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ABSTRACT

Developing efficient and reliable tools for assessing early mathematical skills remains a

critical priority in educational research. This study aimed to develop and validate a brief

version of the Prueba Uruguaya de Matemática (Uruguayan Mathematics Test, PUMa), a

digital tool to assess mathematical abilities in children aged 5 to 6. The test comprises both

symbolic and non-symbolic dimensions, including tasks as approximate number system,

counting, numerical ordering (forward and backward), math fluency, composition and

decomposition of numbers, and transcoding auditory-verbal stimuli into Arabic-visual

symbols. Using a sample of 443 participants and applying parametric and non-parametric

models within the framework of Item Response Theory (IRT), along with correlations with

TEMA-3, we generated preliminary evidence that the brief version retained both precision

and validity. The resulting brief test, consisting of nearly half the original items, achieved a

balanced representation of symbolic and non-symbolic tasks. These findings highlight the

efficiency of digital tools for real-time data collection and their potential to enable scalable

early interventions. Such advancements support personalized educational strategies, fostering

cognitive and academic growth from an early age.

Keywords: Early Numeracy Assessment; Symbolic/Non-symbolic Mathematics Skills; Item
Response Theory; Parametric/Non-parametric IRT models; Kernel Smoothing IRT.



Introduction

Early numeracy skills play a crucial role in shaping mathematical development and lay the

foundation for understanding how early competence in this area can influence long-term

educational trajectories. Children who enter school with weaker math skills are more likely to

be placed in lower-level tracks during high school, reducing their chances of pursuing higher

education (Archbald & Farley-Ripple, 2012). Conversely, strong numerical and relational

knowledge at the onset of formal education fosters sustained progress in mathematics

throughout primary school (Aubrey et al., 2006). These findings highlight the importance of

early numeracy skills, which research consistently links to later mathematical achievement

(Duncan et al., 2007; Romano et al., 2010).

While many children begin formal education with the foundational skills needed to engage

with early math concepts, others face specific learning difficulties, such as dyscalculia, which

can significantly hinder their mathematical success. These challenges often persist throughout

their educational trajectories, leading to enduring disparities in academic performance and

broader life outcomes (Davis-Kean et al., 2022). Therefore, early identification of

mathematical difficulties is crucial for developing effective detection and intervention

strategies that prevent the widening of these gaps. By assessing cognitive and numerical

abilities before formal schooling, educators and researchers can identify at-risk children and

implement targeted support to mitigate long-term academic and cognitive disparities.

Although early identification of at-risk children is essential for implementing targeted support

and mitigating long-term academic and cognitive disparities, the limited availability of

culturally and linguistically adapted assessment tools remains a significant challenge,

particularly in Spanish-speaking countries. This issue is especially pronounced in Latin

America, where many children lack access to evaluations that meet their specific needs. To

address this gap, robust tools are needed to provide reliable data for both research and

educational practices. Digital tools have emerged as a scalable and accessible solution, with

technology-based interventions, such as interactive applications, showing promise in

supporting children with mathematical learning difficulties through personalized and adaptive

approaches (Benavides-Varela et al., 2020).

However, many of these tests are developed within different cultural contexts, making their

applicability less relevant for certain populations. Many of these tests also require a trained



administrator to ensure proper application, adding an additional layer of complexity to their

use. Moreover, very few of these tools have demonstrated concurrent validity with other

previously validated tests, which limits their reliability and comparative usefulness in diverse

educational settings (Outhwaite et al., 2024).

One of the most widely used tests in research worldwide is the Basic Mathematical

Competence Test of Early Mathematics Ability–Third Edition (TEMA-3), a standardized tool

adapted for Spanish-speaking populations aged 3 years to 8 years and 11 months. Comprising

72 items, the test evaluates both informal and formal components of mathematical

knowledge. Informal knowledge reflects mathematical concepts acquired before schooling,

such as basic number sense and pre-counting abilities, while formal components assess

structured tasks like counting sequences and cardinality (Ginsburg & Baroody, 2003). While

the TEMA-3 is comprehensive and validated, it requires one-on-one administration by a

trained professional, making it time-intensive and limiting its scalability for assessing entire

populations of young children. For instance, in smaller countries such as Uruguay, each

cohort consists of approximately 30,000 children, posing logistical challenges for widespread

implementation.

Similarly, the Woodcock-Johnson Muñoz Applied Problems subtest (Muñoz-Sandoval, et al.,

2009) is a global standard for assessing mathematical skills, including calculation fluency,

applied problem-solving, and mathematical reasoning. Its subtests are brief—each lasting

approximately 3 minutes—and offer flexibility in administration, which makes it widely used

in both clinical and research contexts. However, like the TEMA-3, this tool also requires

individual administration, restricting its capacity to assess multiple children simultaneously

and increasing the demand for specialized personnel.

Purpura and Lonigan (2015) have proposed the Early Numeracy Assessment (ENA), which

offers a more concise approach by focusing on 12 key numeracy tasks, including verbal

counting, one-to-one counting, cardinality, set comparison, subitizing, and number

combinations. Designed to align with established frameworks such as the NCTM Preschool

Standards and the Common Core State Standards, the ENA provides a quick and

psychometrically robust measure of early numeracy skills. However, despite its simplicity

and ease of administration, the ENA shares similar limitations, as it requires direct

supervision and specific materials, making it unsuitable for autonomous use.



Although in Latin America these tests are often based on norms from other populations (such

as Spanish norms), recent initiatives in some countries have focused on developing locally

adapted tools, as demonstrated by the case of Chile (Fritz, Ehlert, Ricken, & Balzer, 2017) .

In Uruguay, there is a rich tradition in mathematical cognition, which has fostered the

development of various locally-designed tools for assessing math (Koleszar et al.; 2020). One

such tool developed a decade ago is the Arithmetic Calculation Efficiency Test (TECA)

(Singer & Cuadro, 2014), a standardized assessment designed to evaluate arithmetic

efficiency through basic operations such as addition, subtraction, multiplication, and division.

Due to its focus on formal mathematical skills, TECA is recommended for use starting from

second grade, making it less suitable for assessing the foundational mathematical concepts

typically developed during preschool and early primary years. Despite its strengths in

identifying children at risk for learning difficulties in later stages of education, TECA does

not address early numeracy skills, such as number sense, counting sequences, or basic

numerical relationships. There are no instruments designed to evaluate the intuitive skills that

underpin formal mathematical abilities, leaving a significant gap in the ability to measure and

support young children’s development.

To address this need, in 2020, we start to develop the initial version of the Prueba Uruguaya

de Matemática (PUMa), a tool specifically designed for the Uruguayan context that focuses

on early mathematical skills (Universidad de la República, 2022). PUMa provides a culturally

relevant and scalable means of assessment for preschool-aged children, bridging a critical gap

in early education. This tool equips educators with a valuable resource to better understand

and support early mathematical learning in Uruguay.

In this paper, we present the theoretical framework underlying the initial version of the PUMa

tool (Universidad de la República, 2022) and detail the process of developing a brief version

of PUMa: a shorter and more practical alternative to the original one. Using a variety of

statistical methods within the framework of Item Response Theory (IRT), we provide

preliminary evidence of the brief version’s effectiveness and reliability in the Uruguayan

educational context. This new brief version of PUMa will help bridge the gap in early-stage

assessment, offering educators, researchers, and policymakers a robust resource to better

understand and support young learners in Uruguay.



The PUMa Test: construct and measurement

PUMa is an innovative, online, self-administered screening tool designed to evaluate early

mathematical abilities in preschool and first-grade children. Children assessed by PUMa are

guided through the assessment via audio instructions delivered through headphones. This

approach allows the simultaneous evaluation of an entire school class without requiring the

presence of a specialized technician.

The initial version of PUMa comprises eight targeted tasks and aims to identify students at

risk in foundational areas of mathematics. PUMa places particular emphasis on the

non-symbolic component—an essential skill set typically developed prior to formal

schooling. Unlike traditional assessments, which often prioritize symbolic knowledge, this

test provides a comprehensive approach by encompassing both the symbolic and

non-symbolic foundations essential for early math learning.

Research underscores the interconnected roles of symbolic and non-symbolic processing in

mathematical development, highlighting the importance of early and comprehensive

assessments. Each task within PUMa evaluates a distinct aspect of numeracy, collectively

encompassing 144 items. These tasks are also framed within an engaging storytelling context,

where two characters, guided by their teacher, journey through diverse locations in Uruguay

to solve math-related challenges. This narrative approach is designed to captivate and

motivate young learners while maintaining focus on the assessment goals.

Each task starts automatically once the child finishes the previous one since the tasks cannot

be skipped. In turn, each task ends according to two independent criteria: either when the

child completes all the trials or when 3 minutes pass. The group-administered format of

PUMa includes an introductory briefing, with audio instructions provided at the outset of

each session. The platform ensures a secure evaluation process, with sessions averaging 20.8

minutes in duration. Table 1 provides an overview of the tasks, including auditory prompts

and visual elements presented to the children during the assessment. This innovative design

offers a dynamic and child-friendly approach to identifying early numeracy challenges.



Table 1. PUMa Test Composition

Area Audio says Item

Approximate number system
(ANS)

Touch the side where there
are more fireflies

Counting
(CON)

You must load the number of
stones that the order
indicates

Numerical ordering forward
(SNP)

Order the stones from
smallest to largest

Numerical ordering
backward

(SNR)

Order the stones from
largest to smallest

Transcoding auditory-verbal
stimuli to Arabic-visual

symbols
(TRA)

Touch the sheep that has the
number you heard

Math fluency
(CMV)

Add as fast as you can the
total number of animals

Composition and
decomposition of numbers

(CYD)

Choose the amount of coins
to pay the exact price of the
snack

Patterns
(PAT)

Complete the pattern by
touching the missing symbol



Approximate Number System

The approximate number system (ANS) is a component of number sense that implies the
ability to estimate non-symbolic quantities in an non-exact way (Libertus et al., 2011). The
ANS is present in many species as well as in humans and it is documented as early as birth.
Methodologies used to evaluate ANS utilize comparison of sets where the participants should
indicate which set is larger without counting or simply flashing dots on screen and asking
how many dots were shown (Odic & Starr, 2018). In accordance with the characteristics of
the stimulus, there are a number of variables that become the task easier or harder to do. One
of them is the ratio between the sets of dots presented. For example, babies as young as six
months old can discriminate 4 from 8 dots and 8 from 16, both differences with a 1:2 ratio
(Halberda & Feigenson, 2008). Other visual features used in this type of task include the
differences in size of the stimulus (large or small points) and the total area occupied by the
whole set, that is, if the points are together or apart called convex hull and the congruent or
incongruent combinations (deWind & Brannon, 2016).

Several studies have shown the implication of ANS for learning symbolic math (Hyde et al.,
2014; Szkudlarek & Brannon, 2017). For example the acuity in ANS is positively correlated
with math in school years (Libertus & Feigenson, 2011).

Numerical ordering forward

Counting is widely recognized in the literature as a key ability due to its significant role in
mathematics. This competency involves understanding the sequential order of
numbers—knowing which number comes before or after another in a progressive manner
(Lyons & Beilock, 2011). To count accurately, children must not only know the number-word
sequence but also understand that each item should be counted only once, following the
correspondence principle. This foundational skill typically develops between the ages of 2
and 5 and has been identified as a strong predictor of later mathematical success (Aunio &
Niemivirta, 2010).

Numerical ordering backwards

Learning to count backwards correctly takes children longer, likely because they must first
master the forward sequence (Walter-Lager et al., 2021). This skill relies heavily on working
memory and is influenced more by age than by formal schooling. (Dellatolas et al., 2000).

Counting

We assess counting through one-to-one correspondence, a foundational skill and prerequisite
for the ability to count and understand numbers (Clements & Samara, 2014). It involves
matching each item with a corresponding counterpart, a critical cognitive ability in early math
development. For example, children might be tasked with matching a set of stones to a given



number of points. Notably, this skill has been shown to predict children's future math
performance (Aunola et al., 2004).

Transcoding Auditory-verbal stimuli to arabic-visual symbols

Number transcoding is the process in which a number is spoken aloud, and children are
required to represent it using symbols. This ability is a well-documented milestone in
mathematical knowledge but is considered one of the most challenging to acquire. One
reason for this difficulty is that children must first fully understand the base-10 system
(Geary, 2000). The mental process behind transcoding involves converting information from
a verbal numerical expression into a graphic representation, effectively changing its code.

Two cognitive models have been proposed to explain transcoding. Semantic models suggest
that an abstract representation mediates the connection between understanding numerical
input and producing numerical output. These models propose that the transcoding process is
managed by an algorithmic mechanism (Moura et al., 2013)

Math fluency

To solve basic math problems, children must be fluent in mentally performing number
combinations. Therefore, foundational skills like number sense, subitization, number
comparison, and counting—both forwards and backwards—are considered essential for
mathematical fluency (Koponen et al., 2007; Locuniak & Jordan, 2008). Like most math
skills, the development of mathematical fluency is gradual. In this process, children must first
master counting, as it serves as the foundation for future calculation strategies. For example,
a typical calculation strategy involves using the largest number in a sum as the starting point
and then adding the smallest number (Koponen, et al., 2012).

Patterns

Patterns are a fundamental part of mathematics and have long been associated with early
mathematics learning. This ability involves visual skills and mathematical thinking, enabling
children to understand relationships through abstraction and generalization (Mulligan et al.,
2006). Repeating patterning knowledge draws on multiple cognitive skills, including
relational reasoning, executive function, and spatial skills (Miller et al., 2016; Collins &
Laski, 2015)

Composition and Decomposition

Numerical composition is the ability to determine changes in a number or quantity from the
initial and final values (Purpura, 2010). In order to compose or decompose quantities,
children must first master foundational skills, such as verbal or object counting—being able
to say number words correctly and understanding the principles of counting (Baroody, 1987).
Once children develop these abilities, typically between the ages of 4 and 6, they are then
able to engage in problem-solving tasks (Olgan et al., 2017)



Method

Participants
The study sample consisted of 443 children, ages five to six, enrolled in preschool and first

grade across eight private schools in Uruguay. Due to pandemic-related access constraints, a

convenience sampling approach was employed, leveraging established connections with

schools for participant recruitment. The sample was collected in November 2020 and

November 2021. Efforts were made to include schools representing different socioeconomic

backgrounds to ensure a more diverse and representative sample. Approximately half of the

participants were preschoolers (49.4%), with the remaining portion comprising first-grade

students (50.6%). Gender distribution was balanced (49% female, 51% male), as confirmed

by a chi-square test of homogeneity (p-value = 0.6689).

To support concurrent validity measures, 184 of the 443 participants were also assessed with

the TEMA-3 within the same week. These 184 students were not randomly selected due to

pandemic-related access constraints but rather comprised those who allowed evaluation under

the prevailing health regulations. To minimize potential biases, the order of test

administration was randomized, ensuring a balanced distribution of administration effects on

the result.

Testing Procedure

The data collection protocol received approval from the Ethics Committee of the Universidad

de la República. Approvals were obtained from school principals to administer the

assessment within their institutions. The assessments were conducted in classroom settings by

undergraduate psychology students who had received prior training to ensure standardized

test administration. The test was delivered through tablets, with each child provided with

their own tablet and headphones.

For the TEMA-3 administration, the starting point was determined by the child’s

age-appropriate entry item, assuming no developmental disorders. Testing continued until

ceiling and floor criteria were established: a ceiling was defined as five consecutive incorrect

responses, and a floor as five consecutive correct responses. The direct score was calculated



based on the number of items completed up to the ceiling. This adaptive administration

design allowed for difficulty levels to adjust to each child’s performance, meaning not all

children completed the same set of items, even within the same age group.

Parametric and non-parametric IRT models

IRT models are a family of mathematical models widely used in educational assessments to

analyze the relationship between latent traits and item responses. Within this framework, two

methodological approaches were applied to develop a brief version of the PUMa test:

parametric IRT models, which rely on predefined mathematical functions, and

non-parametric IRT techniques, which provide greater flexibility in estimating item

characteristics without strict assumptions about their functional form.

The parametric models have been widely applied in educational assessment due to their

mathematical simplicity and interpretability, and extensive literature supports their use in

various psychometric contexts (e.g., Rasch, 1960; Lord, 1980; Reise et al, 2023; Baker, 1985;

Baker & Kim, 2004). Traditional IRT models, such as the Rasch model and the one-, two-,

and three-parameter logistic models, define item characteristic curves (ICCs) parametrically,

using a fixed number of parameters to model the probability of a correct response as a

function of the latent trait. However, such parametric models have several limitations.

Specifically, they assume monotonic ICCs and a logistic functional form, which may not

accurately capture the complexity of real-world data, especially when items exhibit

non-monotonic patterns or diverge from logistic shapes (Douglas & Cohen, 2001; Ramsay,

1991; Douglas, 1997; Xu & Douglas, 2006). Furthermore, methods for estimating the ICC

include joint maximum likelihood estimation, marginal likelihood estimation, and conditional

maximum likelihood estimation; but if the assumptions are violated, estimates of item

parameters and skill are poor.

In response to the limitations of parametric IRT models, non-parametric methods have been

developed to provide greater flexibility in estimating ICCs. Mokken’s models introduced

foundational concepts based on monotonicity and double monotonicity, relaxing the strict

assumptions of parametric models while maintaining essential ordering properties. Ramsay

(1991) further advanced non-parametric IRT by introducing a regression approach based on

kernel smoothing, enabling smooth, flexible ICC estimates without enforcing monotonicity

constraints. The smoothing technique uses local averaging to estimate the relationship



between the latent trait and the probability of choosing the correct response (Rajlic, 2020). In

Ramsay’s method, the kernel smoothing estimator computes ICCs as weighted averages of

responses, applying Nadaraya-Watson weights (Nadaraya, 1964; Watson, 1964) to achieve

adaptability in response patterns. This approach allows the ICC to vary continuously,

accommodating diverse item response patterns beyond those defined by parametric models.

This results in more flexible ICCs that provide a closer approximation to the true ICCs

compared to those generated by parametric IRT models (Van der Linden & Hambleton, 1997)

In kernel smoothing methods, bandwidth selection is essential, as it governs the trade-off

between bias and variance in the resulting estimates. A smaller bandwidth produces estimates

with lower bias but higher variance, while a larger bandwidth increases bias and decreases

variance, affecting the smoothness of the ICC curve. Despite the importance of this

parameter, there is currently no definitive theorem for identifying an optimal bandwidth in

ICC contexts (Xu & Douglas, 2006). In this study, to optimize bandwidth selection with

available computational resources, we employed least-squares cross-validation, allowing for

adaptive refinement of ICC estimation to balance precision and stability across varying

response patterns .

While Ramsay’s kernel smoothing method provides advantages, including computational

efficiency, ease of implementation, and effectiveness for moderate sample sizes, it does not

enforce the monotonicity of ICCs, a standard assumption in IRT models. To address this,

recent developments have introduced the non-parametric isotonic model, as proposed by

Luzardo and Rodríguez (2015). This model incorporates an isotonic estimator for ICCs,

grounded in the methodology established by Dette et al. (2006), ensuring that the

monotonicity constraint is preserved without sacrificing the flexibility of non-parametric

approaches. By maintaining the monotonicity of ICCs, this isotonic model overcomes one of

the primary limitations associated with kernel smoothing in IRT applications, enhancing its

applicability across psychometric assessments.

To enforce monotonicity in ICC estimation, Luzardo and Rodríguez (2015) introduced an

innovative approach that estimates the inverse of the ICC in a monotonic manner. The final

ICC estimator is then derived by reflecting this inverse function along the bisector of the

first quadrant, ensuring that the resulting ICC adheres to the monotonicity constraint

typically expected in IRT models. In this framework, the pseudo-difficulty parameter is



identified as the ability value at which the ICC equals 0.5, while pseudo-information is

derived from the first derivative of the isotonic ICC to capture information levels across the

theta scale. This method not only maintains the flexibility of non-parametric estimation but

also aligns with the fundamental assumptions of IRT, enhancing the robustness and

interpretability of the ICC estimates.

In summary, although traditional parametric IRT models offer a straightforward and

interpretable structure for ICC estimation, non-parametric methods like Ramsay’s kernel

smoothing approach and the isotonic model by Luzardo and Rodríguez provide enhanced

flexibility and adaptability.

Analytic Procedure

The analytic procedure for developing the brief version of the PUMa test was structured into

distinct stages to ensure both validity and reliability. In Stage 1, the psychometric properties

of the initial version of PUMa test were analyzed, forming the foundation for the creation of

its brief version. Stage 2 involved three critical steps: first, item quality was evaluated using

Classical Test Theory (CTT) to assess psychometric properties and identify items with high

rates of missing data; second, ICCs were modeled using both parametric and non-parametric

IRT methods, allowing a comparison of traditional and flexible estimation techniques; and

third, a rigorous item selection process was conducted under both IRT approaches to retain

items with high discriminative power and reliable measurement across latent ability scale.

Finally, Stage 3 assessed criterion validity by comparing the brief PUMa test with TEMA-3

within the same participant group, providing evidence for concurrent validity and reinforcing

its application for early numeracy assessment.

Stage 1 - Analysis of the psychometric properties of the initial version of PUMa

This stage focused on evaluating the internal consistency and correlation of the PUMa tasks.

The correlation between the total PUMa sum score and each individual task sum score was as

follows: ANS = 0.66, CON = 0.59, PAT = 0.49, CMV = 0.86, SNP = 0.76, SNR = 0.76, TRA

=0.7, and CYD = 0.74, with all correlations statistically significant at p-value < .01. The

correlation analysis reveals that symbolic skills (CMV, SNP, SNR, TRA, CYD) show

stronger positive associations with the overall PUMa score, each with coefficients above 0.7,

whereas non-symbolic skills (ANS, CON, PAT) exhibit moderate correlations, ranging from



0.49 to 0.66, highlighting the distinct roles of symbolic and non-symbolic abilities in

contributing to total PUMa performance. As summarized in Table 2, non-symbolic tasks

generally have weaker correlations with other tasks., with the ANS task notably exhibiting

the lowest inter-task correlations, ranging between 0.26 and 0.35.

Table 2. Correlation Matrix - PUMa Tasks

Evidence of internal consistency was measured using Cronbach's alpha, which yielded a

coefficient of 0.98 for the complete PUMa scale, indicating high reliability. The Cronbach's

alpha values calculated for each task within PUMa were as follows: ANS = 0.87, CON =

0.73, PAT = 0.71, CMV = 0.97, SNP = 0.92, SNR = 0.92, TRA = 0.87, and CYD = 0.96.

These coefficients, all above the acceptable threshold of 0.7, indicate a robust internal

consistency, reinforcing the scale’s reliability in consistently assessing early numeracy skills

across varied tasks.

Stage 2 - Development of a Brief Version of the Test

Step 1 - Analysis of Item Quality

Before estimating the ICCs, we conducted an analysis of item properties based on CTT. It is

well-documented that items demonstrating robust psychometric properties within CTT are

more likely to exhibit satisfactory fit within IRT models. This approach is commonly

employed in large-scale international assessments, such as PISA and LLECE, to pre-screen

items. Consistent with these established practices, we included only items that meet specific

criteria: a CTT difficulty parameter (proportion of correct responses) between 0.1 and 0.9,

and a biserial correlation of at least 0.3. Applying these criteria led to the elimination of 15



items. Additionally, items with more than 200 missing responses were excluded, resulting in

the removal of 11 further items.

Step 2 - Modeling ICCs Using Parametric and Non-parametric Approaches

The second step focused on estimating the ICCs using both parametric and non-parametric

approaches. Parametric IRT models were applied to simultaneously estimate item parameters

and examinee abilities. This approach assumes that abilities follow a normal distribution with

a mean of 0 and a standard deviation of 1. Various parametric IRT models, including the

Rasch, one-, two-, and three-parameter logistic models (2PL, 3PL), were applied across

different areas (e.g., ANS, Counting), followed by an evaluation of model fit and item fit.

Items that did not conform to the selected model (p-value < 0.05) were excluded from further

analysis. Once the ICCs were estimated, the parametric information function was also

calculated to assess the precision of ability estimation at different levels of the latent trait.

Table 3 presents a summary of the selected parametric models (Rasch, 2PL, 3PL) along with

model fit statistics. Model selection for each task was determined by examining the number

of misfitting items and the overall goodness-of-fit of the model. Model-data fit was evaluated

using several fit indices, including the M2 statistic (Maydeu-Olivares & Joe, 2006), the Root

Mean Squared Error of Approximation (RMSEA) from model chi-square, the Standardized

Root Mean Square Residual (SRMSR), the Tucker-Lewis Index (TLI), and the Comparative

Fit Index (CFI), each of which provides insight into the adequacy of model fit.

As detailed in Table 3, the M2 statistics indicate a non-significant result (p-value > 0.05) for

tasks CON, SNP, SNR, TRA, CMV, and CYD, suggesting an acceptable fit of the specified

model to the observed data for these items. Conversely, for tasks ANS and PAT, the M2

statistic yielded a significant result (p-value < 0.05), indicating that the model did not

adequately capture the underlying data structure for these particular items. Although the

selected models represented the best fit among the Rasch, 2PL, and 3PL models for each

respective task, the fit remained unsatisfactory for the ANS and PAT tasks within the

parametric framework.

Following the parametric analysis, the estimation of ICCs continued using two

non-parametric approaches: Ramsay’s model and the Isotonic model. Ramsay’s approach



requires the construction of weights as outlined by Nadaraya and Watson (Nadaraya, 1964;

Watson, 1964). In this procedure, the summed scores were defined as the statistic T. Initially,

examinees ith were ranked based on Ti values, which were then transformed into quantiles

of a chosen distribution—in this case, the normal distribution. Response patterns were

subsequently ordered by the estimated ability rankings. The ICC estimation was performed

by smoothing the relationship between each binary item response and the ability vector. A

critical component in this technique is the selection of the bandwidth parameter

(h-parameter). For this study, the optimal h value was determined using the npregbw function

from the np package (Hayfield & Racine, 2008) in R (R Core Team, 2024), applying an

Epanechnikov kernel with least-squares cross-validation. Following this, ICCs and the

pseudo-information, as proposed by Luzardo (2019), were estimated using the isotonic

non-parametric model.

Figure 1 provides a comparative visualization of the ICCs estimated under the three

approaches (parametric, Ramsay’s kernel smoothing, and Luzardo’s isotonic) for selected

sample items, with one item represented from each task. This illustration highlights the

differences in model behavior and fit across approaches, offering insights into the varying

levels of flexibility and adherence to empirical data achieved by each method.

Step 3. Item selection process

Following the estimation of ICCs, the item selection process was conducted to construct a

psychometrically robust brief version of the test using both parametric and non-parametric

methods. The procedure was as follows: (i) Items were ordered in ascending difficulty based

on the b-parameter from the parametric ICC estimation or the pseudo-difficulty parameter in

the non-parametric isotonic model; (ii) a grid with an interval width of 0.2 was established

across the range of b or pseudo-b values, and items were categorized within each interval

accordingly; (iii) the number of items for each task in the brief version was determined by

assigning relative weights to each task within symbolic or non-symbolic domains. Following

this, the specified number of items was selected within each interval based on their

information quality. For the parametric approach, items with the highest discrimination

parameters within each grid interval were chosen, while for the non-parametric approach,

items with the highest pseudo-information were prioritized.



Stage 3 - Evidence of criterion validity

To establish criterion validity for the PUMa test, this study utilized the TEMA-3 assessment

as an external benchmark or "gold standard." Initially, the constructs measured by both

assessments were analyzed and compared to ensure conceptual alignment. Subsequently,

using data from a sample of 184 students who completed both assessments, correlations

between the PUMa and TEMA-3 scores were calculated, and Fisher's t-test was applied to

assess the significance of any differences in their correlation coefficients.

Table 3: Parametric Estimations

ANS CON PAT SNP SNR TRA CMV CYD

N 376 435 443 439 384 432 436 437

Specified Model 2P 2P 3P 3P 2P 3P 2P 3P

M2 model fit

statistic
748.7 13.8 62.9 3.5 25.97 144.96 189.5 63.32

Df 434 14 25 3 35.00 133.00 189.00 63.00

p-value 0 0.464 0 0.317 0.87 0.23 0.476 0.46

RMSEA 0.047 0 0.059 0.027 0 0.02 0.003 0.00

RMSEA_5 0.041 0 0.041 0 0.000 0 0 0

RMSEA_95 0.053 0.059 0.077 0.1145 0.026 0.030 0.028 0.036

SRMSR 0.104 0.061 0.055 0.173 0.115 0.052 0.181 0.071

TLI 0.868 1.000 0.923 0.998 1.003 0.996 1.000 1.000

CFI 0.877 1.000 0.957 0.999 1.000 0.997 1.000 1.000



Figure 1. Comparison of Parametric and Non-parametric ICC estimation for a selection of
sample items (one for each task).

Results

The Brief Test - Parametric Approach

The development of the brief test under the parametric approach was guided by the
estimations of parametric ICCs, following the item selection method outlined in the analytic
procedure. Table 4 summarizes the initial item pool before the exclusion process, which was
subsequently refined by removing items that: (1) did not satisfy the psychometric criteria



specified by CTT, (2) contained substantial missing data, or (3) demonstrated poor fit to the
parametric model.

Applying this parametric selection process resulted in a reduction of items from 144 to 69,
representing a 52% reduction in test length. It is important to note that for the Counting
(CON) and Progressive Numeric Series (SNP) tasks, the selection procedure was not applied
due to the limited initial number of items (six and four, respectively).

The initial version of the PUMa test exhibited a greater representation of symbolic skill
items, while non-symbolic skills were less represented. The development of the brief
parametric version, however, resulted in a more balanced distribution, achieving a closer
alignment between non-symbolic and symbolic skills in the final item set.

Table 4. Number of Items Retained and Removed for Each Task under Parametric Approach

After defining the items included in the parametric brief test, ability estimates were calculated
using both IRT and CTT, with the latter based on the total sum score. Table 5 presents the
correlations between IRT-based ability estimates for the initial version of PUMa versus the
brief test, as well as the correlations between IRT-based and CTT-based ability estimates.

It is noteworthy that all correlations are positive and strong, with most exceeding 0.9,
underscoring the robustness of the brief test. For tasks CON and SNP, the correlation is 1.0,
as the brief test version comprises the same items as the initial version test. These findings



under the parametric approach are promising, indicating that with approximately half the
original number of items, the brief test achieves comparable precision in ability estimation.

Table 5. Correlation Coefficients Using the Parametric Approach

The following section evaluates the non-parametric approach to determine if it achieves
similar performance to that of the parametric method.

The Brief Test - Non-parametric Isotonic Approach

Similar to the development of the parametric brief test, the non-parametric version was

created after removing items that failed to meet CTT psychometric standards or exhibited a

high number of missing responses. However, unlike the parametric approach, items identified

through the ICC estimation process were not eliminated beforehand. The analytical procedure

followed the same structure (for details, refer to the Analytic Approach section); item

selection was based on the estimated pseudo-difficulty parameter, with items containing

higher pseudo-information selected within predetermined grid intervals. Table 6 provides an

overview of items removed and retained through this process. Ultimately, the non-parametric

approach, using isotonic ICC estimates, resulted in a brief test of 73 items—a reduction of

49%, closely aligning with the reduction achieved by the parametric method. Regarding the

distribution of non-symbolic and symbolic items, the final proportions reached 44% and 56%,

respectively, reflecting the balanced distribution achieved with the parametric approach



Table 6. Number of Items Retained and Removed for Each Task under Non-Parametric Approach

Following the same analytical procedure used in the parametric approach, ability estimates

for the non-parametric brief test were calculated using both IRT and CTT, and correlations

were subsequently computed. Table 7 presents these correlations, showing that, consistent

with the parametric approach, the correlations are predominantly positive and strong

(exceeding 0.9) in nearly all cases, with the exception of CYD, which yielded a correlation of

0.884. As previously noted, the CON and SNP tasks exhibit a correlation of 1.0, as a brief

version was not developed for these tasks due to the limited number of items

Table 7. Correlation Coefficients Using the Non-Parametric Approach

Considering these results, the non-parametric approach proves as effective as the parametric

method in developing a psychometrically sound brief test. Both approaches achieved a



similar reduction in test length, approximately 50%, while maintaining high correlations with

ability estimates derived from the full test.

Preliminary Evidence of Criterion Validity

In this analysis, a sample of 184 students who completed both the TEMA-3 and PUMa

assessments was examined. Although the TEMA-3 and PUMa tests differ slightly in

structure, as shown in Table 8, they both evaluate closely related constructs and early

numeracy skills. To explore the criterion validity of the PUMa test, the correlation between

the total scores of the initial version of the PUMa test and TEMA-3 was calculated, yielding a

substantial positive correlation of 0.77. This result aligns with findings that strong

correlations between similar numeracy assessments support criterion validity by

demonstrating that the test effectively measures targeted early mathematical skills.

Table 8. Composition of the PUMa test and TEMA-3 by Numeracy Domains, Assessed Tasks, and
Number of Items

Number of items

Domain Task TEMA-3 PUMa

Numeracy Counting (CON) 13 7

Progressive Numeric Series (SNP) 10 10

Regressive Numeric Series (SNR) 2 10

Comparison Approximate Number System (ANS) 1 32

Number comparison 2 0

Arithmetic Visual Mental Calculation (CMV) 25 34

Concepts Composition and Decomposition (CYD) 0 21

Conventions Transcoding(TRA) 9 20

Visuospatial
Skills Patterns(PAT) 0 10

Visuospatial
Skills Number conservation 1 0

Mental
manipulation of
quantities*

mental number line, equivalent
distribution of quantities, tens and
hundreds, commutativity rule 12

Total 72 144

*Note: These skills present in the last 25 items of the topic-3 test are designed for 8-year-old children.



Correlations between the TEMA-3 scores and the total sum scores of the brief versions of

PUMa were calculated, revealing a correlation of 0.68 for the parametric brief version and

0.73 for the non-parametric brief version. Additionally, correlations were calculated for each

task between the total sum scores of PUMa (in both its initial and brief versions) and the

TEMA-3 scores, as well as between the PUMa ability estimates derived from IRT (initial and

brief versions) and the TEMA-3 scores. These correlations were evaluated using both

parametric (Table 9) and non-parametric approaches (Table 10) for comparative analysis.

A key finding is that all correlations were positive across both methodological approaches

and in both versions of the PUMa test (initial version and brief). Additionally, the correlation

magnitudes were notably consistent between the parametric and non-parametric methods. It is

also evident that correlations for tasks assessing non-symbolic abilities (ANS, CON, PAT)

were markedly lower than those associated with the symbolic components of PUMa. This

pattern likely reflects the lower weighting of non-symbolic items within TEMA-3 and, as

mentioned earlier, the adaptive nature of the test's administration.

Table 9. Correlations under the Parametric Approach

Table 10. Correlations under Non-Parametric Approach



Discussion

Developing efficient and reliable tools for assessing early mathematical skills remains a

crucial priority in educational research. This study contributes to this effort by providing

evidence for the psychometric validity of the initial digital version of PUMa test, while

addressing the limitations posed by its extensive length. To achieve this goal, we developed

and evaluated a brief test of early mathematical skills tailored for Uruguayan children. The

digital format allows for quick administration and real-time data collection, enhancing the

accessibility and scalability of early assessments. This is particularly relevant in Uruguay,

where a national policy for integrating technology into education, exemplified by the Ceibal

initiative (ceibal.edu.uy), ensures universal access to digital tools. Through this program,

every student is provided with their own tablet, and all schools are equipped with internet

connectivity, fostering an environment conducive to the implementation of innovative

educational assessments that ultimately support personalized interventions to enhance

children's cognitive and academic growth from an early age.

To ensure consistency in results, two methodological approaches within the IRT

framework—parametric and non-parametric—were employed. Both approaches

demonstrated high correlations between the abilities estimated from the initial version of

PUMa and the brief tests, highlighting that a reduced test with nearly half the number of

items can estimate abilities with the same level of precision. This level of efficiency provides

substantial benefits, including cutting test administration times in half, reduced participant

fatigue, and improved engagement levels for young learners.

Both brief test versions arrived at a balance between symbolic and non-symbolic tasks,

despite variations in the specific items included in each. This balance, as research highlights

that combining symbolic and non-symbolic components enhances the validity of early math

assessments by capturing a broader range of foundational numeracy skills (Outhwaite et al.,

2024). These results align with discussions in the literature about the relationship between

symbolic and non-symbolic number processing. For example, symbolic and non-symbolic

number processing tend to be more strongly related within the subitizing range—small

quantities easily recognized without counting—suggesting a developmental link between the

two components. Non-symbolic processing may influence symbolic number abilities,

particularly for small quantities, underscoring the importance of both types of processing in

early numeracy development (Hutchison et al., 2020).

https://ceibal.edu.uy


In terms of criterion validity, the initial version of PUMa and the two brief test versions

showed moderate to high positive correlations with TEMA-3 scores, a benchmark tool in

early numeracy assessment. Consistent with previous studies, symbolic skills showed

stronger correlations with TEMA-3 scores, while non-symbolic skills exhibited weaker

associations (Purpura & Lonigan, 2015). These findings indicate that it is possible to develop

more efficient assessment tools without compromising accuracy, addressing frequent

concerns about the reliability and predictive validity of existing screening tools.

This research has practical implications for educational evaluations. By providing a digital

screening tool that is effective and efficient, educators and researchers can identify children at

risk for mathematical difficulties early on. The ability to collect real-time data offers valuable

insights at the classroom level, enabling earlier and more targeted interventions. Additionally,

the digital nature of the test allows for greater scalability, ensuring that it can be implemented

in diverse educational settings. Furthermore, the brief format enables educators to support

repeated test administrations over time, facilitating continuous progress monitoring without

inducing fatigue or disengagement, thus enhancing the tool’s practicality for both classroom

and research settings.

However, several limitations must be acknowledged. The sample was limited to Uruguayan

children, which may restrict the generalizability of the findings to other populations with

different cultural or educational contexts. Furthermore, the reliance on a single dataset

constrains the validation of findings across diverse contexts or age groups. Expanding this

research to include varied populations and additional datasets would enhance the robustness

and applicability of the test, ensuring it can be effectively used in broader educational

settings.

To address these limitations, the brief PUMa test developed under the parametric approach is

being administered to representative samples of Uruguayan schools. Although the study

demonstrated the effectiveness of both brief versions, the parametric approach was chosen for

implementation due to their mathematical simplicity and interpretability. This effort aims to

support the test’s standardization and broaden its potential for widespread use. Additionally, a

longitudinal study has been initiated to follow children throughout their academic journeys.

This will provide valuable insights into how early mathematical skills predict future academic



achievement and validate the effectiveness of the test in forecasting long-term mathematical

performance.

While efforts are underway to address the limitations of the current study, such as expanding

the test's applicability through broader samples and longitudinal studies, additional

considerations arise due to PUMA's digital format. For instance, although the tool offers

significant advantages in efficiency and scalability, it presents challenges in assessing certain

mathematical skills. Specifically, the digital format does not support direct evaluation of

counting through verbal responses, prompting us to focus on a subskill: one-to-one

correspondence. Furthermore, the inability to manipulate concrete objects limits the

exploration of geometric and spatial concepts, emphasizing the need for complementary

approaches to achieve a more comprehensive assessment of mathematical abilities.

In summary, this study provides evidence for the development and application of an efficient,

reliable, and scalable digital tool for assessing early numeracy skills in young learners. The

brief versions of the PUMa test demonstrate that it is possible to balance precision and

practicality without compromising psychometric validity. These advancements contribute not

only to the field of educational research but also to the development of personalized

interventions that can better support children’s learning trajectories.
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