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Abstract

We study the assignment of indivisible goods to individuals without monetary transfers.

Previous literature has mainly focused on efficiency and individually fair assignments; conse-

quently, egalitarian concerns have been overlooked. Drawing inspiration from the allocation

of apartments in housing cooperatives—where families prioritize egalitarianism in assign-

ments—we introduce the concept of Rawlsian assignment. We demonstrate the uniqueness,

efficiency and anonymity of the Rawlsian rule. Our findings are validated using cooperative

housing preference data, showing significant improvements in egalitarian outcomes over both

the probabilistic serial rule and the currently employed rule.

JEL classification: C78, D63.
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1 Introduction

We study the problem of allocating a set of indivisible goods to agents when monetary transfers

cannot be used. The indivisibility of objects makes it generally impossible to achieve fairness

from an ex-post perspective. As a remedy, we adopt an ex-ante perspective where each agent
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receives a random allocation, i.e., a lottery over the set of objects. Inspired by the Rawlsian

concept of fairness, we propose a new solution concept, examine its properties, and evaluate its

performance using real data.

Our primary motivation is the assignment of apartments in housing cooperatives. Housing

cooperatives typically involve a group of families who participate in the construction of a building.

Upon completion of the building, the problem of distributing the apartments among the families

arises. The use of prices is, in general, not allowed by regulation, and the assignment process

relies on the ordinal preferences of the families. In Uruguay, the regulation also states that

apartments should be assigned randomly; however, participants have the option of using another

procedure if they unanimously agree on it. For the Uruguayan housing cooperatives we study, the

main concern of the members is the egalitarianism of the final assignment. They aim to avoid

unequal situations where, for example, some families receive their most preferred apartments

while others rank their assignments very low. The spirit of this principle is not exclusive to

Uruguay; it is present in many other cases as well (for more instances, we refer the reader

to www.housinginternational.coop). Another example where a similar concern may exist is the

assignment of faculty offices to professors in a university department.

There have been many important contributions in the literature regarding the efficiency

and envy-freeness of the assignments. However, little attention has been paid to egalitarian

concerns. In this paper, we introduce a new concept to address this issue and examine its

properties. Furthermore, using data from several housing cooperatives, we demonstrate that the

solution we propose is more egalitarian from a Rawlsian perspective compared to the currently

implemented one. Thus, the Rawlsian rule we recommend improves upon the outcomes achieved

by the current rule.

We adopt Rawls’ concept of justice and assess an assignment based on the well-being of

the worst-off individuals. The rank of an object on an agent’s preferences is the position of the

object in her preferences. Thus, a higher rank indicates lower satisfaction (for example, the most

preferred object has rank 1). The analysis begins by identifying, for a given assignment, who the

worst-off agents are. If we were considering deterministic assignments, we could examine the

rank of the assigned object. The worst-off agents would be those associated with the highest

rank. Subsequently, we could select assignments that minimize the highest rank (i.e., maximize

the satisfaction of the worst-off agents). In general, there are multiple assignments that satisfy

this criterion, allowing for recursive application of the same criterion, as proposed by Sen (1970).

When we expand the analysis to include random assignments, defining the worst-off agents

becomes more challenging. If agents’ cardinal utilities were known, one could consider the

expected utility of each agent and identify the agent with the lowest expected utility (after some

normalization). However, in our problem, we only have access to agents’ ordinal preferences.

So instead, for each agent, we determine the rank of her least preferred object among those

she receives with positive probability. We then focus on the agents for whom this rank is the

highest. Among these agents, the worst-off individuals are those who receive the object with

2



the highest probability.

To compare two assignments, we first consider the worst-off agent, that is, the one who

receives her least preferred object with the highest probability. If the probabilities are the same

under both assignments, we turn to the agent who receives her least preferred object with the

second-highest probability. If all the probabilities associated with the least preferred object of

each agent are the same, we conduct the same comparison with the two least preferred objects

of each agent. If, at any point, the probability in the first assignment is strictly higher than the

corresponding probability in the second assignment, we say that the first is Rawlsian-dominated

by the second. An assignment is considered Rawlsian if it is not Rawlsian-dominated by any

other assignment.

We first show that, in any problem, there always exists a unique Rawlsian assignment.

Roughly, if there were two Rawlsian assignments, one would consider the average assignment.

In this assignment, agents who receive (with positive probability) the objects associated with

the highest rank would be assigned them with a lower probability.

We extend preferences over objects to preferences over lotteries using first order stochastic

dominance (sd). In words, an agent sd-prefers a lottery if it guarantees her a weakly higher

probability of receiving her most preferred object, a weakly higher probability of receiving her

two most preferred objects, and so on. An assignment sd-dominates another assignment if for

every agent, the lottery she receives in the first assignment is sd-preferred to the lottery in the

second assignment. We prove that the Rawlsian rule is sd-efficient, it is not sd-dominated

by any other rule, and anonymous, agents’ allocations do not depend on their names. The

drawback is that the Rawlsian rule is manipulable (it is not sd-strategyproof).

The construction of our concept resembles the welfarist definition of the classic probabilistic

serial rule (Bogomolnaia and Moulin, 2001), proposed by Bogomolnaia (2015, 2018). The

author describes the probabilistic serial (PS) rule in terms of the cumulative probabilities of

each agent being assigned her top k objects. She shows that the PS rule is the unique rule that

lexicographically maximizes the cumulative probabilities for all agent-preference pairs (i , k). The

Rawlsian criterion is based on a similar procedure but starts from the least preferred objects

and minimizes their probability. Moreover, the Rawlsian rule lexicographically minimizes the

cumulative probabilities preference by preference, instead of lexicographically minimizing the

entire vector of cumulative probabilities.

Next, we study how to compute the Rawlsian assignment for a given problem. We introduce

an algorithm to compute it in polynomial time by solving at most n3+n2

2 linear programs.

We illustrate our analysis using a set of preferences from housing cooperatives in Uruguay.

We compare our solution with the outcomes of the PS rule, and the rule which is currently used,

called the MTAV (proposed by Prino, Sánchez, and Cancela (2016)). Roughly, the MTAV runs

as follows. First, it selects all deterministic assignments that minimize the maximum rank.

Second, among these assignments, it considers those that maximize the sum of the families’

utilities, assuming that the utility of the apartment ranked in position k is n− k for each family.
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Finally, if multiple assignments are selected, one is randomly chosen (see Appendix 10.9 for a

formal description).

The general finding is that the Rawlsian solution significantly improves the assignment for

the least favored families. For instance, under the PS assignment, there is at least one family

who receives their least preferred apartment with a positive probability in all but two out of

24 cooperatives. In contrast, with the Rawlsian assignment, only three cooperatives have a

family that receives their least preferred apartment with positive probability. Although there

are winners and losers when transitioning from the PS rule to the Rawlsian rule, the number

of families who prefer their Rawlsian assignment is always larger. Regarding the MTAV, by

construction, its maximum rank (the rank of the assigned apartment in the preferences of the

worst-off family) coincides with that of the Rawlsian rule. However, there are cases where the

Rawlsian rule assigns fewer families to their least preferred apartment.

Another measure to compare the assignments is the sum of the probabilities with which

families are assigned apartments ranked in the first k positions, for each k ∈ {1, . . . , n}. We

call it the expected number of families that are assigned apartments with rank less than or

equal to k . The Rawlsian rule assigns a lower expected number of families their least preferred

apartments compared to the PS rule. It also assigns a lower expected number of families their

top choices, especially their first choice. The MTAV falls between these two distributions. Figure

1 displays the rank distribution graph for a cooperative with 28 families. Therefore, our solution

provides an alternative to both the PS and MTAV that significantly improves upon them from

an egalitarian perspective.

Finally, we complement the empirical findings by analyzing the maximum rank of the Rawlsian

rule in large markets. We consider markets of size n, where agents’ preferences are drawn i.i.d.

from a uniform distribution, and study the limit of the expected maximum rank as n tends to

infinity. Although the average maximum rank of the Rawlsian rule tends to infinity, we show

that it grows at a slow rate (it is upper bounded by bln(n)c plus a constant). In a market of size

n = 1000, for example, our result implies that the expected rank of the least preferred assigned

object is at most 9. For the PS rule, however, simulations suggest that the expected maximum

rank in a random market of size n is very close to n.

In the next section, we place our contributions within the related literature. Section 3

presents the model and definitions. In Section 4, we define the concept of a Rawlsian assignment.

Section 5 contains our main results and relates the Rawlsian assignment to other concepts in

the literature. In Section 6, we describe an algorithm to find the Rawlsian assignment for a given

problem, and in Section 7 we use it to illustrate the results with data from different housing

cooperatives. Section 8 includes the analysis for large markets. We conclude in Section 9. All

the omitted proofs are in the Appendix.
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Figure 1: Rank distribution for cooperative C5

2 Related Literature

Since the introduction of the assignment problem by Hylland and Zeckhauser (1979), there

have been numerous significant contributions related to sd-efficiency, sd-envy-freeness, and sd-

strategyproofness. Notable among these is the random serial dictatorship (or random priority)

rule introduced by Zhou (1990) and Abdulkadiroğlu and Sönmez (1998). While this rule is

sd-strategyproof (it is immune to individual preferences manipulation), its outcome may be

stochastically dominated with respect to individual preferences, thus lacking sd-efficiency. In

response, Bogomolnaia and Moulin (2001) proposed the PS rule, which is sd-efficient but not

sd-strategyproof. Moreover, the PS rule is sd-envy-free: the lottery each agent receives stochas-

tically dominates with respect to individual preferences the lottery of every other agent. The

random serial dictatorship rule is not sd-envy-free. In this paper, we introduce the Rawlsian rule,

which preserves the sd-efficiency of the PS rule while satisfying an egalitarian requirement.

The Rawlsian idea of justice, as described by Rawls (1971), has found applications in two-

sided matching markets. For instance, Masarani and Gokturk (1989), Romero-Medina (2005),

and Kuvalekar and Romero-Medina (2024) explore the compatibility of this concept of justice

with stability in a marriage market. They adopt the Rawlsian criterion to select a stable matching

that treats both sides of the market “symmetrically.” In a school choice model, Galichon, Ghelfi,

and Henry (2023) show that stability often comes at the cost of extreme forms of inequality.

The assignment problem we study differs from the literature mentioned above. There are

agents on one side and objects on the other, objects do not possess priorities, and the notion of

stability does not apply. Klaus and Klijn (2010) adapt the Rawlsian criterion to the roommate

problem and demonstrate its compatibility with stability. Another way to compare the inequality

of different assignments is by applying the Lorenz order. This method has been used in our

framework by various studies, such as Pycia and Ünver (2017) and Harless and Manjunath
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(2018).

In the same framework as ours, Afacan and Dur (2024) study a Rawlsian notion of fairness

but consider only deterministic assignments. They define an assignment to be more Rawlsian

than another if the assignment ranking of the worst-off agent is lower in the former than in the

latter; and in the case of equality, the size of the worst-off agents group is smaller in the former.

For the case of deterministic assignments, our notion of Rawlsian assignment is a refinement of

their notion. However, expanding the analysis to probabilistic assignments allows us to show,

in contrast to Afacan and Dur (2024), the existence of a unique Rawlsian assignment that

is sd-efficient. Ortega and Klein (2023) compare different rules in school choice in terms of

their expected maximum rank. They show that the deferred acceptance and top trading cycles

rules perform poorly on this measure, being outperformed by the rule that minimizes the sum of

ranks for students. Ortega, Ziegler, and Arribillaga (2024) defines the Rawlsian inequality of an

assignment as the ratio between the maximum rank of the assignment and that of the Rawlsian

assignment. The authors compare the deferred acceptance rule and the efficiency-adjusted

deferred acceptance rule of Kesten (2010) in terms of their Rawlsian inequality.

The study by Duddy (2022) is the closest to our paper. Duddy introduces a new fairness

criterion which he calls the “egalitarian criterion”, along with two rules that satisfy this criterion:

the “positive equality” rule and the “prudent equality” rule. The positive equality rule uses the

following order to compare assignments. It starts by considering, for each assignment, the

probability with which each agent receives her most preferred object, and takes the lowest

probability. The rule selects the assignment for which the lowest probability is the highest.

If the two lowest probabilities are the same, it moves on to the agent who receives her two

most preferred objects with the lowest total probability, and selects the assignment for which

the lowest total probability is the highest, and so on. The positive equality rule chooses the

maximum assignment based on this order. On the other hand, the prudent rule performs a

similar comparison but starts by considering the agent who receives, at each assignment, her

least preferred object with lowest probability. Then, it selects the assignment for which the lowest

probability is the highest. When the two assignments coincide, it then moves to the agent who

receives her least and second-least preferred objects with the highest total probability, and so

on.

In contrast, the Rawlsian assignment begins by considering the agent who receives her least

preferred object with the larger probability and aims to minimize this probability. However, in

the case of ties, instead of considering the least and second-least preferred objects, it moves to

the agent who receives her least preferred object with the second highest probability. Intuitively,

our proposal focuses on the worst-off agent defined as the agent who receives her least preferred

object with the larger probability, and then moves to the second worst-off agent. The Rawlsian

assignment does not satisfy Duddy’s egalitarian criterion, and there are egalitarian assignments

that are not Rawlsian. Thus, the two concepts are independent. For a more detailed discussion,

we refer to Appendix 10.5. Also related is the paper by Feizi (2022) who introduces a notion
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of inequality in random assignments. The key element of his definition is the number of agents

who envy other agents in a representation of the assignment as a lottery over deterministic

assignments. The concept aims to minimize this envy which is different from our approach.

The notion of Rawlsian assignments is also related to the downward lexicographic extension

of stochastic dominance (Cho and Doğan, 2016; Cho, 2018). Different from Cho (2018), who

compares two lotteries from an individual perspective, we use a similar criterion but apply it

to the whole assignment. Also, Cho and Doğan (2016) show that upward lexicographic (ul)

efficiency and sd-efficiency are equivalent. A Rawlsian assignment is sd-efficient (Proposition 3),

and thus, also ul-efficient, but not the other way around. Finally, other papers have also used the

rank distribution to define different concepts. Featherstone (2020) introduces rank efficiency.

An assignment is rank efficient if its rank distribution cannot be stochastically dominated. We

prove in Appendix 10.4 that there is no relation between Rawlsian and rank efficient assignments.

3 Primitives and definitions

Let I = {1, . . . , n} be the set of agents and O the set of objects (with |O| = n). Each agent i ∈ I
has (strict) preferences over the set of objects, denoted by �i . A preference profile is denoted

by �= (�i)i∈I . Sometimes we represent agent i ’s preferences as an n-dimensional vector

ri ∈ {1, . . . , n}n, where rio = k means that object o is ranked k-th by agent i . The assumption

of strict and complete preferences fits our main motivation: families in the cooperatives have

to rank all the apartments, and ties in preferences are not allowed. An assignment problem is

a tuple (I, O,�). We fix the sets of agents and objects, and define a problem as a preference

profile �.
A solution to an assignment problem is a (random) assignment x = (xi)i∈I , where each xi

is a probability distribution over O, and for every object o ∈ O,
∑
i∈I xio = 1. We interpret

xio ∈ [0, 1] as the probability with which agent i is allocated object o. An assignment is

deterministic if all of its entries are either zero or one. The Birkhoff-von Neumann theorem

(Birkhoff, 1946; von Neumann, 1953) states that any random assignment can be written as a

convex combination of deterministic assignments.

We usually describe an assignment by a matrix where the rows are indexed by the agents

and the columns are indexed by the objects, and for each i , row i is the lottery agent i receives.

Let X be the set of assignments (or equivalently, the set of n×n bi-stochastic matrices, that is,

matrices of non-negative real numbers in which the entries in each row sum to 1, and the entries

in each column sum to 1). A rule is a function φ which maps every problem to an assignment:

for every �, φ(�) ∈ X. We will refer to the lottery assigned to agent i – given by the i-th row

of an assignment – as her allocation. We denote by φi(�) the allocation of agent i by rule φ in

problem �.
We will use the following concept of efficiency for random assignments due to Bogomolnaia

and Moulin (2001).
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Definition 1.

1. An allocation xi for agent i first-order stochastically dominates (sd-dominates) another

allocation x ′i if, for each o ∈ O:

∑
o ′:o ′�io

xio ′ ≥
∑

o ′:o ′�io
x ′io ′ .

In this case, we use the notation xi �sdi x ′i .

2. An assignment x stochastically dominates another assignment x ′ if for every agent i ,

xi �sdi x ′i , and x 6= x ′.

3. An assignment is sd-efficient if no other assignment stochastically dominates it.

The standard notion of fairness requires that each agent should find her allocation at least

as desirable as anyone else’s allocation.

Definition 2. Given a problem �, an assignment x is sd-envy-free for � if for all i , j ∈ I, we
have xi �sdi xj .

If instead we require that there is no other agent’s allocation that sd-dominates the agent’s

allocation, we have a weaker notion, called weak sd-envy-freeness.

The following requirement is that assignments should be independent of the agents’ names.

Definition 3. Given a problem �= (�i)i∈I and a permutation π : N → N, a rule φ satisfies

anonymity if for each i ∈ I:

φi((�π(i))i∈I) = φπ(i)((�i)i∈I).

Anonymity implies a weaker notion of fairness called equal treatment of equals, according
to which agents with the same preferences should obtain the same allocation.

Finally, we consider the requirement of immunity to misrepresentations of individual prefer-

ences.

Definition 4. A rule φ is sd-strategyproof if at any preference profile � no agent benefits by

misreporting her preferences: for each �, for each i ∈ I , and for each �′i :

φi(�) �sdi φi(�′i ,�−i).

As with sd-envy freeness, if in the last definition we require that there be no manipulation

such that its outcome sd-dominates the allocation the individual gets from truth-telling, we get

a weaker notion, called weak sd-strategyproofness. It is weaker because it allows the allocation
the agent gets when she manipulates to not be comparable to her allocation under truth-telling.

8



We will compare our proposal, the Rawlsian rule, with the PS rule due to Bogomolnaia

and Moulin (2001) which is defined as follows. Given a problem, think of each object as an

infinitely divisible good with unit supply. Step 1: All agents start by consuming probabilities of

receiving their most preferred object at the same unit speed. Proceed to the next step when an

object is completely exhausted. Step s ≥ 2: All agents consume probabilities of receiving their

remaining most preferred object at the same speed. Proceed to the next step when an object is

completely exhausted. The procedure terminates when each agent has eaten exactly one total

unit of objects (i.e., at time one). The allocation of an agent i is given by the amount of each

object she has eaten until the algorithm terminates.

4 Rawlsian assignments

In this section, we define our main concept of Rawlsian assignments. Given an assignment x ,

we denote by bxi (k) the total probability with which agent i gets objects with a rank between n

to k in her preferences. That is:

bxi (k) =
∑
o∈O

1{rio ≥ k}xio .

In particular, bxi (n) is the probability with which agent i receives her least preferred object.

By definition, bxi (1) = 1. We denote by bxi the vector of the cumulative probability from the

least to the most preferred object: bxi = (bxi (n), bxi (n − 1), . . . , bxi (1) = 1).

Note that the previous definition is different from the standard concept of stochastic domi-

nance where the cumulative probability is computed from the most to the least preferred object,

that is: ∑
o∈O

1{rio = 1}xio ,
∑
o∈O

1{rio ≤ 2}xio , . . . ,
∑
o∈O

1{rio ≤ n}xio = 1.

Given an assignment x , and the vectors (bxi )i∈I , we define the vector Bx ∈ [0, 1]n
2
as follows.

1. The first elements (Bx1 , . . . , B
x
n) are the elements (bx1(n), . . . , bxn(n)) listed in a non-

increasing order.

2. Elements (Bxn+1, . . . , B
x
2n) are the elements (bx1(n − 1), . . . , bxn(n − 1)) listed in a non-

increasing order.

3. In general, elements (Bx(k−1)n+1, . . . , B
x
kn) for k = 1, . . . , n, are the elements (bx1(n− k +

1), . . . , bxn(n − k + 1)) listed in a non-increasing order.

Vector Bx describes the cumulative distribution of probabilities induced by assignment x ,

from the least preferred object of each agent, to her most preferred object. The first n entries

of the vector are the probabilities with which each agent receives her least preferred object.

And, in particular, the first entry is the highest of the previous probabilities. Note that this
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definition is different from the one used in the leximin order. The coordinates of Bx are not

listed in a non-increasing order but in blocks of n elements, and within each block, the elements

are listed in a non-increasing order. This is different from the definition of PS rule proposed by

Bogomolnaia (2015, 2018) who orders all the elements of the vector.

The following example illustrates the definition.

Example 1. Let I = {1, 2, 3}, O = {a, b, c}, and preferences as follows:

�1 a b c

�2 a b c

�3 b c a

Consider the assignment:

x =


1
2

1
2 0

1
2

1
2 0

0 0 1

 .
Then: bx1 = bx2 =

(
0, 12 , 1

)
, bx3 = (0, 1, 1), and Bx =

(
0, 0, 0, 1, 12 ,

1
2 , 1, 1, 1

)
.

To compare two assignments, x and y , we first compare the highest probability with which

an agent receives her least preferred object, that is, the first entry of vectors Bx and By . If the

probability is the same under both assignments, we compare the second highest probability with

which an agent receives her least preferred object. If all probabilities associated with the least

preferred object of each agent are equal, we conduct the same comparison for the probabilities

with which agents receive the least and second-least preferred objects. If at some point, an

entry of Bx is lower than the corresponding entry of By , we say that x Rawlsian-dominates y .

Formally, we compare the vectors Bx and By lexicographically. This is the idea of the following

definition.

Definition 5. Given two assignments x and y , x Rawlsian-dominates y (x R-dominates y) if

there is j ∈ {1, . . . , n2} such that Bxj < Byj , and for all i < j , Bxi = Byi .

The following is the key concept of our analysis.

Definition 6. An assignment x is Rawlsian if it is not Rawlsian-dominated (R-dominated) by

any other assignment.

Example 2 shows a Rawlsian assignment for the previous example.

Example 2. In the problem of Example 1, consider the assignment:

y =

1 0 0

0 0 1

0 1 0

 ,
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to which is associated the vector By = (1, 0, 0, 1, 0, 0, 1, 1, 1). Clearly, x R-dominates y . More-

over, we claim that x is a Rawlsian assignment. First, note that if another assignment x is

such that x3c < 1, then we should have x1c > 0 or x2c > 0. This new assignment would be

R-dominated by x . So, if an assignment, say z , R-dominates x , it should satisfy z1b < 1
2 or

z2b <
1
2 . In the first case, z2b > 1

2 should hold, and z would be R-dominated by x . In the

second case, z1b > 1
2 should hold, and z would be R-dominated by x . As a result, no assignment

R-dominates x .

To better understand the intuition behind the Rawlsian rule, we will find a Rawlsian assign-

ment for some particular preference profiles. First, if all agents’ top choices are different, a

Rawlsian assignment assigns each agent their first choice with probability one. Alternatively,

if all agents’ preferences are the same, each agent is assigned each object with probability 1n .

Lastly, an agent is assigned her least preferred object if, and only if, all agents have the same

least preferred object.

Given an assignment x , we defined the vector Bx by considering, in the first place, the

probabilities associated with the least preferred object of each agent, that is, the object of rank

n. Next, we consider the two least preferred objects, the objects of rank n−1 or higher. And so

on, and so forth. The order (n, n−1, . . . , 2) comes from our definition of the worst-off agents.1

However, others orders are also possible. For example, we might consider the other “extreme”

of the Rawlsian assignment: first consider the probabilities with which each agent is assigned

to her (n−1) least preferred objects (rank 2 or higher), then her (n−2) least preferred objects

(rank 3 or higher), etc. The associated order would be (2, 3, . . . , n).

In Appendix 10.2, we consider a family of assignments where each member is defined by

considering a different order with which the elements of the vector (bxi )i∈I are listed. For

example, the Rawlsian assignment corresponds to the order (n, n−1, . . . , 2). We show that many

of the results in Sections 5 remain to hold, including uniqueness, sd-efficiency, and anonymity

of each of the rules in this family. Additionally, a modified version of the algorithm in Section 6

can be used to compute the outcomes for each of the rules in this family. We also show

in Appendix 10.3 that the other “extreme” of the Rawlsian assignment in this family, the one

associated with the order (2, 3, . . . , n), differs from the fractional Boston assignment introduced

by Chen, Harless, and Jiao (2023), despite the similarities between both assignments.

5 Results

Every problem admits a Rawlsian assignment. In principle, there might exist multiple Rawlsian

assignments but, in fact, this is never the case. Suppose otherwise, and let x and y be two

Rawlsian assignments. Then, the assignment 12x + 1
2y R-dominates x and y . Thus, as the

following proposition states, every problem admits a unique Rawlsian assignment. It is worth
1Because the probability with which each agent is assigned to her n least preferred objects is always one, we

do not include 1 in this order.
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noting that randomization is key for the uniqueness. If we restrict the analysis to deterministic

assignments, there are problems with multiple Rawlsian assignments.

Proposition 1. Each problem has a unique Rawlsian assignment.

A minimum requirement of fairness is anonymity: agents’ allocations cannot depend on their

names, that is, if agents’ names are permuted, their allocations should be permuted in the same

way. As we state in the next proposition, the Rawlsian rule satisfies this property.

Proposition 2. The Rawlsian rule satisfies anonymity.

Example 3 shows that a Rawlsian assignment may not be sd-envy-free. Moreover, the same

example shows that it may not even be weakly sd-envy-free. In fact, there is no relation between

Rawlsian assignments and sd-envy-free assignments. In Example 1, the outcome of PS rule is

sd-envy-free but not Rawlsian.

Example 3. Let I = {1, 2, 3}, O = {a, b, c}, and preferences as follows:

�1 a b c

�2 b a c

�3 b c a

The Rawlsian assignment is:

x =

1 0 0

0 1 0

0 0 1

 .
Note that agent 3’s allocation is first-order stochastically dominated by agent 2’s allocation

(considering agent 3’s preferences).

Duddy (2022) introduces a notion of egalitarian assignments. An assignment y is inegali-
tarian if there exists another assignment x and an agent j such that the allocations of all the

agents at x sd-dominate the allocation of j at y . That is, there is another assignment at which

each agent prefers her allocation to agent j ’s allocation at y . An egalitarian assignment is an

assignment that is not inegalitarian. We formally define this concept in Appendix 10.5, and

show that it is independent to the concept of a Rawlsian assignment.

5.1 Efficiency

We now analyze the efficiency of Rawlsian assignments. In contrast to many economic en-

vironments where there is a tension between egalitarianism and efficiency, these concepts are

compatible in our framework. Given two assignments, x and y , we define the following order to

compare the associated vectors Bx and By .
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Definition 7. Let x and y be two assignments. We say that Bx /By if bxi (k) ≤ byi (k) for every

i , k = 1, . . . , n, and bxi (k) < byi (k) for some i , k = 1, . . . , n.

That is, every entry of the vector Bx is lower than or equal to the corresponding entry of

the vector By . As we show in the next lemma, one can characterize stochastic dominance using

the relation /.

Lemma 1. Let x and y be two assignments. Then, x stochastically dominates y if, and only if,

Bx / By .

Proof. By definition x stochastically dominates y if, x 6= y and for every i = 1, . . . , n:

1− bxi (k) ≥ 1− byi (k) ⇐⇒ bxi (k) ≤ byi (k) for every k = 1, . . . , n.

Moreover, as x 6= y , one of the previous inequalities should be strict. Thus, x stochastically

dominates y if, and only if, Bx / By .

Consider an assignment y which is not sd-efficient. This implies that there exists another

assignment x that sd-dominates y . Then, every element of Bx is lower than or equal to the

corresponding element of By . But then, x Rawlsian dominates y , and therefore, y is not the

Rawlsian assignment. This proves the following proposition.

Proposition 3. A Rawlsian assignment is sd-efficient.

It is easy to see that the converse of the proposition is not true: there are sd-efficient

assignments that are not Rawlsian. The following example shows that the PS rule, which is

sd-efficient, is different from the Rawlsian rule.

Example 4. Consider the problem of Example 1. The outcome of the PS rule (which coincides

in this case with the random serial dictatorship) is:

yPS =


1
2

1
6

1
3

1
2

1
6

1
3

0 2
3

1
3

 .
The outcome of PS rule is sd-efficient and for this problem is different from the Rawlsian

assignment.

The Birkhoff-von Neumann theorem states that any assignment can be represented as a

lottery over the set of deterministic assignments. The Rawlsian assignment is sd-efficient; thus,

every such representation will only contain ex-post efficient deterministic assignments (Aziz,

Mackenzie, Xia, and Ye, 2015). Define the maximum rank of a deterministic assignment as

follows. For each agent, consider the rank in the agent’s preferences of her assigned object,

and then take the maximum. Then, we have the following corollary.
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Corollary 1. Every representation of the Rawlsian assignment as a lottery over the set of

deterministic assignments uses only ex-post efficient assignments that minimize the maximum

rank.

There is another concept of efficiency, called “rank efficiency”, recently proposed by Feather-

stone (2020). In Appendix 10.4, we give its formal definition and show that there is no relation

between Rawlsian and rank efficient assignments.

5.2 Strategyproofness

We have shown that the Rawlsian rule is sd-efficient and satisfies equal treatment of equals

(as a consequence of being anonymous). Bogomolnaia and Moulin (2001) showed that, when

there are least four agents, no rule is sd-efficient, strategyproof, and satisfies equal treatment

of equals. Thus, we have the following corollary.

Corollary 2. The Rawlsian rule is not sd-strategyproof.

Our next example illustrates possible manipulations of the Rawlsian rule.

Example 5. Let I = {1, 2, 3}, O = {a, b, c}, and

�1 a b c

�2 b c a

�3 b c a

The Rawlsian assignment of the problem (�1,�2,�3) is:

x =

1 0 0

0 1
2

1
2

0 1
2

1
2

 .
Suppose agent 2 reports the preferences �′2= (b, a, c). Then, the Rawlsian assignment of

the problem (�1,�′2,�3) is:

y =

1 0 0

0 1 0

0 0 1

 .
Agent 2 prefers (according to �2) her allocation under y to her allocation under x .

As we mentioned before, a weaker notion of sd-strategyproofness requires that the outcome

under an individual manipulation never dominates the allocation obtained when the agent reveals

her true preferences. The previous example shows that the Rawlsian rule is not weakly sd-

strategyproof. Moreover, this example also shows that it is obviously manipulable according to

an extension to the probabilistic setting of a definition due to Troyan and Morrill (2020). See
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Appendix 10.6 for details. Lastly, in Appendix 10.7 we also show that the Rawlsian rule satisfies

the lower invariance axiom in the decomposition of strategyproofness by Mennle and Seuken

(2021), but violates the axioms of upper invariance and swap monotonicity.

5.3 The Rawlsian assignment and social welfare functions

We conclude this section by discussing the relation between the Rawlsian assignment and agents’

cardinal utilities. McLennan (2002) characterizes sd-efficiency in terms of the existence of

cardinal utilities that maximize agents’ total welfare. He shows that an assignment is sd-

efficient if, and only if, there exists a profile of cardinal utilities consistent with the agents’

ordinal preferences for which the assignment maximizes the utilitarian welfare (see also Manea

(2008)).

One may wonder if an equivalent result holds in terms of the Rawlsian assignment. That

is: is it possible to characterize the Rawlsian assignment by the existence of cardinal utilities

that maximize the expected utility of the worst-off agents? It turns out that if an assignment is

sd-efficient, there exists such a cardinal representation. That is, if x is sd-efficient, there exist

cardinal utilities (consistent with the ordinal preferences) such that x verifies

x ∈ arg max
x ′∈X

{min
i∈I

Ui(x
′)},

where Ui(x ′) =
∑
o∈O x

′
iouio , and uio is agent i ’s cardinal utility for object o. The Rawlsian

assignment is sd-efficient, so the result implies that for each problem � there exist cardinal

utilities for which the Rawlsian assignment maximizes the expected utility of the worst-off agent

among all possible assignments (see Appendix 10.8 for a proof).

What can we say about the converse of the last result? Consider an assignment that

maximizes the welfare of the worst-off agent for some cardinal representation of the ordinal

preferences. Is it a Rawlsian assignment? The next proposition states that this is not the case.

Moreover, Proposition 4 implies a stronger result: no rule treats equals equally and maximizes

the utility of the worst-off agent for all cardinal utilities consistent with the ordinal preferences.

In particular, we include an example where for different cardinal utilities (each consistent with the

given ordinal preferences), a different assignment maximizes the utility of the worst-off agent.

And for some of these cardinal utilities, the resulting probabilistic assignment is not equal to

the Rawlsian assignment.

Proposition 4. Given a problem �, no rule treats equals equally and maximizes the utility of

the worst-off agent for all cardinal utilities consistent with ordinal preferences �.
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6 Computing the Rawlsian assignment

We now define an algorithm to compute the Rawlsian assignment in polynomial time. The

proposed algorithm is an extension of the algorithm by Airiau, Aziz, Caragiannis, Kruger, Lang,

and Peters (2023), which computes a leximin distribution of a divisible object, to our setting

with multiple objects. The pseudo-code is shown in Algorithm 1 and an implementation of the

code is available online (https://github.com/DemeulemeesterT/Rawlsian-assignments).

Intuitively, the algorithm finds the Rawlsian assignment x by lexicographically minimizing the

corresponding vector Bx ∈ [0, 1]n
2
as defined in Section 4. To do so, it first finds the lowest

probability with which any agent can be assigned her n-th choice, i.e., mini∈I b
x
i (n), by solving

a first linear program. Denote by b∗ the optimal value of this program, which we can solve

efficiently using solvers like CPLEX or Gurobi.

Now that we know that all agents can be assigned their n-th ranked object with a probability

of at most b∗, we find the agents for whom this probability is exactly b∗. There must be at least

one agent for which this is the case, otherwise the optimal solution of the first linear program

would have been strictly lower than b∗. If the optimal solution ε∗ of the second linear program

is equal to zero for some agent i ′, it is not possible to assign that agent her n-th choice with

a probability strictly lower than b∗ while ensuring that all other agents are assigned their n-th

choice with a probability of at most b∗. Accordingly, we add an additional constraint to the

remaining linear programs that are solved in Algorithm 1, namely that agent i ′ be assigned her

n-th choice with a probability equal to bxi ′(n) = b∗. Moreover, we add agent i ′ to In, which is

the set of agents for which the probability of being assigned their n-th choice is already fixed by

the algorithm.

Next, we find the lowest probability with which any of the remaining agents in I \ In is

assigned their n-th choice. As before, we determine the remaining agents in I \ In for whom this

is the exact probability of being assigned their n-th choice. We repeatedly solve the first and

second linear programs until In = I.

Finally, we repeat the above procedure for each of the n preferences. In general, Ik is the set

of agents for which the algorithm has already found the exact probability with which they are

assigned an object of rank k, . . . , n. It can be checked that Algorithm 1 needs to solve at most

n2 · n+12 linear programs to find the Rawlsian assignment. Note that by changing the order in

which all agent-preference pairs are considered, a similar algorithm can be used to compute the

probabilistic assignments of alternative rules, such as the positive equality rule by Duddy (2022),

or any of the generalized rules defined in Appendix 10.2 that compare assignments based on an

alternative ordering of the elements of the vector (bxi )i .
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Algorithm 1 Computing the Rawlsian assignment
Ik ← ∅ for k ∈ {1, . . . , n}.
bxi (k) is fixed once i ∈ I is added to Ik .
for k ∈ {n, . . . , 1} do

while Ik 6= I do
Find the minimum value of b∗ such that there exists an assignment x ∈ [0, 1]n

2

satisfying ∑
o∈O

xio = 1 ∀ i ∈ I∑
i∈I

xio = 1 ∀ o ∈ O∑
o∈O

1{rio ≥ k}xio ≤ b∗ ∀ i ∈ I \ Ik∑
o∈O

1{rio ≥ t}xio = bxi (t) ∀ i ∈ It : t ≥ k

if b∗ = 0 then Ik ← I

else
for i ′ ∈ I \ Ik do

Find the maximum value of ε∗ such that there exists an assignment x ∈
[0, 1]n

2
satisfying∑

o∈O
xio = 1 ∀ i ∈ I∑

i∈I
xio = 1 ∀ o ∈ O∑

o∈O
1{ri ′o ≥ k}xi ′o ≤ b∗ − ε∗∑

o∈O
1{rio ≥ k}xio ≤ b∗ ∀ i ∈ I \ Ik∑

o∈O
1{rio ≥ t}xio = bxi (t) ∀ i ∈ It : t ≥ k

if ε∗ = 0 then add i ′ to Ik , and set bxi ′(k) = b∗.
end if

end for
end if

end while
end for
return The solution x ∈ [0, 1]n

2
from the last solved LP.

7 Empirical Application

Our main motivation is the assignment of apartments in housing cooperatives. A housing

cooperative is formed by a group of families who join to construct a building. Once it is

finished, the apartments are to be distributed. Prices are not used, so the situation fits the

assignment problem previously described.
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Before the rule currently in use, cooperatives assigned apartments randomly. Preferences

were not considered and the assignment was sampled randomly from the set of all assignments.

The assignment was in general not efficient, so it was decided to change the rule. A group

of researchers from the Engineering School of the University of Uruguay, proposed a new rule,

called the MTAV, which was finally adopted. More information about the current rule can be

found in Prino, Sánchez, and Cancela (2016) and Paleo (2021).

One of the main concerns of the families that participate in the cooperatives is the distribu-

tion of the final assignment. They do not want inegalitarian distributions in terms of the ranking

of the assigned apartment in each family’s preferences. They want to avoid a situation where,

for example, a family gets their most preferred unit, while others get apartments ranked very

low in their preferences. The MTAV explicitly addresses this concern (we define it in Appendix

10.9).

In this section, we use the data of families’ preferences from 24 cooperatives to compare

the outcomes of the Rawlsian, PS and MTAV rules. In practice, the assignment is organized

according to the number of rooms in the apartments. Therefore, all the apartments we consider

as part of a cooperative have the same number of rooms. The sizes of the cooperatives range

from 4 to 42 families (with an average size of 17). As a proxy for the correlation of preferences,

we consider the cumulative number of different apartments ranked in the first, second, third, and

fourth position in the preferences. The result shows that preferences are not highly correlated.

In Appendix 1 we present detailed information for each cooperative.

It is worth noting that there are only two cooperatives, C4 and C10, where the Rawlsian

and the PS rules coincide. These are the smallest cooperatives (each consisting of 4 families).

Additionally to these 8 families, there is only one family which receives the same allocation under

the two rules. Thus, overall, 9 families out of 408 receive the same lottery over apartments.

We should mention that the MTAV is not strategyproof (Paleo, 2021). Nonetheless, we

take preferences submitted by the families at face value. We are not aware of manipulations

by the families, and in general given the information held by the families, it is very difficult to

manipulate the rule profitably.

7.1 Comparison with PS rule: Maximum rank

The Rawlsian rule is sd-efficient and it is designed to improve the welfare of the worse-off

families. A first way to measure this improvement is what we call the maximum rank. Given

an assignment, we consider for each agent the rank of the least preferred object received with

positive probability. Then, we take the maximum rank among all families. In Table 1 we look at

the maximum rank of the Rawlsian and PS rules. In contrast to what might be expected (based

on the correlation of preferences), in all but two cooperatives, the PS rule assigns at least one

family their least preferred apartment with positive probability. Under the Rawlsian rule, this

happens only in three cooperatives (those with a small number of families). For the rest of the
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cooperatives, the average maximum rank of the Rawlsian rule as a percentage of the length of

families’ preferences is 48%.

Table 1: Size and maximum rank of each cooperative for the Rawlsian and PS assignment.

Coop. Size Max. Rawls Max. Rawls (%) Max. PS
C1 26 13 50 26
C2 18 12 67 18
C3 4 2 50 4
C4 4 3 75 3
C5 28 8 29 28
C6 8 3 38 8
C7 29 8 28 29
C8 12 7 58 12
C9 15 6 40 14
C10 4 4 100 4
C11 11 5 45 11
C12 16 6 38 16
C13 39 14 36 39
C14 42 33 79 42
C15 14 9 64 14
C16 6 6 100 6
C17 9 3 33 9
C18 15 8 53 15
C19 9 9 100 9
C20 20 10 50 20
C21 24 7 29 24
C22 7 2 29 7
C23 40 11 28 40
C24 8 7 88 8

Notes: Coop. stands for cooperative, each denoted as Ci for i = 1, . . . , 24. Size is the number of families in each
cooperative. For Max. Rawls (Max. PS) we compute the rank of the least preferred object assigned with positive
probability by the Rawlsian (PS) rule for each family, and then we take the maximum among all families. Max.
Rawls (%) expresses Max. Rawls as a percentage of the length of families’ preferences (or, equivalently, the size
of the cooperative).

The previous analysis shows that the Rawlsian assignment assigns fewer families their least

preferred apartments. Now we look at the intensive margin, that is, the probabilities with which

families are assigned their least preferred objects. It could be that even when the PS rule

assigns families apartments that are ranked very low, this occurs with very small probability. To

investigate this, we define the expected number of families that are assigned apartments ranked

in position k ∈ {1, . . . , n} as the sum of the probabilities with which each family is assigned the

apartment they rank in position k . Tables 5 - 10 in the Online Appendix present the results for

all the cooperatives considering the Rawlsian and PS rules. Not only is the maximum rank higher

under PS than under the Rawlsian assignment for each cooperative, but also the cumulative

probability of being assigned their least preferred apartments is substantially higher. For example,
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for cooperative C13 the Rawlsian rule assigns all families apartments ranked 14th or better (out

of 39 apartments), while the PS rule assigns (in expectation) 8 families apartments ranked 15th

or worse.

The general picture regarding the expected number of families that are assigned apartments

with rank k is as follows. The Rawlsian rule assigns a lower number of families their least

preferred apartments compared to the PS rule. But, at the same time, it also assigns a lower

number of families their top choices, and especially their first choice. As an illustration we include

in Figure 2 the distribution of the expected number of families that are assigned apartments

with rank k by each rule for two cooperatives (the reader can find the cumulative distribution

for all the cooperatives and the Rawlsian, PS and MTAV rules here).

(a) Cooperative C7 (b) Cooperative C23

Figure 2: Cumulative distribution function of the expected number of families that are assigned
apartments with rank k by the Rawlsian and PS rules.

7.2 Comparison with the PS rule: individual preferences over assignments

Both the Rawlsian and the PS rules are sd-efficient. Therefore, it is never the case that

all families prefer the assignment under one assignment over the other. In this section we

compare, for each cooperative, the number of families that prefer the assignment of one rule

over the other. We say that a family prefers the Rawlsian (PS) assignment to the PS (Rawlsian)

assignment if the lottery the families receives in the first assignment sd-dominates the lottery

in the second assignment. Obviously, there are families for whom neither of the assignment

dominates the other. Table 2 presents the results. For every cooperative, more families prefer

their Rawlsian assignment to their PS assignment. Moreover, the average percentage of families

that prefer their Rawlsian (PS) assignment over the PS (Rawlsian) assignment is 35% (9%).2

2One may wonder if the Rawlsian allocation is always more popular that the PS allocation (that is, if the
number of agents who prefer the former is always higher than the number of agents who prefer the latter). The
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Table 2: Number of families who prefer the assignment under the Rawlsian (PS) over the PS
(Rawlsian) rule.

Coop. Size Prefer Rawls Prefer PS
C1 26 8 1
C2 18 6 1
C3 4 3 1
C4 4 0 0
C5 28 10 1
C6 8 4 1
C7 29 12 2
C8 12 6 1
C9 15 4 1
C10 4 0 0
C11 11 5 2
C12 16 8 1
C13 39 9 1
C14 42 7 1
C15 14 3 1
C16 6 3 2
C17 9 4 1
C18 15 5 1
C19 9 5 1
C20 20 2 1
C21 24 9 1
C22 7 4 1
C23 40 6 2
C24 8 2 0
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7.3 Comparison with the PS rule: Sd-envy-freeness.

In this section we turn to the analysis of sd-envy-freeness. The PS assignment is sd-envy-free,

so no family envies another family under its outcome. As observed before, the Rawlsian rule is

not sd-envy-fee, so some families may experience envy.

We show in Table 3, for each cooperative, the number of families (and the percentage over

all the families) whose allocation does not sd-dominate the allocation of some other family.

Also, among those families that experience envy, we show the average number of families that

are sd-envied. There is only one cooperative where no family experiences envy. Among the rest,

the percentage of families with sd-envy ranges from 22% to 94%, with an average of 58%. If

we consider weak sd-envy, that is, a family has weak sd-envy over another family if the allocation

of this last family sd-dominates the allocation of the first one, the percentage of families with

weak sd-envy ranges from 11% to 67%, with an average of 36%.

7.4 Comparison with MTAV

Tables 5 - 10 in the Appendix include the expected number of families that are assigned apart-

ments with rank k by each of the three rules. By construction, the maximum rank of the

Rawlsian rule and MTAV always coincide. However, it is interesting to note that there are cases

where the Rawlsian rule assigns fewer families their least preferred apartment (among those

that are received with positive probability). For example, consider C1: under the Rawlsian rule

only one family receives their apartment of maximum rank (which is 13, out of 26 apartments),

while under MTAV two families receive their 13th choice. The same is true for cooperatives C2,

C5, C9, C13, C15, C17, C21, and C23. In general, the outcome of the MTAV is located between

the two other rules. Indeed, the Rawlsian rule outperforms the MTAV under the Rawlsian cri-

terion, but not in terms of the expected number of families assigned their top choice. The PS

rule outperforms the MTAV rule in terms of the expected number of families assigned their top

choice, but not under the Rawlsian criterion.

8 Analysis for large markets

In the empirical application, we show that the average maximum rank of the Rawlsian assignment

(excluding those cooperatives with less than 10 families) is around 46% of the market size

(Section 7.1). In this section, we build on this finding by analyzing the maximum rank of

the Rawlsian rule in large markets. Specifically, we consider markets of size n, where agents’

preferences are drawn i.i.d. from a uniform distribution, and study the limit as n tends to infinity.

Although the average maximum rank of the Rawlsian rule tends to infinity, we show that it grows

example in Remark 2 (Appendix 10.4) shows that this is not the case. Indeed, in this problem, two agents prefer
the PS assignment, one agent prefers the Rawlsian assignment, one agent obtains the same allocation, and one
agent does not prefer either assignment based on stochastic dominance.
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Table 3: Sd-envy in the Rawlsian assignment.

Coop. Size Envy Fam. Envy Fam. (%) Avg. Envied Fam.
C1 26 20 77 6
C2 18 17 94 6
C3 4 1 25 2
C4 4 0 0 0
C5 28 18 64 5
C6 8 4 50 1
C7 29 18 62 5
C8 12 6 50 3
C9 15 10 67 4
C10 4 0 0 0
C11 11 5 45 2
C12 16 10 63 3
C13 39 33 85 7
C14 42 40 95 12
C15 14 11 79 5
C16 6 2 33 3
C17 9 2 22 3
C18 15 10 67 5
C19 9 4 44 6
C20 20 18 90 7
C21 24 15 63 5
C22 7 3 43 1
C23 40 36 90 6
C24 8 7 88 3

Notes: Envy Fam. is the number of families with sd-envy, Envy Fam. (%) is the percentage of families with
sd-envy, and Avg. Envied Fam. is the average of the number of sd-envied families.
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at a slow rate. In particular, the expected maximum rank for the Rawlsian rule is upper bounded

by bln(n)c plus a constant. For instance, in a market of size n = 1000, our result implies that

the expected rank of the least preferred assigned object is at most 9.

Let Pn denote the set of all possible preference profiles in a market of size n. We define the

random variable �∈ Pn that selects one of the preference profiles in Pn uniformly at random.

Then, we denote the maximum rank of the assignment found by rule φ at � as:

rφmax(�) = max
i∈I

ri ,φi (�).

The expected maximum rank of the rule φ is then defined as:

E(rφmax) =
∑
�∈Pn

1

|Pn|
rφmax(�). (1)

First, we show that the expected maximum rank of the Rawlsian assignment goes to infinity

when the market grows large.

Proposition 5. limn→∞ E(rRawlsmax ) = +∞.

Next, we provide an upper bound on the growth rate of the Rawlsian rule’s maximum rank.

Proposition 6. Consider the Rawlsian rule. Then, when n →∞:

En(rRawlsmax ) ≤ bln(n)c+

+∞∑
k=−1

(
1− e−2e−k

)
≈ bln(n)c+ 2.77026. (2)

The proofs of both results are included in Appendices 10.10 and 10.11. We are not aware

of any theoretical result on the maximum rank of the PS rule. Ortega and Klein (2023) showed

that the rank-minimizing rule, which minimizes the expected rank of agents, has an expected

maximum rank of log2(n) in large random markets. Interestingly, our result implies that the

expected maximum rank of the Rawlsian rule in random markets converges to a fraction of at

most ln(2) ≈ 0.69 of the maximum rank of the rank-minimizing rule.

To show the tightness of the bound in Proposition 6, we have randomly sampled 1, 000

preference profiles for each market of size n ∈ {3, . . . , 59}. The left panel of Figure 3 shows

that the empirical analysis in Section 7.1 regarding the difference in the maximum rank between

the Rawlsian and PS rules seems to hold in general. The probability with which the PS rule

assigns an agent to their last choice with positive probability is close to one. As the size of the

market grows and preferences are uniformly i.i.d., the difference between the maximum rank of

the Rawlsian and the PS rules tends to infinity on average. Therefore, the egalitarian advantage

of the Rawlsian rule over PS also holds in large markets.

The right panel of Figure 3 shows that the upper bound of Proposition 6 is reasonably close

to the observed maximum rank of the Rawlsian rule. Interestingly, the true maximum rank of

the Rawlsian rule seems to be approximately equal to ln(n) + 1.
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Figure 3: Simulation results maximum ranks Rawlsian and PS rules.

9 Concluding Remarks

We examined the allocation of indivisible goods to individuals when prices cannot be utilized. Our

investigation draws inspiration from the context of housing cooperatives, where families express

concerns about the fairness of the final assignment. Specifically, we aim to avoid assignments in

which some families receive their top choices while others are assigned apartments ranked very

low in their preferences. To address this, we introduce a concept called Rawlsian assignments,

which prioritizes improving the allocations of individuals who are worst-off. We demonstrate

that there always exists a unique Rawlsian assignment. Moreover, the Rawlsian rule is both sd-

efficient and anonymous. Furthermore, we compare our proposed rule with the PS rule and the

currently employed rule. Our findings reveal that the Rawlsian rule significantly outperforms the

other two rules in terms of egalitarianism outcomes. However, as highlighted in Proposition 4,

it is not the sole rule that maximizes the utility of the worst-off agent. Consequently, exploring

alternative rules that prioritize egalitarianism represents an intriguing avenue for future research.
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10 Appendix

10.1 Proofs

10.1.1 Proof of Proposition 1.

Proof. Existence The set of assignments X is a compact set of [0, 1]n
2
. For each x ∈ X

we construct the vector Bx = (Bx1 , . . . , B
x
n , B

x
n+1, . . . , B

x
2n, . . . , B

x
n2

). Consider the function

π1 : X → R such that π1(x) = Bx1 . Clearly, π1 is a continuous function (it is a projection).

Then, the problem minx∈X π1(x) has a solution. Let S1 ⊂ X be set of all solution to the

minimization problem.

Note that S1 is compact. It is bounded because X is bounded. It is also closed: take a

convergent sequence {xk}k ⊂ S1. All the elements xk have the same Bx
k

1 , so the limit of the

sequence must have the same Bx
k

1 as well. Then, the limit is an element of S1.

Consider the function π2 : S1 → R such that π2(x) = Bx2 . Clearly, π2 is a continuous

function. Then, the problem minx∈S1 π2(x) has a solution. Let S2 ⊂ X be set of all the

solutions to the minimization problem.

We continue in the same way for all the elements of the vector Bx . At the end, we will have

a nonempty set Sn2 .
3 The assignments in this set are Rawlsian. Indeed, suppose this is not the

case, and consider x ∈ Sn2 which is Rawlsian-dominated by another assignment y . This means

that there exists an index j ∈ {1, . . . , n2} such that Bxj > Byj , and for all i < j , Bxi = Byi . Then,

y ∈ Sj−1, and πj(y) < πj(x). This implies that x /∈ Sj ⇒ x /∈ Sn2 , which is a contradiction.

Uniqueness Suppose there are two Rawlsian assignments, x and y . Both are associated with

the same vector B. Given an assignment z , consider a matrix P z where agents are represented

in the rows, and in column k we include the probability with which each agent receives the

object ranked in position k .4 Starting from the last column, consider the first column where P x

and P y differ (there is such a column as x and y are different assignments). Assume that this

is the case for column n − c .
Note that the probabilities of column n − c in each matrix are the same, but distributed

differently. Until column n − c , the two matrices are the same, so the same agents get the

same probabilities for the corresponding objects. This implies that all agents receive the same

probability for objects ranked n− (c −1), . . . , n under x and y . Therefore, they also receive the

same probabilities under assignment 12(x + y).

Consider the largest element of column n− c of each of the matrices P x , P y , and P
1
2
(x+y).

If the largest element of this column in P x and P y corresponds to the same agent, then the

probability with which this agent receives the object ranked in position n − c coincides in x , y ,

and 12(x + y). If it corresponds to a different agent, then either the largest element of column

n − c in P x or the largest element of column n − c in P y , is larger than the largest element of
3Note that there will be a unique vector Bx that minimizes the problems. But, in principle, we could have

many assignment associated with the same the vector Bx .
4Matrix P z is created by reordering each row of z based on the agents’ preferences.
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P
1
2
(x+y). In the first case, 12(x+y) R-dominates x , and in the second case 12(x+y) R-dominates

y . But this contradicts the fact that x and y are Rawlsian assignments. As the assignments x

and y differ in at least one entry of column n − c , the assignment 12(x + y) R-dominates x or

y .

10.1.2 Proof of Proposition 2.

Proof. Consider two problems (�i) and (�π(i)), and let (xi)i and (x ′i )i be the Rawlsian assign-

ments in each of these problems. We need to show that x ′i = xπ−1(i) for every i ∈ {1, . . . , n}.
Suppose this is not the case, and consider the assignments (xπ−1(i))i and (x ′i )i , and the first entry

where vectors B(xπ−1(i))i and B(x
′
i )i differ. Because (x ′i )i is the Rawlsian assignment of (�π(i))i ,

this entry in B(x
′
i )i is smaller than in the vector B(xπ(i))i . Note that the definition of the vector

Bx of each assignment x , does not look at the identities of the agents, thus: B(xi )i = B(xπ(i))i .

But then (x ′i )i R-dominates (xi)i in problem (�π(i))i , which is a contradiction.

10.2 A generalization of the Rawlsian assignment

Let σ be an ordering of the set of integers {2, . . . , n}, and let Σ denote the set of all such

orderings. We denote the i-th element of σ by σi .5 Similar to Section 4, given an assignment x ,

an ordering σ ∈ Σ, and the vectors (bxi )i∈I containing the cumulative assignment probabilities,

we define the vector Bx,σ ∈ [0, 1](n−1)
2
as follows.

1. The first elements (Bx,σ1 , . . . , Bx,σn ) are the elements (bx1(σ1), . . . , b
x
n(σ1))) listed in a

non-increasing order.

2. Elements (Bx,σn+1, . . . , B
x,σ
2n ) are the elements (bx1(σ2), . . . , b

x
n(σ2))) listed in a non-increasing

order.

3. In general, elements (Bx,σ
(k−1)n+1, . . . , B

x,σ
kn ) for k = 1, . . . , n−1, are the elements (bx1(σk), . . . , bxn(σk))

listed in a non-increasing order.

That is, the first elements of Bx,σ are the probabilities with which each agent receives the

objects with a rank between σ1 and n, then the probabilities with which each agent receives

the objects with a rank between σ2 and n and so on, and so forth. The Rawlsian assignment

corresponds to Bx,σR , with σR = (n, n − 1, . . . , 2). Like in Section 4, given two assignments x

and y , we compare the vectors Bx,σ and By,σ lexicographically.

Definition 8. Given two assignments x and y and an ordering σ ∈ Σ, x σ-dominates y if there

is j ∈ {1, . . . , (n − 1)2} such that Bx,σj < By,σj , and for all i < j , Bx,σi = By,σi .
5Note that we do not include the first preference in the orderings in Σ, because the total assignment probability

of each agent always equals one.
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Definition 9. Given an ordering σ ∈ Σ, an assignment x is σ-minimal if it is not σ-dominated

by any other assignment.

Similar to the results in Section 5, a σ-minimal assignment is unique and sd-efficient, for

any ordering σ ∈ Σ.

Proposition 7. Each problem has a unique σ-minimal assignment, for any order σ ∈ Σ.

Proof. Given an ordering σ ∈ Σ, suppose x and y are two different assignments that are

both σ-minimal, and have the same vector Bσ. Following a similar reasoning as the proof

of Proposition 1, we can show that the assignment 12(x + y) σ-dominates both x and y ,

contradicting the fact that x and y are both σ-minimal assignments.

Proposition 8. For any ordering σ ∈ Σ, the σ-minimal assignment is sd-efficient.

Proof. Given any ordering σ ∈ Σ, suppose that assignment x is σ-minimal, but not sd-efficient.

Then, there is an improving cycle (1, o1, 2, o2, . . . , K, oK). We can assume wlog that oi 6= oj

for every i , j . Denote by ε > 0 the minimum of all the probabilities: ε = mink=1,...,K xkok .

Implement the cycle by decreasing each probability xkok , for k = 1, . . . , K, by ε, and increasing

x1oK , and xkok−1 , k = 2, . . . , K by the same share. We get a new random assignment y . We

will show that it σ-dominates x , which is a contradiction.

Because each agent is better off after we implement the improvement cycle, we know that

rkok−1 < rkok , for each k = 1, . . . , K (we use the notation o0 = oK). This implies that, for each

agent k = 1, . . . , K, the cumulative probability of being assigned to an object ranked rkok−1-th

or worse is equal in x and y , i.e.,

byk (rkok−1) = bxk(rkok−1) + ε− ε = bxk(rkok−1).

Similarly, the cumulative probability of being assigned to an object ranked rkok -th or worse is

lower in y than in x , i.e.,

byk (rkok ) = bxk(rkok )− ε⇐⇒ byk (rkok ) < bxk(rkok ).

As a result, each element of the vector By,σ associated with assignment y is not larger than

the corresponding element in the vector Bx,σ associated to assignment x . Moreover, there are

at least K elements of By,σ that are strictly smaller than the corresponding elements in Bx,σ.

Hence, y σ-dominates x .

We define the σ-minimal rule as the rule that assigns the σ-minimal assignment to each

problem. As for the Rawlsian rule, the σ-minimal rule satisfies anonymity.

Proposition 9. The σ-minimal rule satisfies anonymity, for any ordering σ ∈ Σ.
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Proof. The definition of vector Bx,σ does not depend on agents’ identities, only on the proba-

bilities of the assignment x and the order σ. Thus, the same proof as in Proposition 2 applies

in this generalized setting.

10.3 Relation with fractional Boston assignment

The fractional Boston rule by Bogomolnaia (2015), which was further studied by Chen, Harless,

and Jiao (2023), is the outcome of the following procedure.

• In Step 1, all agents start by “consuming” their most preferred object simultaneously at

equal speeds. An agent stops consuming when the object is exhausted. Step 1 ends by

removing all agents who are assigned to their first-ranked object with probability one.

• In Step k , all remaining agents consume from their k-th preferred object. An agent stops

consuming when the object is exhausted, or when the sum of the assignment probabilities

of the agent equals one. Step k ends by removing the agents for whom the sum of the

assignment probabilities equals one.

The algorithm ends when the last agent is removed.

While both the fractional Boston rule and the σB-Rawlsian assignment for σB = (2, 3, . . . , n)

start by lexicographically maximizing the probabilities of being assigned to the most preferred

object, the following example shows that they are not identical.

Remark 1. The outcome of the fractional Boston rule does not correspond to the σB-minimal

assignment for σB = (2, 3, . . . , n).

Proof. Consider the following problem with 7 agents:

�1 a b e . . .

�2 a b c . . .

�3,�4 c b a . . .

�5,�6,�7 d a e . . .

The assignment probabilities for the three most preferred objects of each agent in the σB-

minimal assignment and in the fractional Boston assignment are (element xi j is the probability

with which agent i is assigned to her j most preferred object):
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xσ
B

=



1
2

1
4 000 . . .

1
2

1
4 0 . . .

1
2

1
4 0 . . .

1
2

1
4 0 . . .

1
3 0 111

333 . . .
1
3 0 111

333 . . .
1
3 0 111

333 . . .


, xFB =



1
2

1
4

111
444 . . .

1
2

1
4 0 . . .

1
2

1
4 0 . . .

1
2

1
4 0 . . .

1
3 0 111

444 . . .
1
3 0 111

444 . . .
1
3 0 111

444 . . .


.

The difference in the assignment probabilities for the object of third choice comes from

the following reasoning. It can be shown that the σB-minimal assignment can be obtained

by first lexicographically maximizing the vector of the probabilities with which the agents are

assigned to the object of their first choice, then to lexicographically maximize the vector with

the probabilities with which the agents are assigned to the objects of their first or second

choice, etc. As such, after having fixed the probabilities of being assigned to each agent’s

two most preferred objects, the σB-minimal assignment maximizes the vector of the cumulative

probabilities of being assigned to one of the three most preferred objects, and, therefore, divides

object e equally among agents 5,6, and 7. In the fractional Boston assignment, however, at the

beginning of the thirds step, agents 1,5,6, and 7 start eating with equal speeds from object e,

which allows agent 1 to consume one quarter of the object. Thus, in the σB-minimal assignment

the minimum probability of being assigned to the three most preferred objects is 23 , while it is
7
12 <

2
3 in the fractional Boston assignment.

10.4 Relation with rank efficiency

Given an assignment x , we define Mx(k) =
∑
i∈I b

x
i (k) for k = 1, . . . , n. So, for example,

Mx(n) is the sum of the probabilities with which each agent is assigned her least preferred

option. Equivalently, Mx(k) is the expected number of agents who receive an object ranked in

position k or lower at x .

Definition 10. An assignment, x , is said to rank-dominate another assignment, y , if the rank

distribution of y first-order stochastically dominates that of x , that is, if:

My (k) ≥ Mx(k).

for all ranks, k , with a strict inequality for at least one k .

If an assignment is not rank-dominated by any other assignment, it is rank efficient.

The previous definition is equivalent to the original of Featherstone (2020), where the sum

of the probabilities are computed from the most preferred object to k . The following example

shows a problem where the Rawlsian assignment is not rank-efficient.
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Remark 2. A rank efficient assignment may not be Rawlsian.

Proof. Consider the following problem:

�1 a d c b e

�2 b c a d e

�3 c b a d e

�4 b a d c e

�5 b a d e c

The following assignment is rank efficient:

y =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 ,

but it is not Rawlsian. Indeed, its associated vector is

By = (0, 0, 0, 0, 0; 1, 0, 0, 0, 0; 1, 1, 0, 0, 0; 1, 1, 0, 0, 0; 1, 1, 1, 1, 1).

Consider the following assignment x (boxed in agents’ preferences):

x =


0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

 .

It is easy to see that x R-dominates y .

Remark 3. A Rawlsian assignment may not be rank-efficient.

Proof. Consider the following problem:

�1 a b c

�2 a b c

�3 b a c

34



The following is the Rawlsian assignment of the problem:

x =


1
2

1
6

1
3

1
2

1
6

1
3

0 2
3

1
3

 .
Consider the following assignment:

y =

1 0 0

0 0 1

0 1 0

 .
Compute Mx(k) and My (k):

Mj(3) Mj(2) Mj(1)

x 1 4
3 3

y 1 1 3

.

Assignment y Rank-dominates assignment x .

10.5 Relation with egalitarian assignments

In this section, we define the concept of egalitarian assignments (Duddy, 2022), and show that

it is independent from the concept of Rawlsian assignments. Let tk(�i , xi) be the probability

with which agent i receives her top k objects under allocation xi .

Definition 11. An assignment x is egalitarian if there does not exist another assignment y and

an agent j such that:

tk(�i , yi) ≥ tk(�j , xj),

for all i and k = 1, . . . , n (with the inequality being strict at least for one k , for every i).

Remark 4. An egalitarian assignment may not be Rawlsian.

Proof. Consider the following problem.

�1 a b c d

�2 b c a d

�3 a b c d

�4 b a d c
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The following assignment is egalitarian:

y =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
If not, there is another assignment y ′ such that agent 4 is assigned to object d with proba-

bility less than 1 (all agents in y are assigned to an object in 3rd position or higher). But in that

case, one of the other agents, let’s say i 6= 4, is assigned to object d with positive probability.

Then,

t3(�i , y ′i ) < 1 = t3(�l , yl),∀l ,

The Rawlsian assignment of this problem is:

x =


1
2

1
2 0 0

0 0 1 0
1
2

1
2 0 0

0 0 0 1

 .

Remark 5. A Rawlsian assignment may not be egalitarian. Indeed, Duddy (2022) has an

example in Section 4.5 showing that the Rawlsian assignment does not satisfy the egalitarian

criterion.

10.6 Relation with obvious manipulability

In this section, we extend the definition of obvious manipulability by Troyan and Morrill (2020)

from a setting of deterministic assignments to a setting of probabilistic assignments.

First, we introduce the definition in a deterministic setting, as stated in Troyan (2022).

Denote by M the set of feasible deterministic assignments (the set of n × n bi-stochastic

matrices of which all elements are either zero or one). Let mi denote the object to which agent

i ∈ I is assigned by assignment m ∈ M. A deterministic rule µ is a function that maps every

problem to a set of deterministic assignments: for every �, µ(�) ⊆ M.

Given a set of deterministic assignments S ⊆ M, let ρi(S) = maxm∈S ri(mi) denote the

rank of the least preferred object assigned to agent i by the assignments in S. Equivalently, let

ρ
i
(S) = minm∈S ri(mi) denote the rank of the most preferred object assigned to agent i by the

assignments in S.

Definition 12. A deterministic rule µ is not obviously manipulable if, for any agent i with

preference profile �i and any manipulation �′i 6=�i , the following two conditions hold:
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(i) max�−i ρi(µ(�i ,�−i)) ≤ max�−i ρi(µ(�′i ,�−i))

(ii) min�−i ρi(µ(�i ,�−i)) ≤ min�−i ρi(µ(�′i ,�−i)).

If either (i) or (i i) is violated for some agent i with preference profile �i , then we call �′i an
obvious manipulation for i , and say that the deterministic rule µ is obviously manipulable.

To extend this definition to probabilistic rules, as defined in Section 3, it suffices to redefine

the notions of the worst-case rank ρi(S) and the best-case rank ρ
i
(S) for probabilistic assign-

ments. Given a probabilistic assignment x ∈ X, let ωi(x) = maxo∈O:xio>0 ri(o) denote the rank

of the least preferred object to which agent i is assigned by assignment x with a strictly positive
probability. Equivalently, let ωi(x) = mino∈O:xio>0 ri(o) denote the rank of the most preferred

object to which agent i is assigned by assignment x with a strictly positive probability. Note

that for any representation of x as a lottery over the set of deterministic matchings, it holds

that ωi(x) = ρi(S) and ωi(x) = ρ
i
(S) for any agent i , where S ⊆ M denotes the subset of the

deterministic assignments that are given a strictly positive probability in the representation of x .

We can now define obvious manipulability for rules that output a probabilistic assignment

as follows:

Definition 13. A rule φ is not obviously manipulable if, for any agent i with preference profile

�i and any manipulation �′i 6=�i , the following two conditions hold:

(i) max�−i ωi(φ(�i ,�−i)) ≤ max�−i ωi(φ(�′i ,�−i))

(ii) min�−i ωi(φ(�i ,�−i)) ≤ min�−i ωi(φ(�′i ,�−i)).

If either (i) or (i i) is violated for some agent i with preference profile �i , then we call �′i an
obvious manipulation for i , and rule φ is obviously manipulable.

In Example 5, we observe that agent 2 can decrease the worst-case rank of the objects to

which he is assigned with a strictly positive probability by manipulating, as ω2(x) = 2 while

ω2(y) = 1. Thus, condition (i) of Definition 13 is violated and the Rawlsian rule is obviously

manipulable.

10.7 Relation with strategyproofness axioms by Mennle and Seuken (2021)

Mennle and Seuken (2021) show that a rule is strategyproof if and only if it satisfies the

axioms of swap monotonicity, upper invariance and lower invariance. Following the result by

Carroll (2012), the following three axioms only consider misreports in which the order of two

consecutively ranked objects in a preference list is swapped. We use the notation a > b to

denote that objects a and b are ranked consecutively in a preference list, and that a is strictly

preferred to b.
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Definition 14. A rule φ is swap monotonic if, for all agents i ∈ I, all preference profiles

(�i ,�−i), and all misreports �′i where a > b at �i , and b > a at �′i , one of the following two

conditions holds:

• either: φi(�i ,�−i) = φi(�′i ,�−i),

• or: φi ,b(�′i ,�−i) > φi ,b(�i ,�−i).

Definition 15. A rule φ is upper invariant if, for every agent i ∈ I, all preference profiles

(�i ,�−i), and all misreports �′i where a > b at �i , and b > a at �′i , it holds that φi j(�i ,�−i
) = φi j(�′i ,�−i) for all objects j for which j �i a.

Definition 16. A rule φ is lower invariant if, for all agents i ∈ I, all preference profiles (�i ,�−i),
and all misreports �′i where a > b at �i , and b > a at �′i , it holds that φi j(�i ,�−i) = φi j(�′i
,�−i) for all objects j for which b �i j .

The intuition behind Definition 14 is that a rule is swap monotonic if increasing the preference

for an object b either increases the probability of being assigned to object b, or does not affect

the agent’s assignment probabilities at all. Moreover, a rule is upper (resp. lower) invariant if

swapping the order of two consecutively ranked objects a and b does not affect the assignment

probabilities of the objects that are more preferred than a (resp. less preferred than b).

Remark 6. The Rawlsian rule satisfies lower invariance.

Proof. Let x denote the Rawlsian assignment for true preferences �, and let y denote the

Rawlsian assignment for preferences (�′i ,�−i), such that a > b at �i , and b > a at �′i . Suppose
that the Rawlsian rule does not satisfy lower invariance. Then, the assignment probabilities of

agent i for the objects that she ranks lower than b in �i differ in x and y . Let Bx(�) denote

vector associated with assignment x for preferences �.
Because y is the Rawlsian assignment for preferences (�′i ,�−i), y R-dominates x for these

preferences. Since the assignment probabilities for the objects that agent i ranks lower than b

in �i differ in x and y , this means that vector By (�′i ,�−i) lexicographically dominates vector

Bx(�′i ,�−i) in one of the first n(n − rib) elements, where rib is the rank of b in �i .
However, as �i and �′i are identical for the objects that are ranked lower than b in �i , it

holds that Byj (�′i ,�−i) = Byj (�) for the first j ≤ n(n − rib) elements, and the same is true for

Bx(�′i ,�−i) and Bx(�). Therefore, By (�) should also lexicographically dominate Bx(�) in

one of the first n(n− rib) elements, which is in contradiction with the fact that x is the Rawlsian

assignment for preferences �. Hence, the Rawlsian rule satisfies lower invariance.

Remark 7. The Rawlsian rule violates swap monotonicity and upper invariance.
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Proof. Consider the following preferences.

�1 c a b

�2 b c a

�3 b c a

The Rawlsian assignment for these preferences is

x =

1 0 0

0 1
2

1
2

0 1
2

1
2

 .
If agent 1 alternatively reveals �′1= (c, b, a), swapping the order of objects a and b, the Rawlsian

assignment becomes

x ′ =


1
3 0 2

3
1
3

1
2

1
6

1
3

1
2

1
6

 .
First, the probability of being assigned to object b for agent 1 remains the same, while the

probability of being assigned to object a decreases, which violates the swap monotonicity axiom.

Second, swapping the order of objects a and b causes the probability of agent 1 being

assigned to object c to decrease, which violates the upper invariance axiom.

10.8 Rawlsian assignments and cardinal utilities

In this section we first prove in Proposition 10 that if x is an sd-efficient assignment, there exists

a cardinal representation of the agents’ ordinal preferences such that x maximizes the expected

utility of the worst-off agent, among all possible assignments. Next, we prove in Proposition

4 that the reverse is not true, and that an instance � may admit a continuum of different

assignments that maximize the utility of the worst-off agent for some cardinal utilities, even

when all agents have the same cardinal utilities.

Proposition 10. Consider a problem � and an sd-efficient assignment x for problem �. Then,
there exists a cardinal representation of �, denoted by U = (Ui)i∈I , such that:

x ∈ arg max
x ′∈X

{min
i∈I

Ui(x
′)}.

Proof. Consider an sd-efficient assignment x . By definition, x is not stochastically dominated by

any other assignment. Equivalently, for any cardinal representation of the agents’ preferences,

there is no assignment such that the expected utility of every agent is greater than or equal

to the expected utility in this assignment (strictly greater for one agent). Fix another cardinal

representation of the agents’ preferences such that the expected utility of each agent under x

is the same. Then, the minimum cardinal utility in x is the utility of any agent. Suppose there
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is another assignment y such that the minimum expected utility among all agents is strictly

greater than the minimum expected utility under x . Therefore, every agent’s expected utility

under y is greater than her expected utility under x (because it is greater than or equal to the

minimum expected utility). But this implies that x is not sd-efficient, which is a contradiction.

Proof of Proposition 4.

Proof. Consider the following example:

�1 �2 �3
a a b

b b a

c c c

And consider the following assignment with α ∈ [0, 12 ]:

xα =

0.5 0.5− α α

0.5 0.5− α α

0 2α 1− 2α

 .
Note that xα is indeed a feasible assignment that treats equals equally. Moreover, xα1a =

xα2a = 0.5 and xα3a = 0 holds because otherwise agent 3 could decrease the probability of being

assigned object a while agents 1 and 2 could increase their probability of being assigned object

a. This exchange would increase everyone’s utilities, and any alternative assignment than xα is

therefore not an assignment that maximizes the utility of the worst-off agent.

Consider the case where agents’ cardinal utilities for being assigned their first, second, and

third object are the same, that is, U1(a) = U2(a) = U3(b), U1(b) = U2(b) = U3(a), and

U1(c) = U2(c) = U3(c). Then, the utilities that the agents experience in xα are:

U1(α) = U2(α) = 0.5 · u(1) + (0.5− α) · u(2) + α · u(3)

U3(α) = 2α · u(1) + (1− 2α) · u(3)

Because both functions are linear in α, we maximize the utility of the worst-off agent by de-

termining α∗ for which U1(α∗) = U2(α
∗) = U3(α

∗). It can be checked that we satisfy this

condition for

α∗ =
0.5 · u(1) + 0.5 · u(2)− u(3)

2 · u(1) + u(2)− 3 · u(3)
.

Because u(1) ≥ u(2) ≥ u(3), it must hold that 14 ≤ α
∗ ≤ 1

3 . Hence, for each assignment xα

with α ∈ [14 ,
1
3 ], there exist cardinal utility functions for which xα maximizes the utility of the

worst-off agent. Note that x
1
3 is the Rawlsian assignment.
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10.9 The MTAV rule.

In this section, we define the MTAV following Paleo (2021). LetM be the set of deterministic

assignments. Each assignment inM is represented by a n × n matrix M where mi j = 1 if, and

only if, agent i receives object j . Given two matrices M and M ′ inM, we denote by M �M ′

the matrix where each element is the product of the corresponding elements of M and M ′:

(M�M ′)i j = (mi j)(m′i j). Also, denote by max(M) and sum(M) the maximium and the sum of

the elements of M, respectively.

Given a problem (�), define the matrix P with agents’ preferences, where Pi j is the rank of

object j in i ′s preferences (equivalently, Pi j = ri j). The MTAV is defined as follows.

1. For each M ∈M computes P �M.

2. Compute max(P �M).

3. Select the assignments that minimize max(P �M).

4. Among the assignments selected in the previous step, select those that minimize sum(P�
M).

5. If multiple assignments are selected in the last step, take one assignment at random.

To implement MTAV, we have used its publicly available code (https://github.com/

eze91/MTAV). In the last step, this code will simply generate one of the multiple assignments,

rather than generating all of them and selecting each with equal probability. Note that both

approaches are not equivalent, as discussed in detail in Demeulemeester, Goossens, Hermans,

and Leus (2023).

10.10 Proof of Proposition 5

Proof. Suppose there exists a constant L such that limn→+∞ E(rRawlsmax ) = L. This is equivalent

to saying that, in expectation, all agents only receive strictly positive probabilities for their L

most-preferred objects when n →∞.

Consider the cost matrix C such that being assigned to the top object has a cost of 1, being

assigned to the next object has a cost of 2, etc. When an assignment only considers the L

most-preferred objects of each agents, the cost of this assignment is at least (n−1) ·1+L. This

cost is obtained when all but one of the agents are assigned, in expectation, to their first choice,

and one agent is assigned, in expectation to her L-th choice.6 By definition of the minimum,
6Note that when the Rawlsian assignment has a maximum rank of L for a given preference profile, then the

sum of the assignment probabilities of the agents to their L-th most-preferred object will always be an integer at
least equal to 1. Consider the object with the lowest rank in any agent’s preference list for which they receive a
strictly positive probability by the Rawlsian assignment. Assume, for contradiction, that this object is not fully
divided among agents who rank this object L-th, and that there exists an agent who ranks that object strictly
better than L-th who receives a strictly positive probability for that object. In that case, we can fully assign the
object to that agent, which would result in an assignment that Rawlsian-dominates the original assignment, which
leads to a contradiction.
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we know that

min
π∈X

1

n

∑
i∈I

Ciπ(i) ≤
n − 1 + L

n
.

Taking the limit of this expression, we find that

lim
n→∞

min
π∈X

1

n

∑
i∈I

Ciπ(i) ≤ lim
n→∞

n − 1 + L

n
= 1.

However, Parviainen (2004) showed that limn→∞minπ∈X
1
n

∑
i∈I Ciπ(i) ≥

π2

6 , which leads to a

contradiction.

10.11 Proof of Proposition 6.

Proof. Consider a complete bipartite graph (I, O, E) where one set of nodes I is the set of

agents, and the other set of nodes O is the set of objects. There is an edge in E between an

agent and an object if the agent ranks the object. When we choose exactly k edges for each

agent, this is the same as considering the k most preferred objects of each agent.

For a given preferences �, denote by G̃(n, k) the resulting bipartite graph when we consider

the k most preferred objects of each agent. The maximum rank of the Rawlsian assignment,

rRawls
max , is equal to some value k ∈ N when there exists a perfect matching in G̃(n, k), but not in

G̃(n, k − 1).

Additionally, let X̃n,k be the event that G̃(n, k) contains a perfect matching, i.e.,

X̃n,k =

1 if G̃(n, k) has a perfect matching,

0 otherwise.

Then, the probability that k is the maximum rank of the Rawlsian assignment equals:

P(rRawls
max = k) = [1− P(X̃n,k−1 = 1)] · P(X̃n,k = 1).

Note that the P(X̃n,k−1 = 1) ·P(X̃n,k = 1) is the probability that there is a perfect matching

when we consider the first k −1 objects of each agent and there is a perfect matching when we

consider the first k objects. But, if there is perfect matching for k − 1, there is also for k . So:

P(X̃n,k−1 = 1) · P(X̃n,k = 1) = P(X̃n,k−1 = 1).

Thus:

P(rRawls
max ) = P(X̃n,k = 1)− P(X̃n,k−1 = 1). (3)

Additionally, denote by G(n, p) the random bipartite graph with n nodes in each set, and

in which each edge is independently selected with probability p. Similarly to G̃(n, k), let Xn,p
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denote the event that G(n, p) contains a perfect matching.

Denote the minimum degree of a graph G by δ(G). Erdős and Rényi (1966) and Erdős

and Rényi (1968) showed for various types of graphs that, in the limit (when n → +∞), the

probability that a perfect matching exists is equal to the probability that the minimum degree

of the graph is at least one (no isolated vertices). Because half of the nodes in G̃(n, k) have

a guaranteed degree of k , the probability of having a minimum degree of at least one is not

smaller in G̃(n, k) than in G(n, kn ). As a consequence, it holds that, for every k ∈ {1, . . . , n}:

lim
n→∞

P(X̃n,k = 1) = lim
n→∞

P(δ(G̃(n, k)) ≥ 1) ≥ lim
n→∞

P(δ(G(n,
k

n
) ≥ 1)) = lim

n→∞
P(Xn, k

n
= 1).

(4)

The expected maximum rank of the Rawlsian assignment is equal to:

E(rmaxn ) =

n∑
k=1

k · P(rmaxn = k). (5)

By applying Equation (3), we obtain that

E(rRawls
max ) =

n∑
k=1

k ·
(
P(X̃n,k = 1)− P(X̃n,k−1 = 1)

)
(6)

= n −
n−1∑
k=1

P(X̃n,k = 1), (7)

where P(X̃n,0 = 1) = 0, and the second equality follows from the fact that P(X̃n,n = 1) = 1.

We are interested in evaluation this expression in the limit. By applying Equation (4),

we can bound the limit of the expected maximum rank by the Rawlsian assignment in terms

of the probability that a perfect matching exists in the well-studied class of bipartite random

graphs G(n, p) in which each edge is selected with uniform probability p.

lim
n→∞

E(rRawls
max ) = lim

n→∞

(
n −

n−1∑
k=1

P(X̃n,k = 1)

)
(8)

≤ lim
n→∞

(
n −

n−1∑
k=1

P(Xn, k
n

= 1)

)
. (9)
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After some manipulations, the expression of which we take the limit can be written as:

n −
n−1∑
k=1

P(Xn, k
n

= 1) = n −
n−1∑
k=1

(1− (1− P(Xn, k
n

= 1))) (10)

= n −
n−1∑
k=1

1 +

n−1∑
k=1

(1− P(Xn, k
n

= 1)) (11)

= 1 +

n−1∑
k=1

(1− P(Xn, k
n

= 1)) (12)

We know from Erdős and Rényi (1968) that

lim
n→∞

(1− P(X
n,
ln(n)+cn

n

= 1)) =


1 if cn → −∞

1− e−2e−c if cn → c

0 if cn →∞

. (13)

We can then rewrite Equation (9) as

lim
n→∞

E(rRawls
max ) ≤ 1 + lim

n→∞

n−1−ln(n)∑
k=1−ln(n)

(1− P(X
n,
ln(n)+k

n

= 1))

 (14)

= 1 + lim
n→∞

bln(n)c−ln(n)−1∑
k=1−ln(n)

(1− P(X
n,
ln(n)+k

n

= 1))

+

n−1−ln(n)∑
k=bln(n)c−ln(n)

(1− P(X
n,
ln(n)+k

n

= 1))

 (15)

Note that these expressions are a bit unfamiliar because the indices of the summations are not

integer: the interpretation is that, starting from the lower index, we sum for values of k that

increase with step size one.

If we can show that the limit of the first summation is well-defined, and that second sum-

mation is a constant, we can rewrite this expression as:7

1 + lim
n→∞

bln(n)c−ln(n)−1∑
k=1−ln(n)

(1− P(X
n,
ln(n)+k

n

= 1))


+ lim
n→∞

 n−1−ln(n)∑
k=bln(n)c−ln(n)

(1− P(X
n,
ln(n)+k

n

= 1))

 . (16)

Because probabilities are non-negative, an easy bound on the limit of the first summation
7In fact, we will show that this expression is similar to limn→∞(ln(n)+constant) = limn→∞(ln(n))+constant.
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would simply be:

bln(n)c−ln(n)−1∑
k=1−ln(n)

(1− P(X
n,
ln(n)+k

n

= 1)) ≤
bln(n)c−ln(n)−1∑
k=1−ln(n)

1

= bln(n)c − ln(n)− 1− (1− ln(n)) + 1 = bln(n)c − 1. (17)

For the limit of the second summation, we can write that

lim
n→∞

 n−1−ln(n)∑
k=bln(n)c−ln(n)

(1− P(X
n,
ln(n)+k

n

= 1))

 ≤ lim
n→∞

n−1−dln(n)e∑
k=−1

(1− P(X
n,
ln(n)+k

n

= 1))


(18)

≤ lim
n→∞

(
+∞∑
k=−1

(1− P(X
n,
ln(n)+k

n

= 1))

)
(19)

Because 1 − P(X
n,
ln(n)+k

n

= 1) is a decreasing function in k , we find an upper bound on this

expression by shifting the values for which this function is evaluated downwards with a positive

value of dln(n)e− ln(n) (first inequality). Because 1−P(X
n,
ln(n)+k

n

= 1)) ≥ 0, we obtain an upper

bound by changing the ending index of the summation from n − 1 − dln(n)e to +∞ (second

inequality).

Now observe from (13) that limn→∞(1 − P(X
n,
ln(n)+k

n

= 1)) = 1 − e−2e−k for a constant

value of k . If we can show that
+∞∑
k=−1

1− e−2e−k (20)

converges to a constant, then we can bring the limit inside the summation in Expression (19).

We will use the ratio test to show the convergence of the series ak = 1− e−2e−k .

lim
k→∞

∣∣∣∣ak+1ak
∣∣∣∣ = lim

k→∞

∣∣∣∣∣1− e−2e
−(k+1)

1− e−2e−k

∣∣∣∣∣ = lim
k→∞

1− e−2e−(k+1)

1− e−2e−k
, (21)

where the last equality holds because both the numerator and the denominator are positive. We

can simplify the numerator as:

1− e−2e−(k+1) = 1− e
−2e−k
e (22)

For large values of k , both the numerator and the denominator go to zero. We can use

45



L’Hôpital’s rule, which states that

lim
k→∞

1− e−2e−(k+1)

1− e−2e−k
= lim
k→∞

d
dk

(
1− e−2e−(k+1)

)
d
dk

(
1− e−2e−k

) (23)

= lim
k→∞

−2e−k−1e−2e
−k−1

−2e−ke−2e−k
(24)

= lim
k→∞

e−k−1

e−k
·
e−2e

−k−1

e−2e−k
(25)

= lim
k→∞

e−1 · e2(e−k−e−k−1). (26)

As e−1 is a constant term, and because the exponent 2(e−k − e−k−1) goes to zero for large

values of k , this is equivalent to:

lim
k→∞

e−1 · e2(e−k−e−k−1) = e−1 · lim
k→∞

e2(e
−k−e−k−1) = e−1 · e0 = e−1. (27)

Note that 1e ≈ 0.3679 < 1. As a consequence,
∑+∞
k=−1 1− e−2e−k converges to a constant. As

a result, we can rewrite Expression (15) as Expression (16).

Putting the bounds of Expressions (17) and (19) together in Expression (16), we obtain:

lim
n→∞

E(rRawlsmax ) ≤ 1 + lim
n→∞

bln(n)c−ln(n)−1∑
k=1−ln(n)

(1− P(X
n,
ln(n)+k

n

= 1))


+ lim
n→∞

 n−1−ln(n)∑
k=bln(n)c−ln(n)

(1− P(X
n,
ln(n)+k

n

= 1))

 (28)

≤ lim
n→∞
bln(n)c+

+∞∑
k=−1

(
1− e−2e−k

)
(29)

≈ lim
n→∞
bln(n)c+ 2.77026. (30)
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For Online Publication: Empirical Analysis: additional
information.

1 Descriptive Statistics

We first illustrate some basic characteristics of the cooperatives we analyze. Table 4 shows

the number of families in each cooperative (which equals the number of apartments), and the

(cumulative) number of different objects ranked in the top k positions (k = 1, 2, 3, 4) in absolute

terms, and as percentage of the total number of objects.

Size 1st 2nd 3rd 4th 1st 2nd 3rd 4th
C1 26 16 20 21 22 61 76 80 84
C2 18 9 11 13 14 50 61 72 77
C3 4 3 4 4 4 75 100 100 100
C4 4 2 2 4 4 50 50 100 100
C5 28 17 23 24 25 60 82 85 89
C6 8 5 8 8 8 62 100 100 100
C7 29 16 22 24 25 55 75 82 86
C8 12 6 9 11 11 50 75 91 91
C9 15 9 11 13 15 60 73 86 100
C10 4 3 3 3 4 75 75 75 100
C11 11 6 7 10 10 54 63 90 90
C12 16 11 14 15 15 68 87 93 93
C13 39 13 23 28 31 33 58 71 79
C14 42 19 24 27 28 45 57 64 66
C15 14 5 8 9 10 35 57 64 71
C16 6 3 4 5 5 50 66 83 83
C17 9 6 8 9 9 66 88 100 100
C18 15 10 10 12 12 66 66 80 80
C19 9 4 5 5 5 44 55 55 55
C20 20 8 11 15 17 40 55 75 85
C21 24 16 21 23 23 66 87 95 95
C22 7 4 7 7 7 57 100 100 100
C23 40 17 26 30 34 42 65 75 85
C24 8 3 5 5 5 37 62 62 62

Table 4: Size is the number of families in each cooperative. The next four columns, 1st, 2nd,
3rd, and 4th, have the cumulative number of different apartments ranked in the top 1, 2 ,3
and 4 positions, respectively. The last four columns express the previous four columns as a
percentage of the total number of apartments.
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2 Expected number of families that are assigned apartments with
rank k = 1, . . . , n by the Rawlsian, PS and MTAV rules

Table 5: Expected number of families that are assigned apartments with rank up to k = 1, . . . , 16

by the Rawlsian, PS and MTAV rules.

C1 C2 C3 C4
Position Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV

1 7.17 12.54 10 2.4 6.42 8 2 2.44 2 2 2 2
2 10.36 14.61 15 4.4 7.13 10 4 3.33 4 2 2 2
3 13.33 15.64 16 5 7.64 10 4 3.56 4 4 4 4
4 16.67 16.51 18 5 8.34 10 4 4 4 4 4 4
5 17 16.99 18 8 9.42 11 - - - - - -
6 18 17.73 19 11 10.55 13 - - - - - -
7 20 18.69 20 15 11.91 13 - - - - - -
8 22 19.62 23 15 12.7 13 - - - - - -
9 23 19.78 23 17 13.46 14 - - - - - -
10 23 20.01 23 17 14.13 14 - - - - - -
11 24 20.15 23 17 14.66 16 - - - - - -
12 25 20.45 24 18 15.04 18 - - - - - -
13 26 21.49 26 18 15.34 18 - - - - - -
14 26 21.91 26 18 15.98 18 - - - - - -
15 26 22.51 26 18 16.32 18 - - - - - -
16 26 22.76 26 18 17.13 18 - - - - - -

Total 26 26 26 18 18 18 - - - - - -
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Table 6: Expected number of families that are assigned apartments with rank up to k = 1, . . . , 16

by the Rawlsian, PS and MTAV rules.

C5 C6 C7 C8
Position Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV

1 7.75 13.82 11 4 4.28 4 11.5 11.72 13 3.5 4.51 4
2 13.58 18.36 17 7 5.78 7 14.5 14.83 16 7.67 7.52 8
3 17 18.97 20 8 6.72 8 15.5 16.63 18 11 9.21 11
4 19 20.03 21 8 7.22 8 18 17.94 20 11 9.33 11
5 21.5 21.04 22 8 7.56 8 21.5 19.36 20 11 9.66 11
6 24.5 21.52 23 8 7.89 8 23 20.09 22 11 10.02 11
7 27 22.07 26 8 7.89 8 27 21.42 27 12 10.27 12
8 28 22.52 28 8 8 8 29 22.46 29 12 10.76 12
9 28 23.05 28 - - - 29 23.12 29 12 10.94 12
10 28 23.34 28 - - - 29 23.95 29 12 11.05 12
11 28 24.04 28 - - - 29 24.87 29 12 11.25 12
12 28 24.55 28 - - - 29 25.42 29 12 12 12
13 28 25.14 28 - - - 29 25.91 29 - - -
14 28 25.33 28 - - - 29 26.2 29 - - -
15 28 25.93 28 - - - 29 27.03 29 - - -
16 28 26.11 28 - - - 29 27.8 29 - - -

Total 28 28 28 - - - 29 29 29 - - -

Table 7: Expected number of families that are assigned apartments with rank up to k = 1, . . . , 16

by the Rawlsian, PS and MTAV rules.

C9 C10 C11 C12
Position Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV

1 4.88 7.23 8 2.42 2.42 3 4 5.63 6 7.81 9.05 8
2 7.25 8.59 9 2.75 2.75 3 7 6.33 7 11.38 11.73 12
3 9 9.4 10 3 3 3 10 8.56 9 13 12.44 13
4 13 10.85 12 4 4 4 10 9.13 10 13.75 12.99 14
5 14 12.16 13 - - - 11 9.59 11 15 13.53 15
6 15 13.03 15 - - - 11 10.31 11 16 13.88 16
7 15 13.29 15 - - - 11 10.44 11 16 14.26 16
8 15 13.35 15 - - - 11 10.6 11 16 14.58 16
9 15 13.69 15 - - - 11 10.86 11 16 15.03 16
10 15 14.47 15 - - - 11 10.89 11 16 15.29 16
11 15 14.74 15 - - - 11 11 11 16 15.4 16
12 15 14.8 15 - - - - - - 16 15.48 16
13 15 14.93 15 - - - - - - 16 15.65 16
14 15 15 15 - - - - - - 16 15.85 16
15 15 15 15 - - - - - - 16 15.91 16
16 - - - - - - - - - 16 16 16

Total - - - - - - - - - - - -
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Table 8: Expected number of families that are assigned apartments with rank up to k = 1, . . . , 16

by the Rawlsian, PS and MTAV rules.

C13 C14 C15 C16
Position Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV

1 4.5 9.29 9 3.11 12 7 1.78 3.65 4 2.17 2.44 3
2 11.5 16.52 14 8.46 15.38 16 3.75 5.88 8 3.5 3.53 4
3 15.5 19.01 19 9.97 17.15 19 4.58 6.55 8 4.83 3.92 5
4 19.5 20.97 24 14.15 18.66 20 7.33 7.75 8 5 4.51 5
5 23 23.22 28 18.4 19.78 24 10 9.37 10 5 5 5
6 26 24.68 30 19.99 21.01 24 13 10.43 11 6 6 6
7 29 25.84 31 22.96 22.7 26 13 10.52 12 - - -
8 29.5 27.09 31 24.79 24.02 31 13 11.06 12 - - -
9 34 27.76 33 26.08 24.51 32 14 11.71 14 - - -
10 36 28.49 34 27.08 24.81 33 14 12.02 14 - - -
11 36 29.12 35 28.58 25.49 33 14 12.47 14 - - -
12 37 29.59 36 30.33 26.69 34 14 13.19 14 - - -
13 38 30.44 37 33.5 28.07 35 14 13.52 14 - - -
14 39 31.04 39 35.5 29.28 35 14 14 14 - - -
15 39 31.27 39 36 30.03 36 - - - - - -
16 39 31.66 39 37 30.37 36 - - - - - -

Total 39 39 39 42 42 42 - - - - - -

Table 9: Expected number of families that are assigned apartments with rank up to k = 1, . . . , 16

by the Rawlsian, PS and MTAV rules.

C17 C18 C19 C20
Position Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV

1 3.5 4.62 5 5.33 8.39 9 2.8 3.14 4 2.21 5.34 5
2 8 6.75 7 7 8.58 9 3.8 3.97 5 5.92 6.74 8
3 9 7.68 9 9.5 9.09 9 3.8 4.34 5 7.17 8.66 9
4 9 8.6 9 9.5 9.15 9 4.83 4.57 5 10.42 10.57 12
5 9 8.8 9 10.25 9.69 10 5.75 5.33 5 14.75 12.5 14
6 9 8.83 9 10.5 10.17 10 7 6.33 7 16 13.53 16
7 9 8.91 9 14 12.18 14 7.89 7.11 7 16 13.84 16
8 9 8.98 9 15 13.09 15 8 8 8 17 14.64 16
9 9 9 9 15 13.27 15 9 9 9 19 15.61 19
10 - - - 15 13.65 15 - - - 20 16.11 20
11 - - - 15 14.19 15 - - - 20 16.53 20
12 - - - 15 14.27 15 - - - 20 17.15 20
13 - - - 15 14.61 15 - - - 20 17.69 20
14 - - - 15 14.9 15 - - - 20 17.95 20
15 - - - 15 15 15 - - - 20 18.61 20
16 - - - - - - - - - 20 18.89 20

Total - - - - - - - - - 20 20 20
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Table 10: Expected number of families that are assigned apartments with rank up to k =

1, . . . , 16 by the Rawlsian, PS and MTAV rules.

C21 C22 C23 C24
Position Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV Rawls PS MTAV

1 8.79 12.44 12 4 3.75 4 5.5 12.16 10 2.38 2.83 3
2 10.71 13.01 14 7 5.38 7 11.31 17.44 15 4.55 3.4 5
3 13.83 14.38 17 7 6.67 7 15.94 20.44 19 4.8 3.97 5
4 15.17 15.24 17 7 6.83 7 24.42 23.16 27 4.8 4.29 5
5 22 18.45 21 7 6.88 7 28.47 25.91 29 5 5 5
6 23 19.15 22 7 6.92 7 32.36 27.93 34 7 6.29 7
7 24 19.79 24 7 7 7 34.92 29.24 35 8 7.46 8
8 24 20.24 24 - - - 37.5 30.17 37 8 8 8
9 24 20.51 24 - - - 38 31.08 37 - - -
10 24 20.88 24 - - - 38.5 31.54 38 - - -
11 24 21.69 24 - - - 40 32.24 40 - - -
12 24 21.84 24 - - - 40 32.63 40 - - -
13 24 22.2 24 - - - 40 32.99 40 - - -
14 24 22.35 24 - - - 40 33.68 40 - - -
15 24 22.67 24 - - - 40 33.99 40 - - -
16 24 22.77 24 - - - 40 34.35 40 - - -

Total 24 24 24 - - - 40 40 40 - - -
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