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A B S T R A C T

Aerodynamic interactions among wind turbines diminish power generation in offshore wind farms. Adjusting
a turbine’s yaw angle, deliberately misaligned from the wind direction, mitigates energy losses from wake
effects, thereby enhancing overall power generation. This study employs advanced wind farm simulation
software for numerical simulations to compute the optimal yaw angle and associated percentage power gain for
three offshore wind turbines under varying conditions, encompassing turbine models, wind speeds, turbulence
intensities, and layouts. Two polynomial regression models and one decision tree classification model are
developed to estimate the yaw angle and percentage power gain based on these conditions. These models
are computationally efficient, integrating previously unconsidered predictors, and facilitating assessment of
predictor impacts on yaw angle and power gain. Moreover, they enable real-time adjustment of turbine nacelle
direction, positioning them for effective deployment at scale in offshore wind farms. Implementing these models
is anticipated to extend and facilitate the use of turbine yawing as a strategy to enhance energy generation,
providing computationally efficient tools for optimizing power generation in ocean wind farms.
1. Introduction

Active yaw control (AYC) involves deliberately misaligning the yaw
direction of wind turbines from the wind direction to minimize energy
losses caused by wake effects and reduce power production intermit-
tency (Howland et al., 2019). In large-scale wind farms, these losses
can be substantial, ranging from 30% to 40% (Zong and Enbo, 2022).
Implementing AYC has shown promise in optimizing power generation
across wind farms by increasing the power output of turbines (Stanley
et al., 2023). AYC is recognized for its effectiveness in mitigating wake
effects and is established as a leading wake redirection strategy (Zong
and Porté-Agel, 2021), proving to be a more effective control technique
compared to conventional greedy control (Kim et al., 2023), where each
turbine focuses solely on maximizing its own power production.

Extensive research on the effect of AYC on power gain encom-
passes various numerical approaches, including both low-fidelity and
high-fidelity models for simulating wind wakes generated by turbines.
Computational studies, such as those by Wei et al. (2023) and Xin et al.
(2022), have employed Large Eddy Simulations (LES) to investigate
AYC under different conditions. Ciri et al. (2018) and Bempedelis et al.
(2023) also utilized LES to study the impact of turbine scale and
wake steering effects, respectively. Archer and Vasel-Be-Hagh (2019)
concluded that positive yaw misalignment angles lead to net power
gains in a wind farm, while negative angles result in losses. Addition-
ally, Das and Shen (2023) conducted a computational investigation
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of a three-by-three wind turbine array using LES to explore wind
farm behavior under varying wind conditions and yaw angles. They
concluded that wind speed has a limited impact on wake characteristics
and power outputs, except at lower wind speeds with a yaw angle
of 20 degrees. Kuo et al. (2020) used an analytical wake model to
optimize yaw angles, observing that higher power density increases po-
tential production improvement through yaw optimization. P. Fleming
and colleagues have combined computational simulations with exper-
imental validation to study wake steering performance using various
strategies (Stanley et al., 2023; Annoni et al., 2018; Fleming et al.,
2022; Stanley et al., 2022; Simley et al., 2021; King et al., 2021;
Fleming et al., 2021).

Table 1 summarizes the effectiveness of AYC as a function of rele-
vant parameters in previous works and the current study. The parame-
ters include the distance between wind turbines (𝑑), the turbine rotor
diameter (𝐷), the wind velocity (𝑈), and the wind turbulence intensity
(𝐼). Turbine distance was considered to increase either with increasing
streamwise or spanwise turbine spacing. Up arrows indicate that AYC
is more effective as the parameter increases, down arrows indicate the
opposite, an equality symbol indicates no efficiency change as the pa-
rameter increases, and a dash indicates that the study did not state the
relationship between AYC efficiency and the parameter. The number of
turbines and the methods used in the studies are also presented. This
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Table 1
Effectiveness of AYC as a function of key parameters in previous works and the current study: turbine distance (𝑑), rotor diameter (𝐷), wind velocity (𝑈), and turbulence intensity
(𝐼).

Study No. turbines Methods used Effectiveness of AYC

𝑑 𝐷 𝑈 𝐼

Zong and Porté-Agel (2021) 3 Wind tunnel experiments,
↓ – – ↓Analytical wind farm model

He et al. (2024) 5 Analytical wind farm model ↓ – – ↓

Wei et al. (2023) 3 Large-eddy simulations ↑ ↓a – ↓ ↓

Stanley et al. (2022) 10–50 Analytical wind farm model ↓ – – –
Ciri et al. (2018) 3 Large-eddy simulations – ↑ – –
Das and Shen (2023) 9 Large-eddy simulations – – =b –
Kuo et al. (2020) 39 Analytical wind farm model ↓ – – –
Bastankhah and Porté-Agel (2019) 5 Wind tunnel experiments ↓ – – ↓

This study 2 Analytical wind farm model,
↓ ↑ ↓ ↓Linear regression model

a Increasing then decreasing.
b Except for lower wind speeds at a yaw angle of 20 degrees.
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table shows that the present study encompasses all relevant parameters
affecting the effectiveness of AYC, making it more comprehensive than
previous studies, with which it presents a good qualitative agreement.
This thorough parametric study was possible due to the simplicity and
low computational cost of the models developed for calculating the
optimal yaw angle and percentage power gain from applying AYC.

Despite the advances and insights provided by past research, no
statistical model incorporating multiple relevant predictors has been
developed to offer deeper insights into the effects of wake steering on
power generation. Such a model could serve as a tool for the rapid
optimization of wind turbine yaw angles. Hence, this article utilizes
statistical regression analysis to develop a model that introduces a
novel approach for fast and scalable optimization in wake steering. The
computational efficiency of analytical and statistical models employed
in wake steering is critical for optimizing controller design and the
operation of online control systems (Fleming et al., 2021).

This study examined a layout with two turbines, where the second
turbine was intentionally placed in aerodynamic interference with the
wake of the first. Numerous numerical simulations were conducted
using the FLOw Redirection and Induction in Steady State (FLORIS)
software, combined with the Grid Search (GS) optimization method,
to determine the optimal yaw angle for the wind turbine and the
associated power gain from controlling this angle. Based on the sim-
ulation results, three numerical models were developed to estimate
he optimal yaw angle for the upstream turbine and the corresponding
ower gain for the pair, considering wind speed, turbulence intensity,
otor diameter, nominal wind turbine speed, and layout.

A decision tree-based classification model was developed to iden-
tify the operating conditions under which wake control is beneficial.
Additionally, two multiple linear regression models were fitted: one
to calculate the optimal yaw angle of the upstream wind turbine for
maximizing power generation by the turbine pair, and another to
determine the percentage power gain associated with controlling this
angle. The results indicated that both the classification model and
the yaw angle model provide relatively accurate estimates. However,
while the percentage power gain model follows the simulation trends,
it exhibits higher errors, making it suitable for qualitative analysis
but not for predictive purposes. The models were capable of making
a single prediction in tenths of a second, making them potentially
scalable with the number of turbines, as pursued in wake steering
control applications (Fleming et al., 2022).

2. Numerical procedure

This section outlines the numerical procedure employed in this
study. Firstly, the selected predictors for the numerical models are pre-
sented, detailing their respective variation intervals. These predictors
2 
serve as independent variables defining the operating conditions simu-
lated in this research. Secondly, the numerical simulations conducted
sing the FLORIS software are described. These simulations aim to
etermine the optimal yaw angle of the upstream wind turbine and
uantify the percentage power gain for the pair of wind turbines operat-

ing under conditions of aerodynamic interference. In this study, FLORIS
is used primarily to generate the initial data required for developing the
statistical yaw angle and power gain models, serving as a foundational
tool. Thirdly, the classification and regression models are developed
based on the simulation results, which are subsequently discussed.
The primary contribution of this article lies in the development and
implementation of these surrogate models. Once established, these
models can predict the optimal yaw angles and power gains without
further reliance on FLORIS. Fourthly, a sensitivity analysis is conducted
to identify the most relevant parameters affecting the turbine’s optimal
yaw angle and power gain. Finally, the model responses are compared
with those from the simulations in three canonical cases.

Fig. 1 provides a summarized depiction of the procedural steps in-
olved in developing the models utilized for wake steering optimization

and analysis. Section numbers are referenced within each block of the
iagram.

2.1. Selected model predictors

This study focuses on an array of two wind turbines, denoted as
T1 and T2, where T2 is positioned downstream of T1 and exposed
to the wake of T1. Fig. 2 illustrates the wind turbine layout and
highlights the key parameters under investigation. The yaw angle of
T1 (𝛾) plays a critical role in regulating the power output of both
turbines. To determine the optimal yaw angle 𝛾∗ of T1 that maximizes
the combined power generation and to assess the percentage power
gain (𝛥𝑃 ) achieved through 𝛾 control, a set of predictors was selected,
including airflow characteristics, wind turbine specifications, and lay-
out parameters. In FLORIS, the selected adjustable parameters used
s predictors encompass wind speed at turbine T1 (𝑈), coordinates of
urbine T2 in both streamwise (𝑥) and spanwise (𝑦) directions relative

to T1, free-stream turbulence intensity (𝐼), rotor diameter (𝐷), and
nominal wind turbine speed (𝑈𝑟).

Since a change in wind direction is equivalent to changing the
elative coordinates 𝑥 and 𝑦 of T2, and these coordinates are already
onsidered in the study, it is not necessary to account for wind direction
xplicitly. However, wind direction is crucial for studying yaw control
trategies for specific farm sites and layouts (Song et al., 2023; Kuo
t al., 2020). In these problems, the use of AYC is integral to the co-

design of control systems, where optimizing park layout incorporates
actions to control wake effects (Stanley et al., 2023; Song et al., 2023).
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Fig. 1. Block diagram illustrating the procedural flow for developing the models utilized in wake steering optimization and analysis.
Fig. 2. Sketch of the wind farm layout (not to scale) depicting the main parameters
considered in this study.

This comprehensive set of field-measurable predictors enables real-
time calculation of model responses, facilitating dynamic control of
power generation for both turbines. It is important to note that this
study focuses solely on the immediate downstream turbine (T2) without
considering impacts on turbines further downstream. This narrow focus
allows for a detailed examination of the direct interactions between T1
and T2 within the specified experimental conditions. Numerous studies
have highlighted the significant impact of these parameters on wind
turbine power output in scenarios involving aerodynamic interactions.
For instance, Xin et al. (2022) conducted LES on a wind farm with
two NREL 5 MW reference turbines, varying turbine spacing from
5𝐷 to 8𝐷 and applying yaw control to the upstream turbine. Their
findings underscore a strong correlation between total power output,
yaw control, and turbine spacing. Similarly, Zong and Enbo (2022)
identified streamwise turbine spacing, turbulence intensity, and wind
speed as crucial factors influencing net power gain in studies involving
active wake control strategies. Additionally, wind speed is recognized
for its significant impact on wake control efficiency (Simley et al.,
2021).

Firstly, in defining the range of variation for the coordinate 𝑥,
the objective was to position T2 within the wake generated by T1,
considering that within a wake length, the velocity typically recovers
to approximately 90% of its initial value (Stegner et al.). For a 5%
turbulent intensity of the free stream, the wake extends between 12–13
rotor diameters, and for a 25% turbulent intensity, it extends between
4–6 rotor diameters (Stegner et al.), with an average wake length of
10 diameters. Accordingly, the coordinate 𝑥 was varied between 5
and 10 rotor diameters, aligning with the standard turbine spacing
in the streamwise direction, typically ranging from 6 to 10 turbine
3 
diameters (Stegner et al.). For the coordinate values of 𝑦, a maxi-
mum spanwise displacement of 1 rotor diameter for turbine T2 was
considered on each side of T1, consistent with the spacing used in
the experimental analysis of Ref. Zong and Porté-Agel (2021). This
choice resulted in a substantial range of layouts where aerodynamic
interference between T1 and T2 occurs.

Secondly, the rotor diameters used in the simulations were obtained
from three offshore turbine models available in FLORIS, whose charac-
teristics are summarized in Table 2. These turbines cover a significant
range of power outputs.

Thirdly, wind speed values ranging from 5 m/s to 25 m/s were
chosen to encompass nearly the entire operational range of the turbines
listed in Table 2. Turbulent intensity, varying between 5% and 15%,
was also selected to cover conditions from low to moderate turbulence,
reflecting the influence of multiple factors such as elevation and ter-
rain roughness on this parameter. The specific values assigned to the
predictors are summarized in Table 3.

Moreover, to streamline the presentation of results, the predictors
were further condensed into four dimensionless parameters, as shown
in Eq. (1):

𝑦′ =
𝑦
𝑥
, 𝑈 ′ = 𝑈

𝑈𝑟
, 𝑑′ = 𝑑

𝐷
, 𝐼 (1)

where 𝑑 =
√

𝑥2 + 𝑦2 denotes the distance between the wind turbines.

2.2. Numerical simulations

FLORIS is an open-source computational aerodynamics modeling
program specifically designed for wind farm energy production esti-
mation. It integrates wake models to simulate the interaction between
wind turbines operating under steady-state conditions. By computing
the velocity field within the wind farm, FLORIS calculates power
output. The models in FLORIS typically combine velocity deficit and
wake deflection models. One extensively utilized model in wake effect
studies is the Jensen model (Jensen, 1983), which has been employed
by various researchers for optimizing turbine wake steering (Stanley
et al., 2023, 2022). In the Jensen velocity deficit model, the wake
velocity deficit is assumed constant within the wake, extending lin-
early downstream, and wake deflection is modeled using the Jiménez
model (Jiménez et al., 2010). However, this model tends to overesti-
mate power generation under full wake interference and underestimate
it under partial wake interference conditions (Niayifar and Porté-Agel,
2016).

Accurate wake effect representation is essential for effective real-
time wind farm control (Amiri et al., 2024). The Gauss-Curl-Hybrid
(GCH) model in FLORIS, used in this study, assumes flow-conserving



I. Formoso

w
t
i
b

a

g

p
f

w

t

g
t
i
a

m

B

d
t
p

Ocean Engineering 315 (2025) 119830 
Table 2
Characteristics of the wind turbines considered in the study.

Model H [m] D [m] Ur [m/s] Ua [m/s] Uc [m/s] Pr [MW] Reference

NREL 5 MW 90 126 11.4 3 25 5 Jonkman et al. (2009)
IEA 10 MW 119 198 11.0 4 25 10 Gaertner et al. (2020)
IEA 15 MW 150 240 10.6 3 25 15 Gaertner et al. (2020)
c

i

i

a

Table 3
Values assigned to the predictors in the study.

Predictor 𝑥 [m] 𝑦 [m] 𝑈 [m/s] 𝐼 [%]

Value 5𝐷 , 6𝐷 ,… , 10𝐷 −𝐷 ,−0.75𝐷 ,… , 𝐷 5, 7.5,… , 25 5, 10, 15

Table 4
Wake and deflection parameters for the Gauss-Curl-Hybrid model.

Parameter 𝑘𝑎 𝑘𝑏 𝛼 𝛽 𝜖 𝜙

Value 0.380 0.004 0.580 0.077 0.2 𝐷 2.000

self-similarity and integrates findings from various studies (Bastankhah
and Porté-Agel, 2016; Niayifar and Porté-Agel, 2016; King et al., 2021).
It incorporates effects like air drag, wake asymmetry, and secondary

ake direction, and models wake velocity deficit with a Gaussian dis-
ribution, accounting for increased turbulence intensity due to turbine
nteractions. This results in a velocity deficit distribution that aligns
etter with theoretical and experimental observations (Amiri et al.,

2024). The GCH model has been utilized in studies such as Stanley et al.
(2022) and Fleming et al. (2021) to model wake steering in wind farms
nd calculate power gain. It is specifically designed to incorporate the

secondary effects of wake steering in turbine arrays and has shown
ood agreement with LES results across diverse scenarios, as detailed

in King et al. (2021). In that work, the GCH model was compared
with LES for both 3- and 5-turbine arrays, with turbine spacings of 7D
and 6D, respectively, under turbulence intensities of 6% and 10%. The
ercentage power gains obtained from implementing yaw control were
ound to be reasonably close between the FLORIS GCH model and the

LES results. This validation underscores the GCH model’s reliability as
a wind farm simulation tool, particularly in accurately modeling wind

akes in the far wake region produced by turbines operating under
yawed conditions.

The GCH model includes several configurable parameters, which for
his study have been maintained at their default values as specified

in FLORIS. These default values are consistent with those used in
optimization studies of wake steering, such as the one detailed by
Gori et al. (2023), and are summarized in Table 4. The use of default
parameters from the Gaussian-shaped wake deficit model led to a very
ood agreement with historical data for most wind directions across
hree offshore wind farms. However, a larger discrepancy was observed
n centrally positioned turbines in the largest wind farm, where deep-
rray effects are more pronounced (Doekemeijer et al., 2022). In the

GCH model, parameters like 𝑘𝑎 and 𝑘𝑏 adjust turbulence intensity and
wake recovery, while 𝛼 and 𝛽 govern turbulence and thrust coefficient
influence on near-wake length. Additionally, 𝜖 defines vortex core size,
and 𝜙 incorporates yaw-enhanced mixing turbulence (Gori et al., 2023).
For illustrative purposes, Fig. 3 depicts a simulation using the GCH

odel with parameters set to: 𝑥 = 5𝐷, 𝑦 = 0.5𝐷, 𝐷 = 198 m, 𝛾 = 18◦,
𝑈 = 11 m∕s, 𝑈𝑟 = 11 m∕s, and 𝐼 = 5%. As stated in Archer and Vasel-

e-Hagh (2019), Fig. 3 demonstrates that the wake is deflected from
its axis by an angle opposite to the yaw misalignment angle.

The simulations were conducted using a full factorial experimental
esign, where each combination of predictor values from Table 3 was
ested, resulting in 4374 instances. Grid Search (GS) optimization was
erformed in each run to determine the optimal yaw angle of T1

(𝛾∗) and the percentage increase in power (𝛥𝑃 ) for both T1 and T2
through AYC. Several other optimization algorithms have been used in
numerical studies to compute the optimal yaw angle for maximizing
4 
power production. Traditional methods like Sequential Least Squares
Programming (SLSQP) require extensive computational resources and
scale exponentially with the number of turbines, making them ineffi-
ient for large farms (Fleming et al., 2022). Heuristic methods, such as

the Serial-Refine method, achieve comparable power generation levels
with significantly less computational effort and linear scaling (Stanley
et al., 2023; Fleming et al., 2022; Stanley et al., 2022). Random Search
(RS) (Kuo et al., 2020), Particle Swarm Optimization (PSO) (Song
et al., 2023), Bayesian Optimization (BO) (Bempedelis et al., 2023), and
analytical gradient methods (Howland et al., 2019; Ciri et al., 2018)
have also been employed for this objective. Despite the computational
intensity of brute-force methods like GS, this approach was chosen
due to its ability to comprehensively evaluate all potential parameter
combinations at the initial stage of data gathering for subsequent
statistical modeling.

Consistent with prior research (Xin et al., 2022; Stanley et al.,
2022; Lin and Porté-Agel, 2020), yaw angles (𝛾) were varied from 0
to 30 degrees in increments of 1 degree. Here, 0 degrees indicates
that the turbine rotor is aligned directly with the incident wind. In
FLORIS, 𝛾 represents the angle between the turbine rotor axis and
the incident wind direction in the horizontal plane. Only positive
yaw angles were considered due to increased mechanical loads with
negative angles (Stanley et al., 2022; Fleming et al., 2014) and min-
imal differences in power production between positive and negative
angles (Zong and Porté-Agel, 2021). Positive yaw angles (counter-
clockwise rotation) are also found to be more beneficial than negative
angles (Archer and Vasel-Be-Hagh, 2019). See Fig. 2 for illustration.
Though AYC for T2 might boost total power output, empirical evidence
suggests minimal gains (Wei et al., 2023; Bastankhah and Porté-Agel,
2019). Optimal yaw distributions typically decrease from upstream to
downstream turbines (Kuo et al., 2020), with downstream turbines
deally aligned perpendicular to the flow (Bastankhah and Porté-Agel,

2019). Thus, T2’s rotor orientation was fixed perpendicular to the flow
n all simulations.

The wind is assumed to flow from left to right, in an easterly
direction, corresponding to a 270o angle measured clockwise from the
vertical in FLORIS. The atmospheric boundary layer is modeled using
a power law with an exponent of 0.12, appropriate for neutrally stable
atmospheric conditions over open water. For all calculations, wind
direction is assumed to remain constant with height, disregarding any
wind veer. The mean turbine velocity is calculated using FLORIS’s de-
fault method, which employs a cubic average based on wind velocities
sampled across a 3 × 3 grid positioned over the rotor’s swept area.
The air density is assumed to be 1.225 kg/m3, which corresponds to
standard atmospheric conditions.

2.3. Adjustment of the yaw angle classification model

To determine scenarios where adjusting the yaw angle of T1 en-
hances overall power generation, a decision tree classifier model was
tailored for this purpose. To keep the model simple, a maximum of
10 splits was established. This machine learning approach is widely
adopted for classification tasks in wind energy studies. The criterion for
reorienting T1 was set based on a minimum threshold of a 1% increase
in power generated by the turbine pair. Specifically, if the calculated
𝛥𝑃 exceeds this threshold, reorienting T1 is deemed beneficial; oth-
erwise, T1 remains at 𝛾 = 0◦, directly facing the wind. The classifier’s
response is formulated as a function of the predictors defined in Eq. (1),
rticulated as follows:

( ′ ′ ′ )
𝛾𝑏 = 𝛾𝑏 𝑦 , 𝑈 , 𝑑 , 𝐼 (2)
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Fig. 3. Simulated velocity field at turbine hub-height (horizontal cut) using FLORIS Gauss-Curl-Hybrid model.
Here, 𝛾𝑏 denotes the binary output of the model, where it outputs
0 when reorientation of T1 is not justified, and 1 otherwise. Certain
combinations of wind conditions, wind turbine models, and layouts
demonstrate an advantageous increase in power generation by T2,
more than compensating for any reduction in T1’s output. In contrast,
in other scenarios, the reorientation of T1 does not yield sufficient
benefit to justify the adjustment. The use of the classification model
was integral to refining and validating the approach, ensuring robust
control over T1’s orientation while minimizing unnecessary turbine
adjustments that yield insignificant power gains. All simulations con-
ducted were considered in the adjustment. Hereafter, this classification
model will be denoted as M0.

2.4. Adjustment of regression models for yaw angle and percentage power
gain

To estimate the optimal yaw angle of T1 and the percentage power
gain associated with both T1 and T2, two polynomial regression models
of multiple linear form were fitted to the data obtained from the
simulations. Prior to fitting the models, simulations were discarded
where the percentage increase in generated power was less than 1%,
retaining only those where 𝛥𝑃 > 1%, as these were the cases of interest.
As a result, 543 simulations were considered in the fitting, representing
approximately 12% of the total.

The method used to fit both models was stepwise regression, em-
ploying a forward selection procedure. This procedure began with a
constant initial model and gradually added the most significant terms at
each step. The addition of terms ceased when all variables not included
in the model had p-values greater than 0.05, ensuring the relevance
of the predictors. Since terms of order higher than quadratic did not
significantly improve the goodness of fit for the optimal yaw angle
model, only linear, quadratic, and interaction terms were considered.
However, for the percentage power gain model, linear, quadratic, cubic,
and interaction terms were included.

Firstly, a linear regression model was considered to adjust the
optimal yaw angle of T1 based on the predictors presented in Eq. (1),
given by Eq. (3):

𝛾∗ = 𝛾∗
(

𝑦′, 𝑈 ′, 𝑑′, 𝐼) (3)

A higher value of 𝛾∗ indicates a greater need to divert the wake gener-
ated by T1, avoiding (or reducing) aerodynamic interference with T2,
in order to maximize the power produced by the pair of wind turbines.
Hereafter, the regression model for 𝛾∗ will be referred to as M1.

Secondly, a linear regression model was considered to adjust the
percentage power gain linked to active yaw control, given by Eq. (4):

( ′ ′ ′ )
𝛥𝑃 = 𝛥𝑃 𝑦 , 𝑈 , 𝑑 , 𝐼 (4)

5 
Table 5
Predictors, optimal yaw angle of T1, and power gain by T1 and T2 in four represen-
tative instances out of the 543 used to fit the regression models.

Instance 𝑦′ 𝑈 ′ 𝑑′ 𝐼 [%] 𝛾∗ [◦] 𝛥𝑃 [%]

1 −0.0500 1.1364 5.0062 5 30 2.60
2 0.0000 0.4545 5.0000 5 24 12.73
3 0.0000 0.6818 5.0000 5 29 8.85
... ... ... ... ... ... ...
543 0.1071 0.4386 7.0401 15 9 1.35

A higher value of 𝛥𝑃 indicates a greater power gain for T1 and T2
resulting from the control applied to 𝛾, calculated as shown in Eq. (5):

𝛥𝑃 = 100𝑃𝛾∗ − 𝑃0

𝑃0
% (5)

Here, 𝑃𝛾∗ and 𝑃0 represent the power generated by T1 and T2 with 𝛾 =
𝛾∗ and 𝛾 = 0o, respectively. This metric of power output improvement,
defined in Eq. (5), is analogous to the one used by Bempedelis et al.
(2023), where both high-fidelity and low-fidelity wake models were
employed to investigate wake steering effects in a wind farm, and to the
one used by He et al. (2024) to study wake steering strategies for com-
bined power enhancement and fatigue mitigation within wind farms.
It quantifies the percentage improvement relative to the non-yawed
scenario. Henceforth, the regression model for 𝛥𝑃 will be denoted as
M2.

Since the response of the classification model is essential for guiding
the estimation of 𝛾∗ and 𝛥𝑃 under specific operating conditions, using
model M0 before models M1 and M2 is required.

3. Results and discussion

Table 5 presents the values of the predictors, the optimal yaw angle
of T1, and the percentage increase in power generated by T1 and T2,
both calculated with FLORIS, for four representative instances out of
the 543 used to fit the regression models.

The optimal yaw angle of T1 and the percentage power gain of
T1 and T2 associated with active yaw control, as obtained in the
simulations, are detailed in the penultimate and last columns of Table 5,
respectively. Specifically, the optimal yaw angle 𝛾∗ ranged from 6o to
30o, and the percentage power gain 𝛥𝑃 varied from 1.0% to 25.6%,
with an average of approximately 6%. These results are consistent
with findings from an experimental study (Ozbay et al., 2012), which
observed similar efficiency gains for tandem turbines with a down-
stream distance of 𝑥∕𝐷 = 2 and yaw control on the upstream turbine.
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Fig. 4. Histograms of simulation results: (a) Optimal yaw angle, (b) Percentage power gain.
Fig. 5. Graphical representation of the fitted decision tree, generated using the Cmap software.
Additionally, field tests by the National Renewable Energy Labora-
tory and Stanford University reported that active yaw control can
increase total wind farm power production by 5%–15% when wind
directions are aligned with turbine rows (Zong and Enbo, 2022). Sim-
ilarly, Bastankhah and Porté-Agel (2019) found that yaw control can
enhance overall wind farm efficiency by up to 17% compared to
non-yawed conditions, aligning with the findings of this study.

The relatively low mean value of the power gain compared to
the maximum achieved suggests that while certain operating condi-
tions allow for significant power increases, even exceeding 20%, in
most cases, the gain obtained through active yaw control is relatively
modest, typically only a few percentage points. Figs. 4(a) and 4(b)
present histograms of the optimal yaw angles and percentage power
gains, respectively, with a bin width of one degree. Fig. 4(a) shows
that yaw angles between 0 and 5 degrees were not used, with angles
of 11o and 12o being predominant. Fig. 4(b) indicates that, in most
runs (approximately 53%), the power gain was below 5%. However,
within a wind farm consisting of numerous turbines, even a modest per-
centage gain can result in a significant increase in energy production.
This underscores the importance of implementing appropriate control
strategies, as such gains can be achieved without the need for new
technologies or costly infrastructure investments.
6 
Next, the results obtained with the classification model, M0, and the
regression models, M1 and M2, are presented and analyzed. All three
models were developed using Matlab software.

3.1. Yaw angle classification model

Fig. 5 shows the graphical representation of the fitted tree classifica-
tion model, while Fig. 6 displays its confusion matrix. With an accuracy
rate of 96.11% and an error rate of 3.88%, the model demonstrates
excellent classification performance. The matrix reveals that out of
the 3831 instances where 𝛥𝑃 < 1% (True = 0) was observed in the
simulations, the model misclassified 152 instances. Similarly, out of the
543 instances where 𝛥𝑃 > 1% (True = 1) was observed, it misclassified
18 instances.

Fig. 7 presents a parallel coordinates plot showing the classification
results of the simulations. Each axis represents a predictor scaled to its
range of values. Simulations classified with 𝛾𝑏 = 1 (Response = 1) are
depicted in orange, while those classified with 𝛾𝑏 = 0 (Response = 0) are
shown in blue. This visualization provides insights into the conditions
under which redirecting the wake generated by T1 is justified. Firstly,
it emphasizes the importance of this redirection when the spanwise
coordinate, 𝑦, is positive, as depicted in Fig. 2. In such cases, T1’s
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Fig. 6. Confusion matrix of the classification model.
Fig. 7. Parallel coordinates plot of the classification model.
ability to mitigate aerodynamic interference with T2 is enhanced by
restricting its rotation to positive 𝛾 angles, facilitating clockwise wake
deflection, as illustrated in Fig. 3. Secondly, it is inferred that reorient-
ing T1 is advantageous when the wind speed remains below a specific
percentage of the nominal wind turbine speed, particularly 120% or
𝑈 ′ < 1.2, due to the slower recovery of the velocity deficit in the wake
region compared to higher wind speeds. Thirdly, since the number of
orange lines decreases as the value of 𝑑′ increases, it is inferred that
the closer T1 and T2 are, the more necessary it becomes to control the
orientation of T1. This is a sensible observation because the smaller the
distance between the wind turbines, the greater the expected deficit in
wind speed incident on T2 caused by the wake effect. However, even at
moderate distances of the order of ten rotor diameters, i.e., 𝑑′ = 10, for
certain operating conditions, it is still necessary to reorient the wake
generated by T1. This observation indicates that at a distance of ten
rotor diameters from T1, the velocity field has not yet fully recovered.
Fourthly, since the number of orange lines decreases as the value of
𝐼 increases, it is deduced that the lower the turbulent intensity of
the wind, the more justified it is to reorient T1 in order to maximize
the power gain of T1 and T2. This trend parallels the effect of 𝑈 ′

on 𝛾𝑏, indicating slower recovery of the wake velocity deficit in less
turbulent conditions. However, notable exceptions are evident in the
fourth column of the plot, where high turbulence does not preclude
the benefit of reorienting T1.

Fig. 8 shows partial response plots, which describe how the model’s
response changes when each predictor varies. Each plot displays the
7 
probability that the response, 𝛾𝑏, takes values of 0 and 1 as the re-
spective predictor varies, while keeping the rest constant at their mean
values. The pronounced variations in the curves for 𝛾𝑏 = 1 in Figs. 8(a)
and 8(b) suggest that the predictors 𝑦′ and 𝑈 ′ have a significant impact
on the turbines’ generated power, directly influencing the model’s
response. In contrast, Figs. 8(c) and 8(d) display flatter curves for 𝛾𝑏 = 1
with values lower than those in Figs. 8(a) and 8(b), indicating that the
predictors 𝑑′ and 𝐼 have a comparatively lesser effect on the model’s
response when compared to 𝑦′ and 𝑈 ′.

For illustrative purposes, model M0 was used to predict the geomet-
ric locus of coordinates for T2 where T1 should be yawed to optimize
the power gain of the turbine pair shown in Fig. 3. Fig. 9(a) presents the
results. While T1 is fixed at (0, 0), T2 is placed at (5𝐷 , 0.5𝐷). For clarity,
T2’s coordinates are indicated by black dashed lines. The x-coordinate
ranges from 0 to 10𝐷 and the y-coordinate from −𝐷 to 𝐷, with 100
points in each direction. The region beyond the model’s fitting interval
(extrapolation region) is indicated by solid red lines. Redirecting T1 is
beneficial when T2’s center falls within the yellow region, henceforth
termed the yaw control region. As depicted in Fig. 9(a), this yellow
contour region is relatively narrow, indicating that turbines arranged in
a regular line (e.g., along 𝑦 = 0) may not benefit significantly from yaw
control. A small shift in wind direction could easily place the turbines
outside this effective yaw control region. Conversely, in irregularly
arranged wind farms, turbines are more randomly distributed, covering
a broader area. This increases the likelihood that at least one turbine
will be within the effective yaw control region of another. This implies
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Fig. 8. Partial response plots of the classification model. Scores obtained based on predictors: (a) 𝑦′, (b) 𝑈 ′, (c) 𝑑′, (d) 𝐼 .
that yaw control would be significantly more effective in irregularly
arranged farms compared to regularly arranged ones. This observation
is consistent with the findings of Li et al. (2022), which concluded that
yaw control is particularly effective in irregularly arranged wind farms
for enhancing power generation, compared to axial induction control.

Fig. 9(b) shows how the locus of points from Fig. 9(a) is affected
when wind velocity increases, with the relative wind velocity changing
from 𝑈 ′ = 1 to 𝑈 ′ = 1.2, making yaw control of T1 no longer beneficial.
Similarly, Fig. 9(c) illustrates how the locus of points from Fig. 9(a)
is affected when wind turbulence intensity increases from 𝐼 = 5%
to 𝐼 = 15%, restricting yaw control of T1 to a very limited region
extending from 𝑥 = 5𝐷 to about 𝑥 = 6𝐷 for positive 𝑦 values.

Since they are expressed in terms of turbine rotor diameter,
Figs. 9(a), 9(b), and 9(c) are identical whether the turbine diameter
is 126 m, 198 m, 240 m, or any intermediate value. These figures
demonstrate that the yaw control region follows a complex pattern,
which does not match the turbine wake, as can be confirmed by
comparing Figs. 3 and 9(a).

3.2. Regression models for yaw angle and percentage power gain

After performing stepwise regression, the adjusted model for the
optimal yaw angle of T1 was obtained, given by Eq. (6):
𝛾∗ = 𝑎0 + 𝑎1𝑦
′ + 𝑎2𝑑

′ + 𝑎3𝐼 + 𝑎4𝑦
′𝑑′ + 𝑎5𝑦

′𝐼 + 𝑎6(𝑦′)2 (6)

8 
Wind speed was found not to significantly affect the yaw angle of T1.
Table 6 presents the coefficients of the model obtained in the fit along
with their respective p-values. The 𝑟2 and adjusted 𝑟2 of the model were
found to be 0.882 and 0.881, respectively, indicating an acceptable
goodness of fit. The standard error of the model was 2.20 degrees, based
on 536 error degrees of freedom. Unlike previous models that required
numerous simulations, the fitted statistical model for the optimal yaw
angle involves only evaluating a second-degree polynomial.

Fig. 10 presents the adjusted response plots of M1, which show the
effect of each predictor on the optimal yaw angle 𝛾∗. The red dots
represent the model’s response for each instance in Table 5, while the
blue curve fits these responses. The slightly negative responses obtained
at the right end of Fig. 10(a) are due to the fitting error of M1.

Figs. 10(a) and 10(b) show that as the distance between T1 and
T2 increases, either in the spanwise or streamwise flow direction,
𝛾∗ decreases. This trend aligns with findings from Zong and Porté-
Agel (2021), indicating that as the spanwise distance between turbines
increases, there is a reduced requirement for wake manipulation.

Fig. 10(c) shows that as turbulence intensity increases, 𝛾∗ decreases.
This is because higher turbulence intensity causes the wake to re-
cover more quickly, leading to a reduction in the optimal yaw angle.
This observation aligns with the experimental results of Ozbay et al.
(2012), which found that at high turbulence intensity levels, yawing
the upstream turbine negatively impacts overall efficiency.

It is important to note that Eq. (6) provides the optimal yaw angle
for maximizing the power output of a two-turbine array. However, yaw



I. Formoso Ocean Engineering 315 (2025) 119830 
Fig. 9. Contour plot showing the geometric locus for yaw adjustment of T1: (a) same conditions as in Fig. 3, (b) same conditions but with relative velocity changed from 𝑈 ′ = 1
to 𝑈 ′ = 1.2, (c) same conditions but with turbulence intensity changed from 𝐼 = 5% to 𝐼 = 15%.
Table 6
Coefficients and associated p-values of adjusted models using predictors in their
respective ranges of variation.

M1 M2

Coefficient Estimation p-value Coefficient Estimation p-value

𝑎0 39.192 2.4864e−184 𝑏0 127.76 8.6876e−40
𝑎1 −64.233 9.7978e−07 𝑏1 391.83 8.0181e−09
𝑎2 −1.1153 3.3776e−28 𝑏2 −298.93 6.8437e−26
𝑎3 −107.25 2.4459e−66 𝑏3 −3.8111 2.1729e−06
𝑎4 −9.8687 6.419e−13 𝑏4 −874.01 1.3355e−20
𝑎5 502.28 1.8817e−15 𝑏5 283.77 0.0047455
𝑎6 −85.095 0.016974 𝑏6 −49.264 3.6429e−16

𝑏7 −7.9737 0.98863
𝑏8 7.8223 2.5279e−05
𝑏9 843.04 2.145e−15
𝑏10 17.706 0.0072258
𝑏11 −5076.6 1.1047e−45
𝑏12 291.92 2.7198e−21
𝑏13 2141.5 1.4462e−09
𝑏14 20.576 4.0673e−05
𝑏15 −1734.6 3.6748e−12
𝑏16 314.44 6.7785e−14
𝑏17 −38.106 7.6463e−07
𝑏18 1733 1.8346e−20
𝑏19 43.878 0.049687
𝑏20 7941.6 1.7406e−15
𝑏21 −383.75 1.1124e−13
𝑏22 −3664.5 0.037167
𝑏23 −3.6036 0.00122
𝑏24 −1797.9 2.642e−06
𝑏25 9535.4 6.0563e−45
𝑏26 −105.37 2.1572e−20

control not only affects power output but also impacts structural loads
on the turbines (Annoni et al., 2018; He et al., 2022, 2024). Small
yaw angles for the first turbine (𝛾 < 10o) are often inefficient, as
9 
they significantly increase fatigue while yielding only marginal power
gains (Lin and Porté-Agel, 2020). For example, a yaw angle of −5o

was disregarded in He et al. (2022) due to its minimal effect on power
generation and negative impact on structural performance. Fig. 4 shows
that while no optimal yaw angles were below or equal to 5 degrees,
about 14.3% were below or equal to 10 degrees. These smaller angles
should be reconsidered to avoid adverse structural loads and extend
turbine life, particularly in offshore wind farms, where minimizing
maintenance operations is crucial (Boveri and Abb, 2012). Ciri et al.
(2018) observed that fatigue loads increase with nonzero misalignment.
Additionally, Aju et al. (2023) and Xin et al. (2022) reported that yaw
misalignment can affect power output fluctuations.

Model M1 was used to predict the optimal yaw angle for T1 that
maximizes power gain for the turbine pair based on T2’s coordinates,
under the same conditions as those used for Model M0 to predict the
yaw control region (Figs. 9(a) and 9(c)). The results are shown in the
contour plots of Figs. 11(a) and 11(b). The x-coordinate ranges from
5𝐷 to 10𝐷 and the y-coordinate from −𝐷 to 𝐷, with 100 points in each
direction. Comparison of Figs. 11(a) and 11(b) reveals that T1’s optimal
yaw angle decreases as wind turbulence intensity increases from 𝐼 = 5%
to 𝐼 = 15%. This trend is consistent with the decrease in 𝛾∗ with higher
𝐼 values shown in Fig. 10(c).

Following the same fitting procedure used for determining 𝛾∗, the
percentage power gain of the wind turbine pair achieved through active
yaw control was adjusted. This process resulted in the fitted model
represented by Eq. (7):

𝛥𝑃 = 𝑏0 + 𝑏1𝑦
′ + 𝑏2𝑈

′ + 𝑏3𝑑
′ + 𝑏4𝐼 + 𝑏5𝑦

′𝑈 ′ + 𝑏6𝑦
′𝑑′ + 𝑏7𝑦

′𝐼

+ 𝑏8𝑈
′𝑑′ + 𝑏9𝑈

′𝐼

+ 𝑏10𝑑
′𝐼 + 𝑏11(𝑦′)2 + 𝑏12(𝑈 ′)2 + 𝑏13(𝐼)2 + 𝑏14𝑦

′𝑈 ′𝑑′

+ 𝑏15𝑦
′𝑈 ′𝐼 + 𝑏16𝑦

′𝑑′𝐼

+ 𝑏 𝑈 ′𝑑′𝐼 + 𝑏 (𝑦′)2𝑈 ′ + 𝑏 (𝑦′)2𝑑′ + 𝑏 (𝑦′)2𝐼
17 18 19 20
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Fig. 10. Adjusted response plots for the optimal yaw angle of T1, with predictors: (a) 𝑦′, (b) 𝑑′, (c) 𝐼 .
+ 𝑏21𝑦
′(𝑈 ′)2 + 𝑏22𝑦

′(𝐼)2

+ 𝑏23(𝑈 ′)2𝑑′ + 𝑏24𝑈
′(𝐼)2 + 𝑏25(𝑦′)3 + 𝑏26(𝑈 ′)3 (7)

Since not only the four predictors but also some interaction, quadratic
and cubic terms turned out to be significant, it is inferred that the
relationship between 𝛥𝑃 and the predictors is more complex than that
presented by 𝛾∗ in Eq. (6). The highly nonlinear relationship between
the response 𝛥𝑃 and the predictors suggests that a more accurate
prediction of this response would require the inclusion of higher-order
terms in M2. Table 6 presents the coefficients of the model obtained in
the fit along with their respective p-values. The 𝑟2 and adjusted 𝑟2 of
the model were found to be 0.912 and 0.908, respectively, indicating an
acceptable goodness of fit. The standard error of the model was 1.53%,
based on 516 error degrees of freedom.

Fig. 12 shows the adjusted response plots of M2, which illustrate
the effect of each predictor on 𝛥𝑃 . Figs. 12(a), 12(b), 12(c), and 12(d)
generally demonstrate that increasing the distance between T1 and
T2 in either the spanwise or streamwise wind direction, as well as
higher wind speeds and/or turbulence intensity, result in lower power
gains when applying AYC. The slightly negative responses obtained in
Figs. 12(a), 12(b), and 12(d) are due to the fitting error of M2. Overall,
the trends observed in Fig. 12 align well with results obtained by other
researchers and with the classification model results shown in Fig. 7.

Fig. 12(a) demonstrates that the highest power gain occurs when
the spanwise distance between T1 and T2 is approximately 4% of their
10 
streamwise distance (𝑦′ ≈ 0.04). This observation is consistent with
findings from studies such as Zong and Porté-Agel (2021), which ex-
plored power enhancement in a three-turbine wind farm and found that
the maximum improvement through AYC occurs at 𝑦′ = 0.07. This effect
is attributed to mitigating power losses in the wake center, where yaw
control during partial wake conditions enables downstream turbines
to avoid high-power-loss areas. Specifically, Fig. 12(a) indicates that
the maximum power gain under partial wake conditions (𝑦′ = 0.04)
is approximately 8.7%, higher than the 5.5% gain under full wake
conditions (𝑦′ = 0), highlighting the reduced effectiveness of AYC in
fully-waked conditions.

Consistent with the trends depicted in Figs. 12(b) and 12(d), Wei
et al. (2023) found that AYC is more effective in conditions with lower
incoming wind speeds and reduced turbulence intensity.

Moreover, the effectiveness of yaw control diminishes as turbine
spacing increases, as illustrated in Fig. 12(c). This observation is re-
inforced by He et al. (2024), who demonstrated that closer turbine
spacing significantly enhances power production due to intensified
wake effects. Similar findings were reported by Zong and Porté-Agel
(2021) and Bastankhah and Porté-Agel (2019), highlighting reduced
effectiveness of yaw angle control with greater streamwise turbine
spacing. Additionally, Wei et al. (2023) noted significant variations in
the efficiency of AYC based on turbine spacing.

Additionally, since rotor diameter appears in the denominator of pa-
rameter 𝑑′, Fig. 12(c) shows that larger rotor diameters lead to greater
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Fig. 11. Contour plot showing T1’s optimal yaw angle as a function of T2’s coordinates: (a) same conditions as in Fig. 3, (b) same conditions but with turbulence intensity changed
from 𝐼 = 5% to 𝐼 = 15%.
power gains from AYC. This finding is consistent with the findings
of Ciri et al. (2018), who used LES to assess yaw control in a three-
turbine cascade with varying turbine sizes. Their study concluded that
larger rotor diameters induce more significant wake deflection, thereby
achieving higher power improvements. They explain that large turbines
produce vortical structures with slow dynamics, causing the wake
to maintain the initial orientation induced by yaw misalignment. In
contrast, smaller turbines generate vortices that dissipate more quickly,
leading to a rapid realignment of the wake with the free stream. This
weaker lateral displacement of the wake results in a greater impact on
downstream turbines. Hence, the yaw control strategy should account
for turbine spacing and size, where a dense array of large wind turbines
(low 𝑑′) enables more efficient control than a sparse array of small wind
turbines (large 𝑑′). The tendency for reduced power gains with increas-
ing turbine distance was similarly observed by Kumar et al. (2023), who
conducted wind tunnel experiments on a 3 × 3 turbine array. Applying
extremum seeking control algorithms for yaw optimization, they tested
two layouts: aligned (𝑑′ = 5) and staggered (𝑑′ ≈ 5.4). While the aligned
configuration resulted in a power gain of up to 5.8%, the staggered
layout yielded a lower gain of around 2%.

Fig. 12(d) illustrates that when hub-height turbulence levels reach
15%, active yawing does not improve power output. This observation
is consistent with the findings of Zong and Porté-Agel (2021), who
suggest that active yaw control is more effective in low-turbulence envi-
ronments. Similarly, He et al. (2024) observed that power enhancement
11 
can reach up to 18% at low turbulence levels, while higher turbulence
levels reduce power gains. Additionally, Bastankhah and Porté-Agel
(2019) noted that under highly turbulent inflow conditions, opportu-
nities for wake mitigation strategies to enhance downstream turbine
performance are limited.

Model M2 was used to predict the percentage power gain of the
turbine pair based on the optimal yaw angle of T1, under the conditions
shown in Fig. 11. The results are displayed in Fig. 13. To ensure valid-
ity, colorbar limits were set between 0% and 12% to exclude negative
power gains. Comparison of Figs. 13(a) and 13(b) shows that the region
of high power gain decreases as wind turbulence intensity increases
from 5% to 15%, consistent with the trend observed in Fig. 12(d).
Additionally, the high power gain regions in Figs. 13(a) and 13(b)
correspond to the yaw control regions (yellow areas) in Figs. 9(a) and
9(c). The first region extends broadly in the 𝑥 direction, covering a wide
range of intermediate 𝑦 values, while the second region is confined to a
narrower range of 𝑥 values, predominantly covering positive 𝑦 values.

Each point in Figs. 11 and 13 represents a simulation of the wind
velocity field and optimization of the yaw angle. These contour maps,
generated using surrogate models M0, M1, and M2, offer valuable
insights for selecting optimal yaw control strategies for offshore tur-
bines in low-to-moderate wind speeds and turbulence intensity. As with
Fig. 9, Figs. 11 and 13 are scale-independent, as they are presented in
terms of turbine rotor diameter.
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Fig. 12. Adjusted response plots for the percentage power gain of T1 and T2, with predictors: (a) 𝑦′, (b) 𝑈 ′, (c) 𝑑′, (d) 𝐼 .
3.3. Sensitivity analysis

To gain a deeper quantitative understanding of the dependency of
the optimal yaw angle and percentage power gain on the predictors,
the Relative Importance Index (RII) was calculated with the predictors
assuming values within the variation intervals for which the responses
are positive, as identified in Figs. 10 and 12. For Model M1, based on
Fig. 10, the variation intervals for the predictors are: −0.05 < 𝑦′ < 0.2,
5 < 𝑑′ < 10, and 0.05 < 𝐼 < 0.15. For Model M2, based on Fig. 12, the
variation intervals for the predictors are: −0.02 < 𝑦′ < 0.14, 0.44 < 𝑈 ′ <
1.15, 5 < 𝑑′ < 10, and 0.05 < 𝐼 < 0.14.

A method similar to that described in Sadan et al. (2016) was
followed to calculate the RII. This index quantifies the relative impact
of each input parameter on the response, normalized by the total impact
of all parameters. All terms in Models M1 and M2 are included in this
calculation. For example, the RII for the input parameters of Model M1
is computed as follows:

RII𝑦′ ,1 =
𝛥𝛾∗𝑦′
𝛥𝛾∗tot

, RII𝑑′ ,1 =
𝛥𝛾∗𝑑′
𝛥𝛾∗tot

, RII𝐼 ,1 =
𝛥𝛾∗𝐼
𝛥𝛾∗tot

where 𝛥𝛾∗tot = 𝛥𝛾∗𝑦′ + 𝛥𝛾∗𝑑′ + 𝛥𝛾∗𝐼 represents the total impact of the three
predictors on 𝛾∗. Here, RII′𝑦, 1 denotes the RII for predictor 𝑦′ calcu-
lated using Model M1, with 𝛥𝛾∗𝑦′ representing the absolute maximum
change in 𝛾∗ due to variations in 𝑦′. For Model M2, which includes
four parameters (𝑦′, 𝑈 ′, 𝑑′, and 𝐼), a similar RII calculation can be
performed.
12 
Fig. 14 illustrates the RII for each predictor included in both M1 and
M2. For M1, it is observed that the effect of 𝑦′ is the most significant,
followed by 𝑑′, and then 𝐼 . For M2, the results reveal that the effect
of 𝐼 on the response is the most important, followed by 𝑦′, then 𝑈 ′,
and finally 𝑑′. This observation aligns with the experimental study
reported in Ozbay et al. (2012), which examined the power output
of two turbines in tandem and found that overall efficiency strongly
depends on the incoming flow turbulence intensity level. While the
predictors have a comparable relative importance on the response of
model M2, the predictor 𝑦′ is significantly more relevant to the response
of model M1 than the other predictors.

Although the RII does not account for the direction of change in
optimal yaw angle and power percentage gain, Figs. 10 and 12 illustrate
that increasing 𝑦′, 𝑈 ′, 𝑑′, and 𝐼 generally leads to a decrease in both
the optimal yaw angle and the power percentage gain. This suggests
that careful consideration of farm layout, wind conditions, and turbine
characteristics is essential for selecting the most effective yaw control
strategy. Specifically, yaw control is found to be more beneficial in
dense wind farms with lower 𝑑′ and 𝑦′ values compared to sparse wind
farms, particularly under mild wind conditions.

3.4. Models evaluation

Three case studies were conducted to evaluate the performance
of the classification and regression models under different layouts. In
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Fig. 13. Contour plot showing the percentage power gain of the turbine pair for T1’s optimal yaw angle as a function of T2’s coordinates: (a) same conditions as in Fig. 3, (b)
same conditions but with turbulence intensity changed from 𝐼 = 5% to 𝐼 = 15%.
Fig. 14. Predictor relative importance index grouped by model.

the first case (Case 1), the spanwise distance between T1 and T2 (𝑦)
was varied while keeping the streamwise distance (𝑥) constant. In the
second case (Case 2), the streamwise distance (𝑥) was varied while
keeping the spanwise distance (𝑦) constant. In the third case (Case 3),
13 
a comparative validation was conducted against results from another
study using the Horns Rev I wind farm configuration. These scenarios
ensure that the models are tested under both full-wake and partial-wake
conditions. The results and their implications are discussed below.

3.4.1. Case 1: Constant 𝒙, variable 𝒚
In Case 1, the following parameters related to wind conditions and

turbine scale were set: 𝐼 = 5%, 𝑈 = 11 m∕s, 𝑈𝑟 = 11 m∕s, and 𝐷 = 198
m, with the latter two corresponding to the IEA 10 MW turbine. Table 7
presents the values for the predictors in this case.

The first case for comparing the fitted models with simulation
results involved varying 𝑦 from −0.25𝐷 to 𝐷 in steps of 0.25𝐷, while
keeping 𝑥 constant at 5𝐷. This setup ensured a significant aerodynamic
interaction between T1 and T2 due to the relatively short distance.
Fig. 15 displays the contour plot showing the geometric locus for yaw
adjustment of T1 for Cases 1 (a) and (d) as examples. T2’s center is
marked with a red dot for each of the six runs (a)–(f). The optimal
yaw angle 𝛾∗, calculated using regression model M1 and rounded to
the nearest integer, was used in these examples.

After running the six simulations corresponding to Case 1, the
results shown in Table 7 were obtained, presented alongside those
obtained using models M0, M1, and M2. The classification model
correctly classified all six simulations, with the first and last ones
resulting in 𝛥𝑃 < 1%, classified with a 𝛾𝑏 = 0 response, and the
remaining four with 𝛥𝑃 > 1%, classified with a 𝛾 = 1 response. Since
𝑏
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Fig. 15. Contour plot showing the geometric locus for yaw adjustment of T1: (a) Case 1, run (a); (b) Case 1, run (d).
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Table 7
Results obtained with the models and simulations in Case 1.

Predictors Simulations M0 M1 M2

𝑦′ 𝑈 ′ 𝑑′ 𝐼 𝛾∗ 𝛥𝑃 𝛾𝑏 𝛾∗ 𝛥𝑃
[%] [◦] [%] [◦] [%]

(a) −0.0500 1 5.0062 5 0 0 0 0 0
(b) 0.0000 1 5.0000 5 17 8.46 1 28.25 11.63
(c) 0.0500 1 5.0062 5 21 15.77 1 23.60 12.53
(d) 0.1000 1 5.0249 5 17 12.66 1 18.50 6.93
(e) 0.1500 1 5.0559 5 14 5.78 1 12.92 1.97
(f ) 0.2000 1 5.0990 5 13 9.88 × 10-6 0 0 0

the first and last simulations were classified with a 𝛾𝑏 = 0 response by
M0, the corresponding predictions for M1 and M2 were not calculated.
Therefore, in those cases, no active yaw control was applied, and 𝛾∗ =
0o and 𝛥𝑃 = 0% were assumed without quantifying the associated
errors. The average computation times for models M0, M1, and M2
to calculate 𝛾𝑏, 𝛾∗, and 𝛥𝑃 across the six instances in Case 1 were
approximately 0.8594 s, indicating that each simulation run completed
within tenths of a second.

Fig. 16 presents the percentage relative errors associated with the
𝛾∗ and 𝛥𝑃 responses obtained with M1 and M2, symbolized by 𝜖𝛾∗ and
𝜖𝛥𝑃 , respectively. Except for the second instance, 𝜖𝛾∗ was lower than
𝜖𝛥𝑃 , resulting in average errors of 23.78% and 42.27%, respectively.
Furthermore, 𝜖𝛾∗ decreases as turbine spacing increases, while the
opposite occurs with 𝜖𝛥𝑃 .

3.4.2. Case 2: Constant 𝒚, variable 𝒙
In Case 2, the wind conditions and turbine scale were identical

to Case 1. Table 8 shows the predictor values. The second case for
comparing the fitted models with simulation results involved varying
𝑥 from 5𝐷 to 10𝐷 in steps of 𝐷, while keeping 𝑦 constant at 0.25𝐷.
This constant spanwise distance for turbine T2 ensured partial wake
interference between the turbines. Fig. 17 shows the contour plot of
the geometric locus for yaw adjustment of T1 for Cases 2 (a) and
(d), selected as examples. In these cases, the optimal yaw angle 𝛾∗,
computed using regression model M1 and rounded to the nearest
integer, was utilized.

After running the six simulations for Case 2, the results obtained
are shown in Table 8, alongside those from models M0, M1, and M2.
 n
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Table 8
Results obtained with the models and simulations in Case 2.

Predictors Simulations M0 M1 M2

𝑦′ 𝑈 ′ 𝑑′ 𝐼 𝛾∗ 𝛥𝑃 𝛾𝑏 𝛾∗ 𝛥𝑃
[%] [◦] [%] [◦] [%]

(a) 0.0500 1 5.0062 5 21 15.77 1 23.60 12.53
(b) 0.0417 1 6.0052 5 21 17.71 1 22.88 11.95
(c) 0.0357 1 7.0045 5 20 16.93 1 22.04 11.21
(d) 0.0312 1 8.0039 5 20 15.85 1 21.12 10.41
(e) 0.0278 1 9.0035 5 19 14.71 1 20.16 9.60
(f ) 0.0250 1 10.0031 5 18 13.55 1 19.17 8.79

odel M0 correctly classified all six cases, assigning a 𝛾𝑏 = 1 response,
onsistent with achieving 𝛥𝑃 > 1% in all six simulations. This outcome
as expected, as Fig. 7 indicates that for the Case 2 conditions (0.025 <
′ < 0.05, 𝑈 ′ = 1, 5.0062 < 𝑑′ < 10.0031, and 𝐼 = 0.05), the estimated
esponse by M0 would likely be 𝛾𝑏 = 1. The time required by models
0, M1, and M2 to calculate 𝛾𝑏, 𝛾∗, and 𝛥𝑃 for the six instances in Case
 was approximately 0.1003 s.

Fig. 18 presents the percentage relative errors for the 𝛾∗ and 𝛥𝑃
esponses obtained with models M1 and M2. Generally, 𝜖𝛾∗ was lower
han 𝜖𝛥𝑃 , with average errors of 8.32% and 31.81%, respectively.
imilar to Case 1, 𝜖𝛾∗ tends to decrease as turbine spacing increases,
hile 𝜖𝛥𝑃 shows the opposite trend.

In summary, for Cases 1 and 2, the average errors were 𝜖𝛾∗ =
4.50% and 𝜖𝛥𝑃 = 37.04%. Model M1 showed relatively accurate results,
ith precision generally improving as the distance between T1 and
2 increased, except for Case 1(b), where T2 was very close to T1
at 𝑥 = 5𝐷 and 𝑦 = 0, with 𝑑′ = 5). Experimental data obtained
y other authors (Kumar et al., 2023) suggest that the optimal yaw
ngle of the upstream wind turbine in Case 1(b) is approximately 28
egrees for a layout with 𝑑′ = 5 and 𝑦′ = 0. This value aligns more
losely with the predictions of Model M1 than with those obtained
rom FLORIS. One possible reason for the large error is that in the near
ake region, the FLORIS GCH model employs a different approach to
odel the velocity field compared to the far wake region, which uses a
aussian velocity profile. Specifically, it assumes a linearly converging
one-shaped velocity profile, with its base at the rotor and tip at the
ear wake region’s end (beginning of the far wake region) (van Beek
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Fig. 16. Comparison of model predictions and simulation results for Case 1: (a) Optimal yaw angle, (b) Percentage power gain.
Fig. 17. Contour plot showing the geometric locus for yaw adjustment of T1: (a) Case 2, run (a); (b) Case 2, run (d).
et al., 2021). This discrepancy can lead to difficulties for the regression
model in fitting FLORIS data near the boundary between the near and
far wake regions, as differing models are used to compute velocity,
directly impacting turbine-generated power and optimal yaw angle.
Excluding this case, M1’s average error was 8.7% for 𝑑′ ≥ 5.0062. While
M2 achieved an acceptable 𝑟2 and followed simulation trends, its high
errors indicate it is better suited for qualitative analysis rather than
precise predictions, likely due to the nonlinear nature of power gain
compared to the optimal yaw angle. Overall, M1 tends to overestimate
the yaw angle, whereas M2 underestimates the power gain compared
to simulation results.

To assess the computational efficiency of the models, the time
required by M0, M1, and M2 to calculate 𝛾𝑏, 𝛾∗, and 𝛥𝑃 across 4374
instances was measured, totaling approximately 15.1296 s. This rapid
computation is a key advantage, as the models only require evaluating
a decision tree and two polynomials, bypassing costly numerical simu-
lations. This efficiency allows for quick predictions of the optimal yaw
angle and turbine redirection without specialized software, making the
technique accessible even in a spreadsheet.
15 
While FLORIS can quickly calculate velocity fields and power out-
put, its optimization algorithms require multiple iterations to determine
an optimal yaw configuration, often involving hundreds of simulations,
especially in large wind farms. Each shift in conditions necessitates
a fresh set of simulations and optimization. In contrast, the statis-
tical model, developed using a two-turbine setup, scales readily to
varied farm configurations and allows for the exclusion of turbines
under maintenance. By focusing optimization on each turbine individ-
ually, the model adapts efficiently to local condition changes. Addi-
tionally, the polynomial regression formulas derived from FLORIS data
are straightforward to implement in widely available software, mak-
ing them practical for integration into workflows and computational
systems such as Supervisory Control and Data Acquisition (SCADA)
software.

To assess the computational efficiency of model M1 relative to
established yaw optimization methods, the Serial-Refine (SR) method
was applied to calculate the optimal yaw angles for turbine T1 across
all simulations in Case 1 and Case 2. Additionally, the SLSQP algorithm
was tested, but it required significantly more computation time than
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Fig. 18. Comparison of model predictions and simulation results for Case 2: (a) Optimal yaw angle, (b) Percentage power gain.
both the SR and M1 methods. Previous studies have demonstrated that
the SR method achieves computational times up to 10 times faster than
the SLSQP optimizer (Fleming et al., 2022).

Although both SR and M1 aim to optimize yaw angles, their com-
putational approaches are fundamentally different. Model M1, rep-
resented by the polynomial regression equation in Eq. (6), directly
estimates the optimal yaw angle for turbine T1. The implementation of
M1 is encapsulated in the function YawFitted, which follows a three-
step process: first, it computes farm power under a baseline scenario
with zero yaw angles; next, it applies M1 to determine the optimal yaw
angle; and finally, it recalculates farm power with the optimized yaw
angle to determine the percentage power gain. These steps are detailed
in the pseudocode shown in Fig. 19, where comments and keywords
are color-coded for clarity.

The SR method, in contrast, uses a two-step process. The initial
‘‘Serial’’ pass sequentially tests five yaw angles within the range [0,
30] degrees for each turbine, starting upstream and proceeding down-
stream. The subsequent ‘‘Refine’’ pass evaluates five additional angles
near the optimal yaw angle identified during the Serial pass. The
pseudocode for the SR method is available in Fleming et al. (2022).
For comparison, Fig. 20 summarizes the procedures used to optimize
yaw angles with each method.

Figs. 21(a) and 21(b) present the optimal yaw angles derived from
both M1 and SR for Cases 1 and 2, as well as the computational
time ratios between the methods. In Fig. 21(b), 𝑡𝑀1 and 𝑡𝑆 𝑅 represent
the computational times recorded for model M1 and the SR method,
respectively. In Fig. 21(a), the optimal yaw angles from both methods
exhibit a similar trend, with the largest deviation observed in run (b) of
Case 1, where discrepancies with FLORIS simulation results were pre-
viously noted. Fig. 21(b) underscores the computational efficiency of
M1, showing that the SR method requires approximately 5 times more
computation time than M1, with variations between 4 and 6 times. This
disparity arises from the numerous power simulations required for both
the Serial and Refine passes in SR, whereas M1 avoids these intensive
simulations by providing a direct, approximate yaw angle estimation.

3.5. Case 3: Comparative validation with Horns Rev I wind farm configu-
ration

In Case 3, the developed optimal yaw control model was validated
using a single row of ten turbines, replicating the setup analyzed
in Bempedelis et al. (2023) for the Horns Rev I wind farm. While their
study employed Vestas V80 2 MW turbines, this analysis uses NREL 5
MW turbines, the smallest scale considered in the model fitting. Despite
16 
the difference in turbine size, the turbine spacing was maintained at
7𝐷, consistent with the Horns Rev I wind farm, thus preserving the
dimensionless spacing (𝑑′). Wind conditions were aligned with those
reported in Bempedelis et al. (2023), specifically with an easterly wind
direction (270o) parallel to the turbine row. The free stream turbulence
intensity was set at 8%, and the wind speed was adjusted to 5.63 m/s
to ensure consistency with the dimensionless velocity value of 𝑈 ′ =
𝑈∕𝑈𝑟 = 7.9∕16 ≈ 0.49 as utilized in the referenced study.

While using free-stream wind velocity and turbulence intensity
would offer a preliminary estimate of the optimal yaw angle for all
turbines, for greater accuracy, it is essential to consider local turbine
wind speeds and turbulence intensities, denoted by the subscript ’ind’,
as these parameters vary with yaw angle. In this study, local wind
velocity and turbulence intensity will be derived from simulations.
In practical applications, wind velocity is typically measured with
anemometers located at the turbine nacelle. However, since turbulence
intensity is not usually measured directly at the nacelle, it can be
estimated using historical data. To achieve this, model M1 was applied
sequentially for each turbine in the array. Initially, all yaw angles
were set to 0o, and the process began by simulating the wind velocity
field and yawing the most upstream turbine to maximize power gain.
The wind velocity field was then recalculated, and the optimal yaw
angle for the second turbine was determined and applied. This process
was repeated for each subsequent turbine, with the wind velocity field
recalculated each time. Under these conditions, defined by 𝑦′ = 0,
0.424 ≤ 𝑈 ′ ≤ 0.492, 𝑑′ = 7, and 0.0935 ≤ 𝐼 ≤ 0.183 for all turbines,
model M0 indicated that yawing all turbines would enhance power
gain. Consequently, all turbines except the last one were adjusted
to their optimal yaw angles. Figs. 22(a) and 22(b) present the wind
velocity and turbulence intensity for each turbine in the array, where
turbine 1 is the most upstream turbine and turbine 10 is the most
downstream one. For completeness, the figure also includes the values
corresponding to the unyawed scenario. Figs. 23(a) and 23(b) depict
the simulated velocity fields at turbine hub height for both the unyawed
and yawed scenarios. The yaw angle for each turbine is indicated
above the corresponding turbine in the figures. For detailed analysis,
optimal yaw angles are presented with two decimal places. However,
in practice, wind turbine yaw systems typically control the angle with
an accuracy of approximately one degree (Pei et al., 2018).

The simplified optimization procedure described earlier, which uses
model M1, assumes that the wind direction realigns with the inflow
direction before reaching each turbine. For greater accuracy, a more
detailed calculation should account for the local wind direction at each
turbine nacelle—typically measured with wind vanes on-site—and ad-
just the turbine yaw angle based on this local direction. To incorporate
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Fig. 19. Pseudocode for the function YawFitted implementing model M1.
v
a

f

a change in wind direction, the downstream turbine coordinates (𝑥 and
𝑦) should be modified using a rotation matrix that accounts for the
angle difference between the new wind direction and east, and then
provided to the model.

For comparative purposes, the results of this study were evaluated
against those reported in Bempedelis et al. (2023). In that study,
wo frameworks were used for calculating optimal yaw angles and
urbine efficiency: high-fidelity simulations with Bayesian Optimization
LES-BO) and a FLORIS-based method using the GCH model with the
LSQP optimization algorithm. For turbine efficiency, they used both
he LES-BO framework and a multi-fidelity approach combining a low-
idelity model with LES (LF/LES). They reported turbine efficiencies
=

∑𝑁
𝑖=1 𝑃𝑖(𝛾 = 𝛾∗)∕

∑𝑁
𝑖=1 𝑃𝑖(𝛾 = 0◦) of 𝜂 = 1.28 for LES-BO and

= 1.24 for LF/LES, whereas this study obtained 𝜂 = 1.22 using FLORIS.
his 22% value represents an average turbine efficiency, indicating that

ndividual turbines within the array may perform either above or below
his average.

Fig. 24(a) compares the optimal yaw angles obtained using model
M1 with those reported in Bempedelis et al. (2023) using FLORIS.
The yaw angles predicted by model M1 exhibit greater consistency
across turbines compared to the variations reported in Bempedelis
et al. (2023), a favorable characteristic of model M1 as it helps avoid
small 𝛾 angles that could increase wind loads and negatively affect
urbine performance. The trend of decreasing optimal yaw angles in
he direction of the wind is driven by the increased turbulence intensity
esulting from turbine interactions, as shown in Fig. 22(b), which aligns
ith the results presented in Fig. 10(c). However, turbulence intensity
as the least relative importance in model M1, as shown in Fig. 14,

implying that turbines evenly distributed across the wind farm will
exhibit similar 𝑦′ and 𝑑′ values, leading to similar optimal yaw angles
predicted by model M1.
 o
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Fig. 24(b) compares individual turbine efficiencies 𝜂𝑖𝑛𝑑 = 𝑃 (𝛾 =
𝛾∗)∕𝑃 (𝛾 = 0) from this study, obtained with FLORIS, to those reported
in Bempedelis et al. (2023) using LF/LES simulations. Since turbine
power scales as 𝑃 ∼ 𝑈3, and wind speeds increase downstream
(Fig. 22(a)), 𝜂𝑖𝑛𝑑 also increases downstream. This behavior is further
explained by the fact that turbines located farther downstream are
affected by a larger number of upstream turbines, and therefore by
a greater number of wakes. As each upstream turbine applies indi-
vidual yaw control to mitigate wake effects, the downstream turbines
benefit from these adjustments, improving their efficiency. The higher
efficiency in the yawed scenario for turbines 2 to 10 is due to increased
wind speeds compared to the unyawed scenario, as shown in Fig. 22(a).
Optimal yaw control maintains higher wind velocities across turbines,
key to increasing power generation.

Notably, the efficiencies of turbines 2 and 3 exceed the expected
trend. This deviation results from the significant yaw angles of turbines
1 and 2, which redirect their wakes and minimize overlap with the rotor
swept area of turbines 2 and 3. This effect is illustrated by the simulated
elocity fields at turbine 2 (𝑥 = 7𝐷) for both yawed and unyawed cases,
s shown in Figs. 25(a) and 25(b), where turbine 2 is indicated with

dashed black lines in the unyawed case.
Overall, the yaw control strategy based on model M1 achieves a

more uniform power distribution across turbines, reducing the risk of
overloading some while underutilizing others. In contrast, the model
in Bempedelis et al. (2023) shows a gradual increase in power gain
rom upstream to downstream turbines.

4. Conclusions

This study investigated the aerodynamic interference between two
ffshore wind turbines across various operational scenarios using wind
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Fig. 20. Pseudocode for yaw angle optimization process.
Fig. 21. Comparison of model M1 and SR method performance in Case 1 and Case 2: (a) Optimal yaw angles, (b) Computational time ratio.
farm simulation software. Numerous numerical simulations were con-
ducted, considering different wind speeds, turbulence intensities, tur-
bine models, orientations, and layouts. Two regression models were de-
veloped: one to estimate the optimal yaw angle of the upstream turbine
for maximizing power generation and another to assess the percent-
age power gain achievable through active yaw control. Additionally,
18 
a decision tree-based classification model was designed to determine
the necessity of turbine reorientation based on operational conditions.

The decision tree achieved a high accuracy rate of 96.11%, making
it suitable for identifying when turbine orientation adjustments are
necessary. Redirection was essential particularly when the downstream
turbine was at a positive spanwise distance and wind speed was below
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Fig. 22. Local turbine wind conditions in the yawed and unyawed scenarios: (a) Dimensionless wind velocity, (b) Turbulence intensity.

Fig. 23. Simulated velocity fields at turbine hub height (horizontal cut) for Case 3 conditions: (a) Unyawed turbines, (b) Yawed turbines.

Fig. 24. Comparison of results between this study and Bempedelis et al. (2023): (a) Optimal yaw angle, (b) Individual turbine efficiency.
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Fig. 25. Simulated velocity fields at 𝑥 = 7𝐷 (vertical cross-section) under Case 3 conditions: (a) Unyawed turbines, (b) Yawed turbines.
120% of the nominal turbine speed. Shorter distances between tur-
bines and lower turbulence intensities increased the need for upstream
turbine redirection to mitigate wake-induced power losses.

The ratio of spanwise to streamwise distance between turbines
was the most significant factor in estimating the optimal yaw angle,
followed by the absolute distance between turbines and wind turbu-
lence intensity. The estimation error decreased with greater distances
between turbines, averaging 8.7% for distances of 5.0062 rotor diam-
eters or more. The optimal yaw angle regression model showed good
agreement with simulation results.

Wind turbulence intensity had the most significant impact on the
percentage power gain, followed by the spanwise to streamwise dis-
tance ratio and wind speed. The distance between turbines had a lesser
effect. The highest power gain occurred when the spanwise distance
was approximately 4% of the streamwise distance. Although the power
gain regression model followed the trend of the simulations, its high
errors suggest it is suitable for qualitative analysis rather than precise
predictions. Simulations showed that optimal yaw control under the
studied conditions could achieve up to a 25.6% power gain.

The regression models in this study are based on simulation re-
sults obtained with FLORIS. While FLORIS incorporates velocity deficit
models, wake deflection models, and wake interference effects, which
have been continually refined and align well with experimental data,
higher-fidelity models exist. For example, SOWFA (Simulator for Wind
Farm Applications), which uses LES, captures wind physics within a
wind farm more accurately than FLORIS, though it is computationally
more intensive. SOWFA could be used as a foundational tool to develop
regression models that achieve greater accuracy. The lower accuracy
of the optimal yaw angle regression model for short turbine spacings,
specifically near the boundary of the near-wake region (about five rotor
diameters), can be attributed to the limitations of FLORIS, particularly
in accurately predicting wake interactions at these distances.

Careful consideration of farm layout, wind conditions, and turbine
characteristics is crucial for selecting effective yaw control strategies.
Yaw control is more beneficial in dense wind farms with lower tur-
bine spacing, particularly under mild wind conditions. The developed
models eliminate the need for resource-intensive simulations, demon-
strating computational efficiency and enabling swift, reasonably accu-
rate estimation of optimal turbine yaw angles. This facilitates rapid
parametric studies and online power optimization.

Model M1 demonstrated greater computational efficiency compared
to previous optimization methods and, when combined with model
M0, can facilitate yaw control across a wind farm, yielding a relatively
uniform distribution of yaw angles and turbine efficiencies. This unifor-
mity is beneficial for managing wind loads and contributes positively
20 
to turbine operation. Future work will involve testing these models
on a larger scale within a wind farm featuring multiple turbines and
assessing their performance under deep array effects. Developing a
computational framework to regulate the yaw angles of all interacting
turbines will be imperative.

5. List of symbols

𝑎𝑖, 𝑏𝑖: 𝑖th coefficient of the regression models
𝐷: rotor diameter of the wind turbine, m
𝑑 =

√

𝑥2 + 𝑦2: distance between wind turbines, m
𝑑′ = 𝑑∕𝐷: dimensionless distance between wind turbines
𝐻 : hub height of the wind turbine, m
𝐼 : wind turbulence intensity, %
𝑃𝑟: rated power of the wind turbine, MW
𝑟2: coefficient of determination of the fit
𝑡𝑀1: computational time recorded for model M1, s
𝑡𝑆 𝑅: computational time recorded for the SR method, s
𝑈 : wind speed, m/s
𝑈 ′ = 𝑈∕𝑈𝑟: dimensionless wind speed
𝑈𝑎: wind turbine cut-in speed, m/s
𝑈𝑐 : wind turbine cut-out speed, m/s
𝑈𝑟: rated wind speed of the wind turbine, m/s
𝑥: streamwise distance between wind turbines, m
𝑦: spanwise distance between wind turbines, m
𝑦′ = 𝑦∕𝑥: spanwise-to-streamwise distance ratio

Subscripts
𝛾∗: referring to the optimal yaw angle of the wind turbine
0: referring to a wind turbine yaw angle equal to zero
𝑏: referring to a binary variable
𝛥𝑃 : referring to the power gain associated with wind turbine yaw
control
𝑖𝑛𝑑: denotes an individual turbine

Superscripts
∗: referring to the optimum

Greek Letters
𝛾: yaw angle of the upstream wind turbine,o
𝛾∗: optimal yaw angle of the upstream wind turbine,o
𝛾𝑏: binary response of the classifier model
𝛥𝑃 : power gain associated with wind turbine yaw control, %
𝛥𝛾∗𝑖 : absolute maximum change in 𝛾∗ resulting from a change in pre-
dictor 𝑖,o
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𝜖𝛾∗ : error in wind turbine orientation between model and simulations,
%
𝜖𝛥𝑃 : error in power gain between model and simulations, %
𝜂 =

∑𝑁
𝑖=1 𝑃𝑖(𝛾 = 𝛾∗)∕

∑𝑁
𝑖=1 𝑃𝑖(𝛾 = 0◦): turbine efficiency

Acronyms
AYC: Active yaw control
BO: Bayesian Optimization
FLORIS: FLOw Redirection and Induction in Steady State
GCH: Gauss-Curl-Hybrid
GS: Grid Search
LES: Large eddy simulations
LES-BO: Large Eddy Simulation with Bayesian Optimization
LF/LES: Low-Fidelity model combined with Large Eddy Simulation
(LES)
M0: Classification model
M1: Regression model for the optimal yaw angle of the wind turbine
M2: Regression model for the percentage power gain
NREL: National Renewable Energy Laboratory
PSO: Particle Swarm Optimization
RII: Relative Importance Index
RS: Random Search
SCADA: Supervisory Control and Data Acquisition
SLSQP: Sequential Least Squares Programming
SOWFA: Simulator fOr Wind Farm Applications
SR: Serial-Refine method
T1: Upstream wind turbine
T2: Downstream wind turbine
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