau would create a distinctive shape in V z . If we consider a
tar rotating with angular velocity � following the shape presented 
n the second panel of Fig. 1 , then, because the star rotates in the
irection in which φ decreases, after passing the minimum in φ ≈
00 ◦ the star increases its vertical velocity until it reaches the plateau
 φ ≈ 180 ◦) where V z ≈ 0, then, on its way to the maximum Z close
o φ ≈ 60 ◦ the star gains V z until a certain point after which its V z 

ecreases to zero when it reaches the maximum Z . This creates two
axima in V z , one before the plateau and another one after it. A toy

epresentation of a plateau would be Z( φ) = A 1 sin ( φ) + 

A 1 
2 sin (2 φ);

or a star rotating with angular velocity � in a static plateau, this will
ive V z ( φ) = �A 1 (cos ( φ) + cos (2 φ)), which shows the geometry
escribed before. This shape is observed in the second panel in 
ig. 2 . We also take the ratio between the amplitudes of the modes
 = 1 and m = 2 in Z and V z and found consistency with what
s expected from the toy model ( A 1 

A 2 
≈ 2 and V 1 

V 2 
≈ 1 around R ≈

0.5). This peculiar signal was also observed in proper motions by
omero-G ́omez et al. ( 2019 ) in the RGB population, who interpret

t was a signal of the lopsidedness of the warp. As we see here it
s actually a characteristic signal of the S-Lopsided model due to
ts plateau. An indirect evidence of the plateau is also illustrated in
ig. 5 by the large dispersion of the LON for R � 11.5 kpc where

he LON is ill-defined. For R > 11.5 kpc, the plateau disappears,
nd the dispersion in Fig. 5 is sharply reduced as the disc is
ignificantly inclined and the LON becomes well-defined. For R > 

1.5 kpc other features that differ from a tilted rings model are still
resent, like the azimuthal asymmetry between the two extremes. 
he angular difference between them grows but never reaches 180 ◦,
eaning that an m = 2 mode is needed to describe the galactic
arp. In consequence, the tilted rings (i.e. M = 1) model is unable

o accurately describe the observed azimuthal location of the warp 
xtremes at any radius. 

In Section 4.1.2 , we presented our results of the asymmetry
etween the north and south extremes in the Cepheid’s warp. Asym-
etry between the height of the warp extremes, or lopsidedness, has

lso been reported by Chen et al. ( 2019 ) and Skowron et al. ( 2019a )
or the Cepheids sample, by Levine, Blitz & Heiles ( 2006 ) for the H I

omponent and also by Romero-G ́omez et al. ( 2019 ) for the OB and
GB populations. All these works seem to agree in the existence of
n asymmetrical distribution, with the H I as the best exponent of this
eature. In our results, the northern extreme is larger by ≈0.25 kpc
t 11.5 < R /kpc < 13 which declines to a mean difference ≈0.1 kpc
or R > 13.5 kpc as shown in Fig. 3 . For comparison, the figure also
hows the north/south asymmetry for the warp model obtained by 
kowron et al. ( 2019a ). This difference behaves like a mean trend of
ur result as a consequence of the assumption of constant phases for
he modes and the polynomial radial dependence of the amplitudes. 
he observed asymmetry in the outer disc is similar to that found for

he OB population at R ≈ 14 kpc by Romero-G ́omez et al. ( 2019 ),
ut note that Romero-G ́omez et al. ( 2019 ) report an amplitude for
he warp traced by OB of 0.3 kpc, much lower than the 0.8 kpc
e observe for the Cepheids warp. For the RGB stars, which are
lder than the Cepheids, Romero-G ́omez et al. ( 2019 ) report a larger
symmetry (red line) but with the opposite sign. This would mean the
GB present a warp with similar amplitude to the Cepheids but larger
t the southern extreme. As we show in the following discussion, this
ay be due to an azimuth dependency of the asymmetry measured. 
We have also found an azimuthal dependency in the asymmetry. 

ig. 8 shows how the warp at φ = 90 ◦ (north) and φ = 270 ◦ (south)
resents a southern region with a larger departure from the mid-plane
n the outskirts of the disc ( R ≈ 15.5 kpc), but in Fig. 3 comparing the
orth and south extremes we get a northern warp height that is larger
t all radii (see also Fig. 4 ), with a decline in asymmetry towards
 minimum almost constant value at the outer disc ( R > 13 kpc).
ere, the twisted LON can create misleading interpretations in the 
easurement of the asymmetry, depending on how this measurement 

s made. Because the LON is leading and closely centred around φ
180 ◦ (see Fig. 4 ), a sample which co v ers the region 90 ◦ < φ <

70 ◦ will tend to co v er mostly re gions below the galactic plane (the
ean Z in azimuth between 90 ◦ < φ < 270 ◦ is below the plane for
 > 13 kpc). Hence, comparing Z at symmetric azimuths φ = 180 ◦

	 , rather than symmetric with respect to the LON, will tend to
how a warp with larger amplitude below the plane. In Fig. 9 , we
how the result of taking differences between the absolute values 
n height abo v e/below the plane at lines of sight symmetric with
espect to the Sun-Anticentre line, i.e. | Z (180 ◦ − 	 ) | and | Z (180 ◦
MNRAS 528, 4409–4431 (2024) 
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Figure 9. Difference 	 Z = | Z (180 ◦ − 	φ) | − | Z (180 ◦ + 	φ) | between 
two constant azimuths symmetric with respect to the anticentre direction φ = 

180 ◦, as a function of galactocentric radius. Results for RGB stars reported 
by Romero-G ́omez et al. ( 2019 ) are also shown. 
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 	 ) | for different 	 . This clearly shows how measurements of the
symmetry at azimuths symmetric with respect to the Sun-Anticentre
ine will yield a different result than when the extremes of the warp
re compared. This is a consequence of both the twisted LON and
he extremes of the warp never being diametrically opposed (Fig. 3 ).
f the effect introduced by the twist in the LON found with Cepheids
s also present in other populations, then different values for the
symmetry may not be enough to ensure different warps for different
opulations if the azimuthal dependency of the LON is not taken into
ccount. 

The results for the RGB sample obtained by Romero-G ́omez et al.
 2019 ), who reported a warp larger in the south than in the north, are
lso shown in Fig. 9 . The north/south extremes found by Romero-
 ́omez et al. ( 2019 ) are roughly symmetric with respect to the Sun-
nticentre line, so comparison in Fig. 9 is appropriate, and this

hows their results are consistent with ours for various 	 Z at their
easured distance of R ≈ 14 kpc. Results for the OB population

hat were shown in Fig. 3 to be in agreement with ours regarding the
symmetry are not shown here because they do not correspond to
easurements made symmetric with respect to the Sun-Anticentre

ine. 

.1.3 Line of nodes and line of maximum V z 

n Section 4.1.3 , we presented results for the LON. As was previously
eported by Chen et al. ( 2019 ) and more recently also by Dehnen,
emczuk & Sch ̈onrich ( 2023 ), the LON in the warp traced by
epheids is twisted in the direction of the stellar rotation, meaning
 leading LON, as shown in Figs 4 and 5 . This leading LON is
n accordance with Briggs’s Third Rule for warps (Briggs 1990 ),
hich states that warp’s LONs are straight for R < R H 0 and twist for
 > R H 0 , where R H 0 is the Holmberg radius. Although these rules

re derived for the warps traced by H I , they are expected to also
pply for warps in the young population. Chen et al. ( 2019 ) estimate
he Holmberg radius at R H 0 = 11 . 4 kpc, its LON and its R H 0 are
lotted in Fig. 5 (cyan curve and dashed vertical lines, respectively).
e found better agreement between the R H 0 and our twist’s starting

adius, than that of Chen et al. ( 2019 ), which starts further out in the
isc, as shown in Fig. 5 . For R � 12.5 kpc, the LON obtained by
hen et al. ( 2019 ) is in quite good agreement with our results. We
NRAS 528, 4409–4431 (2024) 
elieve that the difference for R < 12.5 kpc between both works is
ecause, fitting only with one mode, the m = 1 mode in Chen et al.
 2019 ) has to represent the whole warp despite its asymmetries. For
his reason, and its relatively low amplitude in R < 12.5 kpc, the
 = 1 mode in Chen et al. ( 2019 ) behaves as a mean between our
ON (the full fit) and the phase of our m = 1 mode (blue dots).
he LON twist is also suggested by Romero-G ́omez et al. ( 2019 )

o be present in the warp traced by RGB stars, but with an opposite
irection, i.e. a trailing LON. Ho we ver, Romero-G ́omez et al. ( 2019 )
arn that this result may be driven by selection effects due to

xtinction. 
In Section 4.1.3 , we show how the LON and the LMV z have a

imilar twist but they do not o v erlap, having an almost constant phase
ffset of 25.4 ◦ between them. Both lines lie in the region of the disc
est populated by our data (as seen in Fig. 4 ) and best reco v ered in
ur tests with simulations from Section B1.1 . Therefore, we consider
oth lines to be robust and not affected by biases. The difference in
hase between the two lines could be due to the presence of m ≥ 2
odes in the o v erall warp. Romero-G ́omez et al. ( 2019 ) also found an

ffset between the LON and the maximum vertical proper motion for
he RGBs and attributed it to the lopsidedness of the warp. According
o Romero-G ́omez et al. ( 2019 , see their fig. 8 and section 5.1), the
MV z for the RGBs may lie at φ ≈ 160 ◦−170 ◦ (they observe μb ,LSR 

ather than V z ), leading their LON (at φ ≈ 180 ◦−200 ◦) and also ours,
ut with a twist opposite to our results with Cepheids. Again, this
esult for the RGBs may be subject to selection effects which may
ave affected the inference of the LON. 
In a warp dominated by the m = 1 warp in both Z and V z , a change

n amplitude with time could be responsible for the out-of-phase
ON and LMV z . The phase offset δ between the LON and LMV z is
iven by ϕ 1 − ϕ 

V 
1 + π/ 2, so equation ( 13 ) translates into 

˙
 1 = V 1 sin δ (22) 

irectly relating the phase offset with the amplitude change. There
re sev eral cav eats, howev er. First, as we hav e shown, for Galactic
epheids the m = 1 mode dominates the warp in Z but not in V z ,

n which the m = 2 mode has a comparable amplitude at all radii.
econdly, an LMV z trailing the LON implies δ < 0, and equation
 22 ) would require Ȧ 1 < 0 in contradiction with our results and those
rom Dehnen, Semczuk & Sch ̈onrich ( 2023 ) shown in Fig. 6 , which
how that Ȧ 1 ≈ 0 up to R ∼ 14 kpc and Ȧ 1 > 0 at larger radii.
herefore, the evolution of the m = 1 mode alone cannot explain the
bserved phase offset between the LON and LMV z . 
We tested whether shifting the disc mid-plane can mo v e the LON

o coincide with the LMV z . To do so we would need to shift the stars
y −240 pc, the mean vertical height of the stars along the LMV z .
his would be too big a shift compared to the typical uncertainties
f the position of the Sun abo v e the Galactic plane (of the order
f tenths of pc, see e.g. Chen et al. 2001 ), making this explanation
nlikely. 
In conclusion, we find the most plausible explanation for the phase

ffset between the LON and LMV z to be the presence of m > 1 modes
hich deviate the LMV z from the LON, meaning that lopsidedness
ould indeed be the main driver of this offset as suggested also by
omero-G ́omez et al. ( 2019 ) for the RGB sample. Samples with

arger azimuthal co v erage and also with measured line of sight
elocities may help to confirm modes with higher frequencies in
 and V z , and settle the reason behind this out-of-phase LON and
MV z . 
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Figure 10. Z (left panel) and V z (right panel) as a function of galactocentric radius for nine evenly spaced azimuthal cuts from φ = 120 ◦ to 240 ◦. The range 
of azimuth is selected to be in the region of the disc more populated by data and less affected by the SF. In the right panel, the black curve represents the mean 
from the coloured ones. 
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.1.4 The twist and velocity arcs 

n Section 4.1.3 , we showed the LON and LMV z are twisted and
ound these are well represented by straight lines in the plane φ,
 (equation 20 for the LON and plus an offset for LMV z ). These
arameters are also explored by Dehnen, Semczuk & Sch ̈onrich 
 2023 ) who present two LONs as a function of guiding radius for
he warp traced by Cepheids, obtained from two different methods 
mean orbital plane and mean position plane) and find a rate of
hange in the LON of −14.7 ± 0.7 deg kpc −1 (mean orbital plane)
nd −10.6 ± 0.8 deg kpc −1 (mean orbital position). Our result 
12.7 ± 0.3 deg kpc −1 lies between the two values. 
As the disc rotates and the LON wraps up and gets more and
ore twisted, the disc could appear to have ripples if the LON wraps

round more than once around the disc. The rate of change of the
ON with R can be associated with the inverse of a radial wavelength
f these ripples. If we take a simple tilted rings model ( Z ( R ) ∝ sin ( φ
ϕ( R ))) and look at how it changes radially for a constant azimuth,

.g. φ = 0, then the warp will cross the plane at ϕ( R j ) = j π . Therefore,
f the phase is described by ϕ = αR + β, α it can be easily associated
ith a wavelength by λLON = 

2 π
α

5 . This wavelength is the radial 
istance between two warp peaks at a constant φ, if the LON and
he amplitudes do not change its behaviour. For our LON, we obtain
LON ≈ 28.4 kpc. In the left panel of Fig. 10 , we show how this

wisted LON creates long arcs in Z for different azimuths. 
The right panel of Fig. 10 shows V z as a function of R for

ifferent azimuthal cuts, in which the velocity is seen to create 
rcs whose peak changes in radius for different azimuths. These 
rcs are explained by the twisted LMV z together with the growth in
mplitude in the kinematic signal as a function of R . These arcs are a
irect consequence of the twist in the LMV z because the kinematic 
ignal does not decline, and also because the peaks of the arcs mo v e
utwards as phi decreases, as expected for the leading LMV z . Of
ourse, the change in amplitude and the asymmetries play a role in
he position of the maximum, but the main driver of this arcs is the
wist in the LMV z . 

These arcs in V z have been observed by previous works using
aia DR2 and DR3 with other stellar tracers (Cheng et al. 2020 ;
aia Collaboration 2021 ). Cheng et al. ( 2020 ) pointed out that these

rcs in V z are a consequence of the pattern speed in a tilted ring
 In this approach, we have ignored the amplitude ( ∂ R A/A ≈ 0) which can 
hange the distance between the peaks, but this change is negligible in 
omparison with our uncertainties. 

5

I  

c  
odel, and indeed an arc can be created with just a constant pattern
peed and a growing kinematic signal without a twisted LON. This
s because the growing amplitude gets modulated by the factor ( �

ω) so V z grows and then starts to decline as the co-rotation radius
s achieved where V z is null (if Ȧ = 0), creating an arc. But this
xplanation cannot take into account the change of the arc shape as
 function of the azimuth (as shown in the right panel of Fig. 10 ),
hich can only be due to the twisted LMV z , which is a consequence
f the twisted LON and the combination of the different evolutionary
erms of the warp modes, not only the pattern speed of the m = 1
ode. 
Here, we have shown these arcs in V z are a direct consequence of

he twisted LMV z . It is worth noticing that the LMV z does not track
he line of maximum in V z of the arcs presented in Fig. 10 due to the
hange in amplitude as a function of R . 

Because the LMV z has the same twist as the LON, λLON represents
lso the radial distance between two V z peaks at a constant φ. Using
he same λLON for the LMV z we may expect from a extrapolation
f this oscillatory behaviour the minimum in V z at the anticentre
irection to be around R ≈ 28 kpc and the point of null V z to
e around R ≈ 21 kpc. Wang et al. ( 2023 ) used Gaia DR3 to
ap the disc population out to R ≈ 23 kpc. In their Fig. 3 , the

isc’s vertical velocity goes from positive to negati ve v alues at R
 20 kpc. These results seem to support our prediction, assuming

LON holds for the entire Gaia DR3 sample used by Wang et al.
 2023 ). Future extended maps of V z may prove helpful to explore
hether this analysis also holds for R > 20 kpc and for other stellar 
opulations. 
Finally, Poggio et al. ( 2021 ) have shown with an N -body simulation

f the Milky Way affected by the Sagittarius dwarf galaxy, that
he m = 1 mode has prograde rotation if the Milky Way disc and
agittarius are close to an interaction. After approximately a few 

yr the prograde motion coherent with the m = 2 mode disappears.
erhaps the coherent rotation between the m = 1 and m = 2 modes
lose to an interaction found by Poggio et al. ( 2021 ) is the reason
hy the azimuth of the LON and the LMV z are well approximated by
 monotonic (linear) dependence as a function of radius; without a
oherent mo v ement in the outskirts of the disc the LON may behav e
ore erratically than is observed. 

.2 Time evolution 

n Section 4.2 , we provided a new formalism to derive the time
hange of each mode’s amplitude ( Ȧ m 

) and pattern speed ( ω m ) at
MNRAS 528, 4409–4431 (2024) 
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M

Table 4. Pattern speed for the m = 1 mode in (km s −1 ) kpc −1 given by our 
mean value for R > 12 kpc, Poggio et al. ( 2020 ) and Cheng et al. ( 2020 ). 

This work 〈 ω 1 〉 R > 12kpc Poggio et al. ( 2020 ) Cheng et al. ( 2020 ) 
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ach ring, from the Fourier decomposition of its Z and V z . This new
ormalism is free from assumptions on how the amplitude and phase
f each mode depends on the radius. By applying it to the Cepheids
e derived the pattern speed and change in the amplitude of the m =
 mode for R > 12 kpc. 
The dominant mode in Z for the warp is the m = 1 mode as expected

or an S-type warp, so its evolution may drive most of the time
volution of the warp. In Fig. 7 , we show that, within uncertainties,
 1 shows a mean rotation of 9.2 ± 3.1 km s −1 kpc −1 6 and its
rror corresponds to the standard deviation of posterior realizations
rom the independent rings, in agreement with previous reports from
oggio et al. ( 2020 ) and Cheng et al. ( 2020 ), presented in Table 4 .
ome oscillations are present, similar to the results obtained by
ehnen, Semczuk & Sch ̈onrich ( 2023 ), the main difference being

hat for R < 12 kpc they found differential rotation slightly larger
han we do, perhaps as a consequence of our use of the galactocentric
adius as opposed to their use of the guiding centre. We note,
o we ver, our results from simulations (Appendix B ) suggest ω 1 may
e o v erestimated in this radial range. 
Chrob ́akov ́a & L ́opez-Corredoira ( 2021 ) present arguments about

ow the o v erestimation in the amplitude of the warp leads to
n o v erestimation in its pattern speed, 7 therefore getting a lower
mplitude of the warp will translate into a slower precession. This
s well reflected by our equation ( 14 ). Ho we v er, the v ery low
mplitude of the warp presented by Chrob ́akov ́a, Nagy & L ́opez-
orredoira ( 2020 ) seems unrealistic when compared to the rest of

esults from the literature, even compared to those with similar
racers as Cheng et al. ( 2020 ). Chrob ́akov ́a & L ́opez-Corredoira
 2021 ) also present a warp model for the younger population in its
ample, with very similar results as obtained for the total sample. This
articular disagreement in amplitude with the models of the young
opulations may indicate that the model by Chrob ́akov ́a, Nagy &
 ́opez-Corredoira ( 2020 ) may be significantly underestimating pre-
ession rate of the warp, as a consequence of the underestimated 
mplitude. 

Equation ( 14 ) also makes it clear why our results for ω 1 are similar
o those of Poggio et al. ( 2020 ) and Cheng et al. ( 2020 ), despite
ifferent assumptions in the three warp models, like the amplitude
r the fixed phase φ1 . This equation shows that ω 1 depends on the
ifference between the phase of the mode in Z and in V z , therefore,
t does not matter where they are located or if they are twisted, as
ong as the phase difference is the same. Because in the Milky Way
he assumption that φ1 − φV 

1 ≈ − π
2 seems to hold at least up to R

14 kpc, which is the same as assuming Ȧ 1 ≈ 0, independently of
hich φ1 the model adopts or if it is twisted or fixed ω 1 will not
e influenced by this assumption as long the model adopts Ȧ 1 ≈ 0.
lso, the assumed amplitude affects ω 1 as was previously mentioned,
ut ω 1 gets saturated by o v erestimations in A 1 , because as A 1 →
 then ω 1 → � (because the kinematic signature V 1 makes ω 1 

 �). This may be the reason why Cheng et al. ( 2020 ), with its
NRAS 528, 4409–4431 (2024) 

 The mean was obtained with measurements in independent rings for R > 

2 kpc. 
 This relation holds for a warp with prograde rotation. 
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arger amplitude, gets a larger ω 1 than ours, and also why Poggio
t al. ( 2020 ) with the same kinematic signature gets a larger ω 1 ,
s it uses larger amplitudes. In this analysis of ω 1 , we have left V 1 

onstant because the kinematic amplitude of the warp seems similar
or different tracers as shown by Gaia Collaboration ( 2021 ). These
ould be the reasons why Poggio et al. ( 2020 ) and Cheng et al. ( 2020 )
et similar results to ours, even when they do not consider a twisted
1 and when their amplitudes are larger than ours. We should add that

he difference in amplitude is not the only parameter that plays a role
n this analysis, the rotation curve and the kinematic signal are not the
ame between the works cited and they can change the pattern speed
easurements, so we expect that these differences to also play a 

ole. 
Previous works on the time evolution of the warp neglect the

ontribution by the change in amplitude to the warp’s kinematics
Cheng et al. 2020 ; Poggio et al. 2020 ). Poggio et al. ( 2020 ) argue
hat the effect of Ȧ 1 may be a second-order effect in the kinematics.
ur results shows empirically that the change in amplitude can be
eglected at least up to R ≈ 15 kpc. Wang et al. ( 2020 ) finds the
hange in amplitude derived from the young population ( ≈1 Gy)
o be null, which within uncertainties is consistent with our mean
easurement up to the radial limit to which Wang et al. ( 2020 )

estricted its sample, i.e. R = 14 kpc. For R > 14 kpc, we found
˙
 1 > 0, reaching a maximum Ȧ 1 ≈ 5 km s −1 , this tendency is

lso observed in the change of the inclination in the tilted rings
odel by Dehnen, Semczuk & Sch ̈onrich ( 2023 ) with similar 

alues. 
The prograde rotation of the m = 1 mode found with Cepheids

s expected in the context of a disc embedded in a prolate halo
s shown by Ideta et al. ( 2000 ) and Jeon, Kim & Ann ( 2009 ).
o we ver, if this were the case, the prograde motion should be
uch slower (0.1 km s −1 kpc −1 to 1.5 km s −1 kpc −1 ) than our 

esult. 
Although the m = 1 mode rotates almost rigidly, this does not

uarantee a rigid rotation of the LON, because the m = 2 mode
lso plays a role in the LON evolution, and in V z its amplitude is
omparable to that of the m = 1 mode. Due to the poor reco v ery
xpected for the m = 2 mode (Section B1.2 ), a deri v ation of ω 2 and
˙
 2 with our data would be biased, so we cannot ensure the evolution
f the LON or of the whole warp to be one with rigid rotation. The
 = 1 mode also presents a growing amplitude for R > 15 kpc,

s is also reported by Dehnen, Semczuk & Sch ̈onrich ( 2023 ). For
 < 14.5 kpc, the changes in amplitude are insignificant within the
ncertainties; therefore, we present a warp which, at first order, shows
 stable behaviour for R < 14.5 kpc but still evolving in the outskirts
f the disc. 
In our deri v ation of ω m and Ȧ m 

, we have ignored the radial velocity
nd azimuthal changes in �. Considering a radial motion of 10 km s −1 

ven when radial velocities may seem to be slower (Cheng et al.
020 ), we found that Ȧ 1 may change by about 1 km s −1 and ω 1 by
 km s −1 kpc, which are in the order of the uncertainties. Also, that
he radial bulk motion reported by Cheng et al. ( 2020 ) is inwards
or R � 14 kpc will translate into a decrease in the measurement
f Ȧ 1 unless it is considered. Therefore, the growth in amplitude
or R � 14 kpc cannot be reduced by taking the radial motion into
onsideration (in fact, it should increase). These changes are smaller
han the uncertainties in the results presented in this work, therefore
e do not take them into account in our analysis. These features could
e added to the analysis by considering a field of radial velocity and

described by Fourier sums at different radii. The extension of our
ormalism to account for the radial component will be presented in
 future work. 
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 C O N C L U S I O N S  

n this work, we have used the Skowron et al. ( 2019b ) catalogue
f Classical Cepheids to study the structure and kinematics of the 
ilky Way warp by means of Fourier Decomposition methods. 

hese are the first results presented in the literature for the Fourier
ecomposition of the warp in V z . Our main results regarding the

tructure and kinematics of the warp are the following: 

(i) The warp is clearly lopsided, both in Z and V z . In Z , the
mplitudes of the m = 1 and m = 2 modes are comparable up to
 ∼ 13 kpc. At larger radii the m = 1 mode dominates, as found
reviously by Chen et al. ( 2019 ) and Skowron et al. ( 2019b ). In V z ,
he amplitudes of the m = 1 and m = 2 modes are comparable at all
adii. The m = 0 mode does not play a major role in the o v erall warp
hape, we detect a bowl-like shape in the radial range 11.5 < R /kpc
 13 with a maximum amplitude of ≈200 pc. In V z , the m = 0 mode

s almost null for R > 10 kpc. 
(ii) The warp presents a plateau at 10 < R /kpc < 11. The observed

hape resembles that of the S-lopsided model from Romero-G ́omez 
t al. ( 2019 ). The double peak observed in V z at this radius is
 kinematic signal associated with this plateau. It has also been 
bserved in the proper motions of Red Clump stars by Romero-
 ́omez et al. ( 2019 ). 
(iii) The warp is clearly asymmetric up to R ∼ 13 kpc, with a

orthern warp larger than the Southern warp. In the outer disc ( R �
3.5 kpc) the warp becomes symmetric to within uncertainties. 
(iv) The extremes of the Cepheid warp in Z are never diametrically 

pposed. The difference in azimuth between the warp extremes is 
120 ◦ at R ∼ 10 −11.5 kpc and increases up to 140 ◦ at R ≈ 12.5 kpc,

emaining constant at larger radii. 
(v) The LON begins to twist at around R ≈ 11, which is close to

he Holmberg radius for the Milky Way (11.4 kpc, Chen et al. 2019 ),
n agreement with Briggs’ rules (Briggs 1990 ). The LON’s azimuth 
ollows a linear relationship with radius, presented in equation ( 20 ).

e found a twist of −12 . 7 ± 0 . 3 ◦
kpc . 

(vi) The LMV z does not coincide with the LON, but trails behind 
t with a constant offset of 25.4 ◦. We rule out that this offset is due to
he change in amplitude with time of the m = 1 mode, and explain
his offset as a consequence of the lopsidedness also present in the
inematics. 
(vii) The arcs in V z as function of R observed in other stellar

opulations (Cheng et al. 2020 ; Gaia Collaboration 2021 ) are also
resent in the Cepheids sample. We show these are a consequence of
he twisted LMV z (see Fig. 10 ). 

We have also introduced a new formalism (Section 4.2 ), based 
n the joint analysis of the Fourier series in Z and V z , from which
he pattern speed and instantaneous change in amplitude for each 
ndividual Fourier mode can be derived. By applying this formalism 

o the Fourier Decomposition obtained for the Cepheids in Z and V z ,
e derive the pattern speed and amplitude change of the m = 1 mode

s a function of radius. Our main results are as follows: 

(i) The m = 1 mode shows a prograde differential rotation for 11
 R (kpc) < 13 with ω 1 going from ∼−20 km s −1 kpc −1 at R ∼

0 −11 kpc to −9.18 km s −1 kpc −1 at R ∼ 13 kpc. Our results from
imulations, ho we ver, suggest ω 1 may be o v erestimated in 11 < R
kpc) < 13 this radial range. 

(ii) The amplitude of the m = 1 mode remains approximately 
onstant, with Ȧ 1 ≈ 0 km s −1 for R < 14.5 kpc. The amplitude
hange has a growing tendency for R > 15 kpc, reaching Ȧ 1 ≈ 5 km
 

−1 at R ≈ 15.5 kpc. 
Thanks to the precise measurements from Gaia DR3 and distances 
rom Skowron et al. ( 2019a ) to its sample of Cepheids, we can explore
he complex signal of the warp in both its structure and kinematics.
uture Cepheid samples with increased co v erage in the first and
ourth quadrants will contribute to better restrict the parameters of the
arp. A better understanding of the warp kinematics is necessary to
ake more robust comparisons with simulations and with analytical 
odels of its dynamics, which can lead to better constraints on the

ossible history of the warp and its role in the evolution of the Milky
ay disc’s dynamics. Furthermore, the complexity revealed may 

ot be unique to the Galactic warp, understanding it will help also
nderstand warps in external galaxies. 
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hrob ́akov ́a Ž. , Nagy R., L ́opez-Corredoira M., 2020, A&A , 637,

A96 
ehnen W. , Semczuk M., Sch ̈onrich R., 2023, MNRAS , 523, 1556 
aia Collaboration , 2021, A&A , 649, A8 
aia Collaboration , 2021, A&A , 649, A8 
RAVITY Collaboration , 2022, A&A , 657, L12 
ogg D. W. , Bovy J., Lang D., 2010, preprint ( arXiv:1008.4686 ) 
unter J. D. , 2007, Comput. Sci. Eng. , 9, 90 

deta M. , Hozumi S., Tsuchiya T., Takizawa M., 2000, MNRAS , 311,
733 
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PPENDI X  A :  MA  T H E M A  T I C A L  DEFI NI TIO NS  

O R  T H E  I NFERENCE  

n this section we expand on the definitions of various mathematical
bjects used in Section 2 . We begin defining the vector CS ( φ) as 

S ( φ) = [1 , cos ( φ) , cos (2 φ) , ..., cos ( Mφ) , sin ( φ) , ..., sin ( Mφ)] , (A1) 

we can write the matrix A as 

 = 

N ∑ 

i= 1 

CS ( φi ) ⊗ CS ( φi ) 

σ 2 
i 

, (A2) 

where ⊗ denotes the outer product, φi the azimuth of the i th star
nd the σ i its dispersion defined as 

2 
i = σ 2 

z i 
+ σ 2 

ID 

, (A3) 

here σz i is the uncertainty in z and σ ID the intrinsic dispersion. 
The vector p is defended as 

p = 

N ∑ 

i= 1 

z i 

σ 2 
i 

CS ( φi ) . (A4) 

PPENDI X  B:  VA LI DATI ON  WI TH  

I MULATI ONS  

n this section, we use a warped galactic disc simulation to analyse
he performance of the method described in Section 2 when applied
o mock data. We analyse ho w observ ational errors and the SF of the
ata affect the reco v ery of each mode’s parameters in Z and in V z ,
he full Fourier sum, and the intrinsic dispersion in different regions
f the disc. 

1 Structure and kinematics 

or our warped galactic disc model (without observational errors
r SF), we use the test particle simulation of the Sine Lopsided
arp from Romero-G ́omez et al. ( 2019 ). This is an S-shaped warp
odified from a simple tilted rings model to allow for an warp with

n arbitrary asymmetry (a 3D representation is shown in fig. B1 in
omero-G ́omez et al. 2019 ). The warp is such that the height of the
ean plane of the disc is given by 

 z( R, φ) 〉 = R sin ( φ) sin ( ψ( R, φ)) , (B1) 
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Figure B1. Each panel in the left column shows Z as a function of R centred at four different Galactocentric azimuths (from top to bottom φ = 0.0 ◦, 90.0 ◦, 
180.0 ◦, and 270.0 ◦) with 	φ = 5 ◦. The same is shown in the right column for V z . The dif ferent solid curves sho w: the analytical prediction for the mean 
position of test particles in the warped potential (red curve), the ground truth model (black curve) and the SF model (blue curve) for the variable Z . The grey 
dots represent the stars used for the GT model, and the blue ones represent the star used for the SF model. The mean absolute difference between the SF and GT 

models for each φ is reported in the title. 
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where 

( R, φ; R 1 , R 2 , α, ψ up , ψ down ) = [ A + B sin ( φ)] f ( R; R 1 , R 2 , α) 

(B2) 

f

with A = 

1 
2 ( ψ up + ψ down ), B = 

1 
2 ( ψ up − ψ down ), and f having the

ollowing expression 

 ( R; R 1 , R 2 , α) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 R ≤ R 1 (
R−R 1 
R 2 −R 1 

)α

R 1 < R < R 2 , 

1 R ≥ R 2 

(B3) 
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M

Figure B2. Each plot shows the residuals between the fiducial model ( GT ) and the model reco v ered with the mock catalogue ( SF ), normalized by the intrinsic 
dispersion of the variable obtained in the fiducial model. The left and right panels show the residuals for Z and V z , respectively, for M = 1 (top) and M = 2 
(bottom). In each of the plots, the inner black ring at R = 10 kpc indicates where the warps starts, the outer ring is where the m = 1 mode begins to be greater in 
amplitude than the intrinsic dispersion. This happens at R = 12 kpc for Z and R = 14 kpc for V z . The pale grey dots are the stars in the mock catalogue used in 
the fit, and the black star indicates the position of the Sun. 

Figure B3. Each panel show the amplitude for the m = 0 (yellow), m = 1 (blue), m = 2 (violet) modes, and σ ID (black) for the SF model (dark solid lines) and 
the GT model (pale solid lines) obtained for Z (left panel) and V z (right panel). Each amplitude and σ ID is plotted as a function of radii. 
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where Romero-G ́omez et al. ( 2019 ) set R 1 = 10.1 kpc, R 2 =
4 kpc, α = 1.1, ψ up = 7.5 ◦ and ψ down = 4.25 ◦. These parameters
ere chosen so that they would represent a plausible model of the

symmetry observed in the Galactic warp. 
For the test particle simulation, the strategy followed by Romero-
 ́omez et al. ( 2019 ) was to initialize test particles in a a flat disc
NRAS 528, 4409–4431 (2024) 
elaxed in an Allen & Santillan ( 1991 ) Galactic potential, then warp
he potential adiabatically for five periods of the circular orbit at a
adius R = R 2 and finally let the stars relax for a further two periods
at R = R 2 ). The resulting configuration is such that stars at R < R 2 

pc are in statistical equilibrium with the imposed potential and their
ean z is described by equation ( B1 ). 
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Figure B4. Each panel shows the phase for the modes m = 1 (blue) and m = 2 (violet) for the SF model (solid dark line) and the GT model (solid pale line) 
obtained for Z (left panel) and V z (right panel), as a function of galactocentric radius R . 

Figure B5. The ratio between the difference in intrinsic dispersion by the GT 

model and the one obtained with the SF model, o v er the intrinsic dispersion 
of the GT model as a function of the galactocentric radii. The blue and 
green continuous curves correspond to the intrinsic dispersion of Z and V z , 
respectively. The black, blue, and green vertical dashed lines indicate the 
radius at which the warp begins, when the amplitude of the mode m = 1 is 
bigger than the intrinsic dispersion for Z and for V z , respectively. 

Figure B6. Angular frequency as a function of the galactocentric radii of 
the pattern speed ω 1 for the m = 1 mode, calculated from equation ( 14 ) for 
the GT model (black curve) and for the SF model (red curve), the angular 
velocity of the stars � (green curve) is derived analytically from the Allen & 

Santillan ( 1991 ) potential. The red dots around each ω 1 are 500 realization 
taken from the posterior at each ring for the SF model. 
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Figure B7. The change in amplitude Ȧ 1 for the m = 1 mode as a function 
of the galactocentric radius calculated from equation ( 13 ) for the GT model 
(black curve) and for the SF model (red curve). The red dots around each ω 1 

are 500 realization taken from the posterior at each ring for the SF model. 
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8 We tested a larger M and find that M > 2 does not impro v e significantly our 
results. 
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The test particles were initialized with a v ertical v elocity dis-
ersion of 16.6 km s −1 representative of Red Clump stars at the
olar radius. In this work, we will apply the method to a sample of
epheids, a kinematically colder population in which the detection 
f the warp is more fa v ourable. The results obtained for the Red
lump simulation will, none the less, still be useful to understand
he general advantages and flaws of the method described in Section
 . 
The mock catalogue from Romero-G ́omez et al. ( 2019 ) includes

he simulation of the Gaia DR2 observational errors and SF, as
escribed in their Appendix D. In what follows we will use this
ock catalogue down-sampled to N tot = 1997 to match the number

f Cepheids in our final catalogue (Section 3 ), keeping the simulated
rrors in proper motion, and assuming a 3 per cent error in distance,
epresentative of the photometric distances for the Cepheids in our 
ample (Section 3 ). Errors for V z were propagated from distance and
roper motion errors, assuming the radial velocity is inferred from 

he rotation curve, as described in Section 3 . 
Since the test particles in the Romero-G ́omez et al. ( 2019 )

imulation are only relaxed up to R = R 2 = 14 kpc, we need to
stablish a ground truth model representative of the whole disc that
an be used as a fiducial model against which results for mock
atalogues are compared. We take as our ground truth model (from
ow on GT model) the Fourier fits for Z and V z obtained by applying
he method described in the previous section to an arbitrarily large
ample of the simulation, without errors or SF and fitting up to the
econd order mode ( M = 2). 8 Other combinations for N , N tot , M for
he GT model were tested and we find that the selected one optimizes
MNRAS 528, 4409–4431 (2024) 
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he computational time required and gives us the detailed information
eeded. Finally, we will call the SF model the Fourier fits obtained by
pplying the method to the mock catalogue affected by observational
rrors and SF. In all cases, to compute σ ID we divide each ring in 15
qually spaced azimuthal bins and find the weighted average of the
tandard deviation. 

Fig. B1 compares the distribution of test particles in the GT (grey
ots) and SF (blue dots) simulated samples to the resulting GT and
F models (black and blue lines) in Z versus R plots for three different
zimuths. The figure shows in all cases the GT model does indeed
apture the behaviour of the test particles in the full radial range
nd coincides with the analytical prediction for R < R 2 . Beyond this
adius the stars cease to be in equilibrium with the potential and the
ean 〈 z〉 traced by the stars is not expected to follow equation ( B1 ).
he SF model agrees very well with the GT model o v er the whole
isc, capturing the o v erall behaviour of the warp. The mean absolute
ifference between the SF and GT models for each φ is reported
n the top label of each panel in Fig. B1 ( 〈| 	 Z |〉 R ), the maximum
| 	 Z |〉 R ≈ 0.40 kpc corresponding to the region most affected by
he bulge extinction ( φ = 0 ◦), and the minimum 〈| 	 Z |〉 R ≈ 0.08 kpc
hat corresponds to the region towards the anticentre ( φ = 180 ◦). In
ig. B1 , we notice that the general trend of the warp is reco v ered in
ll directions for the external region of the disc ( R � 10) where the
arp begins. 
The right panel of Fig. B1 shows the corresponding results for

 z . In this case, we compare only the results for the GT and the
F models, since there is no simple analytical form for V z ( R ) as
iscussed in appendix C in Romero-G ́omez et al. ( 2019 ). Again, as
n Z , the best-reco v ered re gion is around φ = 180 ◦ because it is less
ffected by the SF. All differences between the GT and SF models
re much smaller than the corresponding velocity dispersion, which
as a mean of 19.2 km s −1 throughout the disc. For both Z and V z 

he reduced chi square χ2 
n u shows that the GT model fits for Z and

 z are good ( χ2 
ν ≈ 1 ∀ R ). 

1.1 Azimuthal and radial biases 

ig. B1 hinted the existence of regions in which the reconstruction
f the warp given by the SF model lacks accuracy. We argue this
s due to the correlation between modes introduced by not having a
niformly distributed sample in azimuth and by stochastic clumps in
egions with fewer stars in the sample due to the SF. To illustrate
his, Fig. B2 shows, in each panel, a residual plot between the
F and the GT model in Z and V z (respectively top and bottom)
ormalized by the intrinsic dispersion given by the GT model (with
xed M = 2), for SF model fits with up to 1 (left) and 2 modes
right). Grey dots show the SF sample, the black star shows the Sun’s
osition, the inner ring is R = 10 kpc where the warp begins and
he outer ring is the radius in which the amplitude of m = 1 mode
s bigger than the intrinsic dispersion in the variable. The red and
lue colours correspond to o v er/under estimations by the SF model,
espectively. 

In Z , for both M = 1 and M = 2 the differences are greater at X
 0 kpc in the inner region before the warp begins. The discrepancy

s larger for M = 2 because when fitting with a higher number of
odes, in the areas most affected by the SF the higher frequency
odes tend to drive the fit towards the few data points available

ntroducing spurious oscillations where there is less data. For both
 = 1 and M = 2, the reco v ery is best for outer radii, where the
arp amplitude is larger than the intrinsic dispersion. For M = 1,

he differences start growing with radius due to the simulated warp’s
NRAS 528, 4409–4431 (2024) 
symmetry which is not well represented by the Fourier series with
 ≤ 1 modes, generating an m = 2 pattern in the differences. By

ontrast, the asymmetry is better captured by the series for M = 2 for
hich the discrepancies in the outer region are smaller. Ho we ver, a
int of the m = 2 pattern in the differences still remains; this is due
o a lower amplitude of the m = 2 mode reco v ered by the SF model
this is illustrated in left panel of Fig. B3 ). 

For V z we analyse the bottom panels in Fig. B2 , the left plot for
 = 1 and the right for M = 2. The differences between the SF and
T models are al w ays smaller for V z than the intrinsic dispersion

n the whole disc, both for M = 1 and M = 2, in contrast with the
eco v ery in Z where differences exceed the intrinsic dispersion in the
nner region. The best and worst recovery for V z are found in the same
egions as for Z because the azimuthal distribution is the same for
oth samples; with the best reco v ery at ne gativ e X , and the worst in
he internal disc at positive X . Finally, the differences between the SF
nd GT models are much lower in V z than in Z . As also discussed in
omero-G ́omez et al. ( 2019 ), this is expected because the SF creates
xclusion zones in Z due to high extinction near the Galactic plane,
ut does not in V z because the correlation between z and v z is weak
or a given star. 

Given these results, we decide to use M = 2 for Fourier fits for
his work because it offers the least biased reco v ery for the region of
he disc where the warp is most prominent (i.e. outer radii). Reliable
esults for the inner region of the disc are limited to 90 ◦ � φ � 270 ◦,
he region least affected by the SF with best co v erage, where biases
n the reco v ery are lowest. 

1.2 Recovery of individual modes 

o far we have analysed the reco v ery of the shape and kinematics
f the warp as a whole, given by the sum of the M individual modes
n the Fourier series. Now, we will analyse how well each mode is
eco v ered. 

Each mode m is characterized by its amplitude A m and its phase
 m in Z , and in V z with V m and ϕ 

V 
m 

. In Fig. B3 , we compare the
mplitudes for Z (left) and V z (right) as a function of R reco v ered for
he SF model (dark solid lines) against the v alues gi ven by the GT
odel (pale solid lines) for each mode. The intrinsic dispersion as a

unction of radius is also plotted in each panel. 
The left panel of Fig. B3 shows how for inner radii ( R < 10 kpc)

he disc is flat before the onset of the warp, as shown by the near
ero amplitudes for all modes in the GT model. Particularly for m =
, 2, the SF model finds non-zero amplitudes of the order of the
ntrinsic dispersion. Amplitudes are o v erestimated in the inner disc
ecause the modes make the full Fourier series flat in the region less
ffected by the SF ( φ ≈ 180 ◦), but it also tries to fit stochastic clumps
ar from the mid-plane at φ ≈ 0 ◦ where the SF has remo v ed stars
referentially in the disc plane. At the outer parts of the disc, the m =
 mode is o v erestimated by the SF model but the bias is reduced at
he external part of the warp ( R > 13 kpc), where the A 1 amplitudes
re larger. The m = 2 mode is o v erestimated due to correlations with
ther modes when the whole fit of the series is driven by stochastic
lumps at R � 10 kpc, as for the m = 1 mode. The m = 0 mode is
ell reco v ered o v er the whole disc. 
Some features observed for the amplitudes in Z are present also in

 z . F or e xample the amplitudes are not 0 km s −1 for R < R 1 due to the
parse azimuthal co v erage caused by the SF. For V z , the amplitude
f m = 1 is underestimated but the general trend is well reco v ered
y the SF model for R > R 1 = 10 kpc as in Z . The amplitudes of
 = 0, 2 have differences between the SF and the GT model, also
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s in Z , which is expected because both amplitudes in the GT model
re smaller than σ ID , which makes them harder for the SF model to
eco v er. 

Similarly to Fig. B3 , in Fig. B4 we compare how the phase of each
ode in Z (left) and V z (right) is reco v ered by the SF model as a

unction of radius. We do not plot the phase for m = 0 because it can
nly take two possible values ( −90 ◦ and 90 ◦). 
For the inner disc at radii R � R 1 = 10 kpc before the onset of

he warp, it is normal that the phase is badly reco v ered for all modes
ecause the (true) amplitudes are near zero at these radii and the
hase becomes meaningless. For the m = 1 mode the phase for both
 and V z are very well reco v ered, with no significant bias, for R �
2 kpc where A 1 > σ ID . For m = 2, the general trends are reco v ered
or R � 12 kpc, e.g. the twist in Z and V z showing the change of
hase as a function of radius. Ho we ver, we must be cautious in any
articular analysis of m = 2 as an individual mode due to the lack of
eco v ery by the SF model with this mode, its phase reco v ers some
f its tendency but without accuracy. 

1.3 Intrinsic dispersion 

inally, we analyse the bias introduced by the SF to the intrinsic
ispersion that our method calculates. To do so, we compute the 
ractional difference between the σ ID obtained with the GT and SF 

amples. These differences for Z (blue curve) and V z (green curve) 
re plotted in Fig. B5 as a function of radius. The black vertical
otted line at 10 kpc indicates the beginning of the warp, the blue
ne when the mode m = 1 for Z starts to be greater than σ ID , the
reen one is the same as the blue but for V z . 
First, for Z the reco v ered σ ID is increasingly o v erestimated at

nner radii until the warp becomes greater than the disc’s thickness; 
or larger radii, the reco v ered σ ID decreases and is off just by 10
er cent of the GT value. Both effects are due to the combination of
he increased warp amplitude and the SF. The SF makes the stars
ear the plane very unlikely to be observed due to high extinction,
hile the stars away from the plane are less affected by it; since

hese stars are further away from the disc plane (because of the
mplitude of the warp) this tends to inflate σ ID for Z . This effect is
xpected to be smaller for a dynamically colder stellar population like 
epheids. For V z , on the other hand, we find a mean underestimation
f 3 per cent, much smaller than for Z . We find the appearance of the
arp signal in V z has no effect in the ability to reco v er σ ID . Ov erall,

he reco v ery of the intrinsic dispersion affects the inference on the
mplitudes and phases in terms only of the dispersion of the posterior
DF, it does not introduce any systematic biases in the parameters 

hemselves. 

1.4 Assumptions on the rotation curve 

e tested how the assumed rotation curve may affect the inference in
he simulations and with the real data. We did not find any systematic
ias in the amplitudes, phases and intrinsic dispersion inferred from 

he mock catalogues when we used the v z derived from the rotation
urv e, ev en when using different rotation curv es. 

In the case of the Cepheids, we tested whether changing the 
otation curve offset by ±10 km s −1 could change our main results.

e found that different offsets change the amplitudes of the V z arcs
y ∼1km s −1 but do not change the general trend of the kinematic
ignal of the warp. The changes in ω 1 and Ȧ 1 due to changes in the
otation curve are insignificant in comparison with the uncertainties. 
2 Time evolution 

n this section, we validate the inference of ω m and Ȧ m 

by applying the
ormalism developed in Section 2.3 to the simulated sample affected 
y the SF and comparing it to results for the GT model (as in Section
1.2 ). By doing this we’re assuming that the formalism developed 
olds and will yield correct results for the GT model. Since the test
article simulation we are using has a fixed warp, we expect from
his test to reco v er a constant amplitude and null pattern speed in the
egion at equilibrium with the potential (i.e. R < R 2 = 14 kpc). In
he outer parts, the warp would be expected to evolve with time as
he stars relax in the potential. Because the warp model used in the
est particle simulation is not constructed by definition as a Fourier
eries, it is not straightforward to use this data to test the reco v ery
f specific values of the time evolution parameters. More involved 
ests in this direction could be done in a future work to validate the
ethod. 
In what follows we analyse the difference between the parameters 

rom both models for R > 10 kpc where the warp is present. We apply
his formalism only to the m = 1 mode due to the bias and noisy
eco v ery in the m = 2 mode parameters discussed in Section B1.2 . 

Fig. B6 shows the results for the GT and SF models for ω 1 as
 function of radius. For the GT model, we get ω 1 = 0 for R >

2 kpc (black curve in Fig. B6 ). The variations observed in ω 1 at
0 < R /kpc < 12 are expected in this region were the amplitude of
he mode is still very low and it’s pattern speed ill-defined. As the
mplitude of m = 1 mode increases the pattern speed reco v ered for
he SF model converges to results for the GT at the outermost radii.
he mean o v erestimation in ω 1 for R > 12 kpc is of the order of 4 km
 

−1 kpc −1 , which is within the uncertainties given by the posterior
ealizations (grey dots). 

Fig. B7 shows the result for Ȧ 1 for the GT (black curve) and the SF
odels (blue curve). The difference between the two for R < 12 kpc

s due to the poor reco v ery in ϕ 

V 
1 as shown in Fig. B4 . The mean

ifference for R < 12 kpc between the reco v ery with the SF and GT
odels is less than 2 km s −1 , which is within the uncertainties given

y the posterior realizations (gre y dots). F or 12 < R /kpc < 17, the
eneral tendency for Ȧ 1 is recovered within the uncertainty with not 
ppreciable bias. The relatively large uncertainty in the recovery on 
˙
 1 stems from small differences in ϕ 1 − ϕ 

V 
1 , which near π /2 translate

n large differences in Ȧ 1 due to it dependence on the difference via a
osine function (equation 13 ). The opposite happens for ω m because
t depends on the difference via a sine function. 

PPENDI X  C :  G O O D N E S S  O F  FIT  A N D  

ESULTS  F O R  I N D I V I D UA L  M O D E S  

his appendix presents the results for the goodness of fits and
ummarizes the results of Section 4.1 for the individual modes. 

1 Goodness of fit 

e have tested with the reduced Chi-square how mean y mode where
eeded to do the fits in Z and V z for the Cepheids sample. Figs C1
nd C2 shows as a function of the radius the results for Z and V z .
learly the result fa v oured the fits for M = 2 for both variables,

howing the need of the m = 2 mode to reflect the asymmetries
resent in the warp. We have also computed the Bayesian information 
riteria (BIC; Ivezi ́c et al. 2014 ) for different radii and we found that
 = 2 is al w ays clearly the best model for Z at all radii > 10 kpc.
his is of special importance since Z is more sensitive to biases due

o the SF problems. For V z the fits with M = 2 is also the best case
MNRAS 528, 4409–4431 (2024) 
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or the outer disc where the amplitude of the warp is significant. We
ave therefore chose the M = 2 model for both variables. 

2 Individual modes 

2.1 Fits in z 

n Fig. C3 (left panel), we present the results of the amplitudes for
ach mode and the intrinsic dispersion in Z as a function of radius.
learly, the m = 1 mode (red) dominates the fit (it has a maximum
f ≈1.1 kpc), as expected from an almost S-type like the Milky Way
arp. The main mode that takes into account the asymmetries is
 = 2 (violet), its amplitude begins to grow at R ≈ 10 kpc but never
 xceeds 250 pc. F or m = 0 (yellow), we have a maximum of ≈200 pc.
his mode can give asymmetry between both extremes of the warp,
ut its main purpose is to set the mean height in each ring, so it has
he ability to represent radial ripples with no azimuthal dependence.
or comparison, we plot the amplitudes for each mode from Skowron
t al. ( 2019a ) (dotted curves) obtained with exactly the same Cepheid
ample but under the assumption of a monotonic dependency of A m 

ith R 

2 . For the m = 1 mode at R > 10 kpc both amplitudes are
ractically the same; for the other modes the amplitudes obtained
y Skowron et al. ( 2019a ) are similar to the mean behaviour of our
esults. 

igure C1. Reduced Chi-square for the fits in Z done with M = 1 (green
urve) and M = 2 (blue curve) as a function of galactocentric radius. 

igure C2. Reduced Chi-square for the fits in V z done with M = 1 (green
urve) and M = 2 (blue curve) as a function of galactocentric radius. 
NRAS 528, 4409–4431 (2024) 
The wavy pattern in the amplitudes for R < 10 kpc should not be
ully taken as real corrugations in the modes. In Section B1.2 , we
oncluded that stochastic clumps in the φ−z plane due to the SF
enerate correlations between the modes. This wavy pattern in A 1 

s remo v ed if we take M = 1, so the wavy pattern is mainly due to
orrelations between m = 1 and m = 2. 

In Fig. C4 , we present the phases of the m = 1, 2 modes for Z (top
ight for m = 1 and top left for m = 2) as a function of R . First, let’s
onsider ϕ 1 , our results and those of Skowron et al. ( 2019a ) (dotted
ine) coincide in their general trends for the e xternal re gion of the disc
 > 10 kpc). For m = 1, a twist in the direction of the galactic rotation
s well defined, beginning at R ≈ 13 kpc. For the internal region,
oth phases are difficult to determine due to the low amplitude of
he warp and because the azimuthal co v erage is affected by the SF.
or ϕ 2 there is more uncertainty than for ϕ 1 because m = 1 is better
efined and dominates the warp. Within its uncertainty ϕ 2 agrees
ith the phase obtained by Skowron et al. ( 2019a ) (red dotted line).
or R > 10 kpc, the phases, like the amplitudes, are better behaved

han in the internal disc as we expected from Section B1.2 . 
Finally, given that we calculate the intrinsic dispersion for Z in

ach ring, we can see how the disc traced by Cepheids becomes
hicker at larger radius, as its shown with the black curve in the left
anel of Fig. C3 . This sho ws ho w the flare in this young population
tarts at around R ≈ 8 kpc with a height ≈100 pc to end up at a
eight ≈390 pc at R ≈ 15 kpc. Previous measurements on how thick
he disc traced by Cepheid is Chen et al. ( 2019 ) and Skowron et al.
 2019b ) agree with our results for the scale and trend found from
ID . 

2.2 Fits in v z 

he right panel of Fig. C3 presents amplitudes for the fits in vertical
elocity as a function of galactocentric radius. For V z , the amplitudes
how a smooth oscillating pattern. The important difference between
he A m and V m is that in Z the m = 1 mode dominates the warp
t all radii; in V z the kinematic signal of the warp is dominated
y both m = 1 and m = 2, a result unexpected for a tilted rings
odel. The m = 1 mode in V z starts to appear at R ≈ 12 kpc and

t its maximum reaches an amplitude similar to the value of σ ID 

7.2 km s −1 . For m = 2 in V z , there is an oscillation, as in for
 = 1 too. The amplitude of none of the kinematic modes never

xceeds the intrinsic dispersion, by contrast to the warp in Z , in
hich they do. Ho we ver, the amplitude of the oscillations in m = 1,
 is larger than the uncertainty in each mode, making the result more 
ignificant. 

For the phases, ϕ 

V 
1 rises for R > 11 kpc and ϕ 

V 
2 is nearly constant,

eclining for R > 14 kpc. Since the amplitudes in V z for m = 1 and
 = 2 are comparable, the connection between these behaviours and

he twisting of the LMV z is not as straightforward as in Z where m =
 clearly dominates and the LON twist is evident in the decline of ϕ 1 

or outer radii. 
Finally, the intrinsic dispersion for V z (black curve, Fig. C3 right

anel) is found to be almost constant with radius at σ ID ≈ 7.2 km
 

−1 . 
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Figure C3. Amplitudes of each mode for Z (left panel) and V z (right panel) as a function of galactocentric radius. The black curve shows the intrinsic dispersion 
for each radius in the respective variable. The dotted line for the amplitudes in Z shows the results from Skowron et al. ( 2019a ). The colour dots around each 
mode are 500 realization taken from the posterior at each ring. 

Figure C4. Each panel shows the phases of each mode as a function of galactocentric radius. The first two top panels are the results for Z and the bottom two 
for V z (left m = 1 and right m = 2). The doted line for the phases in Z are the constant phases obtained by Skowron et al. ( 2019a ). The colour dots around each 
mode are 500 realization taken from the posterior at each ring. 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

© The Author(s) 2024. 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/528/3/4409/7595796 by U
niv de la R

epublica user on 24 O
ctober 2024

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 FOURIER DECOMPOSITION METHOD
	3 THE CEPHEIDS SAMPLE
	4 RESULTS
	5 DISCUSSION
	6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	SUPPORTING INFORMATION
	APPENDIX A: MATHEMATICAL DEFINITIONS FOR THE INFERENCE
	APPENDIX B: VALIDATION WITH SIMULATIONS
	APPENDIX C: GOODNESS OF FIT AND RESULTS FOR INDIVIDUAL MODES

