	The Selection Function of Gaia DR3 RR Lyrae
2	Cecilia Mateu D ¹
3	¹ Departamento de Astronomía, Instituto de Física, Universidad de la República
4	Iguá 4225, CP 11400 Montevideo, Uruguay
5	ABSTRACT
6	The Third Data Release (DR3) of the Gaia mission almost doubled the number of RR Lyrae (RRL)
7	stars release in its Specific Object Studies (SOS) catalog, in comparison with DR2. Here I provide
8	empirically inferred 2D and 3D completeness maps for the Gaia DR3 SOS RRL catalog along with maps
9	for the combined Gaia SOS+PS1+ASAS-SN-II catalog. The latter currently has the best performance
10	with an improvement of 9% relative to Gaia DR3 alone and close to 20% relative to Gaia DR2 for the
11	VC+SOS RRL, while significantly smoothing out the effect of the Gaia scanning law.

Keywords: stars: variables: RR Lyrae — astronomical databases: miscellaneous

12

1. INTRODUCTION

RR Lyrae (RRL) stars are an important and increasingly popular tracer of Galactic structure thanks mainly to their standard candle nature, which provides precise distances with errors usually well below 10%. For certain applications like the determination of the density profile of Galactic components, the knowledge of the selection function or completeness of an RRL catalog a across the sky and versus distance are indispensable.

In Mateu et al. (2020, M20) we empirically derived 22 23 completeness maps for the PS1, ASAS-SN-II and Gaia ²⁴ DR2 RRL catalogs (Sesar et al. 2017; Jayasinghe et al. 25 2019; Clementini et al. 2019). This work showed the ²⁶ completeness for the SOS RRL (Specific Object Stud-²⁷ ies) catalog was severely affected by the Gaia scanning ²⁸ law pattern, and that complementing it with the Vari-²⁹ Classifier (VC) catalog provided a more complete sam-³⁰ ple, albeit with relevant information such as period and ³¹ amplitudes not available for the VC stars. Gaia's DR3 32 offered an enormous improvement in variable star cata-³³ logs, in particular, with the SOS RRL increasing from $_{34}$ > 140K stars in DR2 to > 270K in DR3 (Clementini 35 et al. 2023). Here, I followed M20 to produce updated ³⁶ completeness maps for Gaia DR3 SOS RRL at the com-³⁷ bined Gaia SOS+PS1+ASAS-SN-II catalog.

Corresponding author: Cecilia Mateu cmateu@fcien.edu.uy

2. COMPLETENESS MAPS FOR GAIA DR3 SOS RR LYRAE

The completeness maps provided here were obtained 40 ⁴¹ following the procedure described in detail in M20 and 42 using the tools provided with the rrl_completeness ⁴³ GitHub repository available here. The methodology ⁴⁴ used there, devised by Rybizki & Drimmel (2018), re-45 quires two independent catalogs from which the com-⁴⁶ pleteness of both can be derived, wherever there is over-⁴⁷ lap between the two. The combined PS1+ASAS-SN-II ⁴⁸ RRL catalog was used as the second (independent) cat-⁴⁹ alog. Together, these span Gaia's full magnitude range 50 with ASAS-SN-II spanning the full sky down to $G \sim 17$ ⁵¹ and PS1 down to (and beyond) Gaia's limit of G = 20.7, $_{52}$ for $DEC > -30^{\circ}$. As in M20, the sky coverage of the ₅₃ completeness maps for $DEC < -30^{\circ}$ was completed at ⁵⁴ the faint end by filling the map at each line of sight with ⁵⁵ the region diametrically opposed in ecliptic coordinates. The 2D and 3D completeness maps were produced

⁵⁷ separately for Gaia DR3's SOS RR*ab* and RR*c* stars, ⁵⁸ for i) the full sample (271,779 stars), and for three ⁵⁹ sub-samples with commonly used quality filters: ii) ⁶⁰ RUWE: stars with ruwe< 1.4, iii) BEP: stars with ⁶¹ phot_bp_rp_excess_factor < 3 and iv) RUWE_BEP: ⁶² stars in the RUWE \cap BEP sample. We also provide 2D ⁶³ and 3D completeness maps for the combined Gaia DR3 ⁶⁴ SOS+PS1+ASAS-SN-II catalog which, under the as-⁶⁵ sumption that the catalogs are independent, is straight-⁶⁶ forward to compute using the individual maps. 71

Figure 1. Completeness maps (Mollweide projection) in Galactic coordinates for the Gaia DR3 SOS RRL (top row) and for the combined SOS+PS1+ASAS-SN-II RRL catalog (bottom row), in three ranges of apparent magnitude. In both cases, the RUWE sample for SOS was used. The center of the map corresponds to $l = 0^{\circ}$ with longitude increasing to the left.

⁶⁷ Figure 1 shows the 2D completeness maps for the
⁶⁸ RUWE Sample (ii) of Gaia DR3 SOS RRL stars (top),
⁶⁹ compared to the combined SOS+PS1+ASAS-SN-II cat⁷⁰ alog (bottom) in three magnitude ranges.

3. CONCLUSIONS

⁷² Overall the completeness of the Gaia SOS catalog is ⁷³ now comparable (~ 3% higher on average) to that re-⁷⁴ ported by M20 for Gaia VC+SOS for DR2, with the ⁷⁵ advantage that current (SOS) have many more light ⁷⁶ curve attributes than the VC sample in DR2, particu-⁷⁷ larly periods, necessary for distance computations based ⁷⁸ on Period-Luminosity relations. The average complete-⁷⁹ ness of Gaia SOS RRL at the bright end ($G \leq 15$) is ⁸⁰ found to be lower than that for the 15 < G < 18 mag-⁸¹ nitude range, similarly to the findings reported by M20 ⁸² for Gaia DR2. This means that, for the brighter RRL ⁸³ stars the ASAS-SN-II catalog remains more complete ⁸⁴ than Gaia overall (see Figs. 8 and 3 in M20), for both ⁸⁵ RR*ab* and RR*c*.

The most complete catalog therefore, both in terms of the selection function as in terms of light curve attributes for each RRL, is given by the combination of ⁸⁹ the Gaia SOS, PS1 and ASAS-SN-II catalogs. This com-⁹⁰ bined catalog provides a map with a higher completeness ⁹¹ over the full distance range, compensating Gaia's rela-⁹² tive incompleteness at the brighter end, and also show-⁹³ ing a smaller dependence on Gaia's scanning law pat-⁹⁴ tern, particularly at the faint end, resulting in a (spa-⁹⁵ tially) smoother map as illustrated by Figure 1.

The full tables containing 2D and 3D maps for the four samples of the Gaia DR3 SOS and VC+SOS catalogs, as well as the combined SOS+PS1+ASAS-SN-II catalog, are publicly available at the rrl_completeness GitHub repository. A dedicated example notebook shows how to query the maps and reproduce all computations into volved.

¹⁰³ Software: astropy (Astropy Collab. et al. 2018)

¹⁰⁴ This research has been funded by project
¹⁰⁵ FCE_1_2021_1_167524 of the Fondo Clemente Estable,
¹⁰⁶ Agencia Nacional de Innovación e Investigación (ANII),
¹⁰⁷ Uruguay.

REFERENCES

- ¹⁰⁸ Astropy Collab., Price-Whelan, A. M., Sipőcz, B. M., et al.
 ¹⁰⁹ 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
- ¹¹⁰ Clementini, G., Ripepi, V., Molinaro, R., et al. 2019, A&A,
 622, A60, doi: 10.1051/0004-6361/201833374
- ¹¹² Clementini, G., Ripepi, V., Garofalo, A., et al. 2023, A&A,
 ¹¹³ 674, A18, doi: 10.1051/0004-6361/202243964
- ¹¹⁴ Jayasinghe, T., Stanek, K. Z., Kochanek, C. S., et al. 2019,
 MNRAS, 485, 961, doi: 10.1093/mnras/stz444
- 116 Mateu, C., Holl, B., De Ridder, J., & Rimoldini, L. 2020,
- ¹¹⁷ MNRAS, 496, 3291, doi: 10.1093/mnras/staa1676

- 118 Rybizki, J., & Drimmel, R. 2018, gdr2_completeness:
- 119 GaiaDR2 data retrieval and manipulation.
- 120 http://ascl.net/1811.018

121 Sesar, B., Hernitschek, N., Dierickx, M. I. P., Fardal, M. A.,

- ¹²² & Rix, H.-W. 2017, ApJL, 844, L4,
- 123 doi: 10.3847/2041-8213/aa7c61