

Natural Hydrogen in Uruguay: source rock catalog, prospective exploration areas and potential H2 systems

Sequeira, M.¹; Morales, E.^{1,2}; Moretti, I.³; Plenc, F.^{1,2}

¹ PEDECIBA (Programa de Desarrollo de las Ciencias Básicas). Isidoro de María 1614, 11800, Montevideo, Uruguay ² UDELAR (Universidad de la República). Iguá 4225, 11400, Montevideo, Uruguay ³ Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LFCR, Pau, France Corresponding author: Marcos Sequeira (msequeiracollazo@gmail.com)

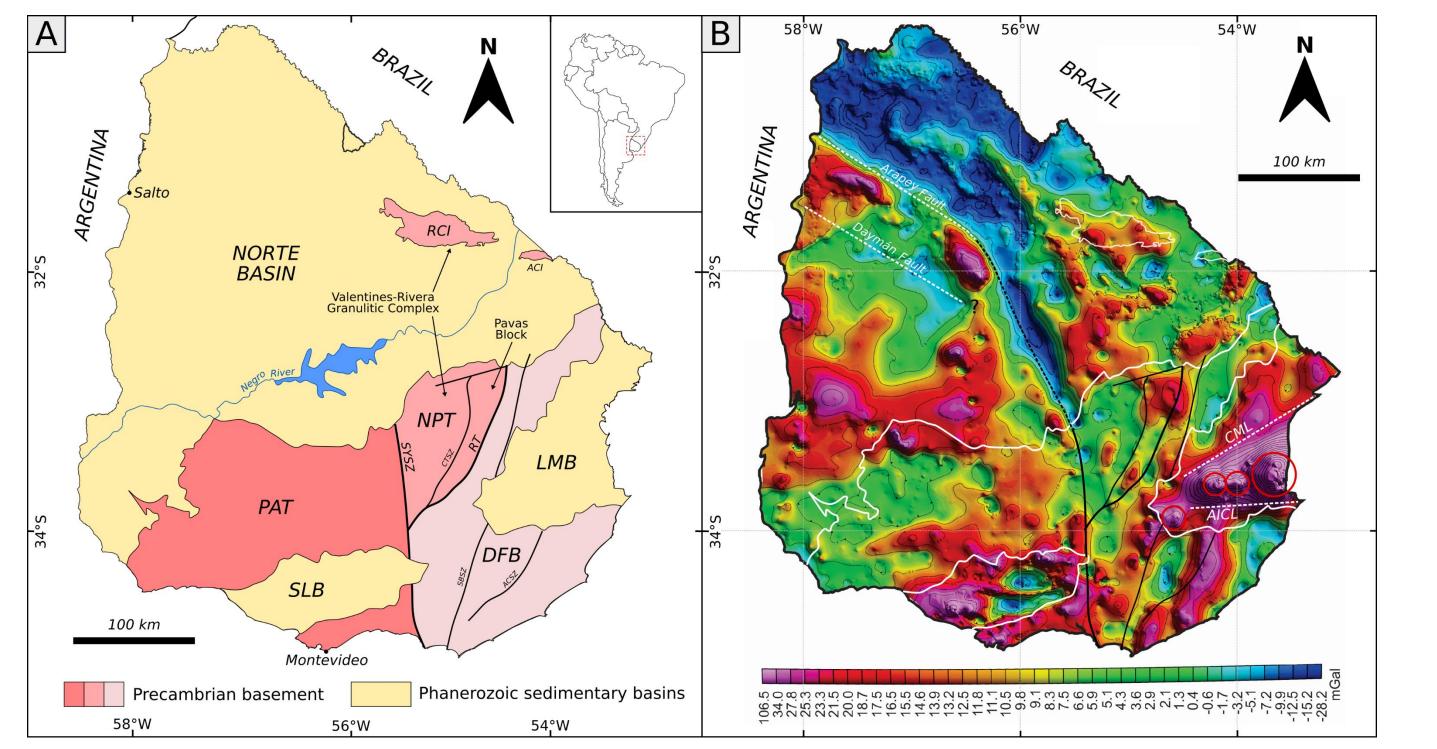
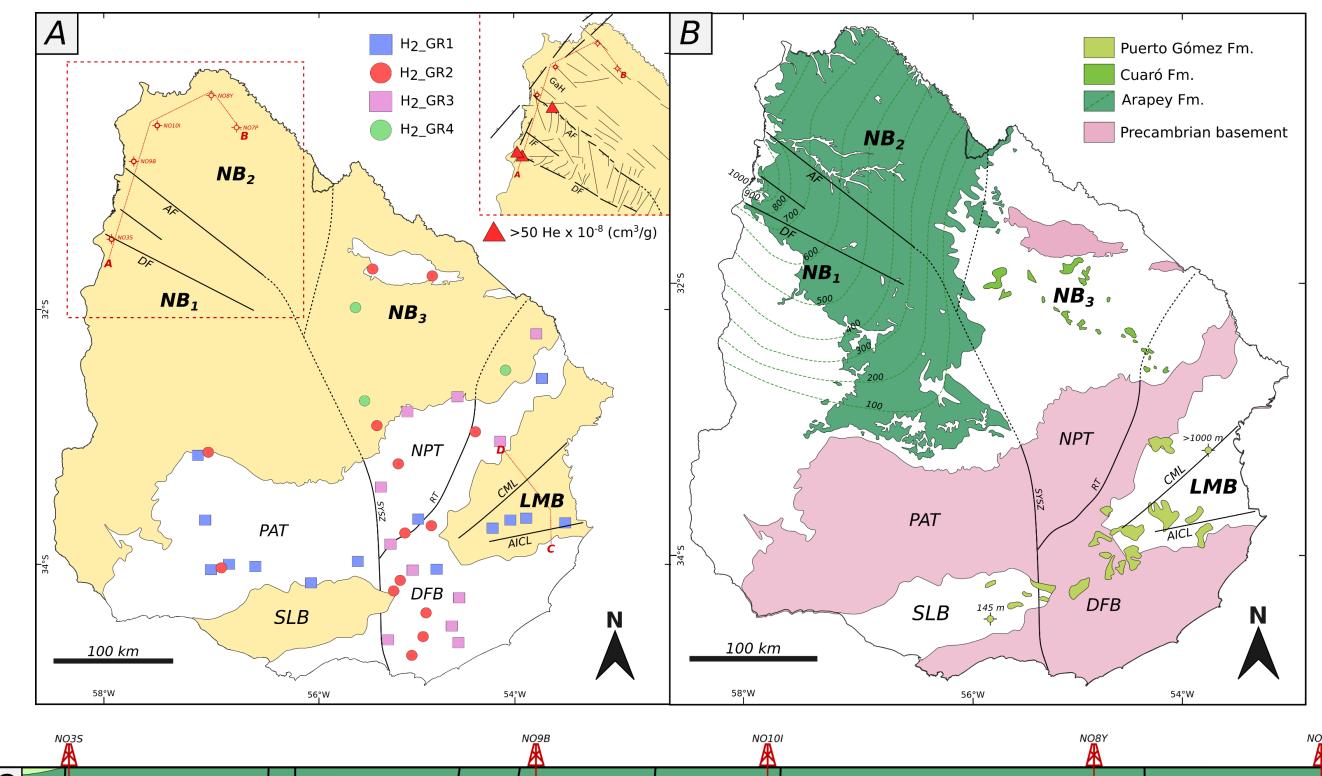
GENERAL OBJECTIVE

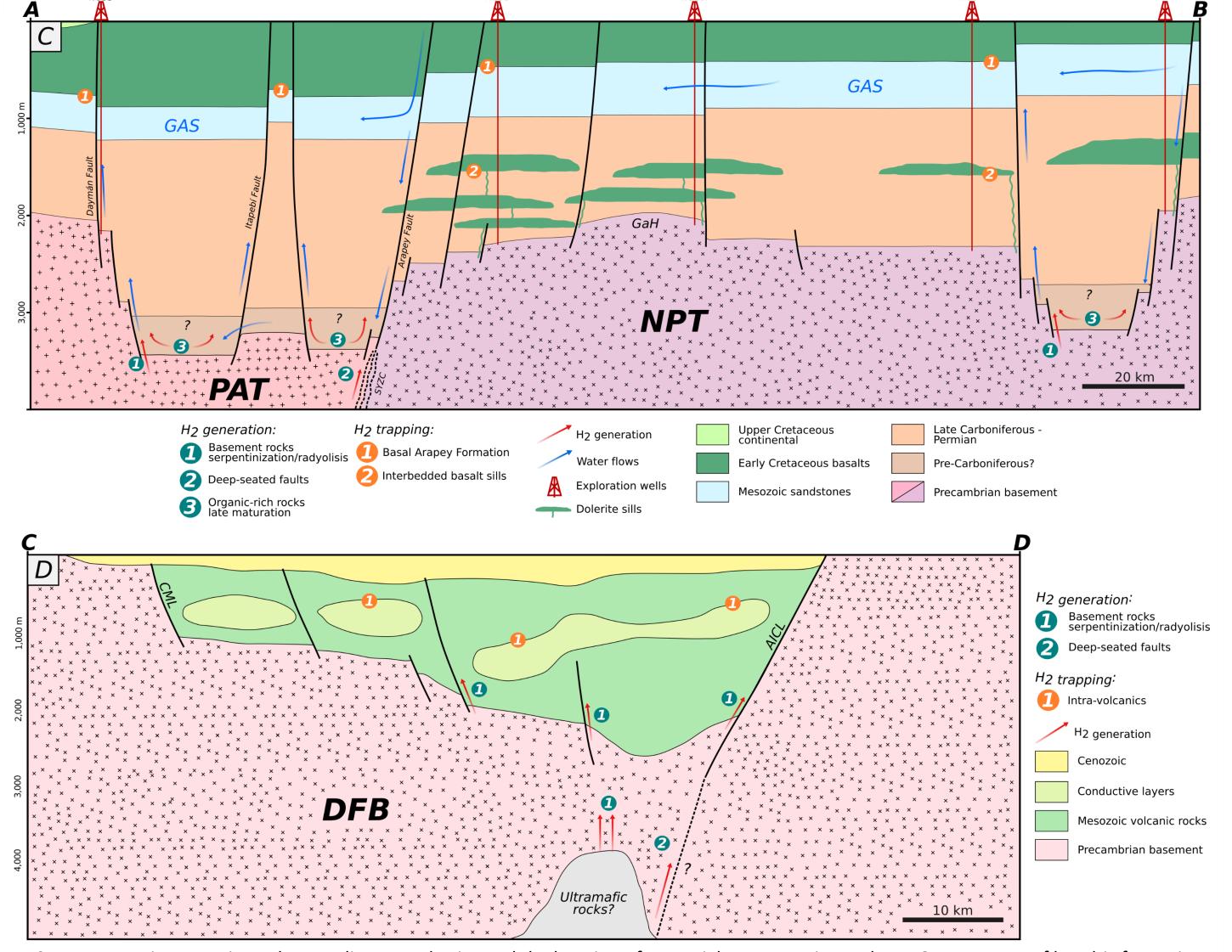
Evaluate the Natural Hydrogen (H₂) potential through the creation of a national-scale catalog of potential H₂ generating rocks, highlighting the areas with the highest occurrence favorability, and proposing systems for generation, migration, and accumulation.

GEOLOGICAL FRAMEWORK

Uruguay presents a Precambrian basement divided into two lithospheric units: a cratonic area (Río de la Plata Craton) and an orogenic belt (Dom Feliciano Belt), along with three Phanerozoic sedimentary basins (Fig. 1), the Norte Basin (Paleozoic-Mesozoic) and the Santa Lucía and Laguna Merín basins (Mesozoic). The basement rocks are composed of Precambrian rocks, which outcrop in the southern region and in the 'crystalline islands' of Rivera and Aceguá.

- Western Norte Basin (NB1, NB2) presents potential H₂ generating rocks from the PAT and NPT respectively. Helium anomalies ranging from 50 to 97.74 ×10⁻⁸ He (cm³/g) have been reported in two wells in this area (Geimener et al., 2024, preprint), based on dissolved gas analyses of GAS. Indications of neutron logging anomalies in NO8Y well (Fig. 3A) suggest the presence of a freegas phase at the top of the Tacuarembó Fm. sandstones, trapped by basalts of the Arapey Fm.
- **Eastern Norte Basin (NB3)** presents significant potential due to the occurrence of large BIFs outcropping southern and northern of the area. Recent studies evidence H₂ generation from magnetite oxidation at shallow depths (Geymond et al., 2023). The lower sedimentary thickness of this area, along with the presence of dolerite sills (Cuaró Fm.), suggests high potential.
- **LMB** would have potential radioactive and ultramafic H₂ generating rocks (DFB). The inference of •

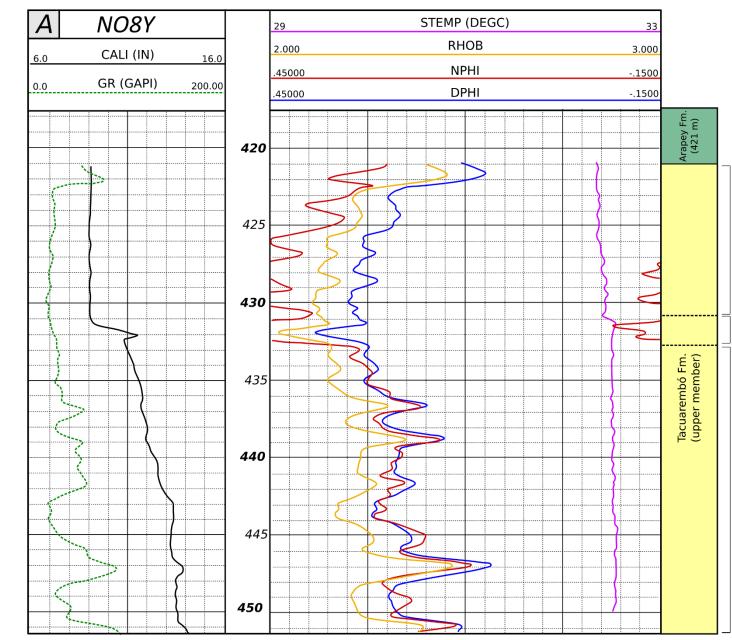




Figure 1. A: Simplified geological map of Uruguay showing the main tectonic domains of the Precambrian basement and its Phanerozoic sedimentary basins (modified from Morales et al., 2022). B: Bouguer anomaly map of Uruguay (Rodríguez et al., 2015).

METHODOLOGY

- Development of a catalog of potential H₂ generating rocks, according to the classification described by Lévy et al. (2023), which defines four types based on generation processes: basic/ultrabasic, iron-rich, radioactive and organic-rich.
- Comprehensive analysis of prospective areas and H_2 systems, defining the potential generation, accumulation, and trapping processes. The models were developed by analogy with petroleum systems previously outlined in the literature for H_2 exploration.

deep-seated faults and a conductive body at great depths (Morales et al., 2022) supports the proposal of a system for this basin.



RESULTS

The catalog of potential H₂ generating rocks is summarized in Table 1. Its location, along with the main exploration areas, is shown in Figure 2A.

l₂_GR1	Geological unit	ID	Domain	Fe content				
Serpentinites	Paso del Dragón Fm.	S1	DFB	2.55-5.17%*	2.55-5.17%*; 10.25-17.68%** (Fe₂O ₃)			
	Ojosmín Complex	S2	TPA	9.7% (Tremolite); 16.5% (Gabbro) (Fe₂O ₃)				
	Tapes Complex	S3	DFB	7.56%*; 15.88%** (Fe₂O₃)				
	Arroyo Grande Fm.	S4	TPA	n.d				
Gabbros	Guaycurú Complex	G1	TPA	8.0% (FeO); 3	3.2% (Fe ;	2 O 3)		
	Isla Mala Suite	G2	TPA	8.5±1%*; 7.7	8.5±1%*; 7.71-9.84%** (Fe₂O₃) (Rospide)			
	Lascano alkaline serie	G3	LMB	12.39-13.08% (Fe₂O₃)				
	Coronilla	G4	LMB	11.38-15.97% (Fe₂O ₃)				
	Carbonera	G5	LMB	9.86-11.19% (Fe₂O ₃)				
Mafic Dyke Swarms	Florida	DS1	TPA	8.21-12.67%	*; 7.93-1	.3.25%** (F	eO)	
	Nico Pérez-Zapican	DS2	TPA/NPT/DFB	n.d				
I2_GR2	Geological unit	ID	Domain	Fe content				
BIFs	Valentines Fm.	11	NPT	33-46%*; 40	.83-52.2	5%**(Fe)		
	Vicahedero Fm.	12	NPT	n.d				
	Cebollatí/Las Tetas Complex	13	DFB	n.d				
	Marco de los Reyes Fm.	14	DFB	55±6% (Fe₂O	3)			
	Paso Severino Fm.	15	PAT	n.d				
	Manguera Azul Fm.	16	DFB	n.d				
	Arroyo del Soldado Group	17	DFB	35.45-40.06% (Fe₂O₃) (Yerbal Fm.)				
H2_GR3	Geological unit	ID	Domain	Radiometric (Cps)	K (%)	Th (ppm)	U (ppm)	
Granite Intrusions	Illescas batholith	R1	NPT	12,100	5.1	132	28	
	Florencia (Aiguá batholith)	R2	DFB	3,900	4.4	34	7	
	Los Cerrillos (Aiguá batholith)	R3	DFB	3,480	4.1	28	6	
	José Ignacio	R4	DFB	2,800	4.2	21	2	
	Santa Lucía batholith	R5	DFB	4,557	5.2	48	7	
	Polanco	R6	DFB	4,245	4.1	36	7	
	Cerro de las Cuentas	R7	NPT	4,345	4.9	38	6	
	Cuchilla Dionisio batholith	R8	DFB	3,680	4.1	33	4	
	Cerrezuelo	R9	NPT	3,320	4.7	27	3	
Volcanic	Sierra de Ánimas Complex	R10	DFB	3,320	4.6	22	5	
	Sierra de Ríos Fm.	R11	DFB	3,560	4.2	33	5	
intrusions								
intrusions H ₂ _GR4	Geological unit	ID	Domain	TOC (%)				
	<i>Geological unit</i> Tres Islas Fm.	ID 01	Domain NB	TOC (%) n.d				
H2_GR4	-			• •	*			

Figure 2: A: Prospective areas in onshore sedimentary basins and the location of potential H₂ generating rocks. B: Outcrop area of basaltic formations, representing the isopach map (m) of the Arapey Fm., and the maximum thickness in wells for the Puerto Gómez Fm. C: Schematic geological cross-section A-B. D: Schematic geological cross-section C-D.

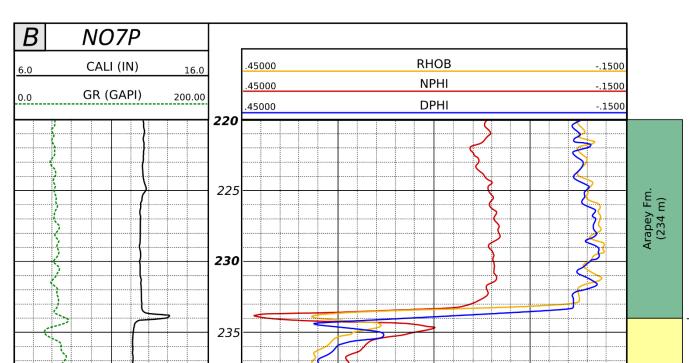


Table 1: Catalog of potential H₂ generating rocks indicating unit name, location, and geochemistry.

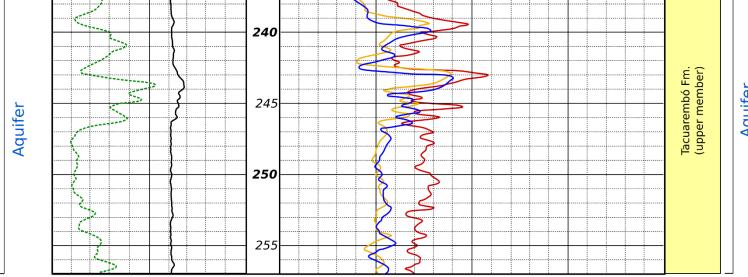


Figure 3: A: NO8Y well logging borehole data. B: NO7P well logging borehole data. CALI: caliper; GR: natural gamma-ray log; STEMP: temperature log; RHOB: bulk density log; NPHI: neutron log; DPHI: density log.

CONCLUSIONS

Uruguay exhibits significant potential for natural hydrogen generation, particularly in regions with favorable geological conditions. The western Norte Basin is identified as a key area of interest due its analogy to the Mali field geology and to the availability of relevant data. Additionally, notable potential is observed in the NB3 region, associated with the presence of BIFs, and in the LMB, due to gravimetric anomalies. Indirect evidence of H₂ presence in NB2 is observed, further supporting the prospects for natural hydrogen exploration.

REFERENCES

Gemeiner, H., Teramoto, E.H., Veroslavsky, G., Chang, H.K. (2024). Using Dissolved Noble Gases to Characterize the Groundwaters of the Southern Portion of the Guarani Aquifer System at the Brazil-Uruguay Border Region. Available at SSRN: https://ssrn.com/abstract=4992909 or http://dx.doi.org/10.2139/ssrn.4992909 Geymond, U., Briolet, T., Combaudon, V., Sissmann, O., Martinez, I., Duttine, M., Moretti, I. (2023). Reassessing the role of magnetite during natural hydrogen generation. Front. Earth Sci, 11. https://doi.org/10.3389/feart.2023.1169356. Lévy, D., Roche, V., Pasquet, G., Combaudon, V., Geymond, U., Loiseau, K., Moretti, I. (2023). Natural H2 exploration: Tools and workflows to characterize a play. Sci. Technol. Energy Transit., 78 (27). https://doi.org/10.2516/stet/2023021. Morales, E., Plenc, F., Marmisolle, J., Rossello, E., Oleaga, A., Umpiérrez, R. (2022). Tectono stratiaphic evolution of the Jurassic-Cretaceous Laguna Merin Basin (Uruguay): New insights from magnetotelluric transects. Tectonophysics, 823. https://doi.org/10.1016/j.tecto.2022.229211. Rodríguez, P., Veroslavsky, G., Soto, M., Marmisolle, J., Gristo, P., de Santa Ana, H., Benvenuto, A. (2015). New integrated Bouguer gravity anomaly map onshore Uruguay: preliminary implications for the recognition of crustal domains. SEG 2015. https://doi.org/10.1190/segam2015-5821993.1.