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a b s t r a c t

In this paper, we establish the existence and multiplicity for periodic solutions of the
nonlinear system associated with a tapping mode cantilever Atomic Force Microscope
(AFM) with Lennard-Jones potential and an external harmonic excitation. The technique
used to solve the nonlinear system is based in the classical nonlinear technique of lower
and upper solutions in reverse order. Finally, we show some numerical simulations using
the Poincaré map to present regions where the existence is guaranteed.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the invention of the Atomic Force Microscope (AFM) in 1986 by Quate et al. [1], its applications have been
ery useful in different fields of science and industry, for example, J. Deng et al. [2], use the AFM as a nano-machine
o create nanostructures, C. Hail et al. used the AFM for applications at the quantum level of nano printed organic
olecules to create nanophotonic devices [3]. An AFM measures the atomic interactions between particles by allowing the
anoscale study of different nanomaterial surfaces [4,5]. The vibrating tip of an AFM interacts with a surface which makes
ossible to obtain molecular resolution images of membrane proteins in aqueous solutions or to resolve atomic-scale
urface defects in ultra-high vacuum (UHV) [6,7]. Other applications can be found in [8–11]. Recent studies in artificial
ntelligence found that these computational techniques could be useful for enhancing the AFM analysis and operation, [12–
4]. Understanding the mathematical relationship of the parameters in the equation with the real parameters of an AFM
llows improving the design and operation of the AFMs, by enhancing the measurement techniques and the resolution of
he images. Limitations in AFM design arise in the mathematical modeling of these devices, especially when they present
on-linear effects. For example, squeeze film-damping and tip stiffness [7,15].

.1. Mathematical model of the vibrating tip in an AFM

The AFM cantilever could operate principally in two modes, amplitude modulation atomic force microscopy (AM-AFM),
lso known as tapping-mode, and frequency modulation atomic force microscopy (FM-AFM), also known as a non-contact
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Fig. 1. An equivalent model of AFM, where Z0 is associated with the distance of the tip from the sample and x determine the movement of the tip.

ode. Fig. 1 shows the schematic setup of an AFM and the interaction between the cantilever beam and the sample.
he dynamics of a vibrating tip can be seen as a spring–mass system as illustrated in Fig. 1b. This model is a good
pproximation to understand the behavior of an AFM in tapping-mode operation [16]. Theoretical analysis of AM-AFM is
nteresting in many cases due to the coexistence of two stable oscillations states associated to low and high amplitude
olutions, due to the presence of the nonlinear tip–sample interaction [6].
In the mathematical model considered here, the beam has an effective mass m and an effective stiffness k. The tip

f the cantilever beam is modeled as a sphere of radius R. The cantilever tip is assumed to be placed initially in Z0, this
distance represents the tip–sample separation in the absence of any interaction between them. Additionally, the cantilever
has a harmonic external excitation force h(t). The equation of motion governing the displacement of the cantilever tip
(vibration) under the influence of the Lennard-Jones force can be written as:

mx′′
+ kx =

A1R
180(Z0 + x)8

−
A2R

6(Z0 + x)2
+ h(t). (1)

The first term on the Lennard-Jones force describes a short-range repulsive force due to overlapping electron orbits,
called Pauli repulsion, whereas the second term simulates the long-range attraction due to van der Waals forces. This is a
special case of the wider family of Mie forces Fn,m(x) =

C
xn −

D
xm , where n,m are positive integers with n > m, also known

as the n − m Lennard-Jones force [17,18].
The Eq. (1) is re-scaled according to Ashhab et al. [16] to obtain the dimensionless differential equation

y′′
= m(y) + f (t) + a, (2)

where m(y) =
1
y8

−
b
y2

− y, with y > 0 as the vertical displacement of the microcantilever, a, b are positives constants, f
is continuous, T -periodic and satisfies

f =
1
T

∫ T

0
f (s)ds = 0.

Some analytical and numerical studies about AFM models under the influence of the Lennard-Jones force can be found
n [4,16,19–22]. Despite a large number of related papers, the mathematical understanding of this system is still far from
eing complete. It can be observed that (2) is an example of an ODE with a singularity at the state variable and periodic
ependence on time. Some interesting models with singularities can be found in [15].

.1.1. Some previous results
In this subsection, we present some previous results associated with the AFM differential Eq. (2). Here below we will

enote ∥ · ∥∞ as the usual supremum norm, R+ as the set of positive real numbers, Cn(R/TZ) as the set of functions
: R → R, such that u ∈ Cn and T -periodic, i.e. u(t + T ) = u(t).
When f ≡ 0, the constant solutions (equilibria) of Eq. (2) are given by the set

G = {y ∈ R+
: m(y) + a = 0},

hose number of elements, |G|, depends on the parameters a and the critical value of the parameter b

b∗
=

3
41/3 , (3)

such that if b ≤ b∗, Eq. (2) has a unique equilibrium for each a, and if b > b∗, (2) can have either one, two or three
equilibria, depending on the parameter a, see Fig. 2.

Gutierrez et al. in [23] have studied each of these cases. They have not only established analytically the bifurcation
diagram of the equilibria for specific regions of the involved parameters, but also the existence of a couple of saddle–node
2
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Fig. 2. Two generic cases for the function m. (a) if b ≤ b∗ , |G| = 1. (b) if b > b∗ , |G| = 1, 2 or 3.

bifurcation. Additionally, in [24], conditions for persistence of the homoclinic orbit were established by Melnikov’s method
when the model has nonlinear friction and f ̸≡ 0. In this sense, the analytical and numerical approaches were presented
to verify the solutions of the model, other studies about stability of periodic oscillations can be found in [25,26].

In this paper, we established analytical conditions over the AFM parameter which are necessary for the existence
and multiplicity of T -periodic solutions of Eq. (2), by using the lower and upper solutions method in non-well order. In
addition, numerical simulations of the dynamical system associated with the model were implemented for verification
of the theoretical results. The paper is structured as follows: In Section 2, some previous results about lower and upper
solutions method in non-well order are presented, which will be used in the following sections. In Section 3, we present
the results related to the existence of at least one T -periodic solution (Theorems 3 to 9). In Section 4, we proof the
multiplicity result, Theorems 10 and 11. Finally, in Section 5, numerical examples are studied, showing the existence of a
unique periodic solution for suitable conditions on the parameter a and the multiplicity, these numerical examples allow
us to establish a method to ‘‘trap’’ those solutions in the estimated region. Finally, we present some numerical examples
when the parameter a is changed such that does not satisfy the necessary conditions and the system may present some
strange behavior.

2. Materials and methods

2.1. Method of upper and lower solutions

In this section, the notion of upper and lower solutions is used together with some other tools that will let us
characterize the stability of periodic solutions in the AFM Eq. (2). The following Lemma allows us to characterize the
stability of the solutions for the Hill’s equation by means of the characteristic multipliers, this idea can be applied to the
AFM equation, see [27].

Lemma 1 (Lemma 1, [28]). Let w(t) be a non-constant continuous T-periodic function such that w(t) ≤
(

π
T

)2 for all t . Then,
Hill’s equation y′′

+w(t)y = 0 does not admit negative Floquet multipliers. Moreover, if w(t) > 0 for all t , then Hill’s equation
does not admit real Floquet multipliers.

This lemma will help us know when the linear problem has an elliptic solution. Remember that a T -periodic solution
is elliptic when the linearized equation is elliptic, i.e, the Floquet multipliers are different from ±1 and have modulus
1. Consequently the linearized equation is stable; however, the stability of the solution cannot be guaranteed due to the
dependence of the non-linear terms.

On the other hand, the notion of upper and lower solutions will be used [29]. Given the equation,

y′′
+ g(t, y) = 0, (4)

when g is continuous and T -periodic in the first variable, the functions α, β ∈ C2(R/TZ) are called lower and upper
solutions, respectively, if for all t ∈ R,

α′′
+ g(t, α) ≥ 0

β ′′
+ g(t, β) ≤ 0.

A lower (resp. upper) solution is said to be strict if the above inequality is strict for all t ∈ R. Let us now assume that α

and β are ordered, i.e.,

α(t) ≤ β(t) for all t ∈ R.
3
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It is well-known that (4) has a solution lying between α and β , see [29]. However, when α and β are ordered reversely,
i.e.,

α(t) ≥ β(t) for all t ∈ R,

we cannot guarantee the existence of a solution to (4) between β and α. It is necessary to add a suitable non-resonance
ondition [30].

roposition 2. Assume there are upper and lower solutions to (4) such that β(t) < α(t) for all t and g is continuously
ifferentiable in the second variable. Under the assumption

gy(t, y) ≤

(π

T

)2
for any y ∈ [β(t), α(t)], and any t (5)

the equation has a T-periodic solution ϕ such that β(t) < ϕ(t) < α(t).

2.2. Numerical approach

We implemented numerical examples using the Poincaré maps associated with the solutions of the system (2), with
algorithms in Python to find those solutions [31]. We set the initial conditions and the parameters b, ∥f ∥∞ and T , and
we adequately estimated the parameter a such that the established conditions are met. Applying these variations to the
distance between the tip and the sample, we could find rich dynamics of the system, establishing numerical criteria
for solutions of the system according to the tip–sample distance to study the stability of oscillation of the vibrating tip,
where various strange attractors were plotted using Python as shown in Section 4, for certain parameters values and it is
in agreement with the theoretical results found in this work, which are shown in the following section.

3. Results and discussion

3.1. Existence of periodic solutions

In this section, we establish the conditions for the existence of periodic solutions in Eq. (2). In order to formulate the
main results, let us define the set

L =

{
y ∈ R+

: m′(y) = −

(π

T

)2}
.

When T ≤ π , L has a unique solution, independently of the value of b.
In contrast, when T > π , the number of solutions L depend on b:

(i) When

b < b∗

(
1 −

(π

T

)2)
,

is satisfied, then the set L has no solutions.
(ii) When either b > b∗ or

(A) b∗

(
1 −

(π

T

)2)
< b < b∗,

occurs, then the set L always has two solutions.

In Fig. 3 region I corresponds to the case when L has one solution (T ≤ π ), which will be noted as y0. Region II shows
when L has no solutions, and on regions III and IV L has two solutions that will be denoted as y1 and y2.

Now, we present the main results associated with the existence of T -periodic solutions. First we established existence
when the function m is decreasing i.e. when b < b∗.

For the first theorem we define the interval

I1 = ]∥f ∥∞ − m(y0), ∞[ ,

this theorem is related to the lower part of region I, Fig. 3.

Theorem 3. If T ≤ π and b < b∗, then for each a ∈ I1 Eq. (2) has at least one elliptic T -periodic solution ϕ(t) such that

ra < ϕ(t) < Ra.

roof. Note that L has a unique solution, namely y0. Then, when a ∈ I1, m(y0) > ∥f ∥∞ − a; therefore, y0 = ra is an upper
solution. On the other hand, we can find the lower solution Ra such that m(Ra) < −∥f ∥∞ − a. Moreover, y0 < Ra and
for Proposition 2, there is a T -periodic solution ϕ(t) between y0 and Ra. Finally, ϕ is elliptic which follows from Lemma 1
ecause 0 < w(t) < ( π )2, where w(t) = −m′(ϕ(t)). □
T

4
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Fig. 3. Diagram for the number of solutions of L in the plane T -vs-b.

Similarly, for T > π , we define the interval

I2 =

]
∥f ∥∞ − m(y1), −m(y2) − ∥f ∥∞

[
,

and we meet the conditions when hypothesis (A) is satisfied, that is on region III, Fig. 3.

Theorem 4. If T > π , b satisfies (A) and ∥f ∥∞ <
1
2

(m(y1) − m(y2)), then for each a ∈ I2 Eq. (2) has an elliptic T -periodic
olution ϕ(t) such that

ra < ϕ(t) < Ra.

Theorem 4 will be demonstrated in the same way as Theorem 3 by the technique of lower and upper solutions.

roof. Note that L has two points such that y1 < y2. Because of the hypothesis about the norm of f , we can guarantee
hat for a ∈ I2, m(y2) < −∥f ∥∞ −a < ∥f ∥∞ −a < m(y1) and we take the constant upper solution β = y1 and the constant
ower solution α = y2. To see that it is elliptic, use the argument used in the proof of Theorem 3. □

emark 1. If we assume ∥f ∥∞ ≥
1
2

(m(y1) − m(y2)) in the last theorem, the existence of T -periodic solutions does not
ie between the lower and upper solution because it does not fulfill Proposition 2. In this case, it can be shown that the
olution is unique by following an argument given in [28].

Finally, the critical case, b = b∗, is also studied. In this case, we do not need to restrict the period to guarantee the
existence of periodic solutions. To prove Theorem 5, two cases will be studied: when T ≤ π , we use the same argument
as in Theorem 3, and when T > π , we use the argument given in Theorem 4.

Theorem 5. If b = b∗, then there exist a such that (2) has an elliptic T -periodic solution ϕ(t) and

ra < ϕ(t) < Ra.

roof. If T ≤ π , take the upper and lower solutions β =

(
4
b

)1/6

and α = Ra such that m(Ra) < −∥f ∥∞ − a, respectively.

hen T > π , take β = y1 and the constant lower solution α = y0. To see that it is elliptic we use the same argument
rom Theorem 3. □

Now, we establish conditions for the existence of T -periodic solutions for the case b > b∗, region IV in Fig. 3. In this
ase, the function m(y) has a local minimum in yl and a maximum in yr such that yl < yr . These points correspond to the
ositive roots of m′(y), where it can be computed as follows:

yl =

(
4
3
b cos

(
1
3
arccos

(
1 −

1
2

(
3
b

)3
)

+
4
3
π

)
+

2
3
b

)1/3

,

yr =

(
4
3
b cos

(
1
3
arccos

(
1 −

1
2

(
3
b

)3
))

+
2
3
b

)1/3

.

For the following theorems, we denote

ŷ = min{y ∈ R+
: m(y) = m(y )}, ŷ = max{y ∈ R+

: m(y) = m(y )},
r r l l

5
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Tr =
π√

−m′(ŷr )
, Tl =

π√
−m′(ŷl)

.

These values will help us guarantee the existence of the solution between the non-well ordered pair of lower and
pper solutions.
The proofs of Theorems 6 through 9 use the relationship of the period T with the values Tr , Tl and π , which allows us

o meet local monotony conditions of m such that the hypothesis of Proposition 2 is satisfied.
For the next two theorems, we define the interval

I3 =

]
∥f ∥∞ − m(y0), ∞

[
.

heorem 6. If b > b∗ and T < Tr ≤ π or T < π < Tr , for each a ∈ I3, Eq. (2) has at least one T-periodic solution ϕ(t) such
hat

y1 < ϕ(t) < Ra.

To show Theorem 6, we will consider the set

Ha = {y ∈ R+
: m(y) = −∥f ∥∞ − a},

hich is non-empty and compact.

roof. Note that the set L has a unique solution y0 if T < Tr < π or T < π < Tr . For these values of T the function m is
uch that m(y0) > m(yr ).
Consequently, each a ∈ I3 satisfies the inequality ∥f ∥∞ − a < m(y0). Then, r = y0 is an upper solution and taking the

ower solution such that Ra > minHa, there is a T -periodic solution between y0 and Ra. □

heorem 7. If b > b∗, Tr < T < π and ∥f ∥∞ >
1
2

|(m(y0) − m(yl))|, for each a ∈ I3 Eq. (2) has at least one T-periodic
olution.

roof. Once again, L has an unique solution y0 if Tr < T < π . Consider T > Tr , then m(yr ) > m(y0) so yr is an upper
olution. By the hypothesis about a, ∥f ∥∞−a < m(y0), and by the hypothesis about the norm of f , m(yl) > −∥f ∥∞−a. This
mplies that for each a, the set Ha has a unique solution that satisfies the hypothesis but it suffices to take Ra > minHa. □

In the same way that in the case b < b∗, here we study the cases when T ≤ π as in the last theorem and the case
> π , as in the next theorem. Again, we define the interval

I4 =

]
∥f ∥∞ − m(y1), −m(yl) − ∥f ∥∞

[
.

heorem 8. If b > b∗, Tr < π < T or π < Tr < T and ∥f ∥∞ <
1
2

|m(y1) − m(yl)|, for each a ∈ I4, Eq. (2) has at least one
-periodic solution ϕ(t) such that

y1 < ϕ(t) < Ra.

roof. If Tr < π < T or π < Tr < T , the set L has two solutions y1 < y2. By hypothesis, m(yl) < −∥f ∥∞ −a < ∥f ∥∞ −a <
m(y1). Choosing Ra < yl such that m(yl) < m(y) < −∥f ∥∞ − a, we have proved the assertion. □

Now for the intervals

I5 = ]∥f ∥∞ − m(yl), −m(y2) − ∥f ∥∞[ , I6 =
]
∥f ∥∞ − y1, −ŷr − ∥f ∥∞

[
,

we have the next theorem.

Theorem 9. If b > b∗, π < T < Tl and ∥f ∥∞ <
1
2
(m(yl) − m(y2)) (resp. ∥f ∥∞ <

1
2
(m(y1) − m(ŷr ))), then for each a ∈ I5

resp. a ∈ I6), (2) has at least one T-periodic solution ϕ(t) such that

ŷl < ϕ(t) < y2. ( resp. y1 < ϕ(t) < ŷr ).

roof. By hypothesis, we have that m(y2) < −∥f ∥∞ − a < ∥f ∥∞ − a < m(yl) = m(ŷl) (resp. m(ŷr ) < −∥f ∥∞ − a <
f ∥∞ − a < m(y1) = m(y1)), which implies that ŷl (resp. y1) is a lower solution and y2 (resp. ŷr ) is an upper solution.
hen there is a T -periodic solution ϕ between ŷl, y2 (resp. between y1 and ŷr ). □

emark 2. In Fig. 4, we can notice that in {b ∈ R+
: b > b∗

} × R+
− (A ∪ B ∪ C) the existence of at least one T -periodic

olution cannot be guaranteed because the inequality (5) is not satisfied, for this reason the value T is introduced.
l

6
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Fig. 4. Regions on the plane b vs T where Eq. (2) has at least one T -periodic solution.

.2. Multiplicity of periodic solutions

The conditions for the multiplicity of T -periodic solutions could be found for the case b > b∗ and in the same way
as in the previous theorems, it is divided into the cases where T < π and T > π . Moreover, as seen before, there is a
relationship of existence with the values Tr and Tl, where multiplicity needs to be established.

In the proofs of Theorems 10 and 11, we used the fact that we can find a T -periodic solution between a well-ordered
pair of lower and upper solutions as well as [29, Th. 1.15, Ch. III], which allowed us to find another solution, but it cannot
be guaranteed that it is between a pair of lower and upper solutions.

For the following two theorems, we define the interval

I7 =

]
∥f ∥∞ − m(y0), −m(yl) − ∥f ∥∞

[
.

Theorem 10. If b > b∗, Tr < T < π and ∥f ∥∞ <
1
2

|m(y0) − m(yl)|, then (2) has at least three T-periodic solutions for
∈ I7.

roof. If Tr < T < π we have that L has a unique solution y0. By the hypothesis about a, we have m(yl) < −∥f ∥∞ − a <

f ∥∞ − a < m(y0), which implies that ra = y0 is an upper solution and Ra = yl is a lower solution. Therefore, there is
t least one solution between y0 and yl. Since T > Tr , m(ŷl) > m(y0) thus yr is an upper solution. Thus, there is another
olution between yl and yr . To find the third solution, note that ŷl is a lower solution since m(ŷl) = m(yl) < −a − ∥f ∥∞.
ence, there is another solution between yr and ŷl. □

heorem 11. If b > b∗, Tr < π < T or π < Tr < T , and ∥f ∥∞ <
1
2

|(m(y1) − m(yl))|, then (2) has at least three T-periodic
olutions for a ∈ I7.

roof. By the hypothesis on T , L has two solutions such that y1 < y2. Again, we have a solution between y1 and yl, and
e can note that there exist a second solution between yl and yr in the same form as in the previous proof. To find the
hird solution, we must consider either T < Tl or T > Tl.

When T < Tl, we have y2 > ŷl, then a solution between yr and ŷl can be guaranteed.
When T > Tl, we have y2 < ŷl and we cannot guarantee that there is a solution between yr and ŷl. To ensure the

xistence of such a solution, we use [29, Th. 1.15, Ch. III], then we can guarantee there is a t1 such that the solution ϕ

atisfies ϕ(t1) > yr . We must prove that every upper solution u with u ≥ yr satisfies the condition u < k. Indeed, if u ≥ yr ,
hen

u′′ < m(u) + a + f (t) < m(yr ) + a + ∥f ∥∞.

herefore, if u is a T -periodic solution, then there exists a t0 ∈]0, T [ such that mint∈]0,T [ u(t) = u(t0) < ŷl. Otherwise,
′′ < 0 at t0, which contradicts the periodicity of u. On the other hand, if u is extended periodically, u′(t0) = 0, and for
ll t ∈]t0, t0 + T [ we obtain

u(t) = u(t0) +

∫ t

t0

u′′(s)(t − s)ds ≤ ys + (m(yr ) + a + ∥f ∥∞)
T 2

2
.

Thus, we find the third solution and we prove the theorem. □
7
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Fig. 5. Regions on the plane b vs T where Eq. (2) has at least three T -periodic solutions.

Table 1
Values for parameter involved in the T -periodic solutions of (2).
Parameter Value

b∗ 1.88988
b 2
yr 1.47913
yl 1.25992
ŷr 1.17815
ŷl 1.62806
Tr 5,07421
Tl 7,56147
y1 1.01845

Corollary 1. If ∥f ∥∞ < 1
2 (m(yr ) − m(yl)) and a ∈]∥f ∥∞ − m(yr ), −∥f ∥∞ − m(yl)[, then (2) has at least two T-periodic

olutions.

emark 3. Fig. 5 shows the regions in the plane b vs T for which Theorems 10 and 11 guarantee there are at least
hree T -periodic solutions of Eq. (2). Note that the region C corresponds to conditions on T and b from Theorem 10
and that the two no well ordered solutions satisfy Proposition 2. On the other hand, the regions B and A are associated
with Theorem 11, region B corresponds to the case in the proof where T < Tl and A with the case T > Tl, furthermore
one of the no well ordered solution does not have to satisfy Proposition 2.

4. Numerical results and discussion

In this section, we present numerical examples related to the main results in this work showing the presence of periodic
oscillations which are associated to low and high amplitude solutions of the vibrating tip in an AFM. The parameter values
of the AFM model can be found in [4]. For the purpose of our work, we assume that

f (t) = F sin(ωt), F ∈ R,

where w =
2π
T . The numerical values used for these examples can be seen in Table 1. On the other hand, to summarize our

results we will use the Poincaré map, in this way we expect that the dynamics of Eq. (2) and, particularly, the T -periodic
solutions could be observed.

For the existence of periodic solutions, we present the following example. Let be T =
π
2 , ∥f ∥∞ = 30 and a = 33 ∈ I3,

uch that Theorem 6 guarantee the existence of at least one solution between y1 = 1.01845 and Ra ≈ 62, as illustrated in
he Poincaré map in Fig. 6. Note that the T -periodic solution corresponds to a point in the Poincaré map and this solution,
n our case, is enclosed by quasiperiodic solutions that can be numerically restricted to estimate the T -periodic solution
rovided by Theorem 6.
It should be clarified that other numerical examples of existence can be done in the same way, by ensuring that the

onditions of any of the Theorems 3 to 9 are met.
Now, for an example of multiplicity, let be T =

5
2π , ∥f ∥∞ = 0.0012 and a = 2.3607 ∈ I7, then, we have that

heorem 11 guarantees the existence of at least three T -periodic solutions φ1, φ2 and φ3 such that

1.01845 < φ1 < 1.25992 < φ2 < 1.47913 < φ3 < 1.62806.

Fig. 7 shows the Poincaré map where the T -periodic solution φ1 is trapped on the left side of the figure, while the
solution φ3 is trapped on the right side. Similar to the previous example, these solutions are enclosed by quasiperiodic
solutions. This behavior can also indicate that these solutions are stable. On the other hand, the solution φ2 is between
1 and φ3, and it is not enclosed by quasiperiodic solutions, which indicates that the solution is unstable and that finding
t numerically will be more difficult. However, Theorem 11 gives us an estimate of where this solution should be.
8
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Fig. 6. Poincaré map for Eq. (2) taking the values of the Table 1 and T =
π
2 , ∥f ∥∞ = 30 and a = 33.

Fig. 7. Poincaré map of (2) taking the values from Table 1, ω = 1/T , T =
5
2π , ∥f ∥∞ = 0.0012 and a = 2.3607.

For another interesting example, we take T = 1, b = 30 and ∥f ∥∞ = 10, in such a way that we are under the conditions
f Theorem 6. For these conditions we have that y1 = 0.708672 and therefore m(y1) = −44.7245. For the existence of at
east one solution, it must be satisfied that a > 54.7245.

However, if we change the value of a < 54.7245, which is associated with the vertical distance between the tip and
ample, the system present a strange behavior associated with an uncontrolled cantilever movement, and the system,
ould have strange behaviors as seen in Fig. 8, where the Poincaré maps are shown for different values of a between 1
nd 20, with the initial condition at point (1, 0). As can be seen, initially this ‘‘rabbit ears’’ figure appears, which gradually
hows regions where subharmonics may exist and later a region in which there may be a set of quasiperiodic solutions
here the periodic solution can be trapped, as in the above examples.
This latest behavior shows the instability of the system for changes in the parameters of the model, and in which

haotic behaviors have been verified in previous works based on the Melnikov method [16].
On the other hand, on Fig. 9 the initial condition has been changed to the point (0.95, 0) and it can be seen that for

he first values of a it is found a quasiperiodic solution where a T -periodic solution can be trapped. For this value, the
resence of a periodic solution associated with a stable oscillation of the AFM is guaranteed and it verifies the case of
arameter values for the stable oscillations. However, by moving a, the attractor set changes and then the ‘‘rabbit ears’’
ppear.

. Conclusion

Conditions for the existence and multiplicity of periodic solutions were established using the technique of upper and
ower solutions for equations associated with a vibrating tip in an AFM with harmonic excitation. We found that there
s an important change in the dynamics of the system when the parameters are modified, thus presenting points where
here is a bifurcation. Numerical examples show how we can obtain the existence of one solution trapped in the upper
nd lower solution and similarly with at least three solutions, which is associated with stable oscillation of the low and
igh amplitude solutions of the AFM model. These results agree with the theoretical values of the AFM parameters related
9
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Fig. 8. Poincaré maps for T = 1, b = 30, ∥f ∥∞ = 10 with initial condition (1, 0) where the parameter a is taking values between 1 to 20.

Fig. 9. Poincaré maps for T = 1, b = 30, ∥f ∥∞ = 10 with initial condition (0.95, 0) where the parameter a is taking values between 1 to 4.

to effective stiffness, tip–sample distance, and external excitation amplitude, which suggests that they are optimal to be
implemented in the AFM systems design, for the topography imaging of different substances and materials in which the
AFM techniques are widely used.
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