

Figura 1: Esquema del uso de las UCNps para la TF en tumores no superficiales.

Figura 2: Esquema básico de síntesis solvotérmica con estrategia LSS

Figura 3:Esquema de síntesis utilizado.

Figura 4: Representación del refinamiento de las muestras obtenidas con la fase $KMgF_3$ (Pm-3m) condición de síntesis a) 160°C, 24h, 0.0262 g de NH_4F y 0.0481g de $MgCl_2$, b) 200°C, 6h, 0.0526 g de NH_4F y 0.0481g de $MgCl_2$.

Figura 5: imágenes a y b TEM y HR-TEM de una muestra representativa de KMgF₃ (160°C, 6h, 0,0262 g de NH₄F y 0,0481g de MgCl₂), respectivamente y c histograma correspondiente a la distribución del tamaño de partícula

Figura 6: imágenes a y b TEM y HR-TEM de una muestra (200°C, 6h, 0.0526 g de NH₄F y 0.0481 g de MgCl₂) representativa de las muestras obtenidas con exceso de NH₄F, y c histograma correspondiente a la distribución del tamaño de partícula.

Figura 7: correlación del tamaño estimado por las técnicas XRD y TEM.

Figura 8: gráfico representativo de termogravimetría en atmósfera de N₂ de una muestra de KMgF₃ (160 °C, 6h, 0.0526 g de NH4F y 0.0481g de MgCl₂) (a), su derivada (b) y del ácido oleico (c), su derivada (d). Para mayor comodidad se grafica la derivada hacia arriba.

Figura 9: visualización del modelo de Regresión Lineal mediante el gráfico de la interacción Temperatura:MgCl₂ vs el tamaño de partícula (XRD), manteniendo constantes las otras variables predictoras. Gráfico generado en Rstudio.

Figura 10 : a) estructura del ácido oleico, b) espectros FTIR de las nanopartículas KMgF₃ y del ácido oléico.

Figura 11: a) estructura del PVP, b) espectros FTIR del PVP y de las nanopartículas después del cambio de AE (KMgF₃-PVP) con las bandas asignadas

Figura 12: gráfico del coeficiente de absorción para una de las muestras $KMgF_3$ (160°C, 24h) y del ácido oleico.

Figura 13: espectro de emisión de la muestra $KMgF_3$, $\lambda exc=396$ nm.

Figura 14: Diagramas de difracción de rayos-X correspondientes a las muestras dopadas con 5% de Mn²⁺ y variando la cantidad de KOH

Figura 15: **a)** Diagramas de difracción de rayos-X correspondientes a las muestras dopadas con 5, 15 y 20% Mn y 3 mmol de KOH, **a) b)** zoom en la región angular 30-34

Figura 16: coeficiente de absorción de muestras con **a**) 5,15 y 20% de Mn y 3 y 6 mmol de KOH y **b**) zoom en la región 300-500 nm

Figura 17: espectros de emisión (a,c) y excitación (b,d) luminiscente de las muestras con 5,15 y 20% de Mn y 3 y 6 mmol de KOH

	Niveles					
Factores	Bajo	Alto				
Tiempo (h)	6	24				
Temperatura (°C)	160	200				
NH₄F (g)	0.0262	0.0526				
MgCl₂(g)	0.0481	0.0962				

Tabla 1. Diseño experimental factorial de la síntesis de nanopartículas de $KMgF_3$

						celda unidad		Uiso					
Tempera tura (°C)	Time (h)	NH₄F (g)	MgCl₂ (g)	Fase ajustada	wR (%)	a=b=c (Å)	error (Å)	к	Mg	F	Tamaño (nm)	sd (nm)	
160	6	0,0262	0,0481	KMgF ₃ (Pm-3)	4.270	3.99747	0.0001750	0.04285	0.05069	0.04676	30.310	2.300	_
160	6	0.0262	0.0481	KMgF₃(Pm-3)	3.102	3.99810	0.0000640	0.04696	0.05288	0.05181	15.120	0.200	
200	6	0.0262	0.0481	KMgF₃(Pm-3)	2.163	3.99522	0.0000630	0.04303	0.04329	0.04543	29.500	0.500	
160	24	0.0262	0.0481	KMgF₃(Pm-3)	3.994	3.99522	0.0001310	0.04467	0.04074	0.03897	13.460	0.300	
160	24	0.0262	0.0481	KMgF₃(Pm-3)	2.239	3.99603	0.0021740	0.05419	0.05963	0.06132	25.400	0.400	
160	24	0.0262	0.0481	KMgF₃(Pm-3)	2.442	3.99523	0.0000310	0.03580	0.03241	0.03421	25.290	0.200	
160	24	0.0262	0.0526	KMgF₃(Pm-3)	2.780	3,99409	0.0000400	0.47190	0.43760	0.45420	21.280	0.200	
200	24	0.0262	0.0481	KMgF₃(Pm-3)	1.648	3.99451	0.0000840	0.03315	0.03111	0.03117	26.450	0.300	
160	6	0.0526	0.0481	KMgF₃(Pm-3m) K₂SiF₅(Fm-3m)	4.411	4.00163	0.0002980	0.05674	0.04782	0.05749	23.810	1.000	*
200	6	0.0526	0.0481	KMgF₃(Pm-3m) K₂SiF₅(Fm-3m)	3.217	3.99918	0.0000610	0.05343	0.04936	0.05977	28.810	1.200	*
160	24	0.0526	0.0481	KMgF ₃ (Pm-3m) K ₂ SiF ₆ (Fm-3m)	4.374	4.00174	0.0001010	0.05765	0.05257	0.06193	27.850	1.850	*
160	24	0.0526	0.0962	KMgF₃(Pm-3m) K₂SiF₅(Fm-3m)	5.610	3.99785	0.0000380	0.03445	0.03728	0.03826	20.970	2.100	*
200	24	0.0526	0.0481	KMgF₃(Pm-3m) K₂SiF₅(Fm-3m)	4.666	3.99843	0.0001540	0.02684	0.02459	0.02897	30.600	1.000	*
200	24	0.0526	0.0962	KMgF₃(Pm-3m) K₂SiF₅(Fm-3m)	4.580	3.99742	0.0000350	0.02957	0.02864	0.03224	32.180	0.600	*
160	6	0.0262	0.0962	KMgF₃(Pm-3)	1.650	3.99456	0.0000360	0.03362	0.03178	0.03155	25.990	0.300	
200	6	0.0262	0.0962	KMgF₃(Pm-3)	2.103	3.99368	0.0000840	0.04880	0.05013	0.04980	21.270	0.500	
160	24	0.0262	0.0962	KMgF₃(Pm-3)	1.586	3.99395	0.0000380	0.03443	0.03156	0.03270	20.810	0.200	
160	24	0.0262	0.0962	KMgF ₃ (Pm-3)	2.470	3.99314	0.0000380	0.04324	0.04007	0.04059	17.130	0.100	
200	24	0.0262	0.0962	KMgF₃(Pm-3)	2.156	3.99175	0.0000560	0.03775	0.03380	0.03485	18.500	0.200	
160	6	0.0526	0.0962	KMgF₃(Pm-3)	2.052	3.99703	0.0000340	0.02981	0.02744	0.02633	24.150	0.200	
160	6	0.0526	0.0962	KMgF₃(Pm-3)	2.440	3.99684	0.0000310	0.03548	0.03101	0.03121	21.340	0.100	
200	6	0.0526	0.0962	KMgF₃(Pm-3)	2.575	3.99577	0.0000530	0.03310	0.03169	0.03219	22.670	0.300	
160	24	0.0526	0.0962	KMgF ₃ (Pm-3)	4.420	3.99658	0.0003550	0.04191	0.05018	0.04363	27.510	5.600	
160	24	0.0526	0.0962	KMgF₃(Pm-3)	2.405	3.99671	0.0000300	0.04036	0.04083	0.04167	27.360	0.200	
200	24	0.0526	0.0962	KMgF ₃ (Pm-3)	2.239	3.99468	0.0000490	0.04125	0.03883	0.04022	25.160	0.300	

Tabla 2. Data de refinamiento de XRD para el diseño experimental de síntesis de nanopartículas de $KMgF_3$

*Muestras con exceso de NH₄F

Coeficientes				
	Estimado	Error std.	t-value	Pr(> t)
(Intercepto)	23.4954	2.0114	11.681	7.78e-10
Temperatura	5.7585	2.2191	2.595	0.0183*
Tiempo	-3.0797	2.2312	-1.380	0.1844
NH₄F	-0.3383	2.4922	-0.136	0.8935
MgCl ₂	0.2814	2.0047	0.140	0.8899
Tiempo:NH₄F	5.7622	3.2003	1.800	0.0886
Temperatura:MgCl ₂	-7.3669	3.3078	-2.227	0.0389*

Tabla 3. Análisis de varianza del modelo de regresión lineal.

*variables con p-valor < 0.05

Tabla 4. Predicciones del modelo e intervalos de confianza (IC) correspondientes con un nivel de confianza del 95 % de todas las condiciones experimentales de síntesis de $KMgF_3$.

Temperatura (°C)	Tiempo (h)	NH₄F (g)	MgCl₂ (g)	Predicción (nm)	IC Inferior (nm)	IC Superior (nm)
200	24	0.0262	0.0962	19.09	14.19	23.98*
160	24	0.0262	0.0481	20.42	17.03	23.80*
160	24	0.0262	0.0962	20.70	16.66	24.73*
200	6	0.0526	0.0962	21.83	16.68	26.98*
200	6	0.0262	0.0962	22.17	17.04	27.29*
160	6	0.0526	0.0481	23.16	18.54	27.77*
160	6	0.0526	0.0962	23.44	19.15	27.72*
160	6	0.0262	0.0481	23.49	19.27	27.72*
160	6	0.0262	0.0962	23.78	19.08	28.47*
200	24	0.0526	0.0962	24.51	19.57	29.45*
160	24	0.0526	0.0481	25.84	21.85	29.82*
160	24	0.0526	0.0962	26.12	22.05	30.19*
200	24	0.0262	0.0481	26.17	21.52	30.83*
200	6	0.0526	0.0481	28.92	23.96	33.87*
200	6	0.0526	0.0481	29.25	24.31	34.20
200	24	0.0526	0.0481	31.60	27.32	35.87

*Las condiciones experimentales que predijeron el tamaño de partícula no presentaron diferencias significativas con un nivel de confianza del 95%

Tabla 5	Escalado	de la	síntesis	de	KMgF ₃
---------	----------	-------	----------	----	-------------------

Muestra	Volumen de síntesis (mL)	Temperatura (°C)	Tiemp o (h)	NH₄F (g)	MgCl₂ (g)	Rendimient o (%)	Tamaño XRD (nm)	sd (nm)	Tamañ o TEM (nm)	sd (nm)
KMgF₃	18.5	160	24	0,0526	0,0962	-	27.47	5.6	25.81	1.40
KMgF3- escalado	75.0	160	24	0,2252	0,4121	90	19.26	0.20	10.24	1.45

Número de	Modos de - vibración	
Acido oleico KMgF ₃ -AO		
3500-2500		(O-H)
3007	3008	cis <i>v</i> (-CH =)
2950	2956	v a (CH3)
2924	2926	<i>v</i> a (CH2)
2852	2854	<i>v</i> s (CH2)
1714	1714	<i>v</i> (-C =O)
-	1546	<i>v</i> a (-COO-)
1469	1471	δ (CH ₂)
1415	1413	v s (C-O)
1285	1284	v (C-O)
721	729	v (CH =CH)

Tabla 6. Bandas asignadas y modos de vibración correspondientes

Tabla 7. Bandas asignadas y modos de vibración correspondientes

Número de ond	Modos de	
Polivinilpirrolidona	KMgF ₃ -PVP	VIDIACION
2968	2960	<i>v</i> a (CH2)
2883	2870	v s (CH2)
1674	1664	<i>v</i> (-C =O)
1427	1430	δ (CH2–C=O)
1375	1386	ωs(CH2)
1292	1292	<i>v</i> (=C-N)

850	-	δ (O=C-N-CH2)
750	742	δ (O-C-N)