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ABSTRACT

The warp is a well-known undulation of the Milky Way disc. Its structure has been widely studied, but only since Gaia DR2 has
it been possible to reveal its kinematic signature beyond the solar neighbourhood. In this work, we present an analysis of the
warp traced by Classical Cepheids by means of a Fourier decomposition of their height (Z) and, for the first time, of their vertical
velocity (V). We find a clear but complex signal that in both variables reveals an asymmetrical warp. In Z, we find the warp to
be almost symmetric in amplitude at the disc’s outskirts, with the two extremes never being diametrically opposed at any radius
and the line of nodes presenting a twist in the direction of stellar rotation for R > 11 kpc. For V_, in addition to the usual m = 1
mode, an m = 2 mode is needed to represent the kinematic signal of the warp, reflecting its azimuthal asymmetry. The line of
maximum vertical velocity is similarly twisted as the line of nodes and trails behind by ~25°. We develop a new formalism to
derive the pattern speed and change in amplitude with time A of each Fourier mode at each radius, via a joint analysis of the
Fourier decomposition in Z and V. By applying it to the Cepheids we find, for the m = 1 mode, a constant pattern speed in the
direction of stellar rotation of 9.2 4 3.1 km s~! kpc~!, a negligible A up to R &~ 14 kpc and a slight increase at larger radii, in
agreement with previous works.

Key words: stars: variables: Cepheids — Galaxy: disc —Galaxy: evolution —Galaxy: kinematics and dynamics — Galaxy: struc-

ture..

1 INTRODUCTION

The warp is an undulation in a galactic disc that makes its mean
vertical height deviate from the mid-plane in the outskirts of the
galaxy. Between 40-50 per cent of edge-on disc galaxies are found
to be warped (Sanchez-Saavedra, Battaner & Florido 1990; Reshet-
nikov & Combes 1998), which implies that warps should be long-
lived phenomena or the formation mechanism a very recurrent one
in the history of galactic discs. The Milky Way is not an exception,
having a warp whose structure has been widely studied with different
tracers like H 1 (Levine, Blitz & Heiles 2006), dust (Marshall et al.
2006) as well as with different stellar populations (Lépez-Corredoira
et al. 2002; Chen et al. 2019; Romero-Gémez et al. 2019; Skowron
et al. 2019a; Cheng et al. 2020; Chrobakovd, Nagy & Lopez-
Corredoira 2020; Li et al. 2023). Although the Galactic warp has
been known for a long time (Burke 1957), its origin is still puzzling.
In order to elucidate the history and formation of the Milky Way’s
warp, itis important to characterize its main properties, as its structure
and kinematics.
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Classical Cepheids have proven exceptionally useful in tracing the
structure and kinematics of the warp offering several key advantages
to study the Galactic disc (Bobylev 2013; Chen et al. 2019; Skowron
etal. 2019a, b). Being very young stars (with ages up to a few hundred
million years, e.g. Catelan & Smith 2015), it is expected that they
have recently inherited the warped structure of the H I gas where they
have formed, while still having cold kinematics (vertical velocity
dispersion <5 km s~!, Chen et al. 2019) making it easier to observe
the warp signal as secular dynamics has not had time to ‘heat’ or
disturb it, as it would have for older populations (Binney & Tremaine
2008, section 8.1). Also, belonging to such a young population means
there is no contamination from any other Galactic component, e.g.
the thick disc or halo, which means they exclusively trace the Galactic
thin disc. In addition, Classical Cepheids are well-known standard
candles (Leavitt 1908; Leavitt & Pickering 1912), offering extremely
precise distance measurements (~ 3 per cent errors); they can be
reliably identified based on their variability, making contamination
from other stars negligible (e.g. Jayasinghe et al. 2019; Rimoldini
et al. 2019, 2023); and being luminous (500 < L/Ly < 20 000,
Catelan & Smith 2015), makes them observable throughout a large
extent of the disc even with the optical surveys used to identify
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them at present (Udalski et al. 2018; Ripepi et al. 2023). Their only
disadvantage is that they are relatively scarce, with fewer than 2500
Classical Cepheids in the deepest and most complete catalogues
of the Galactic disc to date provided by OGLE-IV (Udalski et al.
2018) and the Third Gaia Data Release (DR3; Gaia Collaboration
2020; Ripepi et al. 2023). For these reasons, Cepheids have been
used to study the 3D structure of the warp in more detail than any
other stellar population (Skowron et al. 2019b), providing evidence
for a twisted line of nodes (Chen et al. 2019; Dehnen, Semczuk &
Schonrich 2023) and asymmetry in height between both extremes
(Skowron et al. 2019a) similar to the H I warp (Levine, Blitz &
Heiles 2006). They have also been used to study the kinematics
of the warp revealing its characteristic bulk vertical motion in the
outskirts of the disc (Skowron et al. 2019a).

To describe the structure of the warp, several studies have shown
Fourier series to be of great use due to their versatility to summarize
any warp signal if enough modes are considered (e.g. Levine, Blitz &
Heiles 2006; Chen et al. 2019; Skowron et al. 2019a). These studies
have focused on describing the structure of the warp, i.e. its mean
height as a function of radius and azimuth. Using a catalogue of
Classical Cepheids identified mainly with OGLE-IV and combined
with Gaia DR2 astrometry, Skowron et al. (2019b) used a Fourier
decomposition with up to 2 modes (m < 2) and a fixed line of nodes
(LON) to present the first map of the Galactic warp in the young
population covering over half the disc. Chen et al. (2019), using
a compilation of optical plus Wide-field Infrared Survey Explorer
(WISE; Chen et al. 2018) Cepheid catalogues, studied the azimuthal
dependence of the LON with radius finding it does not coincide
with the Sun-Galactic Centre direction and that it presents a leading
pattern, following Briggs’s rules for H I warps in spiral galaxies
(Briggs 1990). For the kinematics, Fourier series have been used to
characterize the changes in mean vertical velocity (V) in simulations
(Chequers, Widrow & Darling 2018; Poggio et al. 2021), but insofar
there have been no Fourier decomposition studies of the warp’s
kinematic signal with Cepheids (or any tracer) which can reflect
and quantify its plausible azimuthal asymmetries and changes with
radius. Previous studies with other — older — stellar populations
have assumed the kinematic signal to be well represented by an
m = 1 mode (Cheng et al. 2020; Poggio et al. 2020; Wang et al.
2020; Chrobdkova & Lopez-Corredoira 2021; Dehnen, Semczuk &
Schonrich 2023), as expected from a tilted rings model (m = 1 mode),
but Romero-Gémez et al. (2019) argue this model is insufficient to
explain the more complex kinematic signature they observed with
Red Clump stars. Works on external galaxies (Tsukui et al. 2024) and
simulations (Bland-Hawthorn & Tepper-Garcia 2021) have shown an
m=2 mode in the bending waves of discs.

In this work, we use a Fourier decomposition method to study
the structure and kinematics of the Galactic warp using Classical
Cepheids as tracers. We use the Cepheid catalogue from Skowron
et al. (2019b) combined with kinematic data from Gaia DR3 (Gaia
Collaboration 2020) to explore the dependence of the amplitudes
and the azimuths of the modes as free parameters as a function of
radius, which allows us to infer the position of the LON and line
of maximum vertical celocity (LMV,) for a general warp model
that accounts for the lopsidedness of the warp. The new method we
present here (Section 5.2), based on a joint analysis of the Fourier
series for Zand V., allows us to infer the time evolution of the Fourier
components of the warp: i.e. their pattern speed and instantaneous
change in amplitude. The inference of the evolutionary terms of the
Galactic warp has been tackled recently using different tracers, but
mostly under the tilted rings model which assumes a symmetric warp.
Poggio et al. (2020) and Cheng et al. (2020) have focused on inferring
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the pattern speed, while Wang et al. (2020) derived the change in
amplitude. These works use general samples of stars with good
quality Gaia DR2 and DR3 astrometry and available radial velocities;
by not been focused on a specific tracer or having any age constraints,
these parameters are representative of the general population of the
disc as weighed by its star formation history, i.e. a stellar population
of intermediate age (several Gyrs old). The recent work by Dehnen,
Semczuk & Schonrich (2023) derives both evolutionary terms for
different radii for a sample of Cepheids via a tilted rings model,
finding differential rotation and change in inclination of the rings.
Our work uses the same stellar population to derive the time evolution
parameters of the warp with a completely independent method.

The structure of the present paper is as follows. In Section 2,
we present the Fourier decomposition method used to describe the
Galactic warp’s height and vertical velocity (Section 2.2) and the
method showing how these are combined to derive each mode’s
pattern speed and amplitude change (Section 2.3). In Section 2.4,
we present the inference model used to estimate the warp model’s
parameters, including main conclusions from the inference validation
performed using a mock catalogue. In Section 3, we describe the
catalogue of Classical Cepheids used in this work. In Section 4, we
apply the methods to this sample and summarize our results for the
structure and kinematics of the Cepheid’s warp (Section 4.1) and
those for the time evolution (Section 4.2). In Section 5, we discuss
our results and compare with the previous literature. Our conclusions
are summarized in Section 6.

2 FOURIER DECOMPOSITION METHOD

2.1 Reference frame

We begin by describing the coordinate system and reference frame
we use throughout this paper. The origin of the reference frame is
at the galactic centre (GC), fixed with respect to an external inertial
frame. Positions can be given in Cartesian, or cylindrical coordinates.
The X-axis points from the GC away from the Sun, the Y-axis is
parallel to the rotation velocity of the disc at the Sun position and
the Z-axis is perpendicular to the Galactic plane forming a right-
handed triad. In cylindrical coordinates, we use the Galactocentric
azimuthal angle ¢ measured from the X-axis toward the Y-axis (i.e.
opposite to Galactic rotation). In this coordinate system, the Sun is
at Rp = 8.277 kpc (GRAVITY Collaboration 2022), ¢ = 180°,
and Zg = 0.027 kpc (Chen et al. 2001). For velocities, we use a
Cartesian system whose origin is at rest with the GC and their axes
parallel to the directions in which the X-Y-Z axes increase. This
is an inertial system and thus does not rotate with the Galaxy, the
Sun being along the negative X-axis only at present. This facilitates
the kinematical and dynamical descriptions. We assume the Sun
has Galactocentric cartesian velocity (Vy, V), V;) = (11.10, 232.24,
7.25) km s~! (Schénrich, Binney & Dehnen 2010; Bovy 2015).

2.2 Fourier decomposition of the structure and kinematics

We implement the Fourier decomposition method following Levine,
Blitz & Heiles (2006) and Chequers, Widrow & Darling (2018). The
disc is divided into concentric Galactocentric rings, in each ring the
mean behaviour as a function of the azimuth for Z and V, described
by a Fourier sums up to M modes as

M
Z(@) =Y Apsin(me — gy), (1)

m=0
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M
V() =D Vi sin(me — g,). @
m=0

The amplitudes (A4,,, V,,) and phases (¢, (p;; ) are free parameters,
obtained as a function of R. In what follows we describe the method
only for Z(¢), being analogous for V_(¢). The Fourier representation
is flexible enough, even with a small number of modes, to describe
many known warp shapes: for example, a U-shaped warp will be
mainly described by an m = 0 mode with increasing amplitude as
a function of radius; an integral or S-shaped warp, will be mainly
described by an m = 1 mode with increasing amplitude as a function
of radius, and asymmetries will be mainly described by a combination
of m = 1 and m > 2 modes.

As we will see in Section 2.4, it is also convenient to rewrite
equation (1) in linear form with free parameters a,,, b,, as

M
Z(¢) = Z ay coS(m) + by, sin(me), (3)

m=0

where the transformation between a,,, b,, and A,,, ¢, is given by
Ay, = \/ arzn + byzn» Pm = aICtanz(_ama bm)- (4)

2.3 Deriving time evolution

In this section, we present a new formalism to derive the evolutionary
terms from the warp, its pattern speed and the change in amplitude
of each mode at each radii, disentangled from the motion of the stars.
From now on we denote the star’s vertical height and vertical velocity
as z and v, (lowercase) and the Fourier fits to the warp as Z and V,
(uppercase).

We begin by taking a ring at a radius R and considering a star
that has no radial motion and constant angular velocity €2, that it
simply rotates around the Galactic Centre but following the warp of
a razor thin disc. These assumptions are reasonable for dynamically
cold populations such as the Cepheid stars we use in our analysis.
Given that the stars follow the warp’s shape, their height z(#) at time
t is given by the functional expression of the warp Z(¢, r), which we
can express as a Fourier series evaluated at the star’s azimuth ¢(#) as
follows:

M
) = Z(90.1) = 3 An(®)sin0mg (1) = (). )
m=0

We allow the amplitude and phase of each mode to evolve in
time because we are interested in determining their instantaneous
derivatives A,, and ¢m. If we take the total derivative of z(r) with
respect to time we obtain the vertical velocity v, of the star — not the
warp — given by

M
V) = D An(t)sin(me(t) — gu(t))

m=0
+ A (1) cos(me (1) — @u(D)mP(t) — g (1)]. (6)

As expected, equation (6) involves terms regarding the time
evolution of the warp (A,, and ¢,,), and a term regarding the motion
of the star due to its own angular velocity (¢(¢) = ). Now, we want
to link equation (6), which describes the velocity of just one star at
azimuth ¢(?), to the Z(¢) and V,(¢) fits from the previous section,
which describe the mean motion of all stars in the ring at a given
time ¢y (today).

In a razor thin disc the height of the disc at an arbitrary azimuth
and the position of a star at the same azimuth must exactly coincide.
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Thus, it follows that the vertical height z(7) and vertical velocity
v.(tp) of a star at 7y and azimuth ¢(#y) = ¢ must coincide with the
Fourier fits (Z(¢y), V.(¢o)) we obtained at that same 7, time. Taking
to as today, A,,(fo) = Ao and ¢,, = @0, the amplitudes and phases
obtained from the Fourier fits from equations (1) and (2).

Similarly, the vertical velocity v, (#) of the star must also coincide
with the mean vertical velocity obtained from our Fourier fit V_(¢y),
evaluated at the star’s azimuth. Setting V,(¢o) = v.(#) in the left-
hand side of equation (6) and expressing V,(#y) as the Fourier fit for
v, in its linear form (as shown in equation (3) for Z) we obtain

M
Z a cos(meo) + b sin(mey)

m=0

M
= Anlto) sin(meo — @)

m=0

+ A cos(mpy — @) [m2 — @n(to)], @)

where a) and b are the linear amplitudes resulting from the Fourier
fits in velocity, calculated from the V,, and ¢ obtained via equation
(4). The terms sin (m¢o — ¢,,) and cos (mpoy — ¢,,) in the right-hand
side of equation (7) can be rewritten as

sin(meo — @m) = sin(meo) cos(@m) — cos(mepo) sin(@m), (3

cos(meo — @) = cos(mey) Cos(@m) + sin(meo) sin(@m). )

Regrouping the terms as a function of ¢ and using the orthog-
onality of the Fourier modes, we obtain that the amplitudes a, b

from the V, fit are related to the amplitudes A,, and ¢,, from the Z
and the warp evolutionary terms as

ay = AnlmQ — @ (10)] cOS(@) — A,(t0) sin(@n), 10)

b,‘; = Am [mQ - gDm (IO)] Sin(wm) + Am(tO) COS(QOm). (1 1)

Solving this linear system of equations for A,,(#y) and [m¢(ty) —
@m(t9)] and writing back a,‘,f s b,‘; in terms of the amplitude and phase

(Vi, V), the evolutionary terms of the warp are given by

[mQ — @ (to)] = Am Sin(@m — @) (12)
and
An(to) = Vi cos(@m — o). (13)

Assuming that the mth mode has angular velocity w,,, then setting
Om = mw,ut + @ in equation (12), we get the pattern speed for
each mode as

m

Wy = Q- Sin((pm - (P,Z) (]4)

m m

Therefore, having connected the Fourier fits in Z and V, at a given
radius, equations (13) and (14) describe how each pattern speed and
amplitude change in time, allowing a reconstruct the time evolution
of the warp as a function of radius.

We leave for a future work the publication of a more general
framework that consider an azimuthal dependence not only of the
vertical motion of the stars, but also their radial and azimuthal
velocity, which would presumably result in a better inference of
the time evolution of individual Fourier modes of the warp.'

Using this framework with standard values allow us to conclude that
the radial bulk motions and spiral arms can be ignored in a first-order
approximation to derive the pattern speed and change in amplitude of the
warp.
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2.4 The inference

We have used Bayesian Inference to infer the a,,, b,, (or A,,, )
that best describe the mean behaviour of the stars in a given ring
when applying the methods from Sections 2.2 and 2.3 to a particular
sample. Bayes’ theorem (e.g. Sivia 2006) relates the Posterior
distribution to the Likelihood (£) and the Prior (p) probability
densities functions (PDFs) as

P(X|D, I) x L(D|X, I)p(X|I), (15)

where D refers to the data, X to the model parameters, and / stands for
any other available information. In our case, X is a vector containing
the linear amplitudes:

X = [ao,al,...,aM,bl,...,bM]. (]6)

For the model parameters, we assume uniform priors, with suffi-
ciently and arbitrarily large limits. Assuming that the observations
are independent, the likelihood is expressed as the product of the
individual likelihood of each single data point z;, for which we
assume a Gaussian distribution

(zi — Z(¢i, X))

20}

A
L{zNX, )= ex { — , 17

(X, D) 1} Jama? P an
where we take o to be the square sum of the uncertainty in the
measurement z; and the intrinsic dispersion ojp of the variable at
that ring. This op is introduced to take into account the natural
dispersion around the mean value that arises from the dynamics of
the Galactic disc; in v,, it measures the velocity dispersion and, in z,
it measures how thick the disc is at that ring. The intrinsic dispersion
is not a free parameter in the fit. We estimate it as the mean dispersion
in the variable of interest in equally spaced azimuthal bins, weighted
by the number of stars in each bin because low number statistics
dominate over observational errors.

In our case, because the model is linear in all parameters and
we have assumed a uniform prior, the MAP X coincides with the
maximum of £ and the posterior is exactly a Gaussian distribution
with mean X and covariance matrix X (see e.g. section 1 in Hogg,
Bovy & Lang 2010, for a detailed discussion). The posterior PDF
can, therefore, be expressed as

exp [—%(X - X)'Z (X - XO)]

PX|D,I)= 18
“@ip. 0 QmN+1/2 [det £1'/? (%)

where X is given by

AXy=p. (19)

The covariance matrix X is the inverse of A: the matrix that
contains in its entries the ‘projection’ of each mode into the other
ones [see equation (A2) in Appendix A] weighted by the dispersion
in the data, and the vector p has the ‘projection’ of the data in each
mode (see equation A4).

Because we use a Fourier series to represent a variable, one would
expect the modes to be mutually independent and therefore not
correlated. This is not usually the case. When we have discrete
measurements, the modes are not mutually orthogonal unless the
measurements are equally spaced in azimuth and have the same o;.
In this special case A is diagonal and, in consequence, the covariance
matrix is too. This particular distribution allows the modes to be
mutually independent. Naturally, we will never get this configuration
from the data itself, but this method shows analytically that data that
are more or less uniformly distributed in azimuth are preferred for a
Fourier analysis of the whole disc: studies with a sparse and irregular
azimuthal coverage will get modes that are not ‘fundamental’, in the
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sense that they are not describing the modes of the warp itself. The
effect gets worse with high-frequency modes m > 2. This should
be kept in mind when interpreting results for individual modes,
nevertheless, it will not affect our conclusions on the description
of the warp as a whole (the sum of the modes) in the regions well
sampled by the data.

Finally, the disc is divided in rings such that we get a ‘continuum’
view of how the modes and the warp change with the radius. To do so
we take each ring to contain a fixed number N of stars out of the total
N, stars, the first ring starting with the star at the smallest radius. The
second ring will start at the radius of the second star and have a width
such that it also contains N stars, and so on for subsequent rings. This
scheme implies that the rings will have a varying width, depending
on the sample’s radial distribution. We take the radius associated with
each ring as the mean radius of the stars in it. This procedure allows
us to have a continuous view, with all rings having the same number
of stars N and, therefore, constant stochastic noise. It must be kept in
mind, however, that only one out of every N consecutive rings will
be independent. Changing the number of stars in each ring changes
the smoothened parameters inferred as a function of the radius (the
bigger N, the smoother it gets). Also, the change in N moves the mean
radius of each ring, the tendency is that a bigger N makes the rings
to move inwards (smaller radius), as expected for a density profile
that decreases with radius.

2.4.1 Validation with simulations

Here, we present our main conclusions about the performance of
the methods described in the previous section, assessed by applying
them to mock catalogues constructed from test particle simulations.
As discussed in detail in Section 2, we used a test particle simulation
of a warped disc from Romero-Gémez et al. (2019) to create a mock
catalogue affected by the Gaia DR3 selection function (SF) and
observational errors. A fiducial model, unaffected by the SF or by
errors, is used as a baseline for comparison of the results of the
Fourier decomposition. The interested reader may find full details
and discussion of these results in Section 2.

Our main results on how the SF affects the recovery of the warp
as a whole, in different regions of the disc, are summarized here as
follows:

(i) For Z the best sampled region, the quadrants I and III (X <
0 kpc) are recovered well (differences between the real and the
recovered warp are smaller than op) and the general tendency for
all radii is recovered for both series summing uptoM =1 and M =
2. For X > 0 kpc (quadrants I and IV), the SF causes the warp to be
exaggerated. This bias is reduced for outer radii as the main mode of
the warp (m = 1) becomes greater than the intrinsic dispersion (see
Fig. B2).

(ii) For V, the recovery is better than Z, although for the inner
disc (R < 9 kpe) the recovery is poor for X > 0. The recovery in the
sampled area is better than in Z for both M = 1 and M = 2 (differences
are smaller than o}, in most of the disc area, see Fig. B2).

(iii) Main conclusion: The recovery of the full model (the Fourier
sum) in both variables is robust in the well sampled regions for R
> 10 kpc, i.e. second and third quadrants. In this region, all the
warp features are well recovered within the uncertainties given by
the Posterior realizations.

We also tested how the individual modes are recovered. Our main
conclusion are as follows:

(1) The m = 0 mode is well recovered throughout the disc.
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Table 1. Amplitudes and phases as a function of radius for the best fitting (MAP) models for Z and Vz. The first few rows of the table are shown to provide
guidance regarding its form and content. The full version of the table is available in the electronic version.

R Aosin (= o) Ay A 1 @2 Vo sin(—gg) Vi V2 o) 9y
(kpc) (kpc) (kpc) (kpc) (rad) (rad) (kms™1) (kms™1) (kms™1) (rad) (rad)
5.171 —0.106 0.171 0.059 1.971705 2.337575 —0.422 2.638 1.976 —2.887806 —2.663989
5.186 —0.107 0.176 0.063 1.979711 2.40411 -0.327 2.455 1.865 —2.875007 —2.720106
5.202 —0.107 0.175 0.062 1.978782 2.403354 —0.363 2.296 1.941 —2.777056 —2.595807

(i) The m = 1 mode tends to be overestimated in amplitude at the
inner disc. In the outer regions (R > 10 kpc) its amplitude and phase
are well recovered in both variables (i.e. Z and V).

(iii) The m = 2 mode captures the asymmetries and is well
recovered where there is data, i.e. quadrants II and III and R >
10 kpc, but tends to be underestimated in amplitude and the general
trend of the phase is poorly recovered in the whole disc.

(iv) Main conclusion: The uncertainty on the recovery of the
individual modes stems from the correlations between the modes
which, in turn, appear as a consequence of the imperfect azimuthal
coverage. The degeneracies introduced by the correlations mean that
different combinations of amplitudes and phases for the individual
modes can give the same sum model, in a finite azimuth range. A
full azimuthal coverage would break this degeneracy and make the
inference on the individual modes unique. The mode less affected by
this degeneracies is the m = 1 mode due to its large amplitude.

The intrinsic dispersion in z is well recovered in the outer disc,
where the warp amplitude is larger than the dispersion. In the inner
disc oyp tends to be off by 10 percent. For v,, we find o}, is
underestimated by 3 per cent without dependency on the radius.

Given these results, we decide to include up to the m = 2 mode
in the Fourier fits for this work because it offers the least biased
recovery for the region of the disc where the warp is most prominent
(i.e. outer radii). Reliable results for the inner region of the disc are
limited to |¢p| 2 90°, the region least affected by the SF with best
coverage, where biases in the recovery are lowest.

We also tested the inference of the time evolution parameters A,
and w,,. We concluded that the recovery of the A,, for m = 2 is
unreliable due to the biases and noise. For the m = 1 mode, we
conclude a follows:

(i) A is well recovered within its uncertainties particularly for the
outer disc.

(ii) The recovered w; tends to be overestimated due to a slight
overestimation in A;, but the mean difference is ~4 km s~'kpc™'.
In the outer disc (R > 14 kpc), we recover the values of the fiducial
model within the uncertainty.

3 THE CEPHEIDS SAMPLE

We use the catalogue of Milky Way Cepheids from Skowron et al.
(2019a). The catalogue contains 2385 Classical (Type I) Cepheids
identified mainly with the OGLE survey (for more details, see
Skowron et al. 2019a, b) with photometric distances computed
based on mid-IR photometry from the Wide-field Infrared Survey
Explorer (WISE) and the Spitzer Space Telescope, resulting in
distance uncertainties of 3 per cent on average. We cross-matched the
Cepheid catalogue (at 1 arcsec tolerance) with Gaia DR3 to retrieve
proper motions for these stars. Out of the 2381 Cepheids with Gaia
proper motions, only 860 stars have radial velocities in DR3. In order
to curate a homogeneous catalogue with full velocity information
allowing us to compute v, we infer the missing line of sight velocity

for all stars in the catalogue by assuming the Cepheid rotation curve
from Ablimit et al. (2020) which has a slope of —1.33 km s~ 'kpc™!
and takes the value 232 km s~! at the solar radius.”

We clean this sample by keeping stars with RUWE <14, o,
< 0.1 kpc and o,, < 13 km s'. These upper bounds in z and
v, uncertainties guarantee a significant amount of stars whose
uncertainties are at most of the order of op. To avoid clear outliers
due to probable contaminants and the Magellanic Clouds we restrict
the analysis to stars with |z| < 2 kpc, |v.| < 30 km s~'and 3 kpc <
R < 18 kpc. These are very broad cuts that only remove very few
(&~ 3 per cent) clear outliers (50 ) most of them due to the cutin V,
(only one star is removed for the cut in Z). These constraints reduce
the sample to a total of Ny, = 1997 stars.

4 RESULTS

Here, we present the results obtained by applying the methods
described in Section 2 to the final sample with M = 2 and N =
200 stars in each ring. To calculate o1p in both variables, we use 8
azimuth bins. The resulting amplitudes and phases as a function of
radius for the best fitting (Maximum a Posteriori, MAP) models for
Z and V, are provided in Table 1 and 100 posterior realizations are
provided in Table 2. Figs C3 and C4 in the Appendix C show the
amplitudes and phase (respectively) of each mode in Z and in V, as
a function of the radius.

4.1 Structure and kinematics of the warp

In the following sections, we analyse different features of the
warp structure and kinematics. We analyse the full Fourier series
obtained. Since the validation with simulations indicated results for
the individual modes are prone to be biased due to correlations
between the modes, we discuss and summarize this in Appendix C
for the interested reader.

4.1.1 General structure of the warp

We show in the upper panels of Fig. 1 the results of three fits in
Z for different Galactocentric radii. Each panel shows, for rings of
increasing radius, the Cepheids present in the ring, the best Fourier
fit (black curve) and 500 random realizations from the Posterior PDF,
the grey curves are fits to 200 bootstrapping realization. The plots
clearly show a growth in amplitude typical of an S-shaped warp,
reaching a maximum of ~1.1 kpc in the outskirts of the disc. The
effect of the SF is evident, the azimuth range sampled increases
with radius. Other features like the change of the warp as a function
of ¢ become clear in the second panel (R = 11.0 kpc), where a
plateau is noticeable around ¢ = 180°. The third panel (R = 15 kpc)

2We have tested different values for the rotation curve around this one and
our results are not affected.
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Table 2. Amplitudes and phases as a function of radius for 100 posterior realizations for the Z and Vz models. The first few rows of the table are shown to
provide guidance regarding its form and content. The full version of the table is available in the electronic version.

R Aosin (— po) Ay Az o1 02 Vo sin(—gp) 4 V2 o/ o)
(kpc) (kpc) (kpc) (kpc) (rad) (rad) (km s~ 1) (km s~ (kms~1) (rad) (rad)
5.171 —0.109 0.163 0.042  2.000795 2.192443 —0.951 3.761 3.294 2232128 1.993639
5.171 —0.097 0.155 0.053 1.848048 2.048916 0.626 5.258 4.114 —2.853366 —3.10008
5.171 —0.111 0.19 0.076 1.897841 2256799 —3.56 3.122 1.602 2.53726 —2.602042

R = 8.0 kpc | o)p = 0.0859 kpc

R=11.0 kpc | ojp = 0.197 kpc

R=15.0kpc | gp =0.32 kpc

2
Bootstrap
Posterior realisation
1 Best fit
t Cepheids

T ..
<8
.
N

-1

-2

2
)
a
= 1
a
s
b7 -
T (e e ey e e e
e - == =
@
i
= =1
[}
m

-2

0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360

¢(°)

¢(") o)

Figure 1. The upper panels are the vertical height Z as a function of galactocentric azimuth ¢ for three different rings with radius 8.0 kpc (left), 11.0 kpc
(middle), and 15 kpc (right). Grey dots represent the Cepheids in each ring, the black solid line represents the Fourier curve MAP fit to the grey dots, and
the oranges curves are 500 random realizations of the Posterior PDF. The grey curves are fits to 200 bootstrapping realizations. The bottom panels show the

residuals between the best fit and each bootstrap realization.

shows how from ¢ ~ 60° to ¢ ~ 240° the change in the warp
between the extremes resembles a straight line more than a sinusoidal
curve corresponding to a pure m = 1 mode would. This feature is
correctly reproduced by the model thanks to the m = 2 mode; a
simple tilted rings model (M = 1) cannot reflect it. The fits to the
bootstrapping realizations shows that for R < 10 kpc the fits are
affected by statistical noise as shown in the first panel of Fig. 1 at
R = 8 kpc in the first and fourth quadrant of the galactic plane, this
became more clear in the residuals plot in the bottom panels. For the
outer radii, the fits are less sensitive to statistical noise as we see in
the second and third panels where the posterior realizations coincide
with the bootstrap realizations. For this reason, we focus our analysis
on the second a third quadrants.

Fig. 2 shows V, as a function of ¢ for the same three rings shown
in Fig. 1. The first panel (R = 8.0 kpc) of this figure, as well as in
the previous one, shows how the few observed data points in regions
most affected by the SF (e.g. ¢ ~ 300°) strongly drive the fit in
those regions. As discussed in Section C, this makes the inference
unreliable for the inner disc at R < 10 kpc, except around the azimuth
of the solar neighbourhood. Therefore, in what follows we will
restrict our analysis to R > 10 kpc. As radius increases (second and
third panels) the amplitude of the warp in velocity grows but only
mildly, as it is at most of the order of the intrinsic dispersion o}, ~ 8
km s~! even at the outer disc. This is in contrast with Z, where the
amplitude of the warp exceeds the intrinsic dispersion by a factor

MNRAS 528, 4409-4431 (2024)

of A3 in the outer disc. This low amplitude in comparison with o,
makes it harder to detect the kinematic signature of the warp, but at the
outer disc it is clear there is a complex and asymmetrical behaviour,
as seen in the third panel in Fig. 2. The bootstrap realizations for V,
show the same conclusions as in Z, but due to the low amplitude of
the kinematic signal in the first and fourth quadrant the realizations
show a greater dispersion than the posterior, illustrating that due
to low number statistics noise is larger. For this reason, we will
focus the analysis of the kinematic signal to the second and third
quadrants.

4.1.2 Asymmetries in height

First, we explore the asymmetries of the warp in height above and
below the plane. The left panel of Fig. 3 shows the difference between
the maximum and minimum height reached by the warp above
and below the plane in the north and south Galactic hemispheres,
respectively. Positive values in this plot, at any given radius, imply
that the northern extreme of the warp deviates more from the
Galactic plane than the south. Up to R = 12 kpc the northern
extreme is larger than the southern, even within the uncertainties,
showing an asymmetrical warp. This asymmetry decreases towards
the outer disc, with the warp being almost symmetrical to within
the uncertainties (=100 pc) at R > 13.5 kpc. We should keep in
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Figure 2. The upper panels are the vertical velocity V; as a function of galactocentric azimuth ¢ for three different rings with radius 8.0 kpc (left), 11.0 kpc
(middle), and 15 kpc (right). Grey dots represent the Cepheids in each ring, the black solid line represents the Fourier curve MAP fit to the grey dots, and the
oranges curves are 500 random realizations of the Posterior PDF. The grey curves are fits to 200 bootstrapping realization. The bottom panels show the residuals

between the best fit and each bootstrap realization.
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Figure 3. Left: Difference between the north and south extreme of the warp as a function of galactocentric radii from our results (black curve), the same is
calculated for the warp model by Skowron et al. (2019a) (doted orange curve). Right: Least angular difference between the north and south extremes as a
function of galactocentric radii from our results (black curve), the same is calculated for the warp model of Skowron et al. (2019a) (doted orange curve). The

grey dots are 500 random realization at each ring taken from the Posterior.

mind that because of the SF, the extremes of the warp tend to be
overestimated in the internal regions. However, a more accurate and
reliable measurement of this asymmetry is expected at the outskirts
of the disc from our validation tests (Section 2.4.1).

Since we set the phases of each mode free, we can also track
the azimuth of each extreme of the warp to explore the azimuthal
asymmetry as a function of R. The right panel of Fig. 3 explores the
azimuthal asymmetry of the extremes of the warp as a function of
radius by showing the smallest angular difference in the azimuths of
the warp extremes in Z. In a simple tilted rings model of an S-shaped
warp, these extremes are always separated 180°, even if the line of
nodes is twisted. The plot clearly shows the extremes of the Cepheid
warp are never diametrically opposed. The difference in azimuth
starts at its lowest value of ~120° at R &~ 10—11.5 kpc and increases
up to ~145° at R ~ 12.5 kpc after which it remains approximately

constant. This is a robust feature that cannot be reproduced by an
m = 1 warp, reinforcing the need for an m = 2 mode to describe the
full warp.

4.1.3 Line of nodes and line of maximum V,

The overall behaviour of the best fitting (MAP) warp model for the
Cepheids is shown in Fig. 4 in a face-on view of the disc with a colour
scale indicating the mean height above/below the mid-plane. The line
of nodes (from now on LON) and line of maximum vertical velocity
(LMV,) are indicated with the black and green lines respectively. A
leading twist (i.e. in the direction of Galactic rotation) in both the
LON and LMYV, is evident, as well as an offset between the two.
Fig. 5 shows the LON and LMV, azimuths (for X < 0) as a
function of radius. The figure shows that the azimuth of the LON
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Figure 4. Face-on view of the best-fitting (MAP) warp model for the
Cepheids (grey dots). The colour scale represents the mean Z of the disc
(blue above the plane and red below it). The line of nodes (LON, i.e. Z =
0) is indicated with the black curve. The line of maximum vertical velocity
(LMV,) is indicated by the dark green curve. The different coloured lines
correspond to lines of constant galactocentric azimuth.
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Figure 5. Azimuth as a function of galactocentric radius for: the LON from
this work (black curve), Chen et al. (2019) (cyan dashed curve) and Dehnen,
Semczuk & Schonrich (2023) (red curve); the LMV, (thick green curve) and
@1 for m = 1 mode from our Z fits (red dots). The grey and olive green dots are
500 realizations of the LON and the LMV, taken from the posterior at each
ring, respectively. The vertical dashed line indicates the Holmberg radius for
the Milky Way from Chen et al. (2019). The crosses indicate a sample of
independent (disjoint) rings.

is well represented by the straight line (in the plane ¢, R) with the
parameters presented in equation (20), obtained from a fit to data
in independent rings with R > 11. The LMV, also follows a linear
tendency, well described by an almost constant azimuthal difference
of 25.4° with respect to the LON.

deg
dron(R) = (—12.7+0.3)—=R
kpc
+B47°5£35) for R > 11kpc. (20)
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Figure 6. The change in amplitude A; for the m = 1 mode as a function of
the galactocentric radii from our fits (black curve) and the A; by Dehnen,
Semczuk & Schonrich (2023) (cyan curve). Red dots indicate measures for
independent rings. The grey dots around each A; are 500 realization taken
from the posterior at each ring.

4.2 The time evolution of the warp traced by Cepheid

Here, we present results for the pattern speed (from equation 14) and
the change in amplitude with time (from equation 13) for the m = 1
mode obtained for the Cepheids. We ignore the m = 0 mode, since its
pattern speed is ill-defined and its amplitude change is V; sin(—¢;)
(this is shown in the right panel of Fig. C3).

Although the Fourier series for Z and V, have been fit with M = 2,
we focus this analysis in the m = 1 mode, because it is the dominant
mode of the warp and the recovery of the evolutionary terms for
m = 2 are biased and noisy due to SF effects (as shown in Section
B1.2). From Section 2.4.1, we recall that, for our simulation, w; and
Ay are well defined for R 2 12 kpc where V, is non-zero and also
well-defined (as shown in Section C). Therefore, we will restrict this
part of the analysis to R 2 12 kpc.

4.2.1 Amplitudes

In Fig. 6, we present results for A; as a function of R. In the range
R < 14.5 kpc, the change in amplitude is negligible, for R > 15 kpc
it shows a growing tendency,’ reaching a maximum in the external
disc of &5 km s~! &~ 5 kpc Gyr™', this tendency is also present in
the results by Dehnen, Semczuk & Schonrich (2023). Based on our
validation summarized in Section 2.4.1, we expect these results to be
unbiased over this radial range.

4.2.2 Pattern speed

Assuming the angular velocity €2 from the rotation curve by Ablimit
et al. (2020), we obtained the pattern speed for the m = 1 mode
from equation (14). Because in our reference frame the stars rotate
in the direction in which ¢ decreases, the angular velocities in the
direction of stellar rotation are negative. To avoid confusion, we
present the angular velocities with their sign changed. Fig. 7 presents,
as a function of Galactocentric radius, the pattern speed of the m =
1 mode w; (black curve), the angular velocity of the rotation curve
Q (red curve), the upper and lower limit given by the measurements

3We consider this result to be extended beyond R = 15 kpc and not only up
to R = 15.5 kpc because the rings at this radius contain stars beyond R =
15.5 kpc.
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Figure 7. Minus the angular frequency as a function of the galactocentric
radius for the pattern speed for the m = 1 mode w; (black curve) from our
fits, the angular velocity given by the rotation curve 2 (red curve) (Ablimit
et al. 2020), the upper and lower limit found by Poggio et al. (2020), and
results from Dehnen, Semczuk & Schonrich (2023). The dots around w; are
500 posterior realizations at each ring.

by Poggio et al. (2020) (dotted blue lines) and results from Dehnen,
Semczuk & Schonrich (2023) (solid cyan line and dots).

We find that @, decreases for R 2 11 kpc and shows a small
oscillation for 13 < R/kpc < 16. This overall behaviour, both the
decrease and the oscillation, are observed by Dehnen, Semczuk &
Schonrich (2023) but at a slightly different radius. This difference
may arise from their use of guiding radius and also because we use
a mean radius to represent each ring, which tends to drive the results
from the outer to the inner radii. We would need smaller uncertainties
to ensure this oscillation is a physical phenomenon in the disc and not
an artefact from our fits. However, the fact that it is also observed by
Dehnen, Semczuk & Schonrich (2023), with a sample that includes
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radial velocities, increases our confidence in the result. Our mean
value observed for R > 12 kpc is in agreement with the results from
previous works on measuring the pattern speed by Poggio et al.
(2020) and Cheng et al. (2020), who assumed rigid body rotation for
the warp.

5 DISCUSSION

5.1 Structure and kinematics

5.1.1 Comparison with different warp observations

In Fig. 8, we compare different warp models in the literature to
our results for ¢ = 90° (northern region) and ¢ = 270° (southern
region) for R > 10 kpc. The various works cited here have different
azimuthal and/or radial coverage, use different tracers, and have
used different methods to fit for the warp. Table 3 summarizes this
information for the works presented in the figure. We have selected
these works in order to compare against other dynamically young
tracers like the gas, dust and OB stars. We also include results from
a few warp models for dynamically older populations for which the
time evolution of the warp has been inferred. Since the warp followed
by the older population may differ from that of the young, in Section
5.2 we will discuss the effect due to the assumed structure on the
inference of the time evolution of the warp.

We begin by comparing our results against those from Skowron
et al. (2019a), obtained for the same Cepheid sample as used here.
Within the uncertainties the two coincide at almost all radii. The
Skowron et al. (2019a) model behaves like an average smooth model
around our results. The mean difference between both models for the
northern region (for R Z 10 kpc) is 0.054 kpc, and for the southern
region is 0.043 kpc. This level of agreement is expected because
we are using a subset of their sample, the differences being in how
we model the warp. Skowron et al. (2019a) model the warp as a

—— RC | Lopez-Corredoira --- Cheng

GDR 2 | Chrobacova —-= RC 1-3Gyr | Wang

=== 0.4 Gyr | Améres

Figure 8. Vertical height of the warp as a function of galactocentric radius for slices at ¢ = 90° and ¢ = 270°, for this work and warp models in the literature
summarized in Table 3. The shaded region represents the uncertainty in the warp model from Wang et al. (2020, see the text for more details).
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Table 3. Models from the literature. The asterisk (x) indicates the model shown in Fig. 8.

Work Tracer/Method Symmetric (yes or no) LON (fixed or free) Disc range

Yusifov (2004) Pulsars Yes Fixed R 15 kpe

Levine, Blitz & Heiles (2006) HI No Fixed*/Free 10 < R/kpe < 30
Marshall et al. (2006) Dust No Fixed [d§13] kpcle [ —90°,90°]
Skowron et al. (2019a) Cepheids No Fixed R < 20 kpc

Chen et al. (2019) Cepheids Yes*/No Fixed*/Free 55R/kpe < 20

Li et al. (2023) OB Yes Fixed 8.3 < R/kpc < 14 |z] < 1 kpc
Amores, Robin & Reylé (2017) 2MASS star counts No Fixed R < 18 kpc
Loépez-Corredoira et al. (2002) Red Clump Yes Fixed R < 13 kpc

Wang et al. (2020) Red Clump Yes Fixed 8.3 < R/kpc < 14, |z| < 1 kpc
Chrobdkovd, Nagy & Lépez-Corredoira (2020) Gaia DR2 Yes*/No Fixed*/Free R < 20 kpc

Cheng et al. (2020) K type stars Yes Fixed R < 16 kpc

Fourier sum with M = 2 (as we do) but assume a constant phase for
each mode as a function of radius (dg¢; = 0) and a second-degree
polynomial for each amplitude (4,,(R) = y (R — Ry)*> where y,, is a
constant) as a function of R. Under these assumptions, the resulting
model has the form

2
Z($, R) = Ao+ (R — R\’ Y _ v sin(me — @y,). @1

m=1

In consequence, there is a single Fourier sum that expresses the
mean azimuthal behaviour of the warp at all R > R4 which is scaled
by the function (R — Ry)?. In our model, without these assumptions,
we can represent how the azimuthal geometry of the warp changes
with the radius, giving rise to the differences between both models.
The Skowron et al. (2019a) model has the ability to reproduce the
mean asymmetries observed in the warp, but not the LON twist or
azimuthal changes in the different modes, which affect where the
maxima are located.

We also compare our results with those from other warp models
obtained for dynamically cold tracers like H 1 (Levine, Blitz & Heiles
2006), Dust (Marshall et al. 2006), OB stars (Li et al. 2023), Cepheid
(Chen et al. 2019), and pulsars (Yusifov 2004). Because Cepheids
are a young population (<500 Myr, e.g. Catelan & Smith 2015), they
are expected to still retain the warp shape inherited from the gas and
its star-forming regions, so the agreement among young tracers is
expected. We also show the results from Amores, Robin & Reylé
(2017) selected for a young population with an age of 400 Myr
compatible with that of Cepheids. In the northern region, within
uncertainties, we found excellent agreement with all previous results
for young tracers, and a clear disagreement with results from Amores,
Robin & Reylé (2017) inferred from star counts modelling using the
Besancon Galactic model. The warp model from pulsars departs the
most from ours, with a mean difference of 0.14 kpc (less than the
intrinsic dispersion of Cepheids, see Fig. C3). For the H 1 model,
we found differences for R < 12 kpc, which may be due to the
underestimation by the amplitude fitted to its own results by Levine,
Blitz & Heiles (2006) between 10 < R < 12. Compared to our
results in the southern region, these works tend to underestimate
the amplitude of the warp for R Z 13 kpc. The warp traced by
pulsars underestimates the height the most, compared to ours, with
a maximum difference of 0.42 kpc. These differences may arise
due to the symmetry imposed in the models for this radial range.
The models from Levine, Blitz & Heiles (2006), Chen et al. (2019),
and Li et al. (2023) are strictly symmetric in this radial range, in
consequence, the asymmetry given by the m = 2 mode between both
regions cannot be represented. The difference with the model from

MNRAS 528, 4409-4431 (2024)

Marshall et al. (2006) may be due to its radial coverage which does
not extend beyond R ~ 13.

Although the degree of agreement in the southern region is not as
good as in the north, its clear that all young tracers follow a similar
warp (Chen et al. 2019; Skowron et al. 2019a; Li et al. 2023). The
clear exception to this agreement is the result from Amores, Robin &
Reylé (2017). Although the disagreement with the Amores, Robin &
Reylé results in the south is not as strong as in the north, they still
found a warp amplitude that is systematically lower than ours as well
as all other works for Cepheids and similarly young tracers like dust
and H1.

We now focus our attention on the intermediate population: Red
Clump stars (L6pez-Corredoira et al. 2002; Wang et al. 2020), A type
stars (Ardevol et al. 2023), K type stars (Cheng et al. 2020), and the
full Gaia DR2 population (Chrobdkovd, Nagy & Lépez-Corredoira
2020). Results from Lépez-Corredoira et al. (2002) in the radial range
R < 13 kpc spanned by its observations (thick part of the line) shows
agreement with our results and, as with the young populations, the
agreement is better for the northern region. However, extrapolating
this warp model (thin part of the line) for the outer region of the disc
would yield increasing differences that would grow up to the order
of a few kpc. Also, the models by Cheng et al. (2020) and Wang et al.
(2020) for a 1-3 Gyr population are in agreement within uncertainties
for the northern region in R $12. In the southern region both models
are in agreement with our results for R S11.5 kpe, after this radius
the differences increase up to several kpc in the outer regions. The
warp model presented by Chrobdkova, Nagy & Lépez-Corredoira
(2020) is in clear disagreement in both the northern/southern regions
with all other warp models using similarly old tracers (like Cheng
et al. 2020) and with ours and all other results for young tracers.
As we will discuss in Section 5.2, these differences in amplitudes
between the models will become important in the determination of
the pattern speed of the warp. Results from Ardevol et al. (2023) for
the kinematics of A-type stars population have shown a clear signal
of the warp in the anticentre direction (¢ = 180), the increasing
vertical velocity as a function of the radius from R = 12 kpc, reaching
~6—7 km s~ 'at R = 14 kpc, similar to our results.*

The issue of the warp’s dependence on age of the stellar tracer
remains an open question. Older stellar populations like RGB stars,
Red Clump stars and other tracers older than Cepheids may trace a
similar warp considering the uncertainty in the parameters of each
model and their validity range. Also, Cantat-Gaudin et al. (2020)
reported that stellar clusters typically older than 1 Gyr trace the

4Because Ardévol et al. (2023) do not present a model of the warp traced by
the A-type stars we cannot include it in Fig. 8.

202 1990}20 Z Uo Josn eolignday €| op AU Aq 962565 2/601/€/82S/2I01HE/SEIUW/WIO0D dNODILSPEDE//:SANY WO} POPEOJUMOQ



southern region of the warp similarly to the Cepheids. Thus, it is
unclear whether there are significant discrepancies between the warps
traced by older and younger populations.

Among previous results available at present, either the predictions
of models with age dependency deviate significantly from the warp
observed for bona fide young tracers like the Cepheids, as seen
in the case of Amores, Robin & Reylé (2017), or there is not
enough discrepancy in the differences (considering uncertainties)
to determine an age dependency for the warp, as in the case of results
from Wang et al. (2020) shown in Fig. 8. The uncertainties in the
parameters obtained by Wang et al. (2020) for all ages are large
enough to allow for the agreement of all models from 1 to 12 Gyr
with our result with Cepheids. In particular the model for 9 Gyr
(not shown), an age completely incompatible with that of Classical
Cepheids, is the one in best agreement with our results. Taking into
account the restrictions present in some of the models regarding
the asymmetry and radial dependence of the warp, each model’s
validity range in distance and azimuth, and the current precision of
the observed warp using different tracers, it remains unclear whether
or not there is an age dependency in the warp.

5.1.2 Asymmetries and deviations from the tilted rings model

Our results, as well as several previous ones, showed that a tilted
rings model (Z = A(R)sin (¢ — ¢(R)) or M = 1) does not explain
many of the features observed at different radii in position and in
kinematics. For Z, the presence of a plateau at 10 kpc SR < 11 kpe
and ¢ ~ 180° shown in the second panel of Fig. 1, where the warp in
Z is already present, cannot be explained without an m = 2 mode. At
that distance, the tendency of the disc to warp towards the southern
hemisphere is clear at ¢ = 240°, still far enough in azimuth from
the strong obscuration towards the bulge (|¢| < 90) to be an effect
of the SF. The bootstrapping realizations shown in Figs 1 and 2 that
the plateau is well recovered, for this reason we consider unlikely
to be an artefact of statistical noise. The northern extreme lies in
the first quadrant and so its inference is more affected by SF effects
due mainly to obscuration, hence, it is less well constrained than the
southern extreme. Nevertheless, the extremes of the warp (in Z) are
found to be ~120° apart, while in a tilted rings model this difference
must be 180° by construction. The observed shape resembles the ‘S-
Lopsided’ warp model presented by Romero-Goémez et al. (2019).
A better azimuthal coverage in the first quadrant and behind the
bulge (currently unavailable due to extinction) would provide better
constraints for this model. Our result is robust, however, since better
coverage can only make the difference between the warp extremes
even smaller if the northern extreme lies closer to the bulge.

In the kinematics, a static warp (i.e. w, = 0 and A,, = 0) with
a plateau would create a distinctive shape in V,. If we consider a
star rotating with angular velocity €2 following the shape presented
in the second panel of Fig. 1, then, because the star rotates in the
direction in which ¢ decreases, after passing the minimum in ¢ ~
300° the star increases its vertical velocity until it reaches the plateau
(¢ =~ 180°) where V, = (0, then, on its way to the maximum Z close
to ¢ ~ 60° the star gains V, until a certain point after which its V,
decreases to zero when it reaches the maximum Z. This creates two
maxima in V,, one before the plateau and another one after it. A toy
representation of a plateau would be Z(¢) = A; sin(¢) + % sin(2¢);
for a star rotating with angular velocity €2 in a static plateau, this will
give V,(¢) = QA (cos (¢) + cos (2¢)), which shows the geometry
described before. This shape is observed in the second panel in
Fig. 2. We also take the ratio between the amplitudes of the modes
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m = 1and m = 2 in Z and V, and found consistency with what
is expected from the toy model (2—; ~ 2 and % ~ 1 around R =~
10.5). This peculiar signal was also observed in proper motions by
Romero-Gémez et al. (2019) in the RGB population, who interpret
it was a signal of the lopsidedness of the warp. As we see here it
is actually a characteristic signal of the S-Lopsided model due to
its plateau. An indirect evidence of the plateau is also illustrated in
Fig. 5 by the large dispersion of the LON for R < 11.5 kpc where
the LON is ill-defined. For R > 11.5 kpc, the plateau disappears,
and the dispersion in Fig. 5 is sharply reduced as the disc is
significantly inclined and the LON becomes well-defined. For R >
11.5 kpc other features that differ from a tilted rings model are still
present, like the azimuthal asymmetry between the two extremes.
The angular difference between them grows but never reaches 180°,
meaning that an m = 2 mode is needed to describe the galactic
warp. In consequence, the tilted rings (i.e. M = 1) model is unable
to accurately describe the observed azimuthal location of the warp
extremes at any radius.

In Section 4.1.2, we presented our results of the asymmetry
between the north and south extremes in the Cepheid’s warp. Asym-
metry between the height of the warp extremes, or lopsidedness, has
also been reported by Chen et al. (2019) and Skowron et al. (2019a)
for the Cepheids sample, by Levine, Blitz & Heiles (2006) for the H 1
component and also by Romero-Gémez et al. (2019) for the OB and
RGB populations. All these works seem to agree in the existence of
an asymmetrical distribution, with the H 1 as the best exponent of this
feature. In our results, the northern extreme is larger by ~0.25 kpc
at 11.5 < R/kpc < 13 which declines to a mean difference ~0.1 kpc
for R > 13.5 kpc as shown in Fig. 3. For comparison, the figure also
shows the north/south asymmetry for the warp model obtained by
Skowron et al. (2019a). This difference behaves like a mean trend of
our result as a consequence of the assumption of constant phases for
the modes and the polynomial radial dependence of the amplitudes.
The observed asymmetry in the outer disc is similar to that found for
the OB population at R =~ 14 kpc by Romero-Gémez et al. (2019),
but note that Romero-Gémez et al. (2019) report an amplitude for
the warp traced by OB of 0.3 kpc, much lower than the 0.8 kpc
we observe for the Cepheids warp. For the RGB stars, which are
older than the Cepheids, Romero-Gémez et al. (2019) report a larger
asymmetry (red line) but with the opposite sign. This would mean the
RGB present a warp with similar amplitude to the Cepheids but larger
at the southern extreme. As we show in the following discussion, this
may be due to an azimuth dependency of the asymmetry measured.

We have also found an azimuthal dependency in the asymmetry.
Fig. 8 shows how the warp at ¢ = 90° (north) and ¢ = 270° (south)
presents a southern region with a larger departure from the mid-plane
in the outskirts of the disc (R ~ 15.5 kpc), but in Fig. 3 comparing the
north and south extremes we get a northern warp height that is larger
at all radii (see also Fig. 4), with a decline in asymmetry towards
a minimum almost constant value at the outer disc (R > 13 kpc).
Here, the twisted LON can create misleading interpretations in the
measurement of the asymmetry, depending on how this measurement
is made. Because the LON is leading and closely centred around ¢
~ 180° (see Fig. 4), a sample which covers the region 90° < ¢ <
270° will tend to cover mostly regions below the galactic plane (the
mean Z in azimuth between 90° < ¢ < 270° is below the plane for
R > 13 kpc). Hence, comparing Z at symmetric azimuths ¢ = 180°
+ A, rather than symmetric with respect to the LON, will tend to
show a warp with larger amplitude below the plane. In Fig. 9, we
show the result of taking differences between the absolute values
in height above/below the plane at lines of sight symmetric with
respect to the Sun-Anticentre line, i.e. |[Z(180° — A)| and |Z(180°
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Figure 9. Difference AZ = |Z(180° — A¢)| — |Z(180° + A¢)| between
two constant azimuths symmetric with respect to the anticentre direction ¢ =
180°, as a function of galactocentric radius. Results for RGB stars reported
by Romero-Gémez et al. (2019) are also shown.

+ A)| for different A. This clearly shows how measurements of the
asymmetry at azimuths symmetric with respect to the Sun-Anticentre
line will yield a different result than when the extremes of the warp
are compared. This is a consequence of both the twisted LON and
the extremes of the warp never being diametrically opposed (Fig. 3).
If the effect introduced by the twist in the LON found with Cepheids
is also present in other populations, then different values for the
asymmetry may not be enough to ensure different warps for different
populations if the azimuthal dependency of the LON is not taken into
account.

The results for the RGB sample obtained by Romero-Gémez et al.
(2019), who reported a warp larger in the south than in the north, are
also shown in Fig. 9. The north/south extremes found by Romero-
Gomez et al. (2019) are roughly symmetric with respect to the Sun-
Anticentre line, so comparison in Fig. 9 is appropriate, and this
shows their results are consistent with ours for various AZ at their
measured distance of R & 14 kpc. Results for the OB population
that were shown in Fig. 3 to be in agreement with ours regarding the
asymmetry are not shown here because they do not correspond to
measurements made symmetric with respect to the Sun-Anticentre
line.

5.1.3 Line of nodes and line of maximum V,

In Section 4.1.3, we presented results for the LON. As was previously
reported by Chen et al. (2019) and more recently also by Dehnen,
Semczuk & Schonrich (2023), the LON in the warp traced by
Cepheids is twisted in the direction of the stellar rotation, meaning
a leading LON, as shown in Figs 4 and 5. This leading LON is
in accordance with Briggs’s Third Rule for warps (Briggs 1990),
which states that warp’s LONSs are straight for R < Ry, and twist for
R > Rpy,, where Ry, is the Holmberg radius. Although these rules
are derived for the warps traced by H 1, they are expected to also
apply for warps in the young population. Chen et al. (2019) estimate
the Holmberg radius at Ry, = 11.4 kpc, its LON and its Ry, are
plotted in Fig. 5 (cyan curve and dashed vertical lines, respectively).
We found better agreement between the Ry, and our twist’s starting
radius, than that of Chen et al. (2019), which starts further out in the
disc, as shown in Fig. 5. For R Z 12.5 kpc, the LON obtained by
Chen et al. (2019) is in quite good agreement with our results. We
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believe that the difference for R < 12.5 kpc between both works is
because, fitting only with one mode, the m = 1 mode in Chen et al.
(2019) has to represent the whole warp despite its asymmetries. For
this reason, and its relatively low amplitude in R < 12.5 kpc, the
m = 1 mode in Chen et al. (2019) behaves as a mean between our
LON (the full fit) and the phase of our m = 1 mode (blue dots).
The LON twist is also suggested by Romero-Gémez et al. (2019)
to be present in the warp traced by RGB stars, but with an opposite
direction, i.e. a trailing LON. However, Romero-Gémez et al. (2019)
warn that this result may be driven by selection effects due to
extinction.

In Section 4.1.3, we show how the LON and the LMV, have a
similar twist but they do not overlap, having an almost constant phase
offset of 25.4° between them. Both lines lie in the region of the disc
best populated by our data (as seen in Fig. 4) and best recovered in
our tests with simulations from Section B1.1. Therefore, we consider
both lines to be robust and not affected by biases. The difference in
phase between the two lines could be due to the presence of m > 2
modes in the overall warp. Romero-Gémez et al. (2019) also found an
offset between the LON and the maximum vertical proper motion for
the RGBs and attributed it to the lopsidedness of the warp. According
to Romero-Gomez et al. (2019, see their fig. 8 and section 5.1), the
LMYV, for the RGBs may lie at ¢ ~ 160°—170° (they observe [tj1sr
rather than V), leading their LON (at ¢ ~ 180°—200°) and also ours,
but with a twist opposite to our results with Cepheids. Again, this
result for the RGBs may be subject to selection effects which may
have affected the inference of the LON.

In a warp dominated by the m = 1 warp in both Z and V_, a change
in amplitude with time could be responsible for the out-of-phase
LON and LMV,. The phase offset 6 between the LON and LMV, is
given by ¢; — ¢/ + 7/2, so equation (13) translates into

A, = V;sins (22)

directly relating the phase offset with the amplitude change. There
are several caveats, however. First, as we have shown, for Galactic
Cepheids the m = 1 mode dominates the warp in Z but not in V_,
in which the m = 2 mode has a comparable amplitude at all radii.
Secondly, an LMV, trailing the LON implies § < 0, and equation
(22) would require A; < 0 in contradiction with our results and those
from Dehnen, Semczuk & Schonrich (2023) shown in Fig. 6, which
show that A ~ 0 up to R ~ 14 kpc and A, > 0 at larger radii.
Therefore, the evolution of the m = 1 mode alone cannot explain the
observed phase offset between the LON and LMV,.

We tested whether shifting the disc mid-plane can move the LON
to coincide with the LMV, . To do so we would need to shift the stars
by —240 pc, the mean vertical height of the stars along the LMV,.
This would be too big a shift compared to the typical uncertainties
of the position of the Sun above the Galactic plane (of the order
of tenths of pc, see e.g. Chen et al. 2001), making this explanation
unlikely.

In conclusion, we find the most plausible explanation for the phase
offset between the LON and LMV, to be the presence of m > 1 modes
which deviate the LMV, from the LON, meaning that lopsidedness
would indeed be the main driver of this offset as suggested also by
Romero-Gémez et al. (2019) for the RGB sample. Samples with
larger azimuthal coverage and also with measured line of sight
velocities may help to confirm modes with higher frequencies in
Z and V,, and settle the reason behind this out-of-phase LON and
LMV,.
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Figure 10. Z (left panel) and V; (right panel) as a function of galactocentric radius for nine evenly spaced azimuthal cuts from ¢ = 120° to 240°. The range
of azimuth is selected to be in the region of the disc more populated by data and less affected by the SF. In the right panel, the black curve represents the mean

from the coloured ones.

5.1.4 The twist and velocity arcs

In Section 4.1.3, we showed the LON and LMV, are twisted and
found these are well represented by straight lines in the plane ¢,
R (equation 20 for the LON and plus an offset for LMV,). These
parameters are also explored by Dehnen, Semczuk & Schonrich
(2023) who present two LONs as a function of guiding radius for
the warp traced by Cepheids, obtained from two different methods
(mean orbital plane and mean position plane) and find a rate of
change in the LON of —14.7 & 0.7 deg kpc™' (mean orbital plane)
and —10.6 + 0.8 deg kpc™! (mean orbital position). Our result
—12.7 0.3 deg kpc~' lies between the two values.

As the disc rotates and the LON wraps up and gets more and
more twisted, the disc could appear to have ripples if the LON wraps
around more than once around the disc. The rate of change of the
LON with R can be associated with the inverse of a radial wavelength
of these ripples. If we take a simple tilted rings model (Z(R) o sin (¢
— @(R))) and look at how it changes radially for a constant azimuth,
e.g. ¢ =0, then the warp will cross the plane at ¢(R;) = jm . Therefore,
if the phase is described by ¢ = R + 8, « it can be easily associated
with a wavelength by Apon = %”5. This wavelength is the radial
distance between two warp peaks at a constant ¢, if the LON and
the amplitudes do not change its behaviour. For our LON, we obtain
ALon ~ 28.4 kpc. In the left panel of Fig. 10, we show how this
twisted LON creates long arcs in Z for different azimuths.

The right panel of Fig. 10 shows V, as a function of R for
different azimuthal cuts, in which the velocity is seen to create
arcs whose peak changes in radius for different azimuths. These
arcs are explained by the twisted LMV, together with the growth in
amplitude in the kinematic signal as a function of R. These arcs are a
direct consequence of the twist in the LMV, because the kinematic
signal does not decline, and also because the peaks of the arcs move
outwards as phi decreases, as expected for the leading LMV,. Of
course, the change in amplitude and the asymmetries play a role in
the position of the maximum, but the main driver of this arcs is the
twist in the LMV .

These arcs in V, have been observed by previous works using
Gaia DR2 and DR3 with other stellar tracers (Cheng et al. 2020;
Gaia Collaboration 2021). Cheng et al. (2020) pointed out that these
arcs in V, are a consequence of the pattern speed in a tilted ring

STn this approach, we have ignored the amplitude (dg A/A = 0) which can
change the distance between the peaks, but this change is negligible in
comparison with our uncertainties.

model, and indeed an arc can be created with just a constant pattern
speed and a growing kinematic signal without a twisted LON. This
is because the growing amplitude gets modulated by the factor (2
— w) so V, grows and then starts to decline as the co-rotation radius
is achieved where V, is null (if A = 0), creating an arc. But this
explanation cannot take into account the change of the arc shape as
a function of the azimuth (as shown in the right panel of Fig. 10),
which can only be due to the twisted LMV, which is a consequence
of the twisted LON and the combination of the different evolutionary
terms of the warp modes, not only the pattern speed of the m = 1
mode.

Here, we have shown these arcs in V, are a direct consequence of
the twisted LMV, . It is worth noticing that the LMV, does not track
the line of maximum in V., of the arcs presented in Fig. 10 due to the
change in amplitude as a function of R.

Because the LMV, has the same twist as the LON, A on represents
also the radial distance between two V, peaks at a constant ¢. Using
the same A on for the LMV, we may expect from a extrapolation
of this oscillatory behaviour the minimum in V, at the anticentre
direction to be around R ~ 28 kpc and the point of null V, to
be around R ~ 21 kpc. Wang et al. (2023) used Gaia DR3 to
map the disc population out to R ~ 23 kpc. In their Fig. 3, the
disc’s vertical velocity goes from positive to negative values at R
2 20 kpc. These results seem to support our prediction, assuming
ALon holds for the entire Gaia DR3 sample used by Wang et al.
(2023). Future extended maps of V, may prove helpful to explore
whether this analysis also holds for R > 20 kpc and for other stellar
populations.

Finally, Poggio et al. (2021) have shown with an N-body simulation
of the Milky Way affected by the Sagittarius dwarf galaxy, that
the m = 1 mode has prograde rotation if the Milky Way disc and
Sagittarius are close to an interaction. After approximately a few
Myr the prograde motion coherent with the m = 2 mode disappears.
Perhaps the coherent rotation between the m = 1 and m = 2 modes
close to an interaction found by Poggio et al. (2021) is the reason
why the azimuth of the LON and the LMV ;are well approximated by
a monotonic (linear) dependence as a function of radius; without a
coherent movement in the outskirts of the disc the LON may behave
more erratically than is observed.

5.2 Time evolution

In Section 4.2, we provided a new formalism to derive the time
change of each mode’s amplitude (A,,) and pattern speed (w,,) at
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Table 4. Pattern speed for the m = 1 mode in (km s~!) kpc™! given by our
mean value for R > 12 kpc, Poggio et al. (2020) and Cheng et al. (2020).

This work (@1)g > 12kpe Poggio et al. (2020) Cheng et al. (2020)

—-9.18 £3.12 —10.86 +3.23 —13.57+0.2

each ring, from the Fourier decomposition of its Z and V.. This new
formalism is free from assumptions on how the amplitude and phase
of each mode depends on the radius. By applying it to the Cepheids
we derived the pattern speed and change in the amplitude of the m =
1 mode for R > 12 kpc.

The dominant mode in Z for the warp is the m = 1 mode as expected
for an S-type warp, so its evolution may drive most of the time
evolution of the warp. In Fig. 7, we show that, within uncertainties,
| shows a mean rotation of 9.2 & 3.1 km s~! kpc™'® and its
error corresponds to the standard deviation of posterior realizations
from the independent rings, in agreement with previous reports from
Poggio et al. (2020) and Cheng et al. (2020), presented in Table 4.
Some oscillations are present, similar to the results obtained by
Dehnen, Semczuk & Schonrich (2023), the main difference being
that for R < 12 kpc they found differential rotation slightly larger
than we do, perhaps as a consequence of our use of the galactocentric
radius as opposed to their use of the guiding centre. We note,
however, our results from simulations (Appendix B) suggest w; may
be overestimated in this radial range.

Chrobdkovd & Lopez-Corredoira (2021) present arguments about
how the overestimation in the amplitude of the warp leads to
an overestimation in its pattern speed,’ therefore getting a lower
amplitude of the warp will translate into a slower precession. This
is well reflected by our equation (14). However, the very low
amplitude of the warp presented by Chrobakova, Nagy & Lépez-
Corredoira (2020) seems unrealistic when compared to the rest of
results from the literature, even compared to those with similar
tracers as Cheng et al. (2020). Chrobdkovd & Lépez-Corredoira
(2021) also present a warp model for the younger population in its
sample, with very similar results as obtained for the total sample. This
particular disagreement in amplitude with the models of the young
populations may indicate that the model by Chrobdkovd, Nagy &
Lépez-Corredoira (2020) may be significantly underestimating pre-
cession rate of the warp, as a consequence of the underestimated
amplitude.

Equation (14) also makes it clear why our results for w; are similar
to those of Poggio et al. (2020) and Cheng et al. (2020), despite
different assumptions in the three warp models, like the amplitude
or the fixed phase ¢;. This equation shows that w; depends on the
difference between the phase of the mode in Z and in V,, therefore,
it does not matter where they are located or if they are twisted, as
long as the phase difference is the same. Because in the Milky Way
the assumption that ¢ — ¢/ ~ —7F seems to hold at least up to R
~ 14 kpc, which is the same as assuming A; = 0, independently of
which ¢; the model adopts or if it is twisted or fixed w; will not
be influenced by this assumption as long the model adopts A; ~ 0.
Also, the assumed amplitude affects w, as was previously mentioned,
but w; gets saturated by overestimations in A, because as A; —
oo then w; — 2 (because the kinematic signature V; makes w,
< ). This may be the reason why Cheng et al. (2020), with its

©The mean was obtained with measurements in independent rings for R >
12 kpc.
"This relation holds for a warp with prograde rotation.
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larger amplitude, gets a larger w; than ours, and also why Poggio
et al. (2020) with the same kinematic signature gets a larger w;,
as it uses larger amplitudes. In this analysis of w;, we have left V;
constant because the kinematic amplitude of the warp seems similar
for different tracers as shown by Gaia Collaboration (2021). These
could be the reasons why Poggio et al. (2020) and Cheng et al. (2020)
get similar results to ours, even when they do not consider a twisted
¢ and when their amplitudes are larger than ours. We should add that
the difference in amplitude is not the only parameter that plays a role
in this analysis, the rotation curve and the kinematic signal are not the
same between the works cited and they can change the pattern speed
measurements, so we expect that these differences to also play a
role.

Previous works on the time evolution of the warp neglect the
contribution by the change in amplitude to the warp’s kinematics
(Cheng et al. 2020; Poggio et al. 2020). Poggio et al. (2020) argue
that the effect of A, may be a second-order effect in the kinematics.
Our results shows empirically that the change in amplitude can be
neglected at least up to R =~ 15 kpc. Wang et al. (2020) finds the
change in amplitude derived from the young population (&1 Gy)
to be null, which within uncertainties is consistent with our mean
measurement up to the radial limit to which Wang et al. (2020)
restricted its sample, i.e. R = 14 kpc. For R > 14 kpc, we found
Ay > 0, reaching a maximum A, ~ 5 km s~!, this tendency is
also observed in the change of the inclination in the tilted rings
model by Dehnen, Semczuk & Schonrich (2023) with similar
values.

The prograde rotation of the m = 1 mode found with Cepheids
is expected in the context of a disc embedded in a prolate halo
as shown by Ideta et al. (2000) and Jeon, Kim & Ann (2009).
However, if this were the case, the prograde motion should be
much slower (0.1 km s~' kpc™! to 1.5 km s~! kpc™') than our
result.

Although the m = 1 mode rotates almost rigidly, this does not
guarantee a rigid rotation of the LON, because the m = 2 mode
also plays a role in the LON evolution, and in V, its amplitude is
comparable to that of the m = 1 mode. Due to the poor recovery
expected for the m = 2 mode (Section B1.2), a derivation of w, and
A, with our data would be biased, so we cannot ensure the evolution
of the LON or of the whole warp to be one with rigid rotation. The
m = 1 mode also presents a growing amplitude for R > 15 kpc,
as is also reported by Dehnen, Semczuk & Schonrich (2023). For
R < 14.5 kpc, the changes in amplitude are insignificant within the
uncertainties; therefore, we present a warp which, at first order, shows
a stable behaviour for R < 14.5 kpc but still evolving in the outskirts
of the disc.

In our derivation of w,, and A,,, we have ignored the radial velocity
and azimuthal changes in . Considering a radial motion of 10km s ™!
even when radial velocities may seem to be slower (Cheng et al.
2020), we found that A; may change by about 1 km s~! and w; by
2kms™! kpc, which are in the order of the uncertainties. Also, that
the radial bulk motion reported by Cheng et al. (2020) is inwards
for R Z 14 kpc will translate into a decrease in the measurement
of A, unless it is considered. Therefore, the growth in amplitude
for R 214 kpc cannot be reduced by taking the radial motion into
consideration (in fact, it should increase). These changes are smaller
than the uncertainties in the results presented in this work, therefore
we do not take them into account in our analysis. These features could
be added to the analysis by considering a field of radial velocity and
Q2 described by Fourier sums at different radii. The extension of our
formalism to account for the radial component will be presented in
a future work.
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6 CONCLUSIONS

In this work, we have used the Skowron et al. (2019b) catalogue
of Classical Cepheids to study the structure and kinematics of the
Milky Way warp by means of Fourier Decomposition methods.
These are the first results presented in the literature for the Fourier
Decomposition of the warp in V,. Our main results regarding the
structure and kinematics of the warp are the following:

(i) The warp is clearly lopsided, both in Z and V.. In Z, the
amplitudes of the m = 1 and m = 2 modes are comparable up to
R ~ 13 kpc. At larger radii the m = 1 mode dominates, as found
previously by Chen et al. (2019) and Skowron et al. (2019b). In V_,
the amplitudes of the m = 1 and m = 2 modes are comparable at all
radii. The m = 0 mode does not play a major role in the overall warp
shape, we detect a bowl-like shape in the radial range 11.5 < R/kpc
< 13 with a maximum amplitude of 2200 pc. In V,, the m = 0 mode
is almost null for R > 10 kpc.

(ii) The warp presents a plateau at 10 < R/kpc < 11. The observed
shape resembles that of the S-lopsided model from Romero-Gémez
et al. (2019). The double peak observed in V, at this radius is
a kinematic signal associated with this plateau. It has also been
observed in the proper motions of Red Clump stars by Romero-
Gomez et al. (2019).

(iii) The warp is clearly asymmetric up to R ~ 13 kpc, with a
Northern warp larger than the Southern warp. In the outer disc (R 2,
13.5 kpc) the warp becomes symmetric to within uncertainties.

(iv) The extremes of the Cepheid warp in Z are never diametrically
opposed. The difference in azimuth between the warp extremes is
~120° at R ~ 10—11.5 kpc and increases up to 140° at R =~ 12.5 kpc,
remaining constant at larger radii.

(v) The LON begins to twist at around R ~ 11, which is close to
the Holmberg radius for the Milky Way (11.4 kpc, Chen et al. 2019),
in agreement with Briggs’ rules (Briggs 1990). The LON’s azimuth
follows a linear relationship with radius, presented in equation (20).
We found a twist of —12.7 & 0.3$.

(vi) The LMV, does not coincide with the LON, but trails behind
it with a constant offset of 25.4°. We rule out that this offset is due to
the change in amplitude with time of the m = 1 mode, and explain
this offset as a consequence of the lopsidedness also present in the
kinematics.

(vii) The arcs in V, as function of R observed in other stellar
populations (Cheng et al. 2020; Gaia Collaboration 2021) are also
present in the Cepheids sample. We show these are a consequence of
the twisted LMV, (see Fig. 10).

We have also introduced a new formalism (Section 4.2), based
on the joint analysis of the Fourier series in Z and V,, from which
the pattern speed and instantaneous change in amplitude for each
individual Fourier mode can be derived. By applying this formalism
to the Fourier Decomposition obtained for the Cepheids in Z and V,
we derive the pattern speed and amplitude change of the m = 1 mode
as a function of radius. Our main results are as follows:

(i) The m = 1 mode shows a prograde differential rotation for 11
< R(kpc) < 13 with @, going from ~—20 km s~! kpc™! at R ~
10—11 kpc to —9.18 km s~! kpc™! at R ~ 13 kpc. Our results from
simulations, however, suggest w; may be overestimated in 11 < R
(kpe) < 13 this radial range.

(i) The amplitude of the m = 1 mode remains approximately
constant, with A; ~ 0 km s~' for R < 14.5 kpc. The amplitude
change has a growing tendency for R > 15 kpc, reaching A; ~ 5 km
s~'at R ~ 15.5 kpc.

Time evolution of the warp 4423

Thanks to the precise measurements from Gaia DR3 and distances
from Skowron et al. (2019a) to its sample of Cepheids, we can explore
the complex signal of the warp in both its structure and kinematics.
Future Cepheid samples with increased coverage in the first and
fourth quadrants will contribute to better restrict the parameters of the
warp. A better understanding of the warp kinematics is necessary to
make more robust comparisons with simulations and with analytical
models of its dynamics, which can lead to better constraints on the
possible history of the warp and its role in the evolution of the Milky
Way disc’s dynamics. Furthermore, the complexity revealed may
not be unique to the Galactic warp, understanding it will help also
understand warps in external galaxies.
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APPENDIX A: MATHEMATICAL DEFINITIONS
FOR THE INFERENCE

In this section we expand on the definitions of various mathematical
objects used in Section 2. We begin defining the vector CS(¢) as

CS(¢) = [1, cos(¢), cos(2¢), ..., cos(M @), sin(¢@), ..., sin(Mp)[Al)

we can write the matrix A as

N
A Z CS(¢;) ® CS(¢1)

2
0;

; (A2)

i=1

where ® denotes the outer product, ¢; the azimuth of the ith star
and the o; its dispersion defined as

o} = 012[ +0?p, (A3)

where o, is the uncertainty in z and o p the intrinsic dispersion.
The vector p is defended as

N
p=3 Z5CS@). (A4)
i=1

1

APPENDIX B: VALIDATION WITH
SIMULATIONS

In this section, we use a warped galactic disc simulation to analyse
the performance of the method described in Section 2 when applied
to mock data. We analyse how observational errors and the SF of the
data affect the recovery of each mode’s parameters in Z and in V_,
the full Fourier sum, and the intrinsic dispersion in different regions
of the disc.

B1 Structure and kinematics

For our warped galactic disc model (without observational errors
or SF), we use the test particle simulation of the Sine Lopsided
warp from Romero-Gémez et al. (2019). This is an S-shaped warp
modified from a simple tilted rings model to allow for an warp with
an arbitrary asymmetry (a 3D representation is shown in fig. B1 in
Romero-Gémez et al. 2019). The warp is such that the height of the
mean plane of the disc is given by

(z(R, ¢)) = Rsin(@) sin(¥ (R, ¢)), (B
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Figure B1. Each panel in the left column shows Z as a function of R centred at four different Galactocentric azimuths (from top to bottom ¢ = 0.0°, 90.0°,
180.0°, and 270.0°) with A¢ = 5°. The same is shown in the right column for V. The different solid curves show: the analytical prediction for the mean
position of test particles in the warped potential (red curve), the ground truth model (black curve) and the SF model (blue curve) for the variable Z. The grey
dots represent the stars used for the GT model, and the blue ones represent the star used for the SF model. The mean absolute difference between the SF and GT

models for each ¢ is reported in the title.

where

W(Rv ¢9 Ri, Ry, a, wups Wd()wn) =[A+B sm(d))]f(R, Ry, R, Ol)
(B2)

with A = %(wup + wdown)a B = %(vfup - 1pdown)» andfhaVing the
following expression

0 R < R

f(R; Ry, Ry, ) = (H, ) R <R <R, (B3)

>R
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Figure B2. Each plot shows the residuals between the fiducial model (gr) and the model recovered with the mock catalogue (sr), normalized by the intrinsic
dispersion of the variable obtained in the fiducial model. The left and right panels show the residuals for Z and V., respectively, for M = 1 (top) and M = 2
(bottom). In each of the plots, the inner black ring at R = 10 kpc indicates where the warps starts, the outer ring is where the m = 1 mode begins to be greater in
amplitude than the intrinsic dispersion. This happens at R = 12 kpc for Z and R = 14 kpc for V.. The pale grey dots are the stars in the mock catalogue used in
the fit, and the black star indicates the position of the Sun.
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Figure B3. Each panel show the amplitude for the m = 0 (yellow), m = 1 (blue), m = 2 (violet) modes, and o 1p (black) for the SF model (dark solid lines) and
the GT model (pale solid lines) obtained for Z (left panel) and V. (right panel). Each amplitude and op is plotted as a function of radii.

where Romero-Goémez et al. (2019) set Ry = 10.1kpc, R, = relaxed in an Allen & Santillan (1991) Galactic potential, then warp
l4kpe, a = 1.1, Yoy = 7.5° and ¥ gown = 4.25°. These parameters the potential adiabatically for five periods of the circular orbit at a
were chosen so that they would represent a plausible model of the radius R = R, and finally let the stars relax for a further two periods
asymmetry observed in the Galactic warp. (at R = R»,). The resulting configuration is such that stars at R < R,

For the test particle simulation, the strategy followed by Romero- kpc are in statistical equilibrium with the imposed potential and their
Goémez et al. (2019) was to initialize test particles in a a flat disc mean z is described by equation (B1).
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Figure B4. Each panel shows the phase for the modes m = 1 (blue) and m = 2 (violet) for the SF model (solid dark line) and the GT model (solid pale line)
obtained for Z (left panel) and V (right panel), as a function of galactocentric radius R.

06

Figure B5. The ratio between the difference in intrinsic dispersion by the GT
model and the one obtained with the SF model, over the intrinsic dispersion
of the GT model as a function of the galactocentric radii. The blue and
green continuous curves correspond to the intrinsic dispersion of Z and V,,
respectively. The black, blue, and green vertical dashed lines indicate the
radius at which the warp begins, when the amplitude of the mode m = 1 is
bigger than the intrinsic dispersion for Z and for V_, respectively.

40
_0

%) — Wirs
a
4 30 — WGt
&
E
=
= 20
%)
c
7}
3
o
L 10
5
&
%: 0

-10

10 12 14 16 18 20

R (kpc)

Figure B6. Angular frequency as a function of the galactocentric radii of
the pattern speed w; for the m = 1 mode, calculated from equation (14) for
the GT model (black curve) and for the SF model (red curve), the angular
velocity of the stars €2 (green curve) is derived analytically from the Allen &
Santillan (1991) potential. The red dots around each w; are 500 realization
taken from the posterior at each ring for the SF model.

The test particles were initialized with a vertical velocity dis-
persion of 16.6 km s~! representative of Red Clump stars at the
solar radius. In this work, we will apply the method to a sample of
Cepheids, a kinematically colder population in which the detection
of the warp is more favourable. The results obtained for the Red

— Ayer

FE— AI.SF

A1 (km/s)
o
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Figure B7. The change in amplitude A; for the m = 1 mode as a function
of the galactocentric radius calculated from equation (13) for the GT model
(black curve) and for the SF model (red curve). The red dots around each w,
are 500 realization taken from the posterior at each ring for the SF model.

Clump simulation will, none the less, still be useful to understand
the general advantages and flaws of the method described in Section
2.

The mock catalogue from Romero-Gémez et al. (2019) includes
the simulation of the Gaia DR2 observational errors and SF, as
described in their Appendix D. In what follows we will use this
mock catalogue down-sampled to Ny, = 1997 to match the number
of Cepheids in our final catalogue (Section 3), keeping the simulated
errors in proper motion, and assuming a 3 per cent error in distance,
representative of the photometric distances for the Cepheids in our
sample (Section 3). Errors for V, were propagated from distance and
proper motion errors, assuming the radial velocity is inferred from
the rotation curve, as described in Section 3.

Since the test particles in the Romero-Gémez et al. (2019)
simulation are only relaxed up to R = R, = 14 kpc, we need to
establish a ground truth model representative of the whole disc that
can be used as a fiducial model against which results for mock
catalogues are compared. We take as our ground truth model (from
now on GT model) the Fourier fits for Z and V, obtained by applying
the method described in the previous section to an arbitrarily large
sample of the simulation, without errors or SF and fitting up to the
second order mode (M = 2).8 Other combinations for N, Ny, M for
the GT model were tested and we find that the selected one optimizes

8We tested a larger M and find that M > 2 does not improve significantly our
results.
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the computational time required and gives us the detailed information
needed. Finally, we will call the SF model the Fourier fits obtained by
applying the method to the mock catalogue affected by observational
errors and SF. In all cases, to compute o jp we divide each ring in 15
equally spaced azimuthal bins and find the weighted average of the
standard deviation.

Fig. B1 compares the distribution of test particles in the GT (grey
dots) and SF (blue dots) simulated samples to the resulting GT and
SF models (black and blue lines) in Z versus R plots for three different
azimuths. The figure shows in all cases the GT model does indeed
capture the behaviour of the test particles in the full radial range
and coincides with the analytical prediction for R < R,. Beyond this
radius the stars cease to be in equilibrium with the potential and the
mean (z) traced by the stars is not expected to follow equation (B1).
The SF model agrees very well with the GT model over the whole
disc, capturing the overall behaviour of the warp. The mean absolute
difference between the SF and GT models for each ¢ is reported
in the top label of each panel in Fig. Bl ({|AZ|)g), the maximum
(|AZ|)r ~ 0.40 kpc corresponding to the region most affected by
the bulge extinction (¢ = 0°), and the minimum (|AZ|)r &~ 0.08 kpc
that corresponds to the region towards the anticentre (¢ = 180°). In
Fig. B1, we notice that the general trend of the warp is recovered in
all directions for the external region of the disc (R £ 10) where the
warp begins.

The right panel of Fig. B1 shows the corresponding results for
V.. In this case, we compare only the results for the GT and the
SF models, since there is no simple analytical form for V,(R) as
discussed in appendix C in Romero-Gémez et al. (2019). Again, as
in Z, the best-recovered region is around ¢ = 180° because it is less
affected by the SF. All differences between the GT and SF models
are much smaller than the corresponding velocity dispersion, which
has a mean of 19.2 km s~! throughout the disc. For both Z and V,
the reduced chi square x2u shows that the GT model fits for Z and
V., are good (x; ~ 1 VR).

B1.1 Azimuthal and radial biases

Fig. B1 hinted the existence of regions in which the reconstruction
of the warp given by the SF model lacks accuracy. We argue this
is due to the correlation between modes introduced by not having a
uniformly distributed sample in azimuth and by stochastic clumps in
regions with fewer stars in the sample due to the SF. To illustrate
this, Fig. B2 shows, in each panel, a residual plot between the
SF and the GT model in Z and V, (respectively top and bottom)
normalized by the intrinsic dispersion given by the GT model (with
fixed M = 2), for SF model fits with up to 1 (left) and 2 modes
(right). Grey dots show the SF sample, the black star shows the Sun’s
position, the inner ring is R = 10 kpc where the warp begins and
the outer ring is the radius in which the amplitude of m = 1 mode
is bigger than the intrinsic dispersion in the variable. The red and
blue colours correspond to over/under estimations by the SF model,
respectively.

In Z, for both M = 1 and M = 2 the differences are greater at X
> 0 kpc in the inner region before the warp begins. The discrepancy
is larger for M = 2 because when fitting with a higher number of
modes, in the areas most affected by the SF the higher frequency
modes tend to drive the fit towards the few data points available
introducing spurious oscillations where there is less data. For both
M =1 and M = 2, the recovery is best for outer radii, where the
warp amplitude is larger than the intrinsic dispersion. For M = 1,
the differences start growing with radius due to the simulated warp’s
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asymmetry which is not well represented by the Fourier series with
m < 1 modes, generating an m = 2 pattern in the differences. By
contrast, the asymmetry is better captured by the series for M = 2 for
which the discrepancies in the outer region are smaller. However, a
hint of the m = 2 pattern in the differences still remains; this is due
to a lower amplitude of the m = 2 mode recovered by the SF model
(this is illustrated in left panel of Fig. B3).

For V, we analyse the bottom panels in Fig. B2, the left plot for
M =1 and the right for M = 2. The differences between the SF and
GT models are always smaller for V, than the intrinsic dispersion
in the whole disc, both for M = 1 and M = 2, in contrast with the
recovery in Z where differences exceed the intrinsic dispersion in the
inner region. The best and worst recovery for V, are found in the same
regions as for Z because the azimuthal distribution is the same for
both samples; with the best recovery at negative X, and the worst in
the internal disc at positive X. Finally, the differences between the SF
and GT models are much lower in V, than in Z. As also discussed in
Romero-Gémez et al. (2019), this is expected because the SF creates
exclusion zones in Z due to high extinction near the Galactic plane,
but does not in V, because the correlation between z and v, is weak
for a given star.

Given these results, we decide to use M = 2 for Fourier fits for
this work because it offers the least biased recovery for the region of
the disc where the warp is most prominent (i.e. outer radii). Reliable
results for the inner region of the disc are limited to 90° 2 ¢ = 270°,
the region least affected by the SF with best coverage, where biases
in the recovery are lowest.

B1.2 Recovery of individual modes

So far we have analysed the recovery of the shape and kinematics
of the warp as a whole, given by the sum of the M individual modes
in the Fourier series. Now, we will analyse how well each mode is
recovered.

Each mode m is characterized by its amplitude A,, and its phase
@m in Z, and in V, with V,, and ¢). In Fig. B3, we compare the
amplitudes for Z (left) and V, (right) as a function of R recovered for
the SF model (dark solid lines) against the values given by the GT
model (pale solid lines) for each mode. The intrinsic dispersion as a
function of radius is also plotted in each panel.

The left panel of Fig. B3 shows how for inner radii (R < 10 kpc)
the disc is flat before the onset of the warp, as shown by the near
zero amplitudes for all modes in the GT model. Particularly for m =
1, 2, the SF model finds non-zero amplitudes of the order of the
intrinsic dispersion. Amplitudes are overestimated in the inner disc
because the modes make the full Fourier series flat in the region less
affected by the SF (¢ ~ 180°), but it also tries to fit stochastic clumps
far from the mid-plane at ¢ ~ 0° where the SF has removed stars
preferentially in the disc plane. At the outer parts of the disc, the m =
1 mode is overestimated by the SF model but the bias is reduced at
the external part of the warp (R > 13 kpc), where the A; amplitudes
are larger. The m = 2 mode is overestimated due to correlations with
other modes when the whole fit of the series is driven by stochastic
clumps at R < 10 kpc, as for the m = 1 mode. The m = 0 mode is
well recovered over the whole disc.

Some features observed for the amplitudes in Z are present also in
V.. For example the amplitudes are not 0 km s~'for R < R, due to the
sparse azimuthal coverage caused by the SF. For V,, the amplitude
of m = 1 is underestimated but the general trend is well recovered
by the SF model for R > R; = 10 kpc as in Z. The amplitudes of
m = 0, 2 have differences between the SF and the GT model, also
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as in Z, which is expected because both amplitudes in the GT model
are smaller than o1p, which makes them harder for the SF model to
recover.

Similarly to Fig. B3, in Fig. B4 we compare how the phase of each
mode in Z (left) and V, (right) is recovered by the SF model as a
function of radius. We do not plot the phase for m = 0 because it can
only take two possible values (—90° and 90°).

For the inner disc at radii R < R; = 10 kpc before the onset of
the warp, it is normal that the phase is badly recovered for all modes
because the (true) amplitudes are near zero at these radii and the
phase becomes meaningless. For the m = 1 mode the phase for both
Z and V, are very well recovered, with no significant bias, for R 2
12 kpc where A; > op. For m = 2, the general trends are recovered
for R 2 12 kpc, e.g. the twist in Z and V, showing the change of
phase as a function of radius. However, we must be cautious in any
particular analysis of m = 2 as an individual mode due to the lack of
recovery by the SF model with this mode, its phase recovers some
of its tendency but without accuracy.

B1.3 Intrinsic dispersion

Finally, we analyse the bias introduced by the SF to the intrinsic
dispersion that our method calculates. To do so, we compute the
fractional difference between the o;p obtained with the GT and SF
samples. These differences for Z (blue curve) and V, (green curve)
are plotted in Fig. B5 as a function of radius. The black vertical
dotted line at 10 kpc indicates the beginning of the warp, the blue
one when the mode m = 1 for Z starts to be greater than op, the
green one is the same as the blue but for V..

First, for Z the recovered op is increasingly overestimated at
inner radii until the warp becomes greater than the disc’s thickness;
for larger radii, the recovered op decreases and is off just by 10
per cent of the GT value. Both effects are due to the combination of
the increased warp amplitude and the SF. The SF makes the stars
near the plane very unlikely to be observed due to high extinction,
while the stars away from the plane are less affected by it; since
these stars are further away from the disc plane (because of the
amplitude of the warp) this tends to inflate op for Z. This effect is
expected to be smaller for a dynamically colder stellar population like
Cepheids. For V_, on the other hand, we find a mean underestimation
of 3 per cent, much smaller than for Z. We find the appearance of the
warp signal in V, has no effect in the ability to recover op. Overall,
the recovery of the intrinsic dispersion affects the inference on the
amplitudes and phases in terms only of the dispersion of the posterior
PDF, it does not introduce any systematic biases in the parameters
themselves.

B1.4 Assumptions on the rotation curve

We tested how the assumed rotation curve may affect the inference in
the simulations and with the real data. We did not find any systematic
bias in the amplitudes, phases and intrinsic dispersion inferred from
the mock catalogues when we used the v, derived from the rotation
curve, even when using different rotation curves.

In the case of the Cepheids, we tested whether changing the
rotation curve offset by 10 km s~'could change our main results.
We found that different offsets change the amplitudes of the V, arcs
by ~1km s~! but do not change the general trend of the kinematic
signal of the warp. The changes in w, and A, due to changes in the
rotation curve are insignificant in comparison with the uncertainties.

Time evolution of the warp 4429

B2 Time evolution

In this section, we validate the inference of w,, and A, by applying the
formalism developed in Section 2.3 to the simulated sample affected
by the SF and comparing it to results for the GT model (as in Section
B1.2). By doing this we’re assuming that the formalism developed
holds and will yield correct results for the GT model. Since the test
particle simulation we are using has a fixed warp, we expect from
this test to recover a constant amplitude and null pattern speed in the
region at equilibrium with the potential (i.e. R < R, = 14 kpc). In
the outer parts, the warp would be expected to evolve with time as
the stars relax in the potential. Because the warp model used in the
test particle simulation is not constructed by definition as a Fourier
series, it is not straightforward to use this data to test the recovery
of specific values of the time evolution parameters. More involved
tests in this direction could be done in a future work to validate the
method.

In what follows we analyse the difference between the parameters
from both models for R > 10 kpc where the warp is present. We apply
this formalism only to the m = 1 mode due to the bias and noisy
recovery in the m = 2 mode parameters discussed in Section B1.2.

Fig. B6 shows the results for the GT and SF models for w; as
a function of radius. For the GT model, we get w; = 0 for R >
12 kpc (black curve in Fig. B6). The variations observed in w, at
10 < R/kpc < 12 are expected in this region were the amplitude of
the mode is still very low and it’s pattern speed ill-defined. As the
amplitude of m = 1 mode increases the pattern speed recovered for
the SF model converges to results for the GT at the outermost radii.
The mean overestimation in w; for R > 12 kpc is of the order of 4 km
s~! kpc~!, which is within the uncertainties given by the posterior
realizations (grey dots).

Fig. B7 shows the result for A, for the GT (black curve) and the SF
models (blue curve). The difference between the two for R < 12 kpc
is due to the poor recovery in ¢! as shown in Fig. B4. The mean
difference for R < 12 kpc between the recovery with the SF and GT
models is less than 2 km s~!, which is within the uncertainties given
by the posterior realizations (grey dots). For 12 < R/kpc < 17, the
general tendency for A, is recovered within the uncertainty with not
appreciable bias. The relatively large uncertainty in the recovery on
A, stems from small differences in 0 — <p1V , which near 7r/2 translate
in large differences in A; due to it dependence on the difference via a
cosine function (equation 13). The opposite happens for w,, because
it depends on the difference via a sine function.

APPENDIX C: GOODNESS OF FIT AND
RESULTS FOR INDIVIDUAL MODES

This appendix presents the results for the goodness of fits and
summarizes the results of Section 4.1 for the individual modes.

C1 Goodness of fit

We have tested with the reduced Chi-square how mean y mode where
needed to do the fits in Z and V, for the Cepheids sample. Figs C1
and C2 shows as a function of the radius the results for Z and V..
Clearly the result favoured the fits for M = 2 for both variables,
showing the need of the m = 2 mode to reflect the asymmetries
present in the warp. We have also computed the Bayesian information
criteria (BIC; Ivezic et al. 2014) for different radii and we found that
M = 2 is always clearly the best model for Z at all radii >10 kpc.
This is of special importance since Z is more sensitive to biases due
to the SF problems. For V, the fits with M = 2 is also the best case
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for the outer disc where the amplitude of the warp is significant. We
have therefore chose the M = 2 model for both variables.

C2 Individual modes

C2.1 Fitsin z

In Fig. C3 (left panel), we present the results of the amplitudes for
each mode and the intrinsic dispersion in Z as a function of radius.
Clearly, the m = 1 mode (red) dominates the fit (it has a maximum
of ~1.1 kpc), as expected from an almost S-type like the Milky Way
warp. The main mode that takes into account the asymmetries is
m = 2 (violet), its amplitude begins to grow at R &~ 10 kpc but never
exceeds 250 pc. For m = 0 (yellow), we have a maximum of ~200 pc.
This mode can give asymmetry between both extremes of the warp,
but its main purpose is to set the mean height in each ring, so it has
the ability to represent radial ripples with no azimuthal dependence.
For comparison, we plot the amplitudes for each mode from Skowron
etal. (2019a) (dotted curves) obtained with exactly the same Cepheid
sample but under the assumption of a monotonic dependency of A,,
with R2. For the m = 1 mode at R > 10 kpc both amplitudes are
practically the same; for the other modes the amplitudes obtained
by Skowron et al. (2019a) are similar to the mean behaviour of our
results.
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Figure C1. Reduced Chi-square for the fits in Z done with M = 1 (green
curve) and M = 2 (blue curve) as a function of galactocentric radius.
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Figure C2. Reduced Chi-square for the fits in V,; done with M = 1 (green
curve) and M = 2 (blue curve) as a function of galactocentric radius.
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The wavy pattern in the amplitudes for R < 10 kpc should not be
fully taken as real corrugations in the modes. In Section B1.2, we
concluded that stochastic clumps in the ¢—z plane due to the SF
generate correlations between the modes. This wavy pattern in A
is removed if we take M = 1, so the wavy pattern is mainly due to
correlations between m = 1 and m = 2.

In Fig. C4, we present the phases of the m = 1, 2 modes for Z (top
right for m = 1 and top left for m = 2) as a function of R. First, let’s
consider ¢y, our results and those of Skowron et al. (2019a) (dotted
line) coincide in their general trends for the external region of the disc
(>10 kpc). For m = 1, a twist in the direction of the galactic rotation
is well defined, beginning at R & 13 kpc. For the internal region,
both phases are difficult to determine due to the low amplitude of
the warp and because the azimuthal coverage is affected by the SF.
For ¢, there is more uncertainty than for ¢; because m = 1 is better
defined and dominates the warp. Within its uncertainty ¢, agrees
with the phase obtained by Skowron et al. (2019a) (red dotted line).
For R > 10 kpc, the phases, like the amplitudes, are better behaved
than in the internal disc as we expected from Section B1.2.

Finally, given that we calculate the intrinsic dispersion for Z in
each ring, we can see how the disc traced by Cepheids becomes
thicker at larger radius, as its shown with the black curve in the left
panel of Fig. C3. This shows how the flare in this young population
starts at around R ~ 8 kpc with a height ~100 pc to end up at a
height 2390 pc at R =~ 15 kpc. Previous measurements on how thick
the disc traced by Cepheid is Chen et al. (2019) and Skowron et al.
(2019b) agree with our results for the scale and trend found from
OID.

C2.2 Fits in v,

The right panel of Fig. C3 presents amplitudes for the fits in vertical
velocity as a function of galactocentric radius. For V,, the amplitudes
show a smooth oscillating pattern. The important difference between
the A, and V ,, is that in Z the m = 1 mode dominates the warp
at all radii; in V, the kinematic signal of the warp is dominated
by both m = 1 and m = 2, a result unexpected for a tilted rings
model. The m = 1 mode in V, starts to appear at R & 12 kpc and
at its maximum reaches an amplitude similar to the value of op
~72km s '. Form =2 in V., there is an oscillation, as in for
m = 1 too. The amplitude of none of the kinematic modes never
exceeds the intrinsic dispersion, by contrast to the warp in Z, in
which they do. However, the amplitude of the oscillations in m = 1,
2 is larger than the uncertainty in each mode, making the result more
significant.

For the phases, @] rises for R > 11 kpc and ¢} is nearly constant,
declining for R > 14 kpc. Since the amplitudes in V, for m = 1 and
m = 2 are comparable, the connection between these behaviours and
the twisting of the LMV, is not as straightforward as in Z where m =
1 clearly dominates and the LON twist is evident in the decline of ¢,
for outer radii.

Finally, the intrinsic dispersion for V, (black curve, Fig. C3 right
panel) is found to be almost constant with radius at op =~ 7.2 km
s
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Figure C3. Amplitudes of each mode for Z (left panel) and V, (right panel) as a function of galactocentric radius. The black curve shows the intrinsic dispersion
for each radius in the respective variable. The dotted line for the amplitudes in Z shows the results from Skowron et al. (2019a). The colour dots around each

mode are 500 realization taken from the posterior at each ring.
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Figure C4. Each panel shows the phases of each mode as a function of galactocentric radius. The first two top panels are the results for Z and the bottom two
for V, (left m = 1 and right m = 2). The doted line for the phases in Z are the constant phases obtained by Skowron et al. (2019a). The colour dots around each

mode are 500 realization taken from the posterior at each ring.
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