

LAGUNAS COSTERAS DEL URUGUAY:

¿FUENTES O SUMIDEROS DE GASES INVERNADERO?

Amaral, V.*^{1,2}, Ortega, T.², Sánchez J.², Forja, J²., Lescano C.¹, Rodríguez-Gallego, L.¹

¹Departamento Interdisciplinario de Sistemas Costero Marinos, Centro Universitario Regional Este, Universidad de la República, Rocha, Uruguay. ²Departamento de Química-Física, INMAR, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, España. vamaral@cure.edu.uy, @Valen_Amaral

INTRODUCCION

Las zonas costeras reciben grandes cantidades de materia orgánica que potencian la producción de gases de efecto invernadero (GEI), como el metano (CH₄) y el óxido nitroso (N₂O)¹.

Los sistemas costeros suponen entre el 35% y 60% de las emisiones oceánicas totales de N2O y 75% de las del CH4. Estos datos están basados principalmente en sistemas del hemisferio Norte, siendo más escasos en el hemisferio Sur^{2,3}.

En este trabajo se presentarán resultados preliminares sobre la dinámica del CH₄ y N₂O en sistemas costeros del Uruguay.

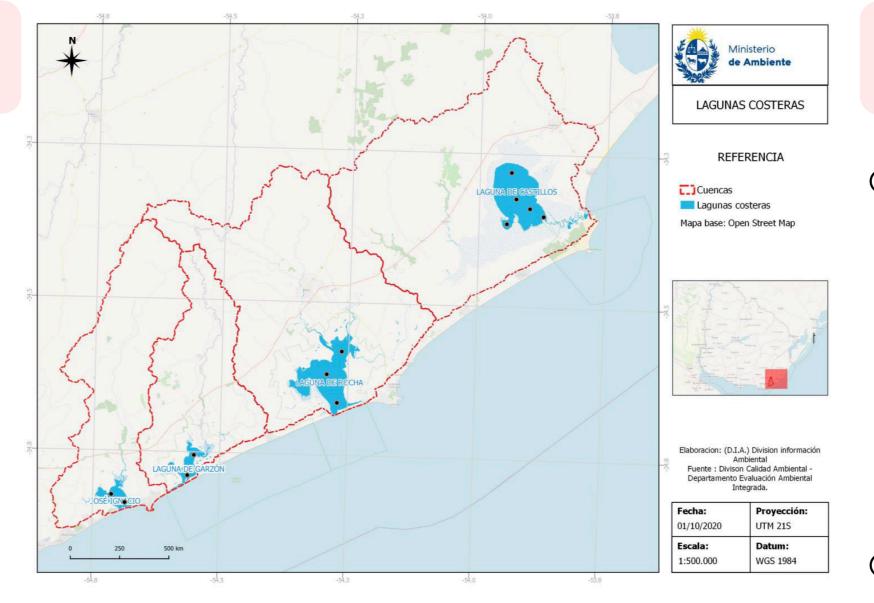
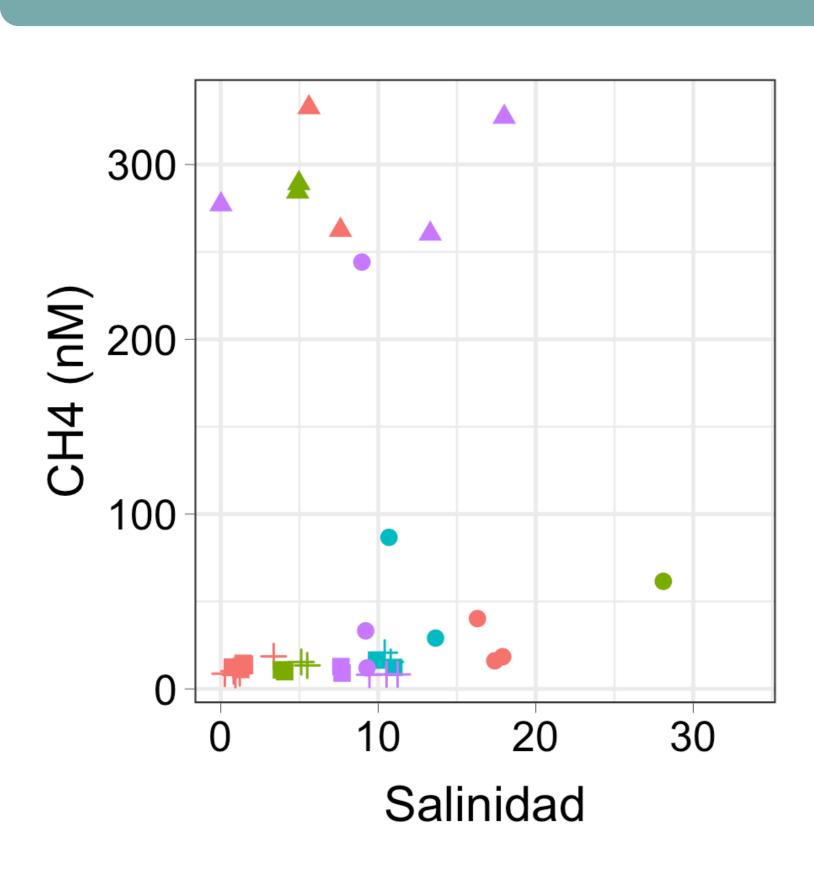
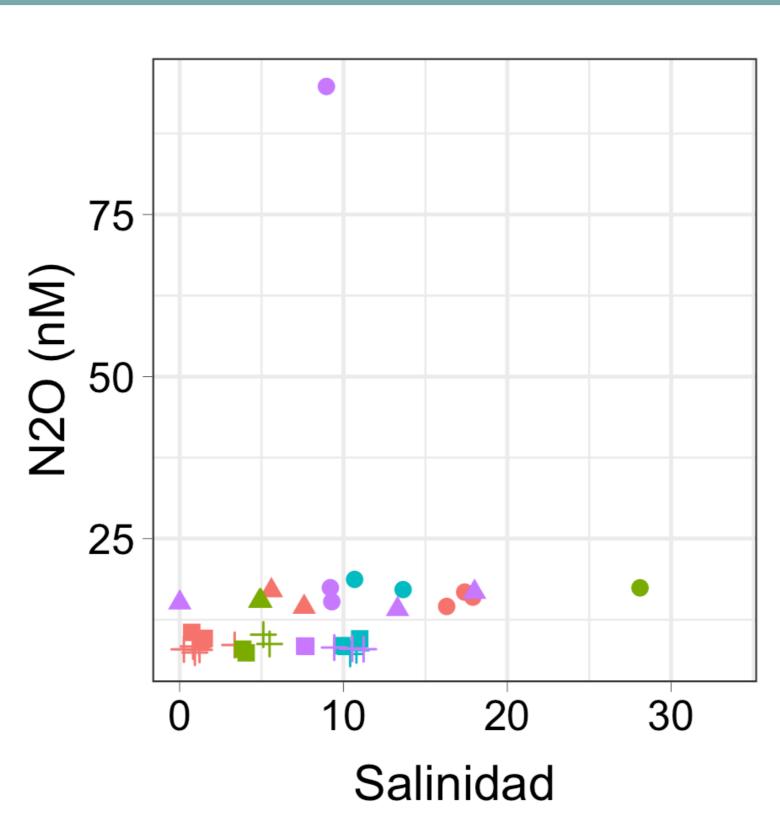


Fig. 1. Puntos de muestreo en las lagunas costeras durante el periodo de estudio.

OBJETIVOS


- O Estudiar la distribución espacial y estacional de los GEI CH₄ y N₂O en lagunas costeras del Uruguay pertenecientes al sistema nacional de áreas protegidas.
- Estimar los flujos difusivos agua atmósfera de los GEI y determinar el comportamiento de dichas lagunas como fuente o sumidero de estos gases.


METODOLOGIA

Se colectaron muestras de agua en la Laguna de Rocha, Laguna Castillos, Laguna Garzón y Laguna José Ignacio* en los meses de febrero, mayo, agosto y noviembre del 2021 (Fig. 1). Los GEI se analizaron mediante cromatografía de gases (Bruker GC- 450) en el Departamento de Química Física de la Universidad de Cádiz, España. Los flujos difusivos agua- atmósfera se estimaron según Jiang et al. (2014).

RESULTADOS Y DISCUSION

Laguna

- Castillos
- Garzon
- Jose Ignacio
- Rocha

Mes

- Feb-21
- May-21
- Ago-21
- + Nov-21

Fig. 2. Distribución de la concentración de metano y óxido nitroso a lo largo del gradiente de salinidad para cada laguna.

- O No se observaron diferencias significativas en la concentración de GEI entre las lagunas (p > 0.05).
- O La concentración de CH₄ y N₂O se encontró dentro del rango de los registrados en otros sistemas costeros y menores que sistemas estuarinos fuertemente antropizados.
- O No se observó una relación entre la concentración de CH_4 y N_2O con la Salinidad (p > 0.01), lo que estaría indicando que los procesos de producción, oxidación, entradas laterales y desde el sedimento varían de forma sustancial a lo largo de las lagunas.

O Los flujos difusivos de CH₄ desde la columna de

comportamiento estacional, con flujos positivos en

CONCLUSIONES

O Durante el periodo de muestreo las lagunas

actuaron como fuente de CH4 a la atmósfera.

febrero y mayo y negativos en los muestreos de

agua hacia la atmósfera fueron en todos los

O Los flujos difusivos de N2O mostraron un

muestreos positivos (Tabla 1).

agosto y noviembre (Tabla 2).

Tabla 1. Flujos difusivos de CH₄ agua-atmósfera (μmol m⁻² d⁻¹)

Sistema	Feb-21	May-21	Ago-21	Nov-21
Laguna de Rocha	1282.4 ± 1769.2	2 1157.2 ± 176.9	58.1 ± 16.4	26.6 ± 0.6
Laguna de Castillos	243.5 ± 142.1	1107.4 ± 180.7	73.2 ± 12.4	52.6 ± 29.2
Laguna José Ignacio	592.9 ± 437.9	_	48.3 ± 11.2	157.1 ± 36.4
Laguna Garzón	621.3*	1416.5 ± 10.1	28.3 ± 3.0	114.7 ± 13.7

Tabla 2. Flujos difusivos de N₂O agua-atmósfera (µmol m⁻² d⁻¹)

,	2 0	``		
Sistema	Feb-21	May-21	Ago-21	Nov-21
Laguna de Rocha	468.9 ± 628.7	15.5 ± 9.6	-15.2 ± 3.1	-7.7 ± 1.9
Laguna de Castillos	82.5 ± 13.8	16.7 ± 5.9	-12.2 ± 4.0	-11.6 ± 3.1
Laguna José Ignacio	102.3 ± 11.4	_	-5.6 ± 4.5	-12.1 ± 5.3
Laguna Garzón	100.8*	22.6 ± 0.4	-16.8 ± 1.5	1.1 ± 10.1

Referencias y Agradecimientos

- 1-Bauer, J.E., Bianchi, T.S., 2011. Treatise on Estuarine and Coastal Science. Elsevier Inc. 2- Tian, H., Xu, R., Canadell, J.G., Thompson, R.L., Winiwarter, W., Suntharalingam, et al., 2020. Nature. 3- Saunois, Marielle, et al. Earth system science data 12.3 (2020): 1561-1623.
- Proyecto FCE_3_2022_1_172208, "Distribución de la materia orgánica disuelta y su importancia en las emisiones de los gases invernadero, CO₂, CH₄ y N₂O, en lagunas costeras del Uruguay".
- Agradecemos a los integrantes del el Programa de Monitoreo de las Lagunas Costeras (DINACEA (MA) DINARA (MGAP) IDR OSE CURE).

- O En los muestreos de verano y otoño las lagunas actuaron como fuente de N2O a la atmósfera mientras que en los de invierno y primavera actuaron como sumideros.