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Abstract. Nanopore sequencing has emerged as a crucial component in
the arsenal of genomic technologies, with advances from Oxford Nanopore
Technologies (ONT) progressively reducing the costs of DNA sequenc-
ing. An ONT nanopore sequencer operates by guiding DNA fragments
through a nanopore, partially blocking a flow of electrical current, which
is sampled over time. This variation in current is registered as a raw
signal, and it allows for the translation of electrical signals into a DNA
sequence, a process known as basecalling. As the available algorithms for
basecalling continually evolve, it is preferable to retain the raw signal
data for future re-analysis.
However, the volumes of raw data are massive, being nearly ten times
larger than the size of data after basecalling in FASTQ format. Therefore,
efficient lossless compression algorithms for raw signals are needed to
reduce storage and transmission costs.
While recent research has focused on studying nanopore FASTQ data,
a thorough study of the methods used in practice for the compression
of raw data, such as the state-of-the-art compression algorithm VBZ, is
still missing in the scientific literature.
In this sense, in this work, we aim to elucidate the mechanisms behind
the efficiency of VBZ and introduce a set of variations that further im-
prove its compression performance. Our findings indicate that we can
enhance the performance of VBZ by an average of 2.42%, with gains
increasing to 3.02% for the latest nanopore flowcells (10.x), using com-
parable computational resources.

Keywords: Nanopore sequencing · Data compression · Nanopore raw
signals · DNA sequencing.

1 Introduction

Nanopore sequencing has emerged as a crucial component in the arsenal of ge-
nomic technologies, as advances from Oxford Nanopore Technologies (ONT)
⋆ Supported by Agencia Nacional de Investigación e Innovación
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have progressively reduced the costs of sequencing extensive eukaryotic genomes
and transcriptomes [13]. Despite these advancements, the community utilizing
nanopore sequencing still faces significant challenges due to the sheer volume of
data and the computational hurdles involved.

An ONT nanopore sequencer operates by guiding DNA fragments through a
nanopore, i.e, a protein embedded in a membrane via a nanometre-sized channel.
As a DNA strand traverses the capture region of the nanopore, it partially blocks
a flow of electrical current running through the pore, which is sampled over
time. Under the assumption that each different combination of DNA nucleotides
present in the capture region produces a uniquely identifiable perturbation of the
electrical current, this variation in current allows for the translation of electrical
signals into a DNA sequence, a process known as basecalling.

As the available algorithms for basecalling, identification of DNA/RNA mod-
ifications, and other signal-level analyses, are continually evolving [19,11,20,6],
it is preferable to retain ONT raw signal data for future re-analysis, as releases
of new basecallers can enable improvements in basecalling accuracy, modified
basescalling, reference-guided SNP calling, or polishing of data.1 However, the
volume of raw signal data produced by nanopore sequencing is typically very
large; for instance, a human genome at 30× coverage results in about 1 TB of
raw data with current compressed formats [8]. This is nearly ten times larger
than the size of data after basecalling in FASTQ format. Managing such large
datasets incurs high storage and transmission costs, which calls for efficient
lossless compression algorithms for raw signals. However, although lossless and
lossy compression of FASTQ nanopore sequencing data has been investigated re-
cently [3,4,5,18,14,12], raw data compression has received less attention. In [1],
the authors examine the effects of lossy compression on raw nanopore sequencing
data, particularly its impact on basecalling. They demonstrate that, within the
scope of their study, the selected tools maintain basecalling accuracy despite the
loss of information. However, as we previously noted, the creation of novel base-
calling algorithms might lead to significantly different outcomes, and thus lossy
compression has not been adopted as a standard practice. In terms of lossless
compression, various techniques are currently used in practice, but a thorough
and systematic study of these methods is still missing in the scientific literature.

The first specific format developed for storing raw nanopore sequencing data
was FAST5 [8], a derivative of the universal HDF5 format.2 Compression of
FAST5 files typically involved standard tools like gzip.3 Innovations such as
Picopore [9] enhanced this approach by applying other ad-hoc techniques to
suppress redundant data from the FAST5 format, in addition to compressing
the raw signals with gzip at its highest compression level mode (at expense of
speed). Nevertheless, this method continued to employ a generic compression
algorithm that is not specifically designed for nanopore raw data. To improve
raw signal compression, ONT introduced VBZ, a compression algorithm that

1 https://help.nanoporetech.com/en/articles/8676645-should-i-store-pod5-files
2 https://www.hdfgroup.org/solutions/hdf5
3 https://www.gnu.org/software/gzip

https://help.nanoporetech.com/en/articles/8676645-should-i-store-pod5-files
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combines the StreamVByte integer encoding4 with the LZ77-based [21] ZSTD
compressor.5 VBZ was also initially developed as an HDF5 plugin. More recently,
two novel file formats for raw nanopore data emerged: SLOW5 [8], engineered for
efficient parallelization and acceleration of nanopore data analysis; and POD5
from ONT,6 now the default format for raw data storage. Both formats make
use of an updated version of the VBZ algorithm; we refer to the original and
updated versions of VBZ as VBZ0 and VBZ1, respectively, and we describe them
in detail in Section 2.

Although the VBZ compression algorithm is being adopted for raw nanopore
signal compression in practical applications, the specifics of its operation and
the statistical model assumptions have not been detailed in public research. One
of the contributions of this paper is shining light on the design principles of
VBZ and its underlying statistical model. Moreover, in Section 2 we propose a
collection of new lossless compression algorithms for nanopore raw signals, which
evolve from VBZ and further improve its compression performance. We assess
the performance of these compressors in comparison to each other and against
VBZ0 and VBZ1, utilizing publicly accessible raw nanopore sequencing data from
various organisms and nanopore models (flowcell types). Our evaluation, which
we report in Section 3, covers both compression and computational efficiency.
The findings indicate that our methods can enhance the performance of VBZ
by an average of 2.42%, with gains increasing to 3.02% for the most recent
nanopore flowcells (10.x). Moreover, these improvements are attainable using
computational resources comparable to VBZ in speed and memory requirements.

We summarize this paper in Section 4, where we present some concluding
remarks and we outline directions for future work.

2 Methods

A nanopore sequencing raw signal is comprised of a sequence of so-called data
acquisition values (DACs), x1, x2, . . . , xn. As a DNA strand traverses the cap-
ture region of a pore, it perturbs an electrical current, which is sampled over time
(see Figure 1(a)). The sequencing device quantizes these measurements into the
digital values xi, which are represented as 16-bit signed integers. Figure 1(b)
illustrates such a signal. During the time that a specific kmer (a sequence of k
consecutive bases) occupies the capture region, the sampled DACs typically lie
close around a kmer-specific mean value. In our example, the kmer ACATATAAT
that is in the capture region in Figure 1(a) gives rise to the portion of sequence
that is colored red in Figure 1(b). As the DNA strand moves on through the pore,
different kmers successively occupy the pore, each producing a sequence of DACs
with a different characteristic mean value. Generally, this results in a stepped-
shape signal, as in Figure 1(b), where each roughly flat region corresponds to a
specific kmer interposed in the capture region.
4 https://github.com/lemire/streamvbyte
5 https://github.com/facebook/zstd
6 https://github.com/nanoporetech/pod5-file-format

https://github.com/lemire/streamvbyte
https://github.com/facebook/zstd
https://github.com/nanoporetech/pod5-file-format
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Fig. 1: (a) A representation of a DNA molecule passing through a nanopore and
perturbing the electrical current. (b) An example of a fragment of a nanopore
raw signal. The part of the signal corresponding to the perturbation produced
by the kmer ACATATAAT is colored in red.
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We refer to a subsequence xi, xi+1, ..., xi+m where all samples originate from
the same kmer as a stable region; in our example, the stable region generated by
kmer ACATATAAT is colored red in Figure 1(b). A usually adopted statistical
model for nanopore raw signals posits that all values xi in a stable region are
sampled independently with the same probability distribution, which, according
to ONT, follows a normal discrete distribution [2], whose mean depends on the
kmer occupying the pore.

Given that each stable region has a characteristic mean, the differences
between consecutive samples tend to be centered around zero, regardless of
the specific kmer present in the capture region. Let the difference sequence,
d1, d2, . . . , dn, represent the differences between consecutive DACs, i.e., di =
xi − xi−1 for i > 1, and d1 = x1. Notice that the sequence d1, d2, . . . , dn univo-
cally determines x1, x2, . . . , xn; VBZ and all our proposed algorithms encode a
representation of the difference sequence, from which the decoder recovers the
original DAC sequence.

Figures 2(a) and 2(b) provide an illustrative example of a DAC sequence,
and the corresponding difference sequence, respectively. The difference sequence
exhibits areas of consistently low absolute values, indicative of stable regions,
interspersed with abrupt spikes generated by transitions from a stable region
to the next. In general, as suggested in the figure, low absolute values (referred
to as stable) occur more frequently than large absolute values (referred to as
transitional), which is exploited in VBZ by using shorter codes (i.e., using fewer
bits) for the former than for the latter. To this end, each difference value di
is mapped to a non-negative integer zi = 2|di| − u(di), where u(di) = 1 for
negative di u(di) = 0 otherwise. This mapping enumerates non-negative in-
tegers in increasing order of absolute value, translating 0,−1, 1,−2, 2, . . . into



Lossless compression of nanopore sequencing raw signals 5

Fig. 2: (a) A section of a raw nanopore sequencing signal. (b) Differential encod-
ing of the raw signal. (c) Rice mapping of the differential sequence.
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0, 1, 2, 3, 4, . . .. This enumeration is known as Rice mapping [16] in the context
of Golomb coding [10] for data compression and it is also popularly called zig-zag
encoding. Since the mapping is clearly reversible, from each zi a decoder can re-
cover di and, as explained before, from d1, . . . , dn it can reconstruct the original
DAC sequence. Figure 2(c) shows the Rice mapping applied to the difference
sequence of Figure 2(b).

The central aspects of the VBZ compression algorithm are listed below; it is
essentially comprised of a StreamVByte-like algorithm, which applies different
encodings to stable and transitional values, combined with the ZSTD algorithm.

1. Each value zi is coded as a pair (ki, qi), where ki is a key that determines
the number ℓi of bits in a fixed length code for zi, and qi is a string of ℓi
bits (a code word) that encodes zi with such fixed length code. In VBZ, qi
is simply the representation of zi as an unsigned integer of ℓi bits, but we
will use other codes in some of our proposed algorithms.

2. All keys ki are coded with a fixed length code and stored in a specific buffer,
called key buffer and denoted Bk, in order of occurrence.

3. The code words qi are stored in a specific data buffer, denoted Bd, separate
from the key buffer, in order of occurrence.

4. The concatenation of the buffers Bk and Bd is compressed with the ZSTD
algorithm.
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Given a VBZ compressed bit stream, a decoder recovers the DAC sequence
going through the following steps:

1. Apply a ZSTD decoder to recover the buffers Bk and Bd.
2. Iterate through the keys in Bk and for each ki determine the number ℓi of

bits to be read from the data buffer to obtain qi, which represents zi.
3. From zi obtain di by inverting the Rice mapping.
4. From the difference sequence d1, . . . , dn reconstruct the original DAC se-

quence x1, . . . , xn .

VBZ0 and VBZ1 differ in the definition of the keys, and the definition of the
code for zi corresponding to each possible key value. In VBZ0, these definitions
are as follows.

– for zi = 0, define ki = 0 and ℓi = 0 (qi is empty in this case).
– for 0 < zi ≤ 15, define ki = 1 and ℓi = 4.
– for 15 < zi ≤ 255, define ki = 2 and ℓi = 8.
– for 255 < zi, define ki = 3 and ℓi = 16.

Thus, VBZ0 defines 4 different key values, which are coded using 2 bits per
key in the buffer Bk. In contrast, VBZ1 utilizes only two key values, each coded
with a single bit in Bk. The definitions in this case are as follows.

– for zi ≤ 255, define ki = 0 and ℓi = 8.
– for 255 < zi, define ki = 1 and ℓi = 16.

In Figure 2(c), values zi beneath the dotted line are assigned a key ki = 0,
and values above the dotted line are assigned a key ki = 1 in algorithm VBZ1.

Recall that, in general, we expect low values of zi to occur more frequently
than large values. The way in which VBZ exploits this is two fold: on one hand,
small values of zi correspond to small values of ℓi, so that fewer bits are written
to Bd; on the other hand, a high frequency of small values of zi yields a highly
repetitive content of the key buffer, which makes it highly compressible with
ZSTD. Consider VBZ1 for example, and suppose that 90% of the values zi are
smaller than 256. Then all these values are encoded in Bd using 8 bits (rather
than 16 as in the original representation of DACs) and 90% of the bits in Bk are
0.

Notwithstanding the foregoing strengths, we also notice some improvement
opportunities:

1. Mixed content in the input to ZSTD.
The buffers Bk and Bd contain data of different nature, presumably with
completely different statistics. Since ZSTD compresses by learning statis-
tical regularities in the data, compressing Bk together with Bd may harm
compression performance.

2. Mixed content in the data buffer.
Similarly, the buffer Bd contains interspersing values from both stable and
transitional regions, which again respond to different statistical models.



Lossless compression of nanopore sequencing raw signals 7

3. Byte alignment break.
If some of the code word length ℓi are not multiple of 8, as in VBZ0, then the
values stored in Bd may lose byte alignment, potentially causing some values
qi to split across two consecutive bytes. This fragmentation can significantly
harm the performance of the ZSTD compressor, which performs pattern
matching on the data on a 1-byte words basis.

4. Redundancy in the coding space for zi given ki.
We notice that the coding space assigned to qi is inherently redundant for
some values of ki, in the sense that some code words are associated to values
of zi that would receive a different key (and thus are never actually used).
For example, in VBZ0, for ki = 2 we use a fixed length code for qi of length
ℓi = 8, which is able to encode all values of zi in the range 0 ≤ zi ≤ 255.
However, the values in the range 0 ≤ zi ≤ 15 receive a different key value
and, thus, these 16 code words are reserved but never used for ki = 3.

5. Substitution of ZSTD.
ZSTD is an effective and computationally efficient general purpose data com-
pressor. In general, however, it is possible to improve the compression per-
formance designing a specific purpose data compressor (possibly sacrifying
computational efficiency).

Considering these improvement opportunities, we propose a series of new
compression algorithms, which are adapted from VBZ.

1. Compressor C1:
Compressor C1 is defined as VBZ1 except that ZSTD is run separately for
the key and data buffers. Thus, instead of compressing the concatenation of
Bk and Bd, we concatenate the result of compressing Bk with the result of
compressing Bd.
This proposal stems from item 1 in the preceding list of improvement op-
portunities.

2. Compressor C2:
Compressor C2 is defined as VBZ1 but the data buffer Bd is replaced by two
separate buffers, BH

d and BL
d . BH

d stores the 8 most significant bits of all
code words qi that are 16 bits long, i.e., those with ki = 1. BL

d stores the 8
less significant bits of all code words (for both ki = 0 and ki = 1).
Each of the three buffers, Bk, BH

d , and BL
d , is encoded separately with ZSTD.

This proposal stems from items 1 and 2 in the preceding list of improvement
opportunities, applied to VBZ1.

3. Compressor C3:
Compressor C3 is a refinement of C2. It is defined as VBZ1 but the data
buffer Bd is replaced by three separate buffers, BH

d , BL0
d , and BL1

d . As in C2,
BH

d stores the 8 most significant bits of all 16-bits-long code words qi (those
with ki = 1). However, since stable and transition values obey to different
statistical models, in C3 we do not mix in the same buffer data values that
were assigned different keys. Specifically, BL0

d and BL1
d contain the 8 less

significant bits of all code words qi with ki = 0 and ki = 1, respectively.
Each of the four buffers, Bk, BH

d , BL0
d , and BL1

d , is encoded separately with
ZSTD.
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4. Compressor C4:
Compressor C4 is defined as VBZ0 but the data buffer Bd is replaced by four
separate buffers, B1

d, B
2
d, B

3H
d , and B3L

d . B1
d and B2

d contain all code words
qi for ki = 1 and ki = 2, respectively.
B3H

d and B3L
d contain the 8 most significant bits and 8 less significant bits,

respectively, of all code words qi with ki = 3.
Each of the five buffers, Bk, B1

d, B
2
d, B

3H
d , and B3L

d , is encoded separately
with ZSTD.
This proposal stems from items 1 and 2 in the preceding list of improvement
opportunities, applied to VBZ0. In addition, since each buffer contains code
words that are all the same length (4 bits in the case of B1

d and 8 bits for
the others), item 3 is also addressed by this compressor.

5. Compressor C5:
Compressor C5 is defined as C4 but, in addition, C5 redefines the coding
space assigned to qi for each possible values of ki. This redefinition addresses
item 4 in our list of improvement opportunities.
Specifically, the definition of the keys and the code for zi corresponding to
each possible key value is as follows.
– for zi = 0, define ki = 0 and ℓi = 0 (qi is empty in this case).
– for 0 < zi ≤ 16, define ki = 1 and ℓi = 4. We define qi as the represen-

tation of zi − 1 as an unsigned integer of 4 bits.
– for 16 < zi ≤ 272, define ki = 2 and ℓi = 8. We define qi as the

representation of zi − 17 as an unsigned integer of 8 bits.
– for 272 < zi, define ki = 3 and ℓi = 16. We define qi as the representation

of zi − 273 as an unsigned integer of 16 bits.
6. Compressor C6:

Compressor C6 is defined C3, but employs adaptive arithmetic coding [17]
to compress each data buffer. This serves as a benchmark to measure the
compression loss when using a fast LZ77 compression scheme compared to
a slower, but more effective, entropy coding scheme (item 5 in our list of
improvement opportunities).

All the proposed compression algorithms were implemented and integrated
to a fork of the POD5 library, and are available online.7

3 Experimental Results

To assess the performance of the different compression methods, we evaluate the
tools on several publicly available datasets, described in Table 1.

The selected datasets cover two types of organisms, human and fly, and dif-
ferent flowcell types, including pore versions 9.4.1, 10.3.1, and 10.4.1. Further
instructions on how to download the datasets are available online.8

7 https://github.com/tomas-gr/pod5_nanoraw_comp
8 https://github.com/tomas-gr/pod5_nanoraw_comp

https://github.com/tomas-gr/pod5_nanoraw_comp
https://github.com/tomas-gr/pod5_nanoraw_comp
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Table 1: Raw nanopore sequencing datasets used for evaluation. All the selected
datasets are a part of the Oxford Nanopore Open Data project [15]. The datasets
can be accessed using the AWS dataset names in the rightmost column.

Name Organism Author # Files Flowcell
type Size (GB) AWS dataset name

DS 1 Fly Stanford
University 14 R10.4.1 20.1 melanogaster_bkim_2023.01

DS 2 Human ONT 14 R10.3.1 27.2 gm24385_2020.09
DS 3 Human ONT 15 R9.4.1 36.8 gm24385_2020.09
DS 4 Human ONT 15 R10.4.1 27.4 giab_lsk114_2022.12

To measure the performance of a compressor on a dataset, we compress
each file of the dataset separately and calculate the compression ratio in bits
per sample (bps), CR, defined as CR = C/S, where S is the total number of
samples of all the files in the dataset, and C is the total size in bytes of the com-
pressed files. Notice that smaller values of CR correspond to better compression
performance. To compare compression ratios, we define the percentage relative
difference (PRD), CR2−CR1

CR1
× 100, between the compression ratios CR1 and

CR2, with respect to CR1. All experiments were conducted in a Rocky Linux
v8.8 server with an Intel(R) Core(TM) i9-10940X CPU, 3.30GHz (1.20GHz-
4.80GHz), 256GB of RAM, and 8TB of NVMe storage.

The compression ratios obtained by VBZ1, VBZ0, and the proposed compres-
sors, on each dataset, are shown in Table 2. The table also shows the percentage
relative difference between the compression ratios obtained by VBZ1 and the
proposed methods, using VBZ1 as the reference (thus, negative values indicate
an advantage for the proposed methods). Finally, the last two columns of the
table show the simple averages of the results.

Table 2: Comparison of compression ratios obtained on all the datasets for all
compression algorithms, and percentage relative difference (PRD) with respect
to VBZ1.

DS 1 DS 2 DS 3 DS 4 AveragesCompressor CR PRD CR PRD CR PRD CR PRD CR PRD
VBZ1 7.016 7.107 5.267 7.235 6.656
VBZ0 7.899 12.59 7.875 10.81 5.962 13.21 8.064 11.46 7.450 12.02
C1 6.991 -0.35 7.077 -0.42 5.269 0.04 7.197 -0.53 6.633 -0.31
C2 6.924 -1.30 6.990 -1.65 5.271 0.07 7.103 -1.82 6.572 -1.17
C3 6.919 -1.37 6.979 -1.80 5.272 0.10 7.094 -1.95 6.566 -1.25
C4 6.864 -2.16 6.909 -2.79 5.221 -0.87 7.039 -2.70 6.508 -2.13
C5 6.831 -2.63 6.872 -3.30 5.234 -0.61 7.008 -3.13 6.487 -2.42
C6 6.796 -3.13 6.847 -3.66 5.218 -0.93 6.968 -3.69 6.457 -2.85

https://labs.epi2me.io/open-data-drosophila/
https://labs.epi2me.io/gm24385_2020.09/
https://labs.epi2me.io/gm24385_2020.09/
https://labs.epi2me.io/askenazi-kit14-2022-12/
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The results show that all proposed compressors consistently outperform both
VBZ algorithms in terms of compression ratio (CR), on average. Specifically, the
best results on each dataset are achieved by C6. However, C6 uses adaptive arith-
metic coding for the compression of the data buffers, which ultimately translates
into a significantly reduced computational efficiency compared to the others, as
shown in Table 3.

Between the methods that use fast ZSTD compression, the best performance
is achieved by C5, which exhibits an average PRD of -2.42% compared to VBZ1.
It is worth noting that VBZ1 improves VBZ0 in every tested dataset.

In dataset DS 3 (using flowcell type 9.4.1), the compression ratios of the
evaluated algorithms, and the advantage of the proposed methods with respect
to VBZ1, are notably smaller than in the more recent 10.x datasets. However,
given the natural progression toward newer technologies, these older nanopore
types will likely see reduced utilization in the future. In this sense, it is important
to note that for the newer flowcell types (10.x), C5 achieves even better CR
results when compared to VBZ1, with an average PRD of 3.02%.

In terms of computational efficiency, Table 3 shows the average encoding
and decoding speeds, and the maximum memory usage registered during both
processes, for each compressor on each dataset. The table also shows the results
of running an optimized version of VBZ1 that uses fast SIMD instructions [7],
which we report as VBZ1SSE (this is the default version of VBZ in the POD5
library). Note that this version of VBZ1 can only be run on SIMD capable x86
CPUs.

Table 3: Encoding and decoding speeds in MB/s for all the compressors on all
the datasets. Best results (without considering VBZ1SSE), for each dataset, both
for encoding and decoding, are bold-faced. Additionally, column mem shows the
maximum memory usage (in GB) registered during the encoding and decoding
processes, for all the compressors, on all the files of each dataset.

DS 1 DS 2 DS 3 DS 4 AveragesCompressor enc dec mem enc dec mem enc dec mem enc dec mem enc dec
VBZ1SSE 1006 549 2.1 995 550 2.2 1305 615 2.2 985 568 2.5 1073 570
VBZ1 530 368 2.0 529 364 2.3 659 346 2.2 517 371 2.5 559 362
VBZ0 275 133 2.2 270 127 2.4 311 115 2.3 278 138 2.7 284 128
C1 539 281 2.0 533 281 2.2 670 256 2.2 523 286 2.5 566 276
C2 678 339 2.0 670 338 2.2 909 335 2.1 653 342 2.5 728 338
C3 658 275 2.0 654 273 2.2 943 260 2.1 633 279 2.5 722 272
C4 274 151 2.0 272 146 2.2 309 126 2.1 276 158 2.5 283 145
C5 256 142 2.0 254 137 2.2 292 125 2.1 259 148 2.5 265 138
C6 21 8 2.0 21 8 2.2 31 9 2.2 21 8 2.5 24 8

The results show that VBZ1SSE is the fastest tool for both encoding and
decoding across all datasets. However, among compressors that do not utilize
SIMD instructions, C2 stands out as the fastest encoder, averaging a speed of
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728 MB/s; only 0.68x slower than VBZ1SSE . In terms of decoding speed, VBZ1

leads with 362 MB/s, closely followed by C2 at 338 MB/s.
Additionally, we observe that C5, which is the algorithm that achieves the

best CR performance between algorithms using fast ZSTD compression, is slower
than VBZ1 in both encoding and decoding speeds, with factors of 0.47x and
0.38x, respectively. In future work this could be addressed by focusing on opti-
mizing the algorithms through the integration of SIMD instructions, to narrow
the gap in compression and decompression speed.

Regarding memory usage, the compressors demonstrate comparable perfor-
mance. Across all datasets, the greatest observed difference in memory usage
between any two compressors is a marginal 0.2 GB.

4 Conclusions and future work

The VBZ algorithm is widely accepted in the bioinformatics community as the
state-of-the-art tool for lossless compression of nanopore sequencing raw signals,
and it is the default method used by the standard raw data storage format POD5.
However, the algorithm has not been previously studied in the literature.

In this work, we presented a detailed analysis of the VBZ compression al-
gorithm. VBZ employs differential encoding alongside StreamVByte to create
an encoded signal, which can be then efficiently compressed using the ZSTD
algorithm. The design of this encoding takes advantage of the sequential pro-
gression of the raw signal through stable regions that are characterized by similar
statistical behaviour.

More importantly, we have detected potential improvements to the VBZ
algorithm, and proposed a series modifications that enhance its compression
capabilities without significantly impacting computational efficiency.

Future research directions include refining the performance of these modi-
fications through the application of SIMD instructions within the algorithms,
thereby narrowing the performance disparity between the proposed modifica-
tions and the current implementation of VBZ. Additionally, we consider improv-
ing compression performance by integrating a predictor for transitions between
stable regions of the signal into the compression process. Despite the inherent
randomness of the transitions between stable regions, we hypothesize that the
duration of these regions exhibits sufficient consistency to predict transitions,
and that this information could potentially be used to improve compression per-
formance.
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