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The expansion of agriculture and unsustainable management strategies have resulted 

in severe soil depletion, compromising soil functionality, and the ecosystem services it 

provides. Understanding the drivers of Soil Health (SH) is crucial for developing 

effective strategies and promoting sustainable management. This research presents the 

results of four interrelated projects conducted in Uruguay, and New York State, USA. 

The projects aim to enhance our understanding of SH drivers at different scales and 

their connection with anthropogenic management and crop productivity.  

The research highlights the negative impacts of replacing natural grassland with 

annually cultivated areas, and underscores the benefits of various conservation 

practices. It provides a comprehensive set of reference values for evaluating SH 

indicators in the Pampas region. The study also demonstrates the critical influence of 

soil organic carbon degradation on cereal productivity losses under annual crop 

rotations and its relationship with a broader set of SH indicators. To understand the 

driving force of management in SH, a methodological framework based on the critical 

zone approach is presented. It proposes using aboveground biomass inputs, which 

account for 50% of SH variations, as an indicator for potential agronomic management 



 

effects on SH.  Management scenarios for the Pampas region are evaluated to 

showcase the applicability of this approach in assessing sustainable management 

practices. 

Furthermore, high-resolution spatial data, machine learning models, and digital soil 

mapping techniques are employed to develop SH prediction models and maps, as well 

as identify the main drivers of SH at a regional scale in New York State, USA. 

Overall, the findings emphasize the complexity of SH drivers and the need for 

comprehensive assessments that consider context-specific conditions, which includes 

an understanding of management effects on biomass fluxes within a land use system 

and region. Overall, this research contributes to advancing our knowledge of the 

complex interplay between inherent soil properties and human activities on SH and 

provides insights into the design of management strategies that promote sustainable 

soil management.  
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CHAPTER 1: INTRODUCTION 

1.1. RESEARCH OVERVIEW 

The expansion of the agricultural frontier and the accumulated effects of unsustainable 

management strategies can generate severe soil depletion (Wingeyer et al. 2015a; 

Beretta-Blanco, Pérez, and Carrasco-Letelier 2019; Novelli, Caviglia, and Piñeiro 

2017), compromising soil functionality. Reversing and minimizing soil degradation is 

needed to optimize soil functioning related to multiple ecosystem services such as 

food production, carbon sequestration, water quality protection, and the preservation 

of biodiversity (Keestra et al., 2016). 

Soil health (SH) refers to the continued capacity of the soil to function as a vital living 

ecosystem that sustains plants, animals, and humans (USDA-NRCS 2020). SH can be 

assessed in many ways, including measuring a comprehensive and hierarchical set of 

soil physical, biological, and chemical indicators. The status of SH indicators is 

determined by a complex interplay between inherent soil properties, which settle the 

baselines soil functional abilities, and anthropogenic activities (Bünemann et al. 2018). 

This complex interplay between SH drivers obscures the interpretation of SH 

indicators and drives the need for site-specific evaluations that require intense 

sampling efforts that may be expensive, time-consuming, and inaccessible for many 

areas. A deeper understanding of SH drivers is needed to optimize these efforts.  

Disentangling the effects of anthropogenic actions and inherent soil properties on SH 

is needed to fully understand SH status, drivers, and limitations (Miner et al. 2020). 
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This will contribute to clarifying the often reported confounding benefits of the most 

promoted conservations or regenerative practices in SH, optimizing the design of 

sustainable management strategies needed to stop and reverse SH degradation.  

This dissertation discusses four interrelated projects that aim to enhance our 

understanding of SH drivers at different scales, their connection with anthropogenic 

management, and crop productivity. The projects occurred in two regions, Uruguay, 

South America, and New York State, USA. The ultimate goal is to provide relevant 

information for identifying management strategies that promote SH, thereby 

contributing to global sustainable development goals.  

Following this introduction and a discussion of SH conceptual framework, Chapters 

two to five discuss SH assessment and its impacts on crop productivity within the 

Uruguayan production context. These are highly relevant for preserving and valuing 

soils for the South American Pampas. The Pampas experienced the biggest crop 

production shift globally in the last decades, becoming a central grain production area 

(Baeza and Paruelo 2020) and threatening one of the world's most extensive natural 

grassland. Chapter two assesses the impacts of replacing natural grassland with 

cultivated areas and the benefits of commonly promoted conservation practices 

(inclusion of perennial grasses and legumes, cover crops, crop diversification, 

inorganic fertilization, tillage, and pasture duration) on soil biological, chemical, and 

physical health indicators. Data from three long-term experiments were evaluated and 

integrated to better understand the potential benefits of sequence intensification, 

fertilization, and no-tillage in SH under an annual cropping system. 
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Building on the results presented in chapter two and aiming to elucidate some of the 

complexities of SH drivers in chapter three, a methodological framework for SH 

analysis through the lens of the critical zone approach is presented. Estimating 

aboveground biomass changes is proposed as an intermediate achievable goal to 

estimate the changes that conservation management can generate in carbon balances 

and, therefore, SH. Quantitative evidence of aboveground biomass's vital role in SH 

and potential benefits and limitations are presented. Within this framework, a set of 

management scenarios for the Pampas regions are evaluated to showcase the potential 

uses of this approach for the design of more sustainable management practices.  

Chapter Four evaluates soil organic Carbon (SOC), the most widely used SH indicator 

(Bünemann et al. 2018), and assesses the influence of its degradation on cereal 

productivity and its relationship with a broader set of SH indicators. SOC's critical role 

in cereal productivity losses under annualized crop rotations was proved by evaluating 

56 years of climate, soil, management, and yield data from an Uruguayan long-term 

experiment.  

In chapter five, the conceptual learnings from these studies are applied through a 

geospatial machine learning approach that focuses on the relationships between 

climate, inherent soil properties, and land use on SH for the State of New York and 

regions within the State. High spatial resolution data representing SH drivers, machine 

learning models, and digital soil mapping techniques were applied to develop SH 

prediction models and maps and to disentangle the main SH drivers at a regional scale. 

The potential uses of the generated models for the projection of potential changes in 

SH associated with regional land were also evaluated.   
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1.2. SOIL HEALTH CONCEPTUAL FRAMEWORK  

The SH concept has become prevalent in soil and environmental sciences relating to 

the functioning of ecosystem services (Janzen, Janzen, and Gregorich 2021).  SH can 

be considered equivalent to soil quality, yet these concepts are not considered 

synonyms (J.W. Doran and Parkin 1994). The lack of agreement on a single definition 

for both SH and soil quality challenges the comparison between concepts. Overall, as 

an older concept, soil quality has been mainly used to evaluate soil's capability to 

function with a significant focus on food production and has been assessed mainly by 

measuring soil chemical properties (Lehmann et al. 2020). SH, which is a newly 

adopted terminology, usually represents a broad set of soil functions and, therefore, 

should be assessed by measuring a comprehensive set of soil physical, biological, and 

chemical indicators. 

A criticism of the SH concept is its elusively or ambiguous definition, which can limit 

research progress. However, this reflects the complexity of the topic that SH aims to 

represent and the variety of actors adopting the terminology. The more people adopt 

the SH concept and framework, the harder it will be to agree on a unique definition 

that integrates different perspectives and priorities. Talking about the health of the 

soils has proven to promote a deep connection of soils with a bigger audience than the 

scientific community, as soils are positioned as a living ecosystem. These evoke an 

instinctive intellectual and emotional response that motivates thoughts and actions 

arising from a subconscious reflection on our health (Janzen, Janzen, and Gregorich 

2021).  After all, the term health is universally adopted as it relates to human well-
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being, with the recognition that it needs to be interpreted based on individual 

circumstances and perspectives.  

Furthermore, as SH recognizes soil multifunctionality, it will evolve with the changing 

social valuation of soil functions. Deciding the value of SH functions involves a value 

judgment, extending health assessment beyond the laboratory into the social sphere 

(Janzen, Janzen, and Gregorich 2021; Rapport 1995). Consequently, a rigid and 

intrinsic definition of SH, considered valid from an academic perspective, is not the 

ultimate goal. Settling a unique rigid definition of SH and SH assessment might fail to 

recognize that there is no universally 'optimal' soil nor a universal set of ideal soil 

characteristics that can feasibly represent all the complex processes in the soil 

(Bünemann et al. 2018; Lehmann et al. 2020).  Like with humans, soil health is 

contextual, and metrics are tools for assessment that still require interpretation. 

From a research perspective, however, a framework that states the minimum 

requirements for SH assessment should be defined. These should recognize the 

evolving characteristics of the SH movement, the need for flexibility, and context-

specific adaptations, and should also be based on results and research. A certain level 

of standardization within that flexibility is needed to promote the widespread adoption 

of SH monitoring and assessment. Some of the recognized requirements for SH 

assessment include:  

  

1. Measuring a comprehensive and hierarchical set of soil physical, 

biological, and chemical indicators. SH is an abstraction of soil functions 

that cannot be easily measured. Therefore, SH properties that determine these 
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functions are assessed by measuring SH indicators. A single indicator usually 

cannot reflect the complexity of the processes that occur in the soil and 

determine soil functionality relative to a range of ecosystem objectives. Hence, 

SH evaluations should integrate a comprehensive set of indicators to reflect 

multiple physical, chemical, and biological processes in the soil. The targeted 

processes can vary according to the main soil functions we aim to assess, and 

the selected SH indicators might be modified accordingly. In this work, it is 

mainly done in the context of agricultural production environments and their 

broader environmental impacts. These indicators should be related to soil 

functions and be relevant to management. Furthermore, to be potentially used 

by decision-makers, indicators should also be interpretable and inexpensive to 

collect and measure (John W Doran and Zeiss 2000). 

2. Provide an interpretation framework for the measured 

indicators: Measuring SH is only valid if results can be unequivocally 

interpreted and if reference values are available (Bünemann et al. 2018; 

Lilburne, Sparling, and Schipper 2004; Sparling and Schipper 2004). The lack 

of specific benchmarks or interpretation approaches currently limits SH's 

broader adoption (Yang, Siddique, and Liu 2020). Giving SH indicators a 

quantitative meaning requires transforming observed values into numerical or 

categorical scores representing the attribute's relative status (Rinot et al. 2019). 

Nevertheless, few available approaches provide a clear interpretation scheme 

for SH indicators (Bünemann et al. 2018), and there is no agreement on the 

best methodology or references against which SH indicators should be 
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compared. The Comprehensive Assessment of Soil Health (CASH) of Cornell, 

which is the framework used in this dissertation, use a peer-based scoring 

approach based on parameters of the cumulative normal distribution of each 

indicator over a domain of interest. Developing these scoring functions is 

challenged by the complexities of site-specific variations in inherent soil 

properties and land use that drive SH (Bünemann et al., 2018). The definition 

of the domain should ideally consider the variations in inherent soil properties 

like texture (Fine, Van Es, and Schindelbeck 2017), climate (Nunes et al. 

2021), and land use (Amsili et al., 2023).  This requires the generation of  a 

sets of data that are relevant to a production . Alternative approaches, such as 

the definition of SH Gaps based on the differences between target soil and 

undisturbed references with similar inherent characteristics, have been 

proposed (Maharjan, Das, and Acharya 2020). However, knowing the 

superimposing effect of management in SH, setting pristine conditions as a 

target for SH establishes unachievable expectations in the potential conditions 

for the soil under production systems. Furthermore, undisturbed reference 

areas are not always available. 

3. Provide context-specific references and reflect changes generated by 

anthropogenic actions. When evaluating SH, focus is made on understanding 

anthropogenic actions' effects on soil functional capacity. Having different 

benchmarks or scores for inherently different soil will allow a better 

interpretation of the measured values and comparisons of SH among sites. For 

example, a sandy soil may retain less water than a loamy soil, yet both soils 
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could be equally healthy in a production environment.  Therefore, data of 

different inherent properties like texture should not be compared directly but 

rather rated in the context of their different inherent functional capacity. 

Thereby, the term soil quality refers to the soil’s functional capacity, whereas 

SH refers to the contextual functional capacity, accounting for its inherent 

potential. The SH concept thus adds the challenge of using context-specific 

references that account for the effects of inherent soil variations.  

Aiming to reflect these minimum requirements in this dissertation, I adopt the 

term SH defined as “the continued capacity of soil to function as a vital 

living ecosystem that provides multiple ecosystem services within a given 

environment” with a focus on the evaluation of dynamic soil properties 

affected by agronomic management. 
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CHAPTER 2:  SOIL HEALTH BENEFITS FROM SEQUENCE 

INTENSIFICATION, FERTILIZATION, AND NO-TILLAGE IN ANNUAL 

CROPPING SYSTEMS1 

ABSTRACT 

The expansion of annual cropping systems and associated land cover changes may 

induce soil degradation, compromising the soil’s ability to function and provide 

ecosystem services, also referred to as soil health (SH). Conservation practices may 

reduce SH decline, yet their benefits are uncertain. The main objectives of this paper 

were to apply a comprehensive SH assessment framework to evaluate (i) SH 

differences in natural grasslands and cropping areas, and (ii) how conservation 

practices lessen SH deterioration. Soils under natural grasslands were compared to 

cropped soils from three long-term experiments with treatments evaluating the effects 

of cover crops and/or pastures incorporation; no-tillage; and crop fertilization for 

Uruguayan Mollisols. Soil chemical (pH, cation exchange capacity, macro, and micro-

nutrients), physical (wet aggregate stability, available water holding capacity, 

penetration resistance), and biological (organic carbon, active carbon, protein, 

respiration) indicators were measured. SH was significantly lower across all  

indicators under cropped areas than under natural grasslands, especially when soil 

fertility is not adequately maintained in cropping systems. Conservation practices 

 
1 Rubio, V., Sawchik, J., & van Es, H. (2022). Soil health benefits from sequence 

intensification, fertilization, and no-tillage in annual cropping systems. Soil Security, 

9, 100074. https://doi.org/10.1016/j.soisec.2022.100074 
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lessened SH degradation, particularly soil biological properties, but had confounding 

benefits. Overall, gains in SH were linked to adequate soil fertility maintenance and 

longer active plant growth periods associated with including pastures and cover crops 

in annual cropping system 

2.1. INTRODUCTION 

The current global shortages in grain supplies is promoting unexpected expansion, 

intensification, and simplification of annual cropping. Natural grasslands have been 

converted to annual grain production for centuries due to their high natural fertility 

and productivity developed under pastures deep rooting systems (Liu et al., 2012). 

Globally, around 70% of native grasslands have already been converted to cropland or 

other land uses (Ramankutty et al., 2008).    

The South American Pampas, with more than 70 M ha in east-central Argentina, 

southeastern Brazil, and Uruguay, is one of the world’s most extensive natural 

grassland regions. In the last decade, it experienced the biggest crop production 

increase globally (Baeza and Paruelo, 2020). This increase is associated with: i) an 

expansion of the agricultural frontier, limiting remnants of grasslands to marginal 

areas (Baeza and Paruelo, 2020); and ii)  an extraordinary shift from crop pasture 

rotation to continuous annual cropping systems dominated by soybean (Glycine max) 

monocultures (Wingeyer et al., 2015a). Both have exacerbated soil degradation 

(Beretta-Blanco et al., 2019; Novelli et al., 2017; Wingeyer et al., 2015ª).  After land 

conversion, accumulated effects of inadequate management can compromise a soil’s 
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ability to provide ecosystem services, also referred to as soil health (SH) (Bünemann 

et al., 2018; Fine et al., 2017). Grassland soils lost an estimated 50% of their surface 

soil organic carbon (SOC) contents (Xu et al., 2020), signaling potential limitations for 

crop growth (Rubio et al., 2021a; van Es and Karlen, 2019). Regenerating grassland 

soil is critical for securing food production globally and can also contribute to climate 

change mitigation as the potential C sequestration of these soils is estimated at 10-30% 

above current global soil carbon stocks (Ghosh, P. K., & Mahanta, 2014; Yang et al., 

2019).   

Effective conservation management strategies need to be identified to stop and reverse 

SH degradation and secure soil ecosystem services, but SH is shaped by a complex 

interplay between agronomic management and inherent soil quality (Fine et al., 2017; 

Nunes et al., 2020b), as well as economic drivers. Recoupling the traditional crop and 

pasture rotation might correct the current trend of ecosystem degradation (Carvalho et 

al., 2021), but economic incentives are generally not favorable. Other strategies like 

optimization of crop management, adoption of no-tillage, the addition of organic 

amendments, and the increase in active plant growth periods (diversifying crop 

rotations or incorporating cover crops) can potentially lessen SH degradation (Dicks et 

al., 2019; Petersen and Snapp, 2015; Pretty et al., 2018; Wezel et al., 2015).  

Moving from conventional tillage to NT systems, however, has inconsistent benefits 

on surface SOC, the most broadly evaluated SH indicator (Govaerts et al., 2009). 

Overall, the benefits can be considered minimal  (Powlson et al., 2016), but NT has 

been shown to increase surface SOC in specific cases (e.g., Kinoshita et al., 2017; 

Nunes et al., 2018; Sharma et al., 2013). Furthermore, when some aspects of SH are 
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enhanced by a conservation practice, others might be weakened. For example, the 

benefits of NT reducing SOC losses can be offset by an increase in soil compaction 

(Nunes et al., 2020a; Wander and Bollero, 1999). Also, cover cropping can improve 

SH by increasing SOC and N contents and by improving soil water holding capacity 

and structure (Blanco-Canqui et al., 2015; Sainju et al., 2003; Nunes et al., 2018), but 

it can also reduce nutrient and water availability for subsequent crops (Villamil et al., 

2006). These examples highlight the complexities of assessing the suitability and 

outcomes of different management practices and the importance of comprehensive SH 

evaluations including biological, physical and chemical properties, which have been 

limited in the region.  

The main objectives of this paper were to apply a comprehensive SH assessment 

framework to evaluate (i) SH differences in natural grasslands and cropping areas, and 

(ii) how conservation practices can lessen SH deterioration.. Three long-term field 

experiments and undisturbed references located in the same soil type and  research 

station in Uruguayan Mollisols, were evaluated. Treatments in these experiments 

represent regional systems incorporating the most promoted regenerative management 

practices (fertilization, rotation with perennial pastures, NT, and cover crops) and are 

contrasted with conventional management. 



 

17 

 

2.2.MATERIALS AND METHODS 

2.2.1. SITE AND EXPERIMENTS  

The selected trials are located at La Estanzuela Experimental Station of INIA 

(Uruguayan National Agricultural Research Institute) in SW Uruguay (34º20 S, 57º41 

W, 82 masl). The site has a warm temperate climate, with 50-yr average temperature 

of 16.6°C (monthly average of 10 °C in July to 23 °C in January). Annual average 

precipitation is 1100 mm, nearly evenly distributed throughout the year but with high 

interannual and interseasonal variability. The dominant soil is a Haplic Phaeozem 

(Vertic, Eutric; World Reference Base; IUSS Working Group, 2015), or Typic 

Argiudoll (USDA Soil Taxonomy system; Soil Survey Staff, 2010). Soil texture of the 

surface layer (0-15 cm) is genarally silty clay or silty clay loam, with average values 

of silt and clay of the experiments of 57% (±2%) and 32% (±2%), respectively. 

Average initial values of SOC, pH and soil texture are presented in Appendix 2.1.  

Three long-term experiments were used to evaluate the impact of different 

intensification practices on SH. Additionally, samples from nearby undisturbed natural 

grasslands were evaluated as references of natural conditions. A summary of the 

experiments is presented in Table 2.1.  
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Table 2. 1: Treatment descriptions for the three long-term experiments (LTE). 

Where: CT: Conventional tillage; NT: No-tillage; *: NT since 2009; MT: Minimum tillage; ([ 

]): Crops within one year; (/): Separates winter and summer crops; early: cover crop 

termination 60 days pre-sowing; late: cover crop termination 30 days pre-sowing. Underlined 

crops represent soil sampling times for each treatment; SII(%): Average percentage of annual 

active plant growth since the beginning of the experiment. 

 

EXPERIMENT 1: Fertilization and Pastures 

This trial was established in 1963 to evaluate the effects of fertilizer inputs in continuous 

annual cropping, and of perennial non-harvested grass-legume pastures (%PS) as part 

of a rotation with annual crops. Five contrasting treatments were selected for this study 

(Table 2.1), which were arranged in a randomized complete block design with three 

staggered blocks. Perennial pastures (a mixture of tall fescue (Festuca arundinacea 

Schreb.), white clover (Trifolium hybridum L.), and birdsfoot trefoil (Lotus corniculatus 

L.) are included at 0%, 33%, 50%, and 66% of time in the rotation.  Pastures were not 

grazed and the biomass was cut an average of four to six times a year, and subsequently 

left on the plots,.  All treatments were fertilized, except one with 0% pasture in the 

LTE 
% 

pasture 

Fertilizer 

(N+P) 
Tillage Current crop rotation 

SII 

(%) 

1 0% - CT-NT* [Barley/Sorghum]-[Wheat/Soybean]-[Fallow/Corn] 52 

1 0% + CT-NT*
 [Barley/Sorghum]-[Wheat/Soybean]-[Fallow/Corn] 52 

1 50% + CT-NT* 
[Barley/Sorghum]-[Wheat/Soybean]-[Fallow/Corn]-

3yr.[Pasture] 
82 

1 66% + CT-NT* 
[Barley/Red clover]-[Red clover]-[Fallow/Sorghum]-

3yr.[Pasture]-[Fallow/Corn] 
83 

1 33% + CT-NT* [Fallow/Sorghum]- [Wheat/Soybean]-[Red Clover] 74 

2 0% + MT [Wheat/Fallow]-[Oat cover crop/Corn]-[Barley/Soybean] 73 

2 50% + MT 
[Wheat/Fallow]-[Oat cover crop/Corn]-[Barley/Soybean]- 

3yr.[Pasture] 
81 

2 0% + NT [Wheat/Fallow]-[Oat cover crop/Corn]-[Barley/Soybean] 73 

2 50% + NT 
[Wheat/Fallow]-[Oat cover crop/Corn]-[Barley/Soybean]- 

3yr.[Pasture] 
81 

3 0% + NT [Fallow/Soybean] 43 

3 0% + NT [Oat cover cropearly/Soybean] 82 

3 0% + NT [Oat cover croplate/Soybean] 90 
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rotation without fertilizer. The area of the plots is 5000 m2 (25*200 m), and the site 

slope is 2.5 to 3%. More details about the experimental design are found in Grahmann 

et al. (2020).  

Agronomic management included changes over time following the main technological 

advances of the region, involving a reduction in tillage intensity and time under bare 

soil. In the early years, conventional tillage (CT; moldboard plowing with secondary 

tillage) was used. Tillage intensity was reduced in the mid-1990s, and NT was included 

in 2009. Further details on the effects of treatments on soil properties over time, and on 

crop productivity  were previously reported (Baethgen et al., 2021; Grahmann et al., 

2020; Rubio et al., 2018; Rubio et al., 2021). 

EXPERIMENT 2: Pastures and tillage 

This trial was established in 1996 to evaluate the factorial impacts of crop rotation 

(continuous cropping vs. crops rotation with pastures at 50%-50%) and tillage practices 

(NT vs. minimum tillage; Table 1). The area of each experimental plot is 495 m2 

(11x45m), and the slope is less than 1%. The experimental design is a 2x2 factorial laid 

out in a split-plot randomized design with three staggered replicates. The pasture phase 

consists of a mixture of tall fescue, white clover, and birdsfoot trefoil. Pastures were not 

grazed and the residue is cut an average of four times a year and subsequently left on 

the plots. No changes in cropping sequences or management occurred in this experiment 

since its initiation.  

EXPERIMENT 3: Cover crops in continuous soybean systems 
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This trial was established in 2004 to evaluate the effects of cover crop inclusion and 

duration in a continuous soybeans system under NT. The experiment has a 3x2 factorial 

design, with six replications (not randomized). In this study three of the experimental 

treatments were evaluated. Oat (Avena sativa) was cover cropped with two termination 

times (early: 60 days pre-sowing, average date September 15; late: 30 days pre-sowing, 

average date October 15) and contrasted with continuous soybean without winter cover 

crop (Table 1). The plot size is 132 m2 (3*44 m), and the slope is less than 1%. No 

changes in cropping sequences or management occurred in this experiment since its 

installation. 

2.2.2. CROP MANAGEMENT 

For all experiments, crop management followed the general practices recommended 

by INIA for the region. Mineral N and P (urea, diammonium phosphate, 

monoammonium phosphate, triple superphosphate, and single super phosphate) 

fertilizers were applied annually at sowing according to soil test recommendations 

(except one of the 0%PS treatments in Experiment 1 where fertilization was explicitly 

excluded). All plots were managed to minimize the impacts of weeds, diseases, and 

pests on yields. Annual crops were harvested for grain, and straw was retained on the 

plots. Cover crops were not harvested. Pastures were cut to simulate grazing, and 

forage was left on the plots in all experiments. In Experiments 1 and 2, crops were 

grown under rainfed conditions. For Experiment 3, supplemental irrigations were 

performed at sowing in 11 of the 14 evaluated seasons. Irrigations were made between 

November and January and varied from 12 to 42 mm ha-1 year-1 (average 19 mm ha-1 
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year-1). Total irrigation applied since the beginning of the experiment was 264 mm ha-

1 year-1.  

The sequence intensification index (SII), the number of months of the year with living 

plant roots, was estimated on a monthly basis as proposed by Novelli et al. (2013) to 

characterize soil use and management (Table 2.1). Average sowing and harvest dates 

were considered to determine the average growth length in months for each crop: 5.5 

for wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and flax (Linum 

usitatissimum); 5.2 for sorghum (Sorghum bicolor L.) and soybean (Glycine max); 6 for 

corn (Zea mays L.); and 4.3 for sunflower (Helianthus annuus). For non-harvested 

perennial pastures nine months of growth was considered for the first year and 12 for 

the second and third years. Average SIIs for each experiment and treatment are 

presented in Table 2.1. For experiment 1, the active plant growth increased over time 

following improvements in crop management in the region, and were  similar for most 

treatments (Appendix 2.2). An exception is the 66%PS treatment which changed from 

continuous annual cropping (0%PS) after 1983, 37 years prior to soil sampling. For 

Experiments 2 and 3 SII did not change over the evaluated period.  

2.2.3. UNDISTURBED SOIL REFERENCES.  

An undisturbed reference area adjacent to each experiment was selected to represent 

the same soils under natural, uncropped  conditions.  These areas were covered by 

natural grasses and, to the best of our knowledge, were never disturbed. Natural 

grasslands are dominated by C4 grasses with Bermuda grass (Cynodon Dactylon), Tall 

Fescue (Festuca Arundinacea) and Dallis grass (Paspalum dilatatum) as the main 
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species. In each undisturbed area, three sampling points were selected as replicates for 

sampling.    

2.2.4. SOIL SAMPLING AND ANALYSIS 

One four-core composite soil sample per plot was collected on December 2019 from 

the 0-15 cm depth following CASH protocol (Moebius-Clune et al., 2016). Average 

maximum penetration resistance from 0 to 15 (PR15) and from 15 to 45 cm depth 

(PR45) was determined from 15 in-field probings using an Eijkelkamp penetrologer 

(www.Eijkelkamp.com). One or two different rotation entries were sampled at each 

block due to the staggered start replications in experiments (underlined crops in Table 

2.1).  

Disturbed samples were used to determine 18 soil chemical, physical and biological 

indicators, and gravimetric water content. Ground samples were analyzed for soil 

chemical properties at the Laboratory of Water, Plants, and Soils of the Experimental 

Station Alberto Boerger INIA La Estanzuela (Colonia, Uruguay). Briefly, the 

evaluated properties and the methodologies used were: Soil pH determined 

potentiometrically (1:2.5 soil/distilled water suspension; Beretta et al., 2014); SOC 

and total N using dry combustion (900°C) with a LECO analyzer (LECO TrueSpec 

CN-2000, St. Joseph, USA); Echangeable P colorimetrically using a Bray-I with a 

1:10 (w/v) soil/solution ratio and an extraction time of 5 min (Bray and Kurzt, 1945);  

Exchangeable bases (K, Mg, K, Ca, and Na) by leaching soils with 1 M ammonium 

acetate (NH4OAc) at pH 7; Extracts analyzed by atomic absorption spectrometry (for 

Ca and Mg) and atomic emission spectroscopy (for K and Na; Jackson, 1964); 

micronutrients Fe, Zn, Mn by DTPA extraction and ICP-OES analysis (Andrade et al., 

http://www.eijkelkamp.com/
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2001). Cation exchange capability (CEC) at pH 7 (mmol kg-1)  was calculated from 

the sum of exchangeable bases and titratable soil acidity at pH 7 (Jackson, 1964). 

Percent base saturation was calculated based on CEC.  

Subsamples were submitted to the Cornell Soil Health Laboratory (Ithaca, NY, USA) 

for analysis of soil physical and biological properties. Details on the laboratory 

techniques are available in Moebius-Clune et al. (2016) and Schindelbeck et al. 

(2016). Briefly, the soil physical indicators were: Plant-available water capacity 

(AWC) as the water retained between −10 kPa and − 1500 kPa, and assessed 

gravimetrically by equilibrating soil on ceramic plates in high-pressure chambers 

(Topp et al., 1997); Wet aggregate stability (WAS) as the proportion of stable 

aggregates (0.25–2 mm size) after a rainfall simulation (2.5 J of rainfall energy for 300 

s); and soil texture using a rapid quantitative method developed by Kettler et al. (2001) 

where soil samples were fractionated after slaking with 3% sodium 

hexametaphosphate ((NaPO3)n).  

Evaluated soil biological indicators were: Permanganate-oxidizable carbon (POXC, 

also known as "active carbon") measured as the C oxidized by a dilute potassium 

permanganate solution (KMnO4) and measured solution absorbance at 550 nm using a 

hand-held colorimeter (Weil et al., 2003); Autoclaved citrate extractable soil protein 

(ACE Protein) where proteins were extracted from the soil following a series of 

centrifugation and autoclaving steps using 0.02 M sodium citrate at pH 7 (Hurisso et 

al., 2018), and a bicinchoninic acid assay against bovine serum albumin standard 

curve was used to determine soil protein concentration (Wright, S.F. and Upadhyaya, 

1998); Soil respiration (Resp), assessed by trapping and measuring CO2 emitted by 
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soil microorganisms over a 4-day room temperature incubation in a sealed chamber 

with a KOH trap (Schindelbeck et al., 2016). 

2.2.5. DATA ANALYSIS  

For all the evaluated SH indicators, descriptive statistics and analyses of variance 

(ANOVA) were performed. The effect of land use (undisturbed soil references vs. 

experimental area) was evaluated on the full dataset, and heteroscedasticity between the 

experimental areas, when present, was included and considered uniform for each 

experimental area (VarIdent). Means separation and multiple comparisons for 

treatments were computed using the Tukey posthoc test after a significant F-ratio (p < 

0.05). Regression analyses were performed on the percentage of pastures in the crop 

rotation (%PS) for fertilized treatments in Experiment 1. Additionally, linear, quadratic, 

and exponential regressions between SH indicators and SII were performed for the full 

data set, to explore its association (considering SII equal 100 for the undisturbed 

references). Exponential regressions are not presented since they didn’t generate 

significant improvements in the regression performance and are more difficult to 

interpret. The unfertilized treatment of Experiment 1 was excluded from all the 

regression analyses to avoid confounding effects from nutrient deficiencies.  All 

statistical analyses were performed using RStudio software version 1.0.143 (R core 

Team, 2019), while spider plots were generated using MS-Excel (Microsoft 

Corporation, Redmond, WA). 

Physical and biological indicators were transformed into a score between 0 and 100 

using the CASH scoring algorithms for fine soil textured soils (Fine et al., 2017), 

which are based on the cumulative normal distribution parameterized by mean and 
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standard deviation values observed in the USA. A more-is-better score was utilized for 

all evaluated indicators, except penetration resistance where a less-is-better scoring 

function was used. The scored indicator values were used to represent treatment 

effects on different soil properties into a single spider plot, allowing for a 

comprehensive visualization of SH.  

2.3. RESULTS AND DISCUSSION 

2.3.1. LAND USE CHANGES  

Natural grasslands in the Pampas region have high amounts of SOC and very fertile 

and healthy soils, but conversion to agricultural production and tillage causes 

significant SH decline (Table 2.2, Fig. 2.1). This was observed for all measured SH 

indicators, except Na, suggesting widespread changes in functional capabilities of 

these soils. Intensive traffic, tillage, and soil erosion have been correlated with soil 

physical degradation of similar agricultural soils (Alvarez et al., 2017; Botta et al., 

2009; Tolon-Becerra et al., 2011). Here, this degradation was observed as a 43% 

increase in 0-15-cm depth soil penetration resistance and a 44 and 12% average 

reduction in aggregate stability and AWC, respectively (Table 2.2). AWC was less 

affected by land use changes than other soil physical indicators, as also measured by 

others (Amsili et al., 2021; Nunes et al., 2018; van Es and Karlen, 2019), presumably 

because the gravimetric procedure on disturbed samples removes the beneficial effects 

undisturbed pastures on lower soil bulk density conditions. The measured soil physical 

changes may result in reduced root growth, microbial activity, water, and nutrient 
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movement, and increases in soil erosion, and N2O emissions (Alaoui et al., 2011; Głąb 

and Gondek, 2014; Mijangos et al., 2006).  

The conversion of natural soils to crop production also affects C balances, increasing 

outputs and reducing inputs, thus negatively impacting soil biological processes. As a 

result, biological indicators were highly affected by crop conversion where SOC, 

Resp, ACE Protein, and POXC were reduced by 44, 62, 44, and 28%, respectively. 

SOC losses were within the estimated range reported for the region by Alvarez (2001). 

However, the observed loses were higher than the 25-36% and 25% average losses 

recently reported in agricultural farms in the region by Nicolas et al. (2022) and 

Rodriguez et al., (2022) perhaps due to the lack of erosion in these relatively flat field 

sites. Degradation of soil biological properties, among others, may affect nutrient 

cycling and aggregate stability and result in a broader deterioration of soil chemical 

and physical processes and crop yields (Rubio et al., 2021a; Tang et al., 2011; Yadav 

et al., 2021).   
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a.Experiment 1 

 

b. Experiment 2 
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c. Experiment 3

 
 

Figure 2. 1: Spider plot of soil Physical and biological health indicators, scored from 0 

to 100, for experiment 1, 2 and 3 as a function of treatments. 

Where; 0%PS_NF: treatment with 0% of the time under non-harvest pastures and no 

fertilization; 0%PS: treatment with 0% of the time under non-harvest pastures; 

33%PS: 33% of the time under non-harvest pastures and 66% under crops; 50%PS: 

50% of the time under non-harvest pastures and is 50% under annual crops; 66%PS: 

66% of the time under non-harvest pastures and 33% under crops; MT: Minimum 

tillage treatments; NT : No- tillage; Cont_Soy: Continuous soybean systems; 

Soy+Oat: Continuous soybean treatments with Oat as winter cover crop; E: Early Oat 

termination; L: late Oat termination; WAS: Water aggregate stability, PR15: 

Penetration resistance from 0-15 cm; PR45: Penetration resistance from 15-45 

cm;AWC: Available water capacity; SOC: Soil organic carbon; POXC: 

Permanganate-Oxidizable Carbon or Active Carbon; ACE Prot: ACE Protein; Resp: 

Respiration  
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Table 2. 2: Mean soil health indicators for the evaluated experimental farm areas and 

undisturbed references 

Significance codes:  ‘***’: a=0.001 ‘**’ : a=0.01 ‘*’ : a=0.05 ‘+’ : a=0.1 . Where: 

WAS: Water aggregate stability; AWC: Available water capacity; PR15: Penetration 

resistance from 0-15 cm; PR45: Penetration resistance from 15-45 cm; SOC: Soil 

organic carbon; POXC: Permanganate-Oxidizable Carbon or Active Carbon; Resp: 

Respiration; CEC: Cation exchange capability; %Base Sat: Percentage of base 

saturation 

Soil acidification, as well as nutrient deficits and excesses appear as potential concerns 

associated with the degradation of soil chemical properties. Here, the relative changes 

generated in soil chemical properties were smaller than those observed in the physical 

and biological ones. The reduction in soil pH, from 6.30 to 5.58 may be associated 

with N fertilization, biological N fixation, base cation extraction by crops, and a 

reduction in SOC (Haynes, 1983) and is consistent with observed regional tendencies 

(Beretta-Blanco et al., 2019). Soil acidification may reduce potential yields of several 

PHYSICAL 

 WAS AWC PR15 PR45         

--%-- --g/g-- -------kPa--------         

Experiments 43.4 0.29 814 1117         

References 77.2 0.33 565 1172         

Significance *** *** *** +         

BIOLOGICAL 

 SOC POXC Resp 
ACE 

Protein         

--%-- mg/kg mgCO2/g mg/g 
Experiments 2.42 661 0.46 6.55         

References 4.33 921 1.23 11.8         

Significance *** *** *** ***         

CHEMICAL 

 
pH CEC Base Sat N P K Ca Mg Na Mn Zn Fe 

 meq/100

g 
--------%------- 

mg/k

g 
---------meq/100g--------

-- 
-----mg/kg---- 

Experiments 5.58 19.3 75 0.25 37 0.46 10.63 2.71 0.63 48.4 1.06 143 
References 6.30 22.6 86.4 0.41 20 1.52 14.01 3.34 0.71 37.1 4.54 167 
Significance *** *** *** *** * *** *** * ns *** *** *** 
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crops and, therefore, further exacerbate SOC decline (Liu G, 2015). If soil 

acidification continues, remediation practices might be needed which may also 

increase the cost of production.  

Crop nutrient extraction and increases in nutrient losses in cropping systems might 

explain the reduced nutrient availability (Table 2.2). Negative balances are expected 

for those nutrients that are not generally replenished as fertilizers, like Mg, Zn, Fe, and 

K. The observed reduction in nutrient availability, especially K and bases, suggests 

potential future deficiencies. The increase in P levels is associated with excessive 

fertilization that might increase the risk of P losses to water bodies. The increase in 

Mn availability is not associated with fertilization, but may have risen with the 

reduction in soil pH and SOC. Mn-(oxy)hydroxide minerals are associated with SOC 

stabilization, and lower organic Mn complexes may induce higher availability of Mn 

detected by soil testing (Franks et al., 2021). Despite being an essential micronutrient, 

Mn values above 40 mg/kg can be toxic for wheat plants, and therefore this should be 

monitored in the future (Fageria, 2007).  

Overall, our results confirmed the necessity of comprehensive approaches to SH 

evaluation for assessing anthropogenic soil degradation. The undisturbed soil areas 

may be used as SH benchmarks against which the condition of Uruguayan agricultural 

soils are evaluated (Balaguer et al., 2014), and against which potential soil health 

goals are considered (Maharjan et al., 2020). We corroborated that soil acidification, 

nutrient losses, and SOC depletion are threats to SH in the Pampas region (Beretta-

Blanco et al., 2019; Wingeyer et al., 2015a). Yet, the greatest changes in SH were 

observed in the traditionally ignored physical and biological SH indicators (Table 2.2 
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and Fig. 2.1), which may be mostly associated with crop productivity concerns in the 

region (Ernst et al., 2018; Rubio et al., 2021b).  

2.3.2.  ROLE OF CONSERVATION PRACTICES 

2.3.2.1. Experiment 1: Fertilization and Pastures 

All SH indicators showed significant treatment effects, except Ca, Mg, Na, Mn, and 

CEC (Table 2.3; Fig 2.1). The most depleted SH conditions were observed with 

unfertilized continuous annual cropping, where severe nutrient deficits limited crop 

growth (Grahmann et al., 2020). Fertilizer additions prevented significant SH 

deterioration, mostly with soil biological properties and aggregate stability (Fig 2.1). 

Fertilizer benefits on SH are presumably associated with higher crop biomass 

production compared with unfertilized crops, which generates higher root biomass and 

crop residue cycling, as well as increased soil cover and a reduction in soil erosion 

(Baethgen et al., 2021). Resulting benefits on SOC and nutrient balances explain the 

improvements in soil physical and biological properties. Our results corroborate the 

notion that proper fertilization is critical for sustainable cropping systems (Cassman 

and Grassini, 2020), yet even with the addition of fertilizers SH under continuous 

annual cropping was significantly lower than that observed under natural systems (Fig 

2.1). Furthermore, additional problems associated with fertilizer additions like soil 

acidification and external nutrient losses should be avoided.  

Supplementary benefits in SH were associated with the inclusion of pastures in the 

cropping system, presumably due to a reduction in tillage and increased active growth 

periods, which were particularly important during the first stages of this experiment 
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(Appendix 2.1). Pastures in the rotation increased biomass inputs and reduced soil 

erosion losses (Baethgen et al., 2021; Grahmann et al., 2020), which were associated 

with higher aggregate stability and reduced subsurface penetration resistance. No 

significant differences in surface water content among treatments were observed at 

sampling (mean= 30% v/v and, p-value=0,34). Therefore, observed differences in 

penetration resistance can be associated with changes in soil compaction. Soil 

biological properties were on average 46% higher and the proportion of time under 

pastures was significantly correlated with improvements of all the evaluated soil 

biological indicators (Table 2.3). Furthermore, lower nutrient extractions by crops and 

a reduction in soil erosion in treatments that include pasture increased the availability 

of N, K, and Zn.  But lower P fertilization rates in pasture-based systems resulted in 

lower P contents (Grahmann et al., 2020). 
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Table 2. 3: Factor significance ANOVA of soil physical, biological, and chemical 

properties for Experiment 1. 

 

Significance codes:  ‘***’: =0.001 ‘**’ : =0.01 ‘*’ : =0.05 ‘+’ : =0.1 . Where: 0%PS_NF, 

0% of the time under pastures and no fertilization; 0%PS, 0% of the time under non-

harvest pastures and N, P fertilization; 33%PS: 33% of the time under non-harvest 

pastures and 66% under crops and N, P fertilization; 50%PS: 50% of the time under 

non-harvest pastures and 50% under crops and N, P fertilization; 66%PS: 66% of the 

time under non-harvest pastures and 33% under crops, and N, P fertilization; WAS: 

PHYSICAL 
 WAS AWC PR15 PR45         

 --%-- ---g/g--- ---------kPa---------         

0%PS_NF 19d 0.28c 1262a 1462 a         

0%PS 30cd 0.31ab 903b 1213b         

33%PS 44bc 0.29bc 869b 1089bc         

50%PS 52ab 0.33a 876b 1089bc         

66%PS 61a 0.33a 958b 1055c         

Treatment ** * ** **      

%Pasture 

Regression coefficient 

** 

0.47 

ns 

- 

ns 

- 

* 

-0.33 
     

BIOLOGICAL 
 SOC POXC Resp ACE Protein      

 --%-- mg/kg mgCO2/g mg/g      

0%PS_NF 1.50d 444c 0.27c 3.50d         

0%PS 2.0c 560b 0.39bc 5.70c         

33%PS 2.5b 710a 0.54b 6.39b         

50%PS 2.89a 731a 0.75a 7.12a         

66%PS 2.88a 728a 0.73a 6.51b         

Treatment *** *** *** ***      

%Pasture 

Regression coefficient 

*** 

0.01 

* 

2.67 

** 

0.01 

* 

0.02 
     

CHEMICAL 

 pH CEC Base sat N 
P 

Bray 
K Ca Mg Na Mn Zn Fe 

  meq/100g ---------%--------- mg/kg 
------------

meq/100g---------- 

---------mg/kg----

----- 

0%PS_NF 6.23a 16.13 86.0a 0.15 d 3.2d 0.57b 10 2.58 0.77 39.44 0.47b 52c 

0%PS 5.43b 16.3 73.1b 0.20 c 33a 0.39c 8.98 1.84 0.74 59.45 0.52b 132b 

33%PS 5.34b 18.8 72.2b 0.26 b 26ab 0.46c 10.31 2.24 0.71 49.23 0.50b 130b 

50%PS 5.51b 18.3 73.2b 0.28ab 14c 0.64b 10.05 2.11 0.58 55.28 0.78a 152a 

66%PS 5.53b 18.2 73.4b 0.29a 18bc 0.74a 9.72 2.35 0.67 51.35 0.83a 140ab 

Treatment ** ns * *** *** *** ns ns ns ns * *** 

%Pasture 

Regression coefficient 

ns 

- 

ns 

- 

ns 

- 

*** 

0.0014 

** 

-0.26 

** 

0.01 

ns 

- 

ns 

- 

ns 

- 

ns 

- 

* 

0.01 

ns 

- 
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Water aggregate stability; AWC: Available water capacity; PR15: Penetration 

resistance from 0-15 cm; PR45: Penetration resistance from 15-45 cm; SOC: Soil 

organic carbon; POXC: Permanganate-Oxidizable Carbon or Active Carbon; Resp: 

Respiration; CEC: Cation exchange capability; %Base Sat: Percentage of base 

saturation. 

2.3.2.2. Experiment 2: Pastures and Tillage  

Most of the evaluated SH indicators were not affected by tillage, pasture inclusion, or 

their interaction in Experiment 2 (Table 2.4; Fig 2.1), although an increase in Fe 

content in NT systems was observed (p< 0.01). In addition, the inclusion of pastures 

slightly reduced AWC (p<0.05) and increased surface penetration resistance (p<0.1) 

when compared to 0%PS systems. Different outcomes with pasture incorporation were 

observed compared to Experiment 1 (Tables 2.3 and 2.4), presumably related to (i) the 

baseline continuous cropping systems in Experiment 1 having a lower SII and using 

more intensive tillage than in Experiment 2, therefore, pasture additions generated a 

larger relative benefit in SII in Experiment 1 than 2 (average change form 53 to 80% 

and from 73 to 81% respectively), and (ii) a 3% slope combined with intensive tillage 

during the first years of Experiment 1 promoting greater soil erosion losses than the 

1% slope with minimum/no-tillage in Experiment 2. These, combined with the shorter 

duration of Experiment 2 and lower accumulation of treatment effects in C balances, 

can explain the lack of benefits from pasture inclusion. Comparably, no benefits of 

pasture incorporation on SOC were observed for a long-term experiment in Northwest 

Uruguay on a cropping system with 83% SII and a slope lower than 1% (Salvo et al., 

2010).  
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The conversion from minimum to NT system did not affect the evaluated SH 

indicators in Experiment 2 (Table 2.4). Similar insignificant effects of NT on SOC had 

been related to poorly drained (Paustian et al., 1997) and fine textured soils (Fiorini et 

al., 2020), conditions both present in this experiment. Furthermore, the main benefits 

of NT systems over conventional or minimum tillage systems on sloping soils may be 

associated with decreasing soil erosion (Verhulst et al., 2010; Sun et al., 2015), which 

is also the main reason for NT adoption in the Pampas region. Yet, with a slope lower 

than 1%, the advantages of NT were minimal for this site. Additional benefits of NT 

may be associated with diminished C mineralization by reducing disruption of 

aggregates and soil microorganisms' access to previously protected C pools (Six et al., 

2000). Still, our results indicate that continuous NT might not be the most beneficial 

strategy for SH preservation under low erosion risk conditions, as also concluded by 

Luo et al. (2010). No significant benefits of NT on SOC had been reported in 40% of 

78 cases compiled by Govaerts et al., (2009), which might explain the apparent lack of 

effects of NT on soil physical and biological properties (Blanco-Canqui and Ruis, 

2018). Neither pasture incorporation nor tillage and their interaction affected surface 

soil water content at sampling (mean= 20%v/v, p-value=0.455). Therefore, this 

variable did not affect the observed effects of treatment on penetration resistance. 
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Table 2. 4: Factor significance ANOVA of soil physical, biological, and chemical 

properties for Experiment 2 

PHYSICAL 
 WAS AWC PR15 PR45         

 --%-- 
-----g/g---

- 
-----------kPa------

---- 
        

0%PS_MT 47 0.31 538 869         

0%PS_NT 39 0.33 510 889         

50%PS_MT 47 0.31 703 1048         

50%PS_NT 44 0.28 607 903         

Tillage ns ns ns ns         

PS ns * + ns         

Tillage*PS ns ns ns ns         

BIOLOGICAL 

 SOC POXC Resp 
ACE 

Protein 
        

 --%-- mg/kg 
mg 

CO2/g 
mg/g      

0%PS_MT 2.21 608 0.33 6.53         

0%PS_NT 2.15 578 0.29 6.31         

50%PS_MT 2.22 647 0.39 6.81         

50%PS_NT 2.25 599 0.35 6.45         

Tillage ns ns ns ns         

PS ns ns ns ns         

Tillage*PS ns ns ns ns         

CHEMICAL 
 pH CEC Base Sat N P Bray K Ca Mg Na Mn Zn Fe 

  meq/100g -----------%-------- mg/kg 
-----------meq/100g---

------ 
---------mg/kg------- 

0%PS_MT 5.50 20.3 76.3 0.22 27 0.40 11.54 3.02 0.64 54.52 0.55 106 
0%PS_NT 5.73 18.8 71.5 0.23 21 0.39 9.69 2.66 0.70 59.15 0.63 132 
50%PS_MT 5.41 19.7 75.1 0.23 23 0.55 10.46 3.1 0.69 56.18 0.67 110 
50%PS_NT 5.38 19.5 73.1 0.23 25 0.39 10.03 3.08 0.75 54.72 0.55 134 
Tillage ns ns ns ns ns ns ns ns ns ns ns ** 
PS ns ns ns ns ns ns ns ns ns ns ns ns 
Tillage*PS ns ns ns ns ns ns ns ns ns ns * ns 

 

Significance codes:  ‘***’: =0.001 ‘**’ : =0.01 ‘*’ : =0.05 ‘+’ : =0.1. Where: 

0%PS_NF, 0% of the time under pastures and no fertilization; 0%PS, 0% of the time 

under non-harvest pastures and N, P fertilization; 33%PS: 33% of the time under non-

harvest.Where: ; 0%PS, treatment with 0% of the time under non-harvest pastures and 

N, P fertilization; 50%PS   50% of the time under non-harvest pastures and 50% under 

crops and N, P fertilization; MT: represent minimum tillage treatments; NT: represent 
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no-tillage treatments; WAS: Water aggregate stability; AWC: Available water 

capacity; PR15: Penetration resistance from 0-15 cm; PR45: Penetration resistance 

from 15-45 cm; SOC: Soil organic carbon; POXC: Permanganate-Oxidizable Carbon 

or Active Carbon; Resp: Respiration; CEC: Cation exchange capability; %Base Sat: 

Percentage of base saturation. 

 

2.3.2.3.  Experiment 3: Cover crops in continuous soybean systems 

Four SH indicators were significantly affected by the inclusion of an oat cover crop in 

a continuous soybean system (Table 2.5; Fig 2.1c). SOC changes would be expected 

after 15 years (McClelland et al., 2021), but there were no significant differences 

between treatments. However, changes were detected in more labile C fractions like 

POXC and respiration (Table 2.5), suggesting that these indicators are more sensitive 

to changes in management than total SOC. Also, in agreement with previous studies, 

greater aggregate stability was measured in the cover crop treatments (e.g., Hermawan 

and Bomke, n.d.; Villamil et al., 2006), although these differences were not 

statistically significant.  

The late-terminated cover crop treatment had lower penetration resistance in the 

surface layer than the continuous soybean treatment but higher in the deeper soil layer 

(Table 2.5). The lack of soil water content differences among treatments at sampling 

(mean= 35%g/g, p-value= 0.484) suggest that cover crops reduce surface soil 

compaction. However, lower water contents in late terminated cover crops treatments, 

when high evapotranspiration is expected, might have confounded the observed 

differences in subsurface penetration resistance (Duiker, 2002).   
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Table 2. 5: Factor significance ANOVA of soil physical, biological, and chemical 

properties for Experiment 3. 

PHYSICAL 
 WAS AWC PR15 PR45         

 ---%--

- 
--g/g--- 

--------kPa------

---- 
        

Cont_Soy 34 0.239 724 a 848 b         

Soy+Oat_E 35 0.257 531 b 1172 a         

Soy+Oat_L 42 0.259 517 b 1020 ab         

Treatment ns ns * *         

Cover crop ns + * *         

BIOLOGICAL 

 SOC POXC Resp 
ACE 

Protein 
       

 
 

 % mg/kg 
mgCO2

/g 
mg/g      

Cont_Soy 2.41 623b 0.31b 6.88         

Soy+Oat_E 2.62 734ab 0.42ab 7.34         

Soy+Oat_L 2.40 776a 0.53a 7.28         

Treatment ns * ** ns         

Cover crop ns ** ** ns         

CHEMICAL 

 pH CEC 
Base 

Sat 
N 

P 

Bray 
K Ca Mg Na Mn Zn Fe 

  meq/10

0g 
----------%------

----- 
mg/k

g 
-------------meq/100g---------

----- 
----------mg/kg------

---- 
Cont_Soy 5.58 18.6 74 0.25 72 0.43 10.3 2.53 0.61 45.9 2.05 153 
Soy+Oat_E 5.59 20.1 76 0.27 73 0.39 11.2 3.13 0.56 43.1 1.83 156 
Soy+Oat_L 5.55 20.5 75 0.24 54 0.39 11.2 3.01 0.77 50.6 1.32 162 

Treatment ns ns ns ns ns ns ns ns ns ns ns ns 

Cover crop ns + ns ns ns ns ns ns ns ns ns ns 

             

 

Significance codes: ‘***’: =0.001 ‘**’ : =0.01 ‘*’ : =0.05 ‘+’ : =0.1.Where: 

Cont_Soy: Continuous soybean systems; Soy+Oat: Continuous soybean treatments 

with Oat as winter cover crop; E: Early Oat termination; L: late Oat termination; 

WAS: Water aggregate stability; AWC: Available water capacity; PR15: Penetration 

resistance from 0-15 cm; PR45: Penetration resistance from 15-45 cm; SOC: Soil 

organic carbon; POXC: Permanganate-Oxidizable Carbon or Active Carbon; Resp: 

Respiration; CEC: Cation exchange capability; %Base Sat: Percentage of base 

saturation. 
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2.3.3. SEQUENCE INTENSIFICATION INDEX  

Overall, lower SH was observed under less intensive plant growth conditions (Figs. 

2.2, 2.3, and 2.4). In the combined dataset the relationship between SH and SII was 

significant for all SH indicators, except PR45 and Na (Table 2.6). Changes in SII 

explained between 58 and 73% of the variation observed in SH indicators, mostly 

modeled as quadratic increases. Indicators with high correlation with SII were  Resp> 

SOC> Total N> Zn>POXC> WAS> ACE protein. When undisturbed reference soils 

were excluded, the relationship between SII and SH indicators was generally weaker 

(Table 2.6). Yet, a significant relationship of SII with soil biological indicators, PR15, 

and WAS was observed in farmed areas reaffirming that these indicators are the most 

sensitive to land-use changes (Amsili et al., 2020; Nunes et al., 2018). Intensive 

cropping sequences that maximize SII by minimizing fallow periods and increasing 

biomass production therefore appear associated with SH improvements. Lower 

correlation of SII with soil chemical indicators is explained by the addition of 

fertilizers. Additional benefits of more intense cropping systems that were previously 

documented include higher radiation and water use efficiencies; reduction in nutrient 

losses; increasing richness and diversity of soil microbial communities; reduced soil 

erosion; weed and disease suppression; and improved pollination (Caviglia and 

Andrade, 2010a; de la Fuente et al., 2021; Villamil et al., 2006).  
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Table 2. 6:  Lineal Regression analysis between soil health indicators and the sequence 

intensification index 

 

 

Significance codes:  ‘***’: =0.001 ‘**’ : =0.01 ‘*’ : =0.05 ‘+’ : =0.1.Where: WAS: 

Water aggregate stability; AWC: Available water capacity; PR15: Penetration resistance from 

0-15 cm; PR45: Penetration resistance from 15-45 cm; SOC: Soil organic carbon; POXC: 

Permanganate-Oxidizable Carbon or Active Carbon; ACE Prot: ACE Protein; Resp: 

Respiration; CEC: Cation exchange capability; %Base Sat: Percentage of base saturation; 

CASH_FB: integrated physical and biological soil health index. 

 With reference sites Without reference sites 
 Significance R2.adj Significance R2.adj 

PHYSICAL 

WAS *** 0.59 + 0.14 

AWC ** 0.15 ns - 

PR15 ** 0.25 + 0.05 

PR45 ns - ns - 

BIOLOGICAL 

SOC *** 0.69 + 0.06 

POXC *** 0.61 *** 0.39 

ACE.Prot *** 0.58 + 0.08 

Resp *** 0.73 ** 0.19 

CHEMICAL 

pH ** 0.21 ns - 

CEC *** 0.27 + 0.06 

%Base Sat ** 0.17 ns - 

N *** 0.67 + 0.07 

P ** 0.04 + 0.05 

K *** 0.51 ns - 

Ca ** 0.23 ns - 

Mg ** 0.18 ns - 

Mn + 0.18 ns - 

Na ns - ns - 

Zn ** 0.63 ** 0.10 

Fe ** 0.45 ** 0.28 

CASH_FB *** 0.74 *** 0.34 
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Figure 2. 2: Physical Soil health indicators as a function of Sequence Intensification 

Index (SII).  

When: The best regression equation is presented when significant. WAS: Water 

aggregate stability, PR15: Penetration resistance from 0-15 cm; PR45: Penetration 

resistance from 15-45 cm; AWC: Available water capacity. 
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Figure 2. 3: Biological Soil health indicators as a function of Sequence intensification 

index (SII).  

When: The best regression equation is presented, when significant. SOC: Soil organic 

carbon; POXC: Permanganate-Oxidizable Carbon or Active Carbon; ACE Prot: ACE 

Protein; Resp: Respiration. 
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Figure 2. 4: Chemical Soil health indicators as a function of Sequence intensification 

index (SII). 

 When: The best regression equation is presented when significant. CEC: Cation 

exchange capability; %Base Sat: Percentage of base saturation 
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2.3.4. CONSIDERATIONS FOR CROPPING SYSTEM SUSTAINABILITY 

In the Pampas region, where the economic outcomes of crop production increasingly 

depend on soybean production, unbalanced cropping with a low proportion of winter 

covers and low SII are common under unregulated conditions (Caviglia and Andrade, 

2010, Wingeyer et al. 2015). The need for intensifying cropping systems that 

maximize crop yields and SII was previously demonstrated for enhancing aggregate 

stability (Novelli et al., 2017; Tourn et al., 2019). Here  this is reported for a broader 

set of physical, biological, and chemical properties (Figs. 2.2-2.4) and reinforces the 

value of crop polycultures (Kremen and Merenlender, 2018; Bowles et al., 2020; 

Guzman et al., 2021, Heggens- taller et al. 2008), cover crops (Pinto et al., 2017; 

Sekaran et al., 2021; Villarino et al., 2021) and rotation with perennial forage crops 

(Carvalho et al., 2021; Franzluebbers et al., 2014).  

Our results show that different strategies can be used to mitigate SH degradation in 

annual cropping areas, but they do not support the idea that the sustainability benefits 

of these practices are universally applicable to all production environments (Tables 2.3 

and 2.4). Even in the same research area, pasture incorporation had significant SH 

benefits in one experiment and no effects in the other (Fig. 2.1). With a low erosion 

risk, under minimum or no-tillage, and high SII (as evaluated in Experiment 2), 

similar SH levels can be achieved with continuous cropping systems and with 50% 

perennial pastures systems. However, including pastures in annual cropping systems 

with low SII and moderate/high erosion risk was an effective conservation strategy 

(Experiment 1). Similarly, increasing SII by incorporating cover crops into a 

continuous soybean system showed positive SH benefits. SH indicators had a similar 
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response to SII among the different experiments (Figs. 2.2- 2.4), despite potential 

additional SH benefits of perennial pastures through reduction in tillage frequency, 

increased C inputs from roots and rhizodeposits, and the incorporation of legumes 

(Baethgen et al., 2021; Franzluebbers et al., 2014; Franzluebbers and Gastal, 2018; Six 

et al., 2000).   

Overall, these results highlight the importance of crop sequence intensification on the 

benefits of conservation practices in SH. Yet, a deeper understanding of the main 

drivers of long-term benefits of increasing SII is needed. Despite the lack of observed 

benefits associated with NT under low-erosion risk, this practice is still important for 

cropping system sustainability on erosion-prone lands in Uruguay. 

2.4.CONCLUSIONS 

This study included a comprehensive evaluation of SH under different cropping 

systems. Our results confirm the serious negative effects of annual cropping on SH 

relative to perennial grassland, highlighting the importance of regenerative practices to 

lessen SH deterioration. Good nutrient management is critical as it allows for greater 

biomass production and cycling. Additional conservation practices may result in 

different outcomes even under the same climatic conditions, parent material, and soil 

type. This suggests against a simple set of practices for SH improvement, and also 

indicates that local conditions must be considered. For example, the inclusion of 

perennial pastures can increase SII and improve SH (Experiment 1), but this may not 

be pronounced in intensive cropping systems with low erosion risk (Experiment 2). 



 

46 

 

Yet, increasing crop sequence intensification appears to have a consistent positive 

impact on SH even without the inclusion of perennial species (Experiment 3), which 

may be achieved through cover crops. Overall, increasing the active plant growth 

period and maintaining high yields through good nutrient management were the most 

promising and generalizable management practices to improve SH in cropping 

systems.  
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CHAPTER 3: QUANTIFYING SOIL ORGANIC CARBON CRITICAL ROLE 

IN CEREAL PRODUCTIVITY LOSSES UNDER ANNUALIZED CROP 

ROTATIONS2 

ABSTRACT 

Understanding the impact of soil degradation on crop productivity is essential for 

decision-makers to predict agronomic, economic, and environmental outcomes of 

agricultural operations. Soil organic carbon (SOC) is affected by the cropping system 

and impacts soil health through other soil physical, chemical, and biological 

properties. Data from a 56-year long-term experiment in Uruguay’s Pampa region 

were analyzed to quantify soil degradation impacts on wheat (Triticum aestivum L.), 

and barley (Hordeum vulgare) yields.  Increasing degrees of soil degradation were 

generated by six rotations with variable annual crop and pasture proportions (0%, 

33%, 50%, and 66% pasture). Yield records (n=368) and annual values of 14 

explanatory variables containing soil, climatic, and management indicators were 

evaluated using least squares and random forest regressions. Rotation-induced SOC 

variation ranged from 1.2 to 2.6%, and robust relationships between SOC, soil 

physical, chemical, and biological properties were established.  Over time yields 

increased in crop pasture systems but plateaued for the annualized crop rotation (0% 

 
2 Rubio, V., Diaz-Rossello, R., Quinke, J.A., & van Es, H. M. (2021). Quantifying soil 

organic carbon ’ s critical role in cereal productivity losses under annualized crop 

rotations. Agriculture, Ecosystems and Environment, 321(October 2020). 

https://doi.org/10.1016/j.agee.2021.107607 
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pasture). Yield improvements due to agronomic technology advances partly mask soil 

degradation effects. SOC losses generate a reduction in yields, even when the SOC 

level was above 2%, and no critical levels of SOC were established. SOC interacted 

with climate indicators to impact yield. This analysis confirms the central role of SOC 

in yield outcomes beyond nutrient availability, and its potential to represent a wide 

range of soil functions. Our findings indicate that crop rotations with a higher 

percentage annual vs. perennial crops negatively impact SOC, associated soil 

properties, and yield potential. 

3.1. INTRODUCTION 

There is a general recognition that soil organic matter - also measured as organic 

carbon (SOC) - is an indicator that encapsulates and regulates most physical, 

biological, and chemical soil properties (Bünemann et al., 2018; Schjønning et al., 

2018). Agricultural practices have depleted SOC levels by 25 to 75% in most soils of 

the world (Lal, 2011). This degradation has been exacerbated in the last two decades 

in Uruguay – as in many other areas of the South American Pampas region- by a shift 

from crop pasture rotation (CPR) systems to continuous annual cropping (CAC) 

systems(Alvarez and Steinbach, 2009; Beretta-Blanco et al., 2019; Wingeyer et al., 

2015).  

Negative impacts of CAC systems in crop yields had been recognized in the region 

(Ernst et al., 2020; O. R. Ernst et al., 2018). Yet, benchmarks that allow farmers, 

agricultural professionals, and policymakers to predict the potential losses in 
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productivity associated with soil degradation are limited.  Establishing quantitative 

relations between soil health and crop yield is challenging due to several confounding 

factors related to different climatic conditions, soil properties, and crop management 

practices. While many studies show positive relationships between SOC and crop 

yield (e.g., Oldfield et al., 2019; van Es and Karlen, 2019), others claim that, with 

sufficient fertilizer, SOC does not affect crop performance (Hijbeek et al., 2017; 

Loveland and Webb, 2003; Oelofse et al., 2015). Therefore, it has been recognized 

that the lack of specific SOC target levels is one of the main barriers for its use in 

sustainable management (Herrick, 2000; NRC, 2010).   

SOC contents are affected by both inherent and anthropogenic factors.  For example, 

soils stabilize C through mineral-organic bonds; therefore, soil with higher clay and 

silt contents tend to have higher SOC, all else being equal (Six et al., 2002). Nunes et 

al. (2020) used an extensive soil database from across the USA and found significant 

differences among eight regions, which were attributed to soil and climate effects. 

Differences were also observed among cropping systems, tillage types, and use of 

cover crops where systems with less soil disturbance and more carbon cycling/return 

showed higher SOC levels. Therefore, evaluation of SOC effects on yields across 

different soil types and regions cannot be linked to degradation from land use or easily 

isolated from other yield controlling factors. Furthermore, the effects of SOC can be 

confounded, among others, with variations in other soil properties, climate, 

management practices, and their complex interactions (Schjønning et al., 2018). 

Strategies to experimentally increase or decrease SOC, like the removal of the topsoil 

(Robbins et al., n.d.; Tanaka and Aase, 1989), or the addition of organic amendments 
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(Hijbeek et al., 2017) have been used. These strategies do not represent the actual 

processes involved in soil degradation and associated to the intensification of the main 

cropping systems in the Pampas region.  

The evaluation of long-term experiments (LTE) has been identified as the best way to 

evaluate the impacts of contrasting food production systems and management 

practices on soil properties that might change slowly over time, such as SOC 

(Johnston and Poulton, 2018).  Long term evaluations are needed to assess variation in 

soil quality and to represent the effect of interannual climatic variation on yields. 

Results from numerous LTEs had report changes in SOC that could be related to 

changes in crop yields. Still, the soil data in those experiments are often insufficient to 

quantify the relationship.  Also, different statistical approaches might be needed to 

determine the main factors controlling yields and to establish quantitative relations. 

The complex intercorrelations between variables limit the performance of classical 

statistical methods, like linear models, which assume independence between variables 

and little or no correlations (Draper and Smith, 1998).  Nonparametric regression 

techniques like Random Forests allow for a more accurate analysis for modeling 

complex relationships between predictors and the target variables (Breiman, 2001). 

This approach has been proven appropriate for the prediction of crop yields (Hoffman 

et al., 2019) and the isolation of specific variable effects (Hoffman et al., 2017).   

Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are among the most 

widely grown cereal crops (FAOSTAT, 2020). Given its  essential role in the human 

diet, cereal yields can be considered an appropriate indicator of land production 

capacity (Bindraban et al., 2000). Using a unique LTE data set from Uruguay that 
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includes annual soil, weather and yield data, this study aims to: i) evaluate the 

influence of soil degradation generated by land use on cereal productivity; and ii) 

explore the existence of a critical level of SOC in a Mollisols of the Pampas region.  

3.2.MATERIALS AND METHODS 

3.2.1. EXPERIMENTAL SITE 

The study was conducted at the research station “La Estanzuela” situated at the 

National Institute of Agricultural Research (INIA) in SW Uruguay (34º20 S, 57º41 W, 

82 m asl) which is located in the South American Pampas region. The climate at the 

site is humid subtropical, with a 50-yr average temperature of 16.6 °C. Annual average 

precipitation is 1100 mm, almost evenly distributed throughout the year, but with large 

interannual variability. The dominant soil at the site is classified as a Haplic Phaeozem 

(Vertic, Eutric; World Reference Base) or smectitic Vertic Argiudoll in the USDA 

Soil Taxonomy system (Soil Survey Staff, 2010). Soil surface clay and silt contents 

are 351 and 562 g kg-1, respectively (silty clay loam texture class), and the slope is 

2.5-3%.  

3.2.2. FIELD EXPERIMENT 

The data set analyzed in this study was generated from a LTE established in 1963 to 

evaluate the effects of rotation and N and P fertilization on continuous cropping 

systems (Grahmann et al., 2020; Moron, 2003). The experiment has seven treatments 

arranged in a randomized complete block design with three replications, and the plot 

size is 0.5 ha (25 x 200 m). Six of these treatments were analyzed here, where an 
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unfertilized treatment was excluded. Selected treatments compare continuous annual 

cropping systems (CAC) with crop pasture rotations (CPR) with different durations 

and species (Table 3.1).  For this study, treatments with the same amount of pasture in 

the rotation were combined in the analysis (same nomenclature in Table 3.1).  

Prior to the experiment the site was under continuous agriculture for more than 40 

years (mostly wheat-fallow). Treatment description and dominant crop and pasture 

rotation is presented in Table 3.1. Over time the experiment experienced changes 

following the main technological modifications of the region (for more details see 

Moron, 2003). In 1974 the replications were staggered to incorporate year effects into 

the experimental design. Barley was incorporated to the crop sequence in 1983 

replacing flax (Linum usitatissimum). In that year, the treatment with 66% of the time 

under pastures was incorporated by replacing a CAC system. In 2009 no-tillage was 

implemented in all treatments replacing conventional tillage practices. A detailed 

analysis of long-term changes of SOC and soil chemical properties for this LTE was 

recently done by Grahmann et al. (2020). Soil chemical conditions at the beginning of 

the experiment (1964) and for the last rotation period presented as a function of time 

under pastures treatment are presented in Appendix 3.1. 

Table 3. 1:  Proportion of time under pasture, fertilization management, and crop 

rotation per treatment 

Treatment 

nomenclature 

Proportion of  

pasture in the 

 rotation  

Dominant crop rotation 

(1983-2014) 

0%PS 0%  Barley/Sorghum-Wheat/Sunflower 
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 *this treatment was under continuous cropping till 1983 

Crop management follow the general management practices recommended by INIA 

technicians for the region. Wheat and barley were sown between May and June and 

harvested in December. Mineral N (urea) and P (diammonium phosphate, 

monoammonium phosphate, triple super phosphate and single super phosphate) 

fertilizers were applied annually according to soil test recommendations at sowing. N 

re-fertilization was made considering plant N test at Zadoks 22 and 30 (Zadoks et al., 

1974). Annual crops were harvested for grain, and straw was retained on the plots. 

Pastures were cut to simulate grazing and forage was left on the plots.  

3.2.3. CROP DATA  

The similarity between wheat and barley species regarding phenological behavior, 

yield potential and agricultural practices allowed us to jointly analyze both crops and 

improve the robustness of the analysis. The evaluated data set contains a total of 368 

yield records (kg ha-1), 68% corresponding to wheat and 32% to barley. Records were 

available or generated for crop sowing, flowering and harvest dates, days until 

flowering, and N and P fertilization rates. Average annual crop N and P fertilization 

per decade are presented in Table 3.3. The yield of Sorghum that immediately 

50%PS 50%  Barley/Sorghum-Wheat/Sunflower -Legume 

pasture (3 yr)-Corn 

66%PS* 66%  Barley/Red Clover (1 yr)-Sorghum-Mixed 

pasture (3 yr)-Corn 

50%PS 50%  Barley/Sorghum-Wheat/Sunflower-Mixed 

pasture (3 yrs)-Corn 

0%PS 0% Oat/Soyean-Wheat/SunFlower-Soybean  

33%PS 33%  Sorghum - Wheat/SunFlower- Red Clover 
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preceded the evaluated crops was incorporated in the analysis, and a value of cero was 

assign for other previous crops. Previous reports on negative allelopathic effects of 

Sorghum over wheat and barley (Roth et al., 2000) motivate the incorporation of this 

variable.  
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Table 3. 2 Average mineral N and P fertilizer inputs per crop as a function of 

percentage of time under pastures per decade 

period  0%PS 33%PS 50%PS 66%PS 

                            N (kg ha-1) 

1965-1975 41.1 50.3 35.0 36.5 

1976-1985 45.7 42.8 40.1 45.0 

1986-1995 37.1 41.8 35.2 53.1 

1996-2005 35.1 41.8 26.3 42.5 

2005-2019 127.8 88.5 131.9 50.7 

Average 60 52 59 44 

                         P  (kg ha-1) 

1965-1975 45.3 48.2 45.0 45.3 

1976-1985 24.1 27.0 28.8 25.6 

1986-1995 40.4 43.4 36.3 50.1 

1996-2005 18.6 21.4 14.4 5.3 

2005-2019 22.7 16.0 24.6 15.3 

Average 30 31 27 29 

  

Even though the experiment has an annual staggered design (since 1974) not all 

phases of the rotation were present in all years. Thus, the comparison between 

treatments is modestly unbalanced, especially when involving treatments with longer 

pasture phases and less years with winter crops. Consequently, these data required a 

multivariate analysis. 

3.2.4. SOIL DATA 

One composite sample per plot was collected yearly in April or May from each plot 

from 20 random cores in the center of the plot from the 0-to-15 cm depth. Dry samples 

were analyzed for SOC, total N (Ntot), pH in water (1:2.5 soil/distilled water 

suspension; Beretta et al., 2014), and phosphorous Bray-I (Bray and Kurzt, 1945) 
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(PBray). Between 1964 and 2011, SOC was measured using K2Cr2O7 and heat as 

described by Tinsley (1950).  Beginning in 2012, SOC was measured using dry 

combustion (900°C) using a LECO analyzer (Wright and Bailey, 2001).  Values 

obtained with the LECO were corrected to be comparable with Tinsley values using a 

locally calibrated correction factor of 0.81.  Ntot was determined after sulfuric acid 

digestion, distillation with micro Kjeldahl, and titration as described by Bremner 

(1965). From 2012 onwards, total N was also measured by dry combustion (900°C) 

(Wright and Bailey, 2001).   

Ammonium acetate exchangeable K was determined annually since 1990 according to 

Jackson (1964). Potentially mineralizable nitrogen (PMN) was determined anually 

since 2010 by anaerobic incubation at 40°C for 7 days. Soil was prevously sieved at 

field moisture, following the methodology recommended by Bundy and Meisinger 

(1994). Soil bulk density (BD) was determined from undisturbed soil samples taken at 

two soil depths (0-7.5 cm and 7.5-15 cm) in three occasions, 1979, 2007-2009 (in each 

year, one block was measured) and 2018 in all experimental plots. Additional 

measurements of DB were performed in tratments 0%PS (Barley/Sorghum-

Wheat/Sunflower crop rotation), 50%PS and 66%PS treatments.  For these same 

treatments, aggregate stability was determined in 2015 from 0-20 cm depth according 

to the Le Bissonnais (1996) method (Rubio et al., 2019).  

3.2.5. WEATHER DATA  

Daily weather data was collected since 1965 at the site (available at 

http://www.inia.uy/gras). Accumulated precipitation, average maximum and minimum 

temperatures, radiation, and precipitation during the crop critical periods (defined as 

http://www.inia.uy/gras
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15 days before and after flowering in which weather has the biggest impact on yield; 

Fischer (1985) were analyzed. Additionally, the average photothermal quotient (Q) for 

this period was estimated as the relationship between radiation and average 

temperature minus base temperature for wheat and barley (which is 4.5°C). 

3.2.6. DATA ANALYSIS  

Scatter plots between SOC and all soil properties measured in the long-term 

experiment were constructed and evaluated with linear regression models. The model 

with higher r2 was selected.   Treatments with the same amount of time under pasture 

and fertilization (Table 3.1) were grouped for the evaluation of effects on yields. Yield 

evolution over time was evaluated using a linear regression model between year and 

observed yields. First and second order regression were evaluated and the one with 

highest r2 values was selected.  Yields for all treatment groups were corrected to 

account for the effect of technology progress using average annual yield progress of 

the country. The correction factor was estimated by fitting a linear regression model 

between average wheat and barley national yields (FAOSTAT Online Database, 2020) 

and year for the time period evaluated in the experiment. The estimated yield progress 

was 46 kg ha-1 year -1 (p <0.0001, r2= 0.75) and yields were therefore corrected to a 

2018 basis as:  

Observed yield + [(2018 - year of evaluation) *46]. 

3.2.6.1.Random Forest (RF).  

RF classification and regression models were used to evaluate and quantify SOC 

impacts on crop yields. RF is a recursive partitioning machine learning method that 

generates an ensemble of regression trees (Breiman, 2001). Trees are constructed on a 
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random subset of the data (bagged samples), using only a random subset of predictor 

variables for split point selection at each node (Liaw and Wiener, 2002). Among other 

benefits these models allow for the evaluation of nonlinear relations between the 

predictors and better representation of complex interactions among variables.  They 

are also highly robust to noise and irrelevant features, and have shown low bias and 

variance (Breiman, 2001; Hoffman et al., 2019).  

The impact of 14 explanatory variables on corrected yields was evaluated. The studied 

variables were; soil (SOC, Ntot, pH, PBray); management (N and P fertilization rates, 

days until flowering, sowing year, yield of sorghum in case it was the previous crop); 

weather conditions in the crop critical period (mean temperature, radiation, 

accumulated precipitation, Q) and weather during vegetative crop growth 

(accumulated precipitation).  Redundant features were identified as those with 

correlation coefficients greater than 0.65. In this data set SOC and N, as well as Q and 

radiation were highly correlated. The importance of these features was determined 

building a RF model that included all evaluated variables. SOC and Q were more 

important attributes than Ntot and Radiation. Therefore, these last two features were 

not incorporated in the estimation of the final RF model.  

The default values of 500 for number of trees and 5 for node size were used.  

The error rate of model predictive ability was tested generating an out of the bag 

validation technique which splits the data set into a calibration and a validation subset 

with each point left out of the bag approximately 36% of the times (Liaw and Wiener, 

2002). Variable importance was estimated based on the changes of regression 

prediction errors with each specific variable in the out-of-bag validation. To identify 
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most important variables the criteria that least agree with each other were selected. 

These were: 1. The number of times the variable appears as a root; 2.  The mean 

increase in mean square error after that variable is permuted; 3. The probability (p-

value) of the one side binomial test; 4. The number of nodes that used that variable for 

splitting. Variable importance ranking including all variables created considering node 

minimal depth and mean in which that variable is presented.  

Averaged responses for all trees were considered for the estimation of partial 

dependence of fitted yield values to SOC variations, with predictions limited to the 

observed data range. Interactions and correlations between predictors were identified 

through systematic use of partial dependence and RF interaction frame. RF analysis 

was performed using the “randomForest” (Liaw and Wiener, 2002) and 

“randomForestExplainer” packages in R (Paluszynska, 2017). The model performance 

was assessed using coefficient of determination (R2) and root mean square prediction 

error (RMSE).  

3.3. RESULTS 

3.3.1. SOIL ORGANIC CARBON AND ITS RELATIONSHIP WITH 

OTHER SOIL PROPERTIES 

The percentage of time under pasture caused divergence in SOC over time (Fig. 3.1). 

Overall, SOC ranged from 1.2 to 2.6. Comparing the first and last cycles of rotation 

(Table 3.2), SOC decreased 20% for the 0%PS treatment where final SOC reached 

1.6%. Conversely, treatments with 33%PS, 50%PS and 66%PS increased SOC by 

0.66%, 10.75% and 12.33%, respectively.  
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Increases in SOC were associated with increases in Ntot and exchangeable K contents 

with Spearman correlation r=0.79 and 0.49, respectively (Fig. 3.2). SOC was weakly 

correlated with PBray and pH having a negative relation (r=-0.28 and -0.43, 

respectively). Furthermore, SOC was negatively correlated with BD (r=-0.91) and 

positively correlated with aggregate stability (r=0.81, Fig. 3.2). More details on 

treatment effects on soil physical properties in this experiment can be found in  Rubio 

et al. (2018). Additionally, SOC was positively associated with biological activity 

measured as N mineralization potential (exponential), as well as CEC (quadratic; Fig. 

3.2).  

 

Figure 3. 1: Soil organic carbon (SOC) evolution, from 0-15 cm depth at INIA long 

term experiment, as affected by percentage of time (%PS) under pasture and 

fertilization treatment.  
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Figure 3. 2: Relationship between soil organic carbon (SOC) and a. Total N (Ntot ); b. 

K (cmol kg -1); c. P; d. Soil pH; e. bulk density (BD, g cm -3), f) aggregate stability 

(mm), and g) Nitrogen mineralization potential ( PMN, mg g -1) and h)Cation 

exchange capability (CEC, meq 100 g-1) 

3.3.2. YIELD TRENDS  

Average barley and wheat yields were 2,564 and 2,164 kg ha-1, respectively, which are 

33% higher than the national yield average for wheat and 14% (FAOSTAT Online 

Database, 2020). In the last ten years of the experiment the averege yields were 5,137 

kg ha-1 for the 66%PS treatment, 4,092 kg ha-1  for 50%PS, 3,883 kg ha-1 for 33%PS 

and 2,796 kg ha-1  for 0%PS, showing a strong relationship between the %PS and 

cereal yield (Fig. 3.3).  

 

Figure 3. 3: Average wheat and barley yields as a function of time under pasture in the 

rotation from 2009 to 2019 

A positive annual trend was observed in all treatments (Fig. 3.4). On average the 

annual yield increase was similar to nationwide observations, representing 2.2% of 
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among treatments but was linear for those that included pastures.  A concave quadratic 

equation was the best fit for the 0%PS treatment which showed a maximum in 2013, 

indicating that soil limitations prevented further yield increases despite the improving 

crop genetic potential. 

a. 66%PS

 

b. 50%PS

 

c. 33%PS

 

d. 0%PS

 

Figure 3. 4: Wheat and barley yield trend in the long the experiment. Each plot 

represents treatments with a different proportion of the time under pastures (%PS).  
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The predictive performance of the RF model for year-corrected yield showed a good 

performance of RF models with both the complete data set (r=0.96) and the out of the 

bag validation (0.64; Fig. 3.5).   RMSE of the model was 348 kg ha-1 for calibration 

and 784 kg ha-1 for the validation test where 40.34% of the variance in yields was 

explained.  

 

Figure 3. 5: Scatter plot of observed vs predicted year-corrected yields (CorrYield) 

with random forest model for: a) calibration; and b) out of the bag validation data sets.  
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Where: SOC: Soil organic carbon; pH: Soil pH; PBray: Phosphorous Bray I; FertP: 

Phosphorus fertilization; FertN: Nitrogen fertilization; DTF: Number of days between 

sowing and flowering; Sorghum: Yield of Sorghum harvest pre wheat/barley sowing; 

T_PC: Average temperature during critical period of yield definition (PC), defined as 

15 day pre and post flowering; PP_PC: Accumulated precipitation in PC; PP_veg: 

Accumulated precipitation till flowering; Q: Average Photothermal coefficient in PC. 

Figure 3. 6:: Variable importance ranking of random forest model for yield 

prediction, estimated as the average minimal depth of presence in the trees 
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A high degree of agreement between the different criteria in the ranking of the most 

important variables for yield definition was observed. Combining four of the available 

variable importance criteriums the top ranked predictor variables for yield were a 

mixture of soil and climate-related variables: SOC, mean temperature, Q, and soil pH  

(Fig. 3.6).   

The effects of the five most important soil-related variables on yields showed that 

SOC had a strong positive relationship and pH had a negative relationship (Fig. 3.7).  

Higher yield losses were associated with a decrease in SOC from 2.6% to 1.2%, 

representing a reduction of about 1000 kg ha-1. The increase in soil pH generated a 

reduction in yield of about 500 kg ha-1, which is somewhat counterintuitive 

considering that the pH values were generally below-optimum (<6.5).   FertN, PBray 

and FertP did not show clear trends with yields (not shown). The interaction frame 

showing the most important interactions among variables is presented in Appendix 

3.2.    

Multi-prediction partial dependence plots showing the most important interactions of 

SOC effects on yield showed strong interactions of SOC with climatic variables 

(temperature and Q; Fig. 3.8). Having good climatic conditions allowed the 

achievement of high yields mostly on sites with higher SOC levels.  Similarly, low pH 

and high SOC were associated with high yields. Dependence plots for FertN and 

PBray did not show interactions, i.e., higher yields were associated with higher SOC 
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independent of nutrient conditions.   

 

Figure 3. 7:  Partial dependence plot between year-corrected yields (CorrYield) and a) 

soil organic carbon (SOC), and b) soil pH from the random forest model. 
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Figure 3. 8: Multi-predictor partial dependence plots showing effects on yield of the 

interaction between soil organic carbon (SOC(%)) and: a) Phosphorous Bray I 

(PBray); b) Average temperature during the critical period of yield definition defined 

as 15 days pre- and post-flowering (T_PC); c) Nitrogen fertilization (FertN); d) Soil 

pH (pH);e)  average Photothermal coefficient during the critical period of yield 

definition 
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3.4.DISCUSSION 

Contrasting time under pasture generated considerable variations in SOC through the 

course of the field experiment (Fig.3.1). CPR treatments had lower nutrient extraction, 

soil erosion, and tillage intensity than CAC systems (Grahmann et al., 2020). The 

addition of long-term treatment trends and SOC inter-annual variability allowed the 

evaluation of a wide range of SOC, varying from -42% to +25% of the initial SOC 

levels. The observed depletion of SOC associated with CAC systems was correlated 

with a reduction in N content. Considering that N in soil is mostly in the organic form, 

a tight correlation between C and N is expected. C:N ratios generally vary between 10 

and 15 (Murphy, 2015), and in this study, the observed ratio was on average 11.56, 

suggesting normal C cycling. The positive correlation observed here between C and K 

is likely associated with the smaller grain extraction of CPR systems that have less 

cropping frequency. The same decreasing tendency in K content is observed at a 

national level and associated with an increase in cropping frequency and higher soil 

erosion losses (Beretta-Blanco et al., 2019). Higher SOC in CPR was also associated 

with higher CEC and, therefore, nutrient retention potential (Fig 3.2). Thus, despite the 

strong effect of clay minerals in these soils, reductions in SOC in more intense 

cropping systems might be related to reduced CEC.  

The association of SOC with nutrients is also determined by the fertilization strategy, 

and the results of this study might do not necessarily represent the overall relationship 

expected for cropping systems with different proportions of crop or pasture in their 

rotations.  However, the strategy of nutrient management followed here for N, P, K, 
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and CEC bases fairly represent the most common practices, and the main tendencies 

of change observed in the region (Beretta-Blanco et al., 2019; Wingeyer et al., 2015).  

SOC is one of the main soil binding agents, and its positive relationship with 

aggregate stability has been recognized for a long time, notwithstanding the mineral 

effects like those from Fe and Al hydroxides and Ca carbonates that were not present 

in this soil. It has been proposed that no effect on aggregation should be expected 

when SOC reaches certain levels (Tisdall and Oades, 1982); however, these levels are 

not clearly defined in the literature. Here a linear association between SOC and 

aggregate stability was observed. Active and continued root growth during the pasture 

phase might explain part of the observed results.  An association of SOC with BD is 

expected if the lower SOC reduces aggregation and structural integrity in the face of 

mechanical stresses. In this study, a very tight relationship between SOC and BD was 

observed (Fig. 3.2). Additionally, other factors like more intense tillage operations and 

higher traffic intensities associated with contrasting management practices on CAC 

and CPR systems might explain these associations. 

An exponential relation between SOC and PMN was observed, lower SOC contents 

were associated with disproportionately lower PMN values. This indicates higher 

losses of the labile C and N pools, measured through PMN, in relation to the most 

stable pools in thus systems with less proportion of pastures (Franzluebbers et al., 

1996). Therefore, values of SOC below 2% are associated with C that exists in excess 

of the more stable mineral-bound fractions. Similar outcomes had been observed in a 

survey of commercial farms in Uruguay where an average reduction in SOC of 20% 

was related to decreases of PMN of 41.5% (Moron et al., 2012).  The decrees in PMN 
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is associated with a degradation of soil biological health, a reduction in N available for 

plants, and slower SOC cycling  (Bünemann et al., 2018; Knoepp et al., 2000).  These 

results agree with the fact that reductions in N supply might be one of the first 

consequences of the elimination of pastures from cropping systems (O. Ernst et al., 

2018) 

Overall, CAC systems resulted in the degradation of soil quality and cereal yields 

when compared with CPR. SOC losses represent the detrimental effects of CAC in 

soil chemical (pH, Ntot, P, and K), physical (bulk density and aggregate stability) and 

biological properties (nitrogen mineralization potential). These properties are related 

to the capacity of soil to retain and provide water and nutrients to crops, and to reduce 

negative environmental impacts (Arshad and Martin, 2002; Drobnik et al., 2018; 

Moebius-Clune et al., 2016).  Therefore, these results confirm that SOC is a crucial 

indicator and that summarizes a broader assessment of soil quality (Horn and Peth, 

2009). 

3.4.1. SOIL DEGRADATION AND TECHNOLOGICAL PROGRESS  

An increase in yield associated to technological improvement was observed for all 

treatments; however, the rates of change varied (Fig. 3.2). The rate of yield increases 

was constant for CPR treatments, but decreased over time in CAC and reached a 

maximum in the year 2013. Since the improvements in crop genetic and management 

practices were the same for all treatments, the cumulative soil degradation 

counteracted the technological yield gains. Therefore, the adverse effects of soil 

degradation can limit yield enhancement but can also be hidden by technological 
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progress. This study corroborates the importance of using a yield correction factor to 

eliminate technological improvements when analyzing LTE datasets.  

3.4.2. YIELD DRIVERS 

A high proportion of corrected yield variability was explained by integrating climatic, 

management, and soil chemical properties in a RF model.  RF performance was 

superior to the linear model predictions (results non shown), confirming the 

advantages of this nonparametric data mining approach for yield evaluations 

(Hoffman et al., 2019, 2017).  Caution is warranted by interpreting the outcome of the 

model calibration step as model performance in the out of the bag validation process 

was significantly worse, even when it involved a single experimental site analysis.  As 

previously reported (Hoffman et al., 2017), an overestimation of small yields and an 

underestimation of large yields was observed (observed values in respect to 1:1 line in 

Fig. 3.5). 

SOC had the highest predictive value for yield (Fig. 3.6), yield reductions associated 

to SOC losses represented 28% of average yields achieved (Fig. 3.7).  Our results 

confirm that SOC can be used to summarize a wide range of soil functions related with 

crop production, and to represent the impacts of land degradation associated to CAC 

systems.  

Further reductions in yield associated with CAC were represented by soil pH, which 

was the third most important variable for yield definition. A change of pH from 5.2 to 

6.4 was associated with a 14% yield reduction relative to average values (Fig. 3.6). 

Considering that the optimum soil pH level reported for wheat and barley is about 6.8 
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(Rabuffetti, 2017), the opposite effect was expected. This suggests that the observed 

outcome is not associated with a direct consequence of pH on yield, but rather by the 

impact of another variables or effects that are correlated with pH but were not 

identifiable in this experiment. 

The second most important variable in yield definition was the average temperature 

during the critical period, and the average photothermal coefficient was the fourth one. 

Globally, climatic conditions are estimated to explain about  35% of wheat yields 

variability, being the temperature one of the most important factors (Ray et al., 2015). 

Low temperatures and high radiation levels promote high growth rates and long grain 

development periods allowing the achievement of high yields (Ahmed and Hassan, 

2011; Giulioni et al., 1997). Furthermore, these climatic conditions are associated with 

a lower pressure of diseases and therefore have a substantial indirect effect on yield 

(Díaz Rosello et al., 2015). However, in soil with low SOC contents, high yields were 

not achieved even under favorable climatic conditions (Fig. 3.8). This results also 

indicate that the detrimental effects of soil degradation are more important under years 

with high yield potentials.  

The weak interaction observed in this study between N and SOC (Fig. 3.8) seems to 

contradict previous results observed by Ernst et al. (2018 and 2020) where the addition 

of extra N fertilization rates reduced detrimental effects of CAC systems. However, in 

this study, where N fertilization doses are defined considering treatments effects on N 

in soil and climatic conditions, important N limitations on yields are not expected. 

Although our data cannot be used to evaluate N related yield limitation associated to 
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CAC systems evidence about the existence of non-N yield limitations are provided, in 

accordance with these same authors. 

3.4.3. IS THERE A CRITICAL LEVEL OF SOC? 

For a long time, it has been recognized that limitations on yield start below 2% of 

SOC, and this value is often conceived as a critical level (Kemper and Koch, 1966, 

Greenland et al. 1975, Kravchenko and Bullock, 2000; Pan et al., 2009; Zvomuya et 

al., 2008). A global metanalysis recently supported this for wheat and maize (Oldfield 

et al., 2019). In this study, the evidence was mixed.  Yield, BD, and aggregate stability 

were linearly correlated with SOC and did not show a breaking point at the 2% level. 

i.e., the benefits of increasing SOC continued above 2% of SOC.  But CEC and PMN 

showed nonlinear patterns where values appeared to plateau or exponentially increase, 

respectively, near the 2% SOC level. When previous studies suggested that SOC 

losses have a negative effect on soil structure only below 2% (Kemper and Koch, 

1966, Greenland et al. 1975), here negative effects on soil BD and aggregate stability 

were observed above this value. Considering that SOC effects on soil properties and 

yields are conditioned among others by soil texture, climate, and the composition of 

the carbon in the soil (Six et al., 2002; Loveland and Webb, 2003; Murphy, 2015) the 

existence of a unique critical value of SOC is not probable and also not supported by 

our data.  Similarly, SOC should not be considered as a uniform component, and 

differences in its chemical form and turnover rates condition its role. Therefore, the 

relation between SOC and yields could be different if the differences in SOC are 

generated by amendment additions, or if soils of diverse regions are compared. In all, 
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this LTE offered insights that are difficult to achieve, even with other LTEs, because 

of the frequency of historical soil sampling and the number of measured properties.  

3.5.CONCLUSIONS 

The expansion of CAC systems has led to soil degradation challenging the 

achievement of sustainable intensification goals. SOC is an appropriate indicator to 

summarize the impact of this degradation over yields, reflecting the deterioration of 

soil physical, chemical, and biological properties. SOC decline was strongly 

associated with negative yield impacts that were not overcome by improved 

production technologies but were nevertheless masked by them. The negative impacts 

of SOC depletions were more remarkable under favorable weather conditions with 

higher yield potentials.  In conclusion, these results open opportunities to give value to 

soil degradation in the economic functions of the local agro-ecosystems and help 

inform policy decisions. 
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CHAPTER 4: BIOMASS INPUTS DRIVE IMPACTS OF AGRONOMIC 

MANAGEMENT ON SOIL HEALTH3 

ABSTRACT 

Identifying effective management practices to conserve and regenerate soil health 

(SH) is critical for sustainable development, but confounding effects of management 

are often reported. Aboveground biomass can be used as a guide to assess whether 

agronomic management practices can generate changes in carbon balances and 

therefore SH.  Data on soil physical, biological, and chemical SH indicators from three 

Uruguayan long-term experiments on Pampas region Mollisols were used to (i) 

present quantitative evidence showcasing the importance of evaluating SH through 

biomass inputs, (ii) assess potential limitations of this approach, and (iii) illustrate the 

proposed framework for different scenarios of land management. Management effects 

in aboveground biomass inputs explained 50% of the changes generated in soil 

physical and biological health indicators. Significant improvements in SH can be 

achieved by reducing yield gaps and intensifying cropping sequences. However, the 

benefits of increasing crop diversification, incorporating perennial crops, or reducing 

tillage may be limited to situations where these practices increase biomass production.  

 
3 Rubio V, Nuñez A,  Berger A., & van Es, H. M. Biomass inputs drive impacts of 

agronomic management on soil health. To be submitted to Environmental Research 

Letters   
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4.1. INTRODUCTION 

The recent acknowledgment of soil's central role in food security, water quality, 

biodiversity preservation, climate change, and other sustainability issues has put its 

health status on the sustainability agenda. Soil health (SH) refers to the capacity of the 

soil to function as a vital living ecosystem that sustains plants, animals, and 

humans(USDA-NRCS 2020). Many management strategies potentially contribute to 

improving SH and thereby agricultural sustainability. However, inconsistent effects on 

the direction and magnitude of SH changes are often reported.  

These variable responses to agronomic management practices (e.g., tillage, cover 

crops, diversification, and inclusion of perennial grasses) have been linked to 

variations in inherent soil conditions (Fiorini et al. 2020; Ghimire et al. 2019), time 

since the adoption of the management practice (e.g., Poeplau and Don, 2015  for cover 

crops;  Blanco-Canqui and Ruis, for tillage), agro-climatic conditions, and interaction 

with other management strategies (Luo, Wang, and Sun 2010; Rajan Ghimire et al. 

2018; Dimassi et al. 2014). While many of these factors can significantly impact the 

absolute values of SH, overall, they provide limited explanation for the diverse 

responses in SH to the same management strategy (Poeplau and Don 2015a; Jian, Du, 

and Stewart 2020). 

Rather than the management practice itself, or the variations in inherent soil 

properties, recent evidence suggests that the positive effects of management on SH 

might be limited to those situations where net increases in carbon (C) inputs are 

achieved (Page, Dang, and Dalal 2020). This is related to the fact that C and nutrient 
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balances are primary mechanisms of soil functions (Guo and Lin 2016). Therefore, 

understanding SH status and its changes requires envisioning SH through the lens of a 

critical zone approach (Yoder et al. 2022; Banwart et al. 2019), meaning that they 

should be analyzed in the context of C and nutrient fluxes within the system, as well as 

horizontal fluxes outwards. 

While a detailed estimation of C fluxes, can be complex, an intermediate achievable 

goal is to estimate the changes that management generates in aboveground biomass 

inputs. Higher aboveground biomass inputs can be associated with more continuous 

plant growth and soil cover, higher root biomass, greater residue mass incorporation, 

and lower erosion losses, all factors that can improve SH. Therefore, producing and 

retaining higher plant biomass can promote physical, chemical, and biological 

properties (Blanco-Canqui and Lal 2009), but most studies that evaluate management 

effects on SH do not report the associated changes in biomass. A recent meta-analysis, 

encompassing 581 independent experiments, to elucidate cover crop benefits on SOC, 

the most extensively measured SH indicator, reported that only 28 studies registered 

biomass changes. Therefore, the relationships between biomass inputs and SH is still 

mostly undetermined (Mirzaei et al. 2021). 

We hypothesize that the potential benefits of agronomic management on SH can be 

evaluated through the accumulated changes in aboveground biomass, attempting a 

critical zone approach. Our objectives are to use data on SH indicators from three 

Uruguayan long-term experiments on Pampas region Mollisols to (i) present 

quantitative evidence showcasing the importance of evaluating SH through biomass 
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inputs, (ii) assess potential limitations of this approach, and (iii) illustrate the proposed 

framework for different scenarios of land management.  

4.2.MATERIALS AND METHODS 

This study builds on SH data recently published by Rubio et al. (2022) and evaluates a 

methodological approach to estimate changes in SH as it relates to biomass inputs. 

Here we present only a brief description of the experiments and SH determination 

methodologies, while details can be found in Rubio et al. (2022).  

4.2.1. SITES AND EXPERIMENTS 

We evaluate three experiments located at La Estanzuela Experimental Station (INIA, 

the Uruguayan National Agricultural Research Institute) in SW Uruguay (34º20 S, 

57º41 W, 82 masl). The site has a warm temperate climate with an average 

temperature of 16.6°C. Annual average precipitation is 1100 mm, almost evenly 

distributed throughout the year, but with considerable interannual variability. The 

dominant soil type is a Typic Argiudoll (USDA Soil Taxonomy), and the soil texture 

class of the surface layer (0-15 cm) is silty loam or silty clay loam.  

Table 4. 1: Treatment descriptions for three long-term experiments.  

Exp %Pasture Tillage Current crop rotation 

1 0% PS 
CT-

NT* 

[Barley/Sorghum]-[Wheat/Soybean]-[Fallow/Corn] 

1 50% PS 
CT-

NT*
 

[Barley/Sorghum]-[Wheat/Soybean]-[Fallow/Corn]-

3yr.[Pasture] 

1 66% PS 
CT-

NT* 

[Barley/Red clover]-[Red clover]-[Fallow/Sorghum]-

3yr.[Pasture]-[Fallow/Corn] 
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PS: non-harvested pastures; CT: Conventional tillage; NT: No-tillage; *: NT since 

2009; MT: Minimum tillage. ([ ]): Separate different years in the rotation; (/): 

Separate winter and summer crops; early: early termination 60 days pre-sowing; late: 

late termination 30 days pre-sowing. Underlined crops represent sampling time in 

each experiment and treatment. Barley:  

Hordeum vulgare L.; Wheat: Triticum aestivum L.; Sorghum: Sorghum bicolor; 

Soybean: Glycine max; Corn: Zea mays; Red clover: Trifolium pratense; Oat: Avena 

sativa. 

 

The evaluated experiment and treatments are presented in Table 4.1 and are further 

detailed in Rubio et al. (2022). Briefly:  

• Experiment 1 was established in 1963 to research perennial pasture duration in 

cropping systems. We evaluate four contrasting treatments, arranged in a 

randomized complete block design with three staggered replications. The plot 

size is 5000 m2, and the site slope is about 2.5 to 3%.  

• Experiment 2 was established in 1996 to study crop rotation and tillage effects 

in cropping systems. We evaluate four randomized treatments arranged in a 

1 33% PS 
CT-

NT* 

[Fallow/Sorghum]- [Wheat/Soybean]-[Red Clover] 

2 0% PS 
MT [Wheat/Fallow]-[Oat cover crop/Corn]-

[Barley/Soybean] 

2 50% PS 
MT [Wheat/Fallow]-[Oat cover crop/Corn]-

[Barley/Soybean]- 3yr.[Pasture] 

2 0% PS 
NT [Wheat/Fallow]-[Oat cover crop/Corn]-

[Barley/Soybean] 

2 50% PS 
NT [Wheat/Fallow]-[Oat cover crop/Corn]-

[Barley/Soybean]- 3yr.[Pasture] 

3 0% PS NT [Fallow/Soybean] 

3 0% PS NT [Oat cover crop early/Soybean] 

3 0% PS NT [Oat cover crop late/Soybean] 
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2x2 factorial with three staggered replicates. The plot size is 495 m2, and the 

slope is less than 1%.  

• Experiment 3 was established in 2004 to investigate the effects of cover crop 

incorporation and duration in a continuous soybeans (Glycine max) system 

under NT. We evaluate three treatments arranged in a partially randomized six-

block design. The plot size is 132 m2, and the slope is less than 1%.  

In all experiments, crop management followed INIA’s technical recommendations for 

the region. Annual crop fertilization with mineral N and P was performed at sowing 

according to soil test recommendations. Annual crops were harvested for grain, and 

straw was retained on the plots. Oats (Avena sativa) were sown as cover crops. 

Perennial pastures were composed by a mixture of tall fescue (Festuca arundinacea 

Schreb.), white clover (Trifolium hybridum L.), and birds ́-foot trefoil (Lotus 

corniculatus L.) and managed by cutting leaving the biomass in the fields in all 

experiments. Crops and pastures were grown under rainfed conditions without 

additional irrigation, except soybeans in Experiment 3 where supplemental irrigation 

was applied equally to all treatments at sowing. 

4.2.2. SOIL SAMPLING AND ANALYSES 

One four-core composite soil sample per plot was collected on December 2019 from 

the 0–15 cm depth following the CASH protocol (Schindelbeck et al. 2022; Moebius-

Clune 2016). Average maximum penetration resistance from 0 to 15 (PR15) and 15 to 

45 cm (PR45) depths was determined from 15 in-field probings using an Eijkelkamp 

penetrologger (www.Eijkelkamp.com). Different rotation entries were sampled at each 
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block due to the staggered start replications in experiments (underlined crops in Table 

4.1). A total of 18 soil chemical, physical and biological indicators were assessed. Soil 

chemical properties measured at the Laboratory of Water, Plants, and Soils of INIA La 

Estanzuela (Colonia, Uruguay) were: soil pH (Beretta et al., 2014); SOC and total N 

(LECO TrueSpec CN-2000); exchangeable P (Bray and Kurzt 1945); exchangeable 

bases (K, Mg, Ca, and Na) at pH 7; cation exchange capability (CEC) at pH 7 

(Jackson 1964); and percent base saturation.  

Subsamples were submitted to the Cornell University Soil Health Laboratory (Ithaca, 

NY, USA) for analysis of soil physical and biological properties. Details on the 

laboratory techniques are available in Moebius-Clune et al. (2016) and Schindelbeck 

et al. (2022). Evaluated soil physical indicators were: plant-available water capacity 

(AWC) (Topp et al. 1997); wet aggregate stability (WAS); and soil texture (Kettler, 

Doran, and Gilbert. 2001). Evaluated soil biological indicators were: permanganate-

oxidizable C (POXC)(Weil et al 2003); autoclaved citrate extractable soil protein 

(ACE Protein) (Hurisso et al. 2018); and soil respiration (Resp) (Schindelbeck et al 

2022). 

4.2.3.  ESTIMATION OF CUMULATIVE ABOVEGROUND BIOMASS INPUTS  

Cumulative aboveground biomass inputs per plot were estimated based on measured 

yields from the beginning of each experiment to the sampling date (Dec. 2019).  Crop 

yields were measured for each crop in four 50*1.5 m areas along the center of each 

plot for Experiment 1; for Experiments 2 and 3, the entire plot was harvested. The 

estimated harvest index values were: 0.45 for soybean; 0.5 for corn; 0.35 for 

sunflower; 0.5 for sorghum; 0.4 for barley; 0.43 for wheat produced after 1970, and 
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0.23 for wheat before 1970 (Bolinder et al., 2007; Gholinezhad and Bernousi, 2009). 

Non-harvested biomass was assumed to have been left in the field and cycled back to 

the soil.  For pastures, aboveground biomass was measured by cutting, drying, and 

weighing the biomass in four areas of 2.5 m2 located at the center of each 

experimental plot, 6-10 times a year. The same procedure was used to estimate total 

biomass accumulated and returned to the soil by cover crops at termination time.   

4.2.4.  DATA ANALYSIS 

A composite SH index was estimated for each plot as the unweighted mean of scored 

soil physical and biological indicators. Scored indicators between 0 and 100 were 

calculated using the CASH laboratory scoring algorithms (Fine et al 2017) based on 

the cumulative normal distribution of observed SH values in the studied USA.  

Treatment effects on accumulated aboveground biomass input and the composite SH 

index were evaluated for each experiment through analysis of variance (ANOVA). 

Mean separation was computed using Tukey's posthoc test after a significant F-ratio (p 

< 0.05). For each experiment, the treatment that does not apply any conservation 

practice (a priori worst management scenario) was selected as a reference, 

corresponding to 0%PS for Experiment 1, 0%PS_MT for Experiment 2, and Cont_soy 

for Experiment 3. The effects of conservation practices on SH and accumulated 

aboveground biomass were estimated as the change from the reference treatment. 

Linear regression analyses were performed to evaluate how cumulative biomass 

related to individual SH indicators and to the composite SH index. 

4.2.5. HYPOTHETICAL MANAGEMENT SCENARIOS 
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Based on established relations with biomass inputs, four hypothetical management 

scenarios were used to evaluate potential changes in SH after 12 years compared with 

a continuous soybean system baseline. The four alternative scenarios were: 1. 

eliminating soybean yield gaps; 2. scenario 1 plus the inclusion of cover crops; 3. 

replacing continuous soybean with a soybean-corn (Zea mays L.) rotation with cover 

crops; and 4. replacing six years of crops in scenario 3 for a perennial pasture (“ley” 

farming). All scenarios were evaluated for two yield levels, current yield (mean yield 

scenario) and potential yield, to assess potential gradients of response.  

Average national yields from 2009 to 2019 (DIEA 2020) were used for the estimation 

of biomass inputs for the mean yield scenarios. Average yields of the top five cultivars 

in the National Cultivar Evaluation Experiments from the same period (Instituto 

Nacional de Semillas (INASE) were used for the potential yield (eliminated yield gap) 

scenario. These yields, obtained under small plot experiments, might overestimate the 

attainable yields at the farm level but represent maximum achievable yields for the 

environment under best management practices. Mean and potential biomass for cover 

crops and pastures were defined based on the reports for mean and top 10% dairy 

farmers from La Cooperativa Nacional de Productores de Leche (CONAPROLE) 

estimated with remote sensing data (Gabriel Oleggini et al 2017). Yield values for 

each scenario are presented in Appendix 1.  The regression function between changes 

in biomass and the composite SH index was used to estimate potential changes in SH.  
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4.3.RESULTS AND DISCUSSION 

4.3.1. EFFECT OF BIOMASS PRODUCTION ON SOIL HEALTH  

4.3.1.1. Treatment effects on composite soil health 

A general pattern across the three experiments exists where increased composite SH 

scores are associated with management practices that improved productivity and 

increased aboveground biomass inputs into the system (Fig. 4.1). For Experiment 1, 

including perennial pastures into a continuous crop rotation with low baseline biomass 

inputs (3.59 Mg ha-1 yr-1) significantly increased biomass inputs and SH (p-value < 

0.0001). Yet for Experiment 2, pasture incorporation did not increase biomass or SH 

(Fig. 4.1b). Compared to Experiment 1, the reference treatment of Experiment 2 

includes a more intense cropping sequence with a higher proportion of C4 crops. This 

resulted in high baseline biomass inputs (6.05 Mg ha-1 yr-1), which were not increased 

by including perennial pasture (p-value = 0.26). The observed discrepancy shows that 

even under similar inherent conditions the same management practice can generate 

dissimilar results, requiring a more in-depth understanding of its impact on C inputs. 

Further supporting the close relationship between biomass inputs and SH, expanding 

the perennial pasture duration from 33% to 55% in Experiment 1 resulted in additional 

increases in biomass and SH. Similarly, cover crop inclusion and its duration on a 

continuous soybean system significantly raised aboveground biomass and SH in 

Experiment 3. But no benefits were observed by increasing pasture duration beyond 

50% in Experiment 1 where no further rise in biomass inputs were generated (50%_PS 
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vs 66%_PS). Overall, specific management practices successfully increased SH only 

when there was a change in biomass production and retention.  

 

 

Experiment 1 

  

Experiment 2 

  

 Experiment 3 
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Figure 4. 1. Composite Soil health physical and biological index and accumulated 

aboveground dry biomass inputs during the experiment from crops and pasture and 

cover crops phases per treatment as a function of treatment.  

Where: %PS, refers to the percentage of time under perennial non-harvest pastures; 

MT: to minimum tillage treatments; NT: to no-tillage treatments; Cont_Soy: to 

continuous soybean systems; Soy+Oat: to continuous soybean treatments with Oat as 

winter cover crop terminated early (E) or late (L) in the growing season. 

 

These results support the notion of a dominant effect of management-induced changes 

in aboveground biomass on resulting changes in SH.  This helps explain why the same 

management practice may or may not impact SH, independently of crop diversity, 

perenniality, or tillage system (Figs. 4.2-4.5). 

A key aspect of our analysis is the evaluation of cumulative biomass changes. SH 

indicators reflect the status of the soil given the accumulation of processes over time, 

thus different experiments with contrasting length, histories and trajectories can be 

brought together by evaluating SH changes resulting from the variations in cumulative 

biomass. This approach eliminates the effects of SH variations associated with initial 

conditions, baseline biomass inputs, and contrasting experimental durations 

facilitating the integration of different experiments. Such potential SH benefit 

assessments could be done at low cost by using vegetation indices derived from 

remote sensing data, which can robustly estimate aboveground biomass production 

(Meng et al 2013, Dong et al 2020).  

4.3.2. BIOMASS EFFECTS ON SOIL HEALTH INDICATORS 

Overall, aboveground biomass inputs explained variations in physical, biological, and 

chemical SH indicators (Figs. 4.2-4.5). Changes in aboveground biomass explained up 

to 50% of the variation in the composite physical and biological SH index (Fig 4.2). 
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Increasing biomass inputs promotes microbial activity and fosters SOC sequestration 

(Xie et al 2022). SOC gains may explain the overall SH benefits since SOC controls a 

broader set of SH indicators (e.g.,Bünemann et al., 2018; Rubio et al., 2021a; 

Schjønning et al., 2018). This strong correlation between biomass inputs and a broad 

set of SH indicators helps explain the similar responses of a set of ecosystem services 

to the variations in vegetation indices estimated from remote sensing data  (José M. 

Paruelo 2016, Staiano et al 2021). 

 
Figure 4. 2: Variations in the composite Soil Health Index as a function of the change 

in above-ground biomass. 

 Where: Δ, refers to the variation with respect to the reference treatment; Tillage=CT, 

represents conventional tillage treatments; Tillage=NT, represents no-tillage 

treatments; Pasture=Y; represents treatments incorporating perennial pastures in the 

cropping sequence; and Pastures=N, represents treatments that do not incorporate 

pasture in the cropping systems. 

 

Increases in biomass were specifically correlated with improvements in total and 

active C, Resp, WAS, surface and subsurface penetration resistance, total N, CEC, and 

% base saturation (Figs. 4.3-4.5). AWC was not related to the changes in biomass, as 
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it has known low sensitivity to land use effects compared to soil texture differences 

(Amsili et al 2021, Nunes et al 2021, van Es and Karlen 2019). Chemical indicators 

related to soil nutrient content had low correlations with changes in biomass. This can 

be explained by the effects of synthetic fertilization additions and crop nutrient 

extractions on soil nutrient contents that are not reflected by biomass inputs.  

 
Figure 4. 3: Variation in biological soil health indicators as a function of the variations 

in above-ground biomass. 

Where: Δ, refers to the variation with respect to the reference treatment; Tillage=CT, 

represents conventional tillage treatments; Tillage=NT, represents no-tillage 

treatments; Pasture=Y; represents treatments incorporating perennial pastures in the 

cropping sequence; and Pastures=N, represents treatments that do not incorporate 

pasture in the cropping systems.   
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Figure 4. 4: Variation in physical soil health indicators as a function of the variations 

in above-ground biomass. 

Where: WAS, refers to the water aggregate stability; AWC, to available water 

capacity; Δ, represents the variation with respect to the reference treatment; 

Tillage=CT, represents conventional tillage treatments; Tillage=NT, represents no-

tillage treatments; Pasture=Y; represents treatments incorporating perennial pastures 

in the cropping sequence; and Pastures=N, represents treatments that do not 

incorporate pasture in the cropping systems.   
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Figure 4. 5: Variation in chemical soil health indicators as a function of the variations 

in above-ground biomass. 

Where: Only indicators with significant correlations are represented; CEC, represents 

the cation exchange capability; Δ, represents the variation with respect to the 

reference treatment; Tillage=CT, represents conventional tillage treatments; 

Tillage=NT, represents no-tillage treatments; Pasture=Y; represents treatments 

incorporating perennial pastures in the cropping sequence; and Pastures=N, 

represents treatments that do not incorporate pasture in the cropping systems.   
 

Interestingly, under similar aboveground biomass inputs, we did not observe 

additional benefits on SH due to a higher proportion of perennial pastures. This was 

unexpected since the inclusion of perennial pastures reduces tillage frequency, and 

increases C inputs from roots, rhizodeposits, and crop diversification (Baethgen et al., 
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2021; Franzluebbers and Gastal, 2018; Kögel-Knabner et al., 2022), all factors that 

increase C use efficiency and residence time of stabilized C (Lal 2018). Different 

results could be expected when evaluating subsoil responses to management, where 20 

% of total management effects in SOC had been reported (Skadell et al. 2023). 

Biomass source material (crop type) did not affect the relationship between 

aboveground biomass and SH, which suggests that biomass quantity is more important 

than quality for SH and C balances (Berti et al 2016).  

The relationship between SH indicators and biomass inputs was not affected by tillage 

system (minimum vs. no-till; Experiment 2). Tillage benefits are generally associated 

with decreased C losses through soil erosion and CO2 mineralization (Ogle et al 2012, 

Palm et al 2014) , but erosion was not a major concern in the tillage experiment due to 

the very low slope of the site (< 1%). Different results can be expected for sites with 

higher erosion rates.  Ours therefore align with previous observations that the positive 

effects of no-till adoption on SOC depend in part on changes to C balances (Ogle et al 

2012), i.e., those benefits may be limited if there is no significant erosion concern or 

change in yield. 

A second step in evaluating SH from the critical zone approach is determining the 

amount of biomass needed to generate a specific level of change in SH. Here, all the 

evaluated indicators showed a linear relationship to biomass input variations in the 

range of observations, except for ACE Protein and subsurface penetration resistance. 

However, as observed for SOC, benefits from agronomic management and biomass 

cycling are expected to be finite and reach an equilibrium (Six et al 2002), and will 

also be limited by the maximum net primary productivity of each location.  More 
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significant and faster benefits are expected in degraded soil with higher SOC 

saturation deficits (Baethgen et al 2021; Pravia et al 2019), which was not observed 

here for ACE Protein, which is a very labile component of SOM yet R2 values were 

low for this particular indicator.   

In all, this study shows the prevailing effect of above-ground biomass inputs for a 

broad set of conservation practices and SH indicators. This information can explain 

the variable results observed among different long-term experiments involving 

conservation practices and highlights the importance of maximizing crop productivity 

to maintain SH in agroecosystems. In this context, even maintaining high yield 

potentials and associated biomass inputs through synthetic fertilizer applications 

appears to result in SH and SOC benefits (Rubio et al., 2022; Skadell et al., 2023). 

4.3.3. PREDICTING SH CHANGES UNDER DIFFERENT MANAGEMENT 

SCENARIOS 

The strength and magnitude of aboveground biomass input effects on SH indicators 

for Mollisols in Uruguay allows for the assessment of SH changes from hypothetical 

agronomic management alternatives. The generated scenarios can represent expected 

management changes for the Pampas region, a major global grain export area. Here, 

production was traditionally performed in rotation with perennial pastures which 

limited overall SH degradation (Grahmann et al., 2020; Moron, 2003) . However, 

early 2000’s commodity prices promoted the expansion of soybean monocultures, 

reaching 67% of the cultivated area (Wingeyer et al 2015). No-tillage and higher-

yielding grain crops, and other agronomic advances may have limited the severity of 

SH loss, but the greater shift from perennial pastures to a low-biomass monoculture 
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crop overall resulted in significant soil degradation (Beretta-Blanco et al 2019, Nicolas 

et al 2022).  

4.3.3.1. Reducing yield gap and incorporating cover crops. 

Fig. 4.6 shows the biomass inputs and SH effects of several agronomic management 

alternatives, with horizontal bars represented the range of outcomes between current 

and optimal (no gap) yield levels. The low biomass returns of soybean monocultures 

represented in our baseline scenario can explain the recent soil degradation observed 

in the Pampas, while improvements in biomass inputs are possible without changing 

the crop rotation.  Simply reducing the soybean yield gap (yields increase from 2.2 to 

6.5 Mg ha-1) generates benefits in SH (up to 8.6 points of increase for the composite 

SH Index with scale 0-100; Fig. 4.6). Incorporating cover crops in a continuous 

soybean rotation can further boost cumulative aboveground inputs. Variations in the 

magnitude of cover crop benefits in C sequestration, microbial activity, and soil 

physical properties have been broadly reported (Poeplau and Don 2015b, Jian et al 

2020a, Muhammad et al 2021). Here, estimated cover crop benefits for the composite 

SH Index can vary between 6 and 21 depending on biomass productivity (Fig. 4.6), 

highlighting the importance of maximizing biomass. Cover crop benefits can be 

achieved without changing the main cash crop in the rotation and without affecting its 

yield (Pinto et al 2017;Vendig et al 2023). Similar responses can be expected by 

incorporating a winter cash crop (double cropping; data not shown), with the 

additional advantage of adding extra income.  
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Figure 4. 6: Impact of cropping system changes on above-ground biomass inputs and 

composite soil health index: 12-year estimates compared to a continuous soybean 

system with national average yields.  

Where; Δ, represents the expected variation; and the low end of the variation range 

assumes current yield levels, and the high end assumes potential yield levels.  

 

4.3.3.2. Alternative rotations 

Further increases in SH may be achieved if corn, a crop with higher biomass returns to 

the soil than soybean, replaces 50% of the soybeans. This change can raise composite 

SH scores between 9 and 22 compared to continuous soybean. Higher biomass inputs 

and SH can explain the benefits of corn-soybean rotations over soybean monocultures 

in crop yield at ~ 23% for the Brazilian Pampas (Pott et al 2023) .  

Re-incorporating pastures into crop rotations has been proposed to improve the 

sustainability of cropping systems in the Pampas (Carvalho et al 2021). Our results 

show that this strategy would generate lower cumulative biomass input and expected 
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SH benefits than those generated by a continuous corn-soybean rotation with cover 

crops under the high-yield scenario (closed yield gaps), even if 100% of pastures 

biomass is returned to the soil (Fig. 4.6). Overlaps among scenarios are explained by 

varying yield levels (from current to closed yield gap), and show how only productive 

pastures and crops generate the expected benefits in SH. Low biomass production of 

pastures during the establishment year and biomass depletion over time generates a 

disadvantage when compared with intensive and productive annual crops (Ojeda et al. 

2018). However, the incorporation of pastures can generate greater changes in biomass 

and SH under the average yield scenario, meaning that this strategy may have lower 

risks.  

While the economic incentives for integrated crop-pasture systems might not be 

favorable, our results show that other techniques like optimization of rotations with 

high-biomass crops, minimizing yield gaps yields, and increasing active plant growth 

periods (cover crops) can potentially reach similar and even higher biomass inputs and 

SH levels than systems that include pastures. Our approach, however, does not 

account for other potential concerns associated with continuous annual cropping 

systems like increased energy, water, fertilizer, or pesticide uses, soil erosion, or 

compaction which might have negative environmental impacts that are not reflected 

by the indicators evaluated here. 
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4.4. CONCLUSIONS 

Understanding the impacts of management practices on aboveground biomass is key 

to predicting potential effects on SH. Aboveground biomass quantity, rather than 

origin, is a strong determinant of conservation practices’ benefits. Notably, soybean 

production, which in recent years has greatly expanded in South America under 

monoculture, produces limited post-harvest residue biomass. Including high-biomass 

annual crops (e.g., corn) and perennials into rotations, eliminating yield gaps, and 

including cover crops can enhance biomass inputs and improve SH. Although 

aboveground biomass can be easily estimated and measured it is rarely reported, but 

further evaluations of SH-biomass relationships will provide valuable insights on the 

potential benefits of different cropping and conservation strategies. Furthermore, given 

the expanding technologies available for remotely sensing biomass production (e.g., 

satellite-based NDVI), the presented relationships may be used to estimate SH 

changes on larger scales.  
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CHAPTER 5: MAPPING SOIL HEALTH AT REGIONAL SCALE: 

DISENTANGLING DRIVERS AND PREDICTING SPATIAL LAND USE 

EFFECTS4 

ABSTRACT 

Soil health (SH) is usually represented by measuring dynamic soil indicators that vary 

considerably in time and space based on the interactions of factors such as soil type, 

current and historic land use and management strategies including cropping system, 

and crop productivity. Hence, SH indicators are typically difficult to generalize and 

costly to assess at broad geographic scales. Digital soil mapping based on machine 

learning (ML) can integrate SH observations with remotely sensed data and may 

provide a promising alternative for efficiently predicting SH at scale, especially if 

short and mid-term management data are included into the models. Four soil 

biological (soil organic matter, POXC, Protein, and respiration) and two physical 

(water aggregate stability and available water capacity) indicators as well as a 

composite SH index were evaluated to 1) establish associations between climate, 

inherent soil properties, land use, and management to SH indicators in NY State; 2) 

develop data-driven models for predicting and mapping SH indicators at the regional 

scale; and 3) estimate SH impacts from hypothetical scenarios of regional land use 

change. The approach proved to be a valuable strategy for mapping dynamic SH 

 
4 To be submitted to Geoderma  
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indicators (average R2=0.58), except available water capacity (R2=0.28) for which 

limitations in the precision of model covariates associated with soil texture limit its 

evaluation. Anthropogenic actions explained on average 42% of the variations in SH 

indicators. Land use systems and management practices that increase biomass return 

to the soils are associated with better SH conditions. Land use changes can have minor 

mean effects in SH at the regional scale. However, SH improvements generated by the 

incorporation of pasture-hay into annual cropping systems can be considerable for 

some specific areas within the region. Overall, the geospatial application of ML 

models to map SH provides insights into SH variability and drivers that can support 

efficient management interventions helping target solutions to sites where higher 

benefits are expected.  

5.1. INTRODUCTION 

Soil health (SH) is defined as the capacity of the soil to function as a vital living 

ecosystem that sustains plants, animals, and humans (USDA-NRCS, 2020) . To 

evaluate SH, a comprehensive set of functional indicators should be measured 

(Moebius-Clune et al., 2016). However, the inherent cross-scale and temporal 

variability of SH indicators challenges diagnostics and gaining understanding of its 

drivers (Karlen et al., 2001).  

SH is a major component of rational and regenerative land use, which is increasingly 

receiving attention from policymakers. The State of New York recently passed a Soil 

Health and Climate Resiliency Act (Senate: S4722A/House: A5386A, 2021), which 

https://www.nysenate.gov/legislation/bills/2021/s4722
https://www.nysenate.gov/legislation/bills/2021/a5386/amendment/a
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endeavors to assist farmers to adapt to climate change and to contribute to greenhouse 

gas mitigation goals by improving SH. It also mandates science-based SH standards to 

assist in farm planning and goal setting. The development of these standards requires a 

comprehensive understanding of the status of SH and pathways for improvement to set 

meaningful and attainable goals. This leads towards an evidence-based strategy for 

prioritizing land management strategies and geographic targeting.  

SH is defined by a complex interplay between inherent soil properties, land use, and 

management practices (Moebius-Clune et al., 2016). Inherent properties generally 

remain static over time and are defined by the long-term effect of soil-forming factors 

(i.e., time, climate, parental material, topography, and biology). Dynamic properties, 

represented by SH indicators, change on annual or decadal time scales, and are 

affected by shorter-term land use strategies and management practices. Different SH 

reference values have been developed for soil with contrasting inherent properties 

based on attributes such as texture (Fine et al., 2017 Nunes et al., 2020; Nunes et al., 

2023). Nevertheless, the nature of the relationships between climate, inherent soil 

properties, and land use or management strategies in determining SH status remains 

largely unknown.  

Digital Soil Health Mapping with Machine Learning  

Digital soil mapping (DSM) integrates point-based soil measurements with remotely-

sensed spatial data, with the latter serving as environmental covariates in machine 

learning (ML) and other statistical modeling frameworks such as regression kriging 

that are used for DSM. DSM has demonstrated accuracy and cost-effectiveness in 
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mapping inherent soil properties at scale in certain regions (Searle et al., 2021). Many 

studies had been performed to map SOM, despite being a dynamic soil property most 

studies don’t incorporate recent land use and management data for its evaluation, and 

do not consider sampling date for the determination of model covariates. Therefore, 

SOM is indeed evaluated as a static soil property. With the exception of SOM, the use 

of DSM use for mapping dynamic soil properties has been limited (FAO / Global Soil 

Partnership, 2018), and comprehensive SH evaluations had not been performed.  

The lack of available land use and management covariates at scale may limit DSM 

utility for mapping SH indicators, particularly for properties that are more sensitive to 

short-term agronomic factors than SOM, including commonly-measured indicators 

like permanganate oxidizable carbon, protein, and respiration (Nunes et al., 2018). In 

the US, emerging data products are addressing these limitations including the Crop-

specific Land Cover Data (CLD) digital map created by the National Agricultural 

Statistics Service (NASS) of the US Department of Agriculture. CLD provides an 

annual land use classification by identifying crop types at 30 m spatial resolution 

(USDA, 2020). Within a given region, specific crops often have similar management 

practices (e.g., tillage and fertilization) and, therefore, their presence and frequency 

might have similar cumulative medium-term effects in SH. Furthermore, crop 

sequences can be grouped to identify the main land use system, e.g., continuous cash 

grain systems can be differentiated from dairy systems since dairies usually alternate 

the annual cash grains with perennial pastures or hay. Significant variations in SH 

indicators among land use systems have already been identified in New York State 

(Amsili et al., 2021).  On the extremes, annual systems with low biomass residues 
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(e.g., vegetables) typically have lower SH indicators than perennial pastures with 

permanent soil cover and high levels of in situ biomass recycling. 

Another promising data product to use as covariates in DSM are the short- and 

medium-term time series of vegetation indices, which can provide information related 

to vegetation growth, indicating its productivity and active growth periods. These in 

turn influence the quantity and quality of biomass that can potentially be returned to 

soil as residues, as well as by root decomposition following harvest, which are the 

energy drivers related to many SH indicators. Normalized Difference Vegetation 

Index (NDVI) values reflect the phenology and growth of crops and might reflect 

differences in management that cannot be accounted by the main land use type and 

crop.  

Modeling interpretability and SH drivers 

Utilizing DSM for evaluating SH indicators will not only contribute to predicting SH 

at large scales, but can also enhance our comprehension of the underlying SH drivers 

(Beucher et al., 2022; Padarian et al., 2020; Samek et al., 2019). Recent advances in 

ML interpretability generated by the use of SHapley Additive exPlanations (SHAP) 

values developed by Lundberg Scott M. and Lee Su-In., (2017) allow us to unravel the 

complex patterns between prediction covariates and predicted properties and evaluate 

the contribution of each covariate to the final model for each observation. Promising 

results have been reported for predicting soil organic matter (SOM), yielding useful 

insights into its drivers, and patterns of spatial variation (Wadoux et al., 2023).  
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Higher datasets on SH indicators, better model interpretability, and the increasing 

availability of high-resolution data on environmental covariates increase the potential 

utility of DSM for prediction and understanding soil properties. In this study, we 

incorporate three land-use-related factors in our DSM models to predict SH, including 

(i) the main land-use systems, (ii) the frequency of different crops within these 

systems, and (iii) their productivity based on NDVI values. We hypothesize that 

combining land use and cropping systems information with more traditional covariates 

in DSM will strengthen the prediction of dynamic physical and biological SH 

indicators, while permitting us to anticipate the impacts of future land use changes on 

soil health.  

The objectives of this study are to 1) quantify relationships between climate, inherent 

soil properties, and land use for SH indicators across NY State; 2) develop data-driven 

models for predicting and mapping SH indicators at the regional scale; and 3) use 

predicted SH maps to estimate impacts from hypothetical regional land use change 

scenarios. 

5.2. MATERIALS AND METHODS 

5.2.1.  DATASET AND STUDY AREA 

The Comprehensive Assessment of Soil Health (CASH; Moebius-Clune et al., 2016) 

was developed to assess sets of physical, biological and chemical indictors. We 

evaluated samples voluntarily submitted for CASH analysis by agricultural 

professionals and farmers to the Cornell Soil Health Laboratory, between 2014-2021. 
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Samples were presumably collected following the instructions given by Moebius-

Clune et al. (2016), representing the soil surface layer from 0-15 cm. Our analysis 

focused on the evaluation of continuous annual grain cropping systems, continuous 

perennial pastures or hay, rotations that incorporate annual crops and perennials, and 

mixed systems that cultivate annual grains, processing vegetables, and pastures (see 

section 3.2). Soil orders other than Entisols, Alfisols, or Inceptisols were not evaluated 

since they were not sufficiently represented in the dataset.  

To correct potential biases, we cleaned the dataset eliminating outlier observations for 

slope (>10%) and SOM (> 7.4%, 7.6%, and 8.1% for coarse, medium, and fine soil, 

respectively). The sample location, which was provided by the client, was individually 

checked, eliminating samples with obvious errors in geotagging. Finally, only samples 

that included all CASH indicators were tested, resulting in a final dataset of 827 

samples (Fig. 5.1).  

Our study evaluated two different geographic domains, the larger one (35,120 km2; 

827 samples) representing all the Major Land Resource Areas (MLRA) (USDA, 

Natural Resources Conservation Service, 2022) within New York State where 

agriculture takes place. The smaller domain (17,954 km2; 579 samples) which is a 

subset of the first, encompassing the glaciated landscapes and gently rolling hills of 

the ‘Ontario-Erie Plain and Finger Lakes Region’ MLRA, and as well as the valleys 

and ridges of the ‘Glaciated Allegheny Plateau and Catskill Mountains’ MLRA. 

Overall, samples were well-distributed throughout the evaluated regions (Fig.5.1).  
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Figure 5. 1: Locations of the study areas and spatial distribution of the soil health 

observations. 

 

5.2.2. SOIL HEALTH INDICATORS 

Each sample was analyzed at the Cornell Soil Health laboratory (Ithaca, NY) for a set 

of soil physical and biological indicators. Details on the laboratory techniques are 

found in Moebius-Clune et al., (2016) and Schindelbeck et al., (2022). Briefly, the 

evaluated indicators were:  

• Total soil organic matter (SOM) determined using loss on ignition (LOI) method 

at 500°C and was estimated using Storer's (1984) Eq. 1. 

SOM = (LOI × 0.7) × 0.23 [1] 
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• Permanganate-oxidizable carbon (POXC) measured as the C oxidized by a 

dilute potassium permanganate solution (KMnO4) through solution absorbance 

at 550 nm using a hand-held colorimeter (Weil et al., 2003). 

•  Autoclaved citrate extractable soil protein (ACE Protein) determined by 

extracting soil proteins following a series of centrifugation and autoclaving steps 

using 0.02 M sodium citrate at pH 7 (Hurisso et al., 2018), and a bicinchoninic 

acid assay against bovine serum albumin standard curve to determine soil 

protein concentration.  

• Soil respiration (Resp) assessed by trapping and measuring CO2 emitted by soil 

microorganisms over a 4-day room temperature incubation in a sealed chamber 

with a KOH trap (Schindelbeck et al., 2016). 

• Plant-available water capacity (AWC) measured as the water retained between 

−10 kPa and − 1500 kPa, and assessed gravimetrically by equilibrating soil on 

ceramic plates in high-pressure chambers (Topp et al., 1997) 

• Wet aggregate stability (WAS) measured as the proportion of stable aggregates 

(0.25–2 mm size) after a rainfall simulation (2.5 J of rainfall energy for 300 s). 

• Composite Soil Health Index (SH Index; scale 0-100) calculated as the un-

weighted arithmetic mean of all the scored values of individual SH indicators 

(also scale 0-100) calculated in turn from observed values using their cumulative 

normal distribution as proposed by Fine et al., (2017).  

Table 5.1 summarizes the basic statistics for the evaluated SH indicators for the 

complete final dataset (large domain). Basic statistical parameters were similar for 

both domains, and the respective histograms of SH indicators are presented in the 
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Appendix 5.1. A natural logarithmic transformation was applied to indicators that 

exhibited skewness values higher than 0.5 (SOM, ACE Protein, Resp, and WAS) to 

enhance the accuracy of the statistical analyses.  The composite SH Index had a range 

of values from 9 to 99 on a theoretical scale of 0-100, indicating that a wide range of 

SH conditions existed within the study areas (Table 5.1). 

Table 5. 1: Descriptive statistics of the evaluated soil health indicators for NY State 

 SH Index SOM POXC 
ACE 

Protein 
Resp AWC WAS 

 ------------%------------ ------------mg/kg------------ mgCO2/kg ----%---- ---g/g--- 

Mean 54 3.07 535 6.5 0.58 0.22 33.7 

Min 9 0.20 20 0.42 0.01 0.05 2.6 

Max 99 7.57 1259 20.06 2.16 0.39 100 

SD 21 1.27 198 2.72 0.28 0.05 23.6 

Relative SD 39 42 36 40 49 23 66 

Skewness 0.31 0.73 0.24 1.48 1.46 -0.1 0.84 

Kurtosis 2.25 3.35 3.17 6.36 6.28 3.54 2.66 

Where: SH Index: Composite Soil Health Index; SOM: Soil organic Mater; POXC: 

Permanganate-Oxidizable Carbon; ACE: ACE Protein; Resp: Respiration; AWC: 

Available water capacity; WAS: Water aggregate stability. 

5.2.3. MODEL COVARIATES FOR PREDICTING SH AT SCALE 

A set of 26 high-resolution publicly-available covariates with known effects in SH 

were selected for this study. Table 5.2 describes each variable, including data source 

and spatial resolution. Variables were grouped into three categories according to the 

factors they represent: (1) Climate, (2) Soil & Topography, and (3) land use & 

management. The first two are standard for DSM; the latter aims to represent 

historical and recent land use and management strategies to strengthen the use of DSM 

to predict dynamic soil properties. We consider a system as a land use sequence over a 

period of years as opposed to a single year to account for the legacy of past 

management. Here we characterized the land use and management by looking at the 

main land use system, the proportion of the mean crops in the rotation, and NDVI. 
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Crop frequencies can help elucidate the differences within the land use systems, and 

NDVI values can elucidate variations on management and productivity within the 

same crop. A six-year period prior to sampling was selected since this is the typical 

duration of the crop rotations associated with dairy farms in the region and the 

maximum period of available data. The evaluated periods went from 2008-2013 for 

samples submitted in 2014 to 2016-2021 for samples submitted in 2022.  

The production system and the percentage of time under different crop types were 

determined by evaluating the USDA’s cropland data layer (CDL) (USDA, National 

Agricultural Statistics Service Cropland Data Layer, 2023). We considered CDL 

values from 2017-2022 to generate current SH maps.  For the determination of the 

production system, CDL information was first grouped into four categories of 

production systems: (i) annual grain cropping systems (Annual_Grain_sys); (ii) 

rotating annual crops and pastures or hay, which mostly represent cropping systems 

associated with dairy farms (Grain_Past_Hay_sys) and where the annual grain is 

primarily corn (Zea mays L.) for silage; (iii) continuous perennial pastures, or hay 

(Past_Hay_sys), and (iv) rotations between annual grains, processing vegetables and 

pastures (Annual_Grain_Veg_sys). The complete list of crops in each category is 

presented in Appendix 5.2. A summary of the average proportion of time under the 

evaluated crops, pasture, and hay for each production system and the predicted areal 

extent are presented in Appendix 5.3. Categorical variables, including USDA Soil 

Taxonomy soil order and production system, were converted into dummy variables. 
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Table 5. 2:  Model covariates variable description, sources, and spatial resolution 

Name Description Source 
Spatial 

resolution 
 

Climate 

Mean_Temp  
Historic mean annual temperature 

(˚C)  
(2000-2017) 

MODIS  1 km 

Precipitation  
Historic mean accumulated annual 

precipitation (mm) 
 1 km 

 

Soil & Topography 

Soil_Order* Inceptisols, Entisols, and Alfisols  Gridded Soil Survey 

Geographic Database 

(gSSURGO) 
30 m 

Drain_class 
Ordinal values: 1= Very poorly 

drained, and 7= Excessively 

drained 

Slope Slope gradient in percent  
NASADEM_HGT/001 

dataset (NASA, 2021) 
30 m 

Clay  Percent clay for 5-10 cm depth. POLARIS 

Probabilistic 

Remapping of 

SSURGO (Chaney et 

al., 2019)  

30 m 

Silt  Percent silt for 5-10 cm depth 
pH pH for 5-10 cm depth 
Organic_Matter_P  Percent SOM for 5-10 cm depth 

Bulk_Density Δ 
Bulk density (g/cm3) for 5-10 cm 

depth 
 

Land Use & Management 
 

Production system* 

Annual_Grain_sys, 

Grain_Past_Hay_sys, 

Past_Hay_sys, and 

Annual_Grain_Veg_sys. 

Cropland Data 

Layer USDA National 

Agricultural Statistics 

Service Cropland Data 

Layer (2023) 

30 m 

Past_Hay_perc 

 
Percent perennial grasses and 

legumes in pastures or hay areas  

Alfalfa_leg_ perc Δ 
Percent perennial legumes mostly 

alfalfa used for hay production 

Crop_perc Percent annual grain crops 

Corn_perc Δ Percent corn  

Soy_perc Δ Percentage of soybean  

Wheat_Barley_perc Δ Percentage of wheat and barley 

Rye_Oat_perc Δ Percentage of rye and oats  

Veg_perc 
Percentage of processing 

vegetables  

Annual_NDVI 
Mean NDVI value 1 yr pre 

sampling 
30 m 
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Where: *represent categorical variables which are treated as dummy variables in the 

XGBoost models; Δ  represents variables that were not included in the final optimized 

predictions models; Soybean: Glycine max; Wheat: Triticum aestivum L.; Barley: 

Hordeum vulgare; rye: Lolium multiflorum L Oat: Avena sativa. 

5.2.4.  DSM WORKFLOW  

 

Figure 5. 2: Workflow and modeling approach summary 

 

5.2.4.1.Model calibration  

We evaluated five models per indicator and spatial domain. Four were partial models 

and one was a complete model including all covariates. The first three partial models 

evaluated the effects of Climatic, Soil & Topography, and Land Use & Management 

Mean_NDVI 
Mean NDVI value 6 yr pre 

sampling 

Landsat-7 image 

courtesy of the U.S. 

Geological Survey 
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separately. The fourth partial model assessed the combined effect of Climatic and Soil 

& Topography related covariates.  

The modeling approach (Fig 5.2) used extreme Gradient Boosting (xgBoost), an 

optimized boosting algorithm that builds models from individual "weak learners" in an 

interactive way. Data were initially divided into training (80%) and validation (20%) 

datasets. Model training was performed using a repeated 10-fold cross-validation 

scheme as a resampling method, with the Caret Package in the R statistical software 

(R Core Team, 2018). This procedure was repeated five times using different splits, 

reducing the variance in the estimates of the model's performance, and making it more 

reliable than a simple random division of the dataset into calibration and validation 

datasets. Model hyperparameters were optimized using a grid search approach 

considering all possible combinations. The tuned parameters and their evaluated 

values are presented in Appendix 5.4. For each SH indicator, the best combination of 

model parameters was selected based on the lowest root mean square error (RMSE) as 

the performance metric. 

5.2.4.2.Model performance evaluation 

Model performances were tested on the validation datasets as an independent 

measurement. The percentage of variance explained by the models and the RMSE 

normalized by the interquartile range of the predicted SH variable (NRMSE) were 

estimated. The Lin's concordance correlation coefficient (LCCC) was estimated to 

evaluate the fit of the observed and predicted values in the independent dataset to the 

1:1 line (Lin L, 1989), assessing model predictive capacity. The correlation between 
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observed and predicted values, histograms of model residuals, and the spatial 

distribution of the residuals were also evaluated to assess model performance 

(Appendix 5.5, 5.6). All analyses were carried out using R statistical software (R Core 

Team, 2018). All algorithms were implemented in the ‘Caret’ and ‘xgboost’ (Kuhn, 

2008) packages. 

5.2.4.3. Variable importance and contribution to the models  

To evaluate the importance and functional form of the association between covariates 

and SH indicators, we evaluated SHAP values. These represent the contribution of 

each feature to the final model prediction accounting for the interaction with other 

covariates, by using concepts from cooperative game theory (Christopher Molnar, 

2022). The main advantage of this approach is that all possible feature combinations 

and their selection orders are evaluated to estimate the SHAP values, since the order in 

which a model sees features can affect its predictions. Also, SHAP values can be 

computed for individual observations, providing additional insight into model 

performance and drivers of SH in diverse settings. All evaluations were performed 

using the SHAPforxgboost R package (Yang Liu and Allan Just, 2020) 

5.2.5. SPATIAL PREDICTION OF SOIL HEALTH INDICATORS 

The original covariate resolution spanned from grid cell sizes of 30*30 m to 1 km, and 

all variables were therefore aligned to 100 m grid by resampling with a near neighbor 

or bilinear interpolation. Covariates were then transformed into a common spatial 

domain corresponding to the extent of NY State. Predictions of SH indicators for 2023 

were performed considering the six years prior to 2023 for the land use-related data 
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layers (CDL, and NDVI related covariates). The coordinate reference system used in 

this study was WGS 1984 UTM zone 40 (EPSG:32640). 

For SH predictions, full models were optimized by removing the less important 

variables and aiming to reduce model overfitting. Covariates that showed a 

consistently low contribution, as measured by their SHAP values on the initial models, 

were eliminated from the optimized models. The eliminated variables were bulk 

density and variables representing the individual contributions of annual grain crops 

(Alfalfa_leg_perc, Corn_perc, Soy_perc, Wheat_Barley_perc, Rye_Oat_perc). Both annual 

and mean NDVI were maintained in the final model as they had a high contribution to 

the final models, despite being highly correlated. The final prediction models included 

20 covariates consistent across physiographic domains and individual SH indicators. 

Log-transformed indicators were back-transformed for mapping. 

5.2.6. PREDICTING SOIL HEATH CHANGES UNDER LAND USE CHANGE  

To illustrate a potential use of the models, we estimated SH under a hypothetical land 

use change scenario for areas in Central New York that despite spatial proximity 

currently have different land use characteristics. Seneca County has a high prevalence 

of annual grain production, while lands in neighboring Cayuga County are mostly part 

of integrated crop-livestock dairy farms. The latter system has been proven to increase 

SH. The scenario consisted of replacing all continuous annual grain crops systems 

(Annual_Grain_sys) in the areas with integrated annual crops and pastures and hay 

systems (Grain_Past_Hay_sys). The land use and management parameters were 

defined by estimating the average values of all the land use related covariates for the 
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region under Grain_Past_Hay_sys. The mean values of land use model covariates for 

Grain_Past_Hay_sys and Annual_Grain_sys are presented in Table 5.3. 

Table 5. 3: Mean land use covariates for annual grain systems and annual grain pasture 

and hay systems for Seneca County.   

 
Annual_Grain_sys Grain_Past_Hay_sys 

Annual_NDVI 0.175 0.216 

Mean_NDVI 0.1996 0.2325 

Crop_perc 94% 57% 

Corn_perc 46% 30% 

Soy_perc 39% 24% 

Wheat_Barley_perc 8% 4.7% 

Oat_Rye_perc 1.2% 1.1% 

Past_Hay_Perc 0% 34% 

Where: Annual_Grain_sys: annual grain cropping systems; Grain_Past_Hay_sys: 

integrated annual crops and pastures and hay systems. 

5.3. RESULTS AND DISCUSSION 

5.3.1. MODEL PERFORMANCE  

Table 5.4 summarizes the performance of the five evaluated models for the state of 

New York (large domain) and for the subregion of Ontario-Erie Plain, Finger Lakes 

Region, Glaciated Allegheny Plateau and Catskill Mountains domain for each SH 

indicator. Significant variations were observed among models, domains, and 

indicators. The results demonstrate that given a sufficiently large dataset dynamic 

physical and biological SH indicators can be predicted at a regional scale, specifically 

if a comprehensive set of covariates are included in the models.  
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5.3.1.1. Geographic domain and model performance 

The models performed slightly better over the smaller domain than the larger one for 

most indicators and models except AWC. Increasing the evaluated area is usually 

associated with a reduction in sample density (0.032 samples km-2 to 0.024 samples 

km-2 in this study, but within the commonly reported sampling densities for DSM of 

soil carbon) (Chen et al., 2022). The lower sample density in the larger domain may 

explain the overall reduction in model accuracy, which on average represented a 

decrease in R2 and LCCC of 0.6 compared to the smaller domain.  

Spatial patterns of model covariates and changes in soil processes in spatial and scale 

domains can also explain the differences in the relative performances of the partial 

models among domains. Which might indicate the need for specific models for 

different sub-regions.Yet, similarities in mean, range, and distribution of SH indicators 

among domains suggest that both represent a similar range of SH variations 

(Appendix 5.1). This may also be associated with the decision to focus on Entisols, 

Inceptisols, and Alfisols.  

  



 

135 

 

Table 5. 4 Model performance for the validation data set over the different study 

domains and SH indicators presented as R2 and normalized root mean square error 

(NRMSE) and the Lin's concordance correlation coefficient (LCCC). 

 

 Large Domain Small Domain  
Climate Soil & 

topography 

Land 

Use 

Climate 

and soil & 

topography 

Full 

Model 

Climate Soil & 

topography 

Land 

Use 

Climate 

and soil & 

topography 

Full 

Model 

  

R2  
 

SH index 0.47 0.45 0.42 0.56 0.59 0.57 0.49 0.58 0.59 0.74 

ln_SOM 0.46 0.51 0.39 0.51 0.60 0.58 0.5 0.51 0.68 0.69 

POXC 0.39 0.36 0.27 0.41 0.44 0.43 0.44 0.44 0.47 0.52 

ln_ACE 0.28 0.31 0.27 0.37 0.42 0.45 0.35 0.44 0.5 0.55 

ln_Resp 0.30 0.40 0.34 0.48 0.52 0.37 0.25 0.39 0.43 0.50 

AWC 0.29 0.33 0.09 0.39 0.45 0.20 0.11 0.21 0.20 0.28 

ln_WAS 0.47 0.33 0.41 0.49 0.60 0.55 0.50 0.57 0.65 0.69 

  

NRMSE   

SH index 0.51 0.52 0.53 0.47 0.45 0.50 0.56 0.51 0.50 0.40 

ln_SOM 0.55 0.55 0.58 0.53 0.47 0.51 0.55 0.55 0.45 0.45 

POXC 0.61 0.63 0.67 0.60 0.58 0.66 0.65 0.65 0.63 0.60 

ln_ACE 0.73 0.73 0.73 0.69 0.67 0.72 0.77 0.72 0.67 0.64 

ln_Resp 0.73 0.68 0.72 0.55 0.61 0.61 0.68 0.61 0.59 0.55 

AWC 0.65 0.63 0.75 0.62 0.57 0.86 0.92 0.84 0.86 0.82 

ln_WAS 0.49 0.55 0.52 0.48 0.42 0.55 0.57 0.52 0.49 0.46 

  

LCCC  

SH index 0.64 0.59 0.58 0.69 0.72 0.72 0.66 0.71 0.73 0.84 

ln_SOM 0.65 0.63 0.56 0.68 0.74 0.75 0.69 0.70 0.82 0.82 

POXC 0.54 0.52 0.41 0.57 0.60 0.62 0.59 0.59 0.65 0.69 

ln_ACE 0.47 0.45 0.41 0.52 0.57 0.62 0.50 0.62 0.66 0.70 

ln_Resp 0.50 0.55 0.51 0.64 0.67 0.59 0.47 0.60 0.65 0.70 

AWC 0.47 0.50 0.23 0.58 0.60 0.37 0.27 0.38 0.39 0.47 

ln_WAS 0.63 0.49 0.57 0.65 0.74 0.67 0.60 0.68 0.73 0.76 

SH Index: Composite Soil Health Index; SOM: soil organic matter; ; POXC: 

permanganate-oxidizable carbon; ACE: ACE Protein; Resp:respiration; AWC: 

available water capacity; WAS: water aggregate stability. 
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5.3.1.2. Performance of partial models  

The relative performance of the partial models varied between the two domains of 

analysis. Here even the smaller domain represented a relatively large area with 

significant climatic differences, which explained a high proportion of SH variations. In 

the larger domain, climatic-only models performed similarly to soil & topography 

models and outperformed management-only models. Similar average performance was 

observed between climate and management-only models in the smaller domain, but 

they outperformed soil and topography models. The more significant improvement 

with management-related models in the smaller domain agrees with previous studies 

showing that management covariates are more influential in smaller areas as the 

environmental covariates tend to be more uniform (Emadi et al., 2020). 

Among the partial models, those including a combination of climatic and soil & 

topography covariates had the highest performance, with an average R2 value of 0.46 

and 0.50 for the larger and smaller domains, respectively. Our results confirm the 

critical role of inherent soil properties and climatic variables in defining SH indicators. 

Their estimated effects are similar to those reported for POXC, Resp, and SOC at the 

continental scale, assessing 124 long-term experiments located across North America 

(Liptzin et al., 2022). However, for WAS, our study showed a much higher effect of 

inherent soil properties and climate than that previously reported, where they only 

explained 18% of WAS variability (Bagnall et al., 2022). A possible cause may be 

correlations between management, soil, and climate covariates included in our model.  

Correlations between the covariates incorporated in our models affect the relative 

performance of the partial models and obscure the identification of individual 
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covariate effects. Covariates correlations (Appendix 5.4) represent a main 

confounding factor in this study and any DSM approach. These should be carefully 

considered when interpreting generated information as climate and soil types often 

define land use. For example, a combination of favorable inherent soil and climate 

characteristics in the Ontario-Erie Plain and Finger Lakes MLRA has been associated 

with more intensive annual grain and processing vegetable agriculture relative to other 

areas for more than 100 years  (Cline and R.L. Marshall, 1976; Nobe et al., 1960),  

resulting in overall lower SH outcomes.    

5.3.1.3. Full model performance  

Full models outperformed all partial models, highlighting the importance of 

incorporating explicit covariates representing all the main soil-forming factors for 

predicting soil properties. Incorporating land use and management-related covariates 

generated only modest improvements in model performance, increasing the variance 

explained 6% when compared to no-management models. The fact that soil and 

climate variables are asociations with managments might explain the small 

improvements in model performance. Model improvement due to land use and  

management incorporation were expected to be higher for dynamic SH indicators, but 

this was not observed. Management related variables did explain a higher proportion 

of the variations of the indicators that are more sensitive to management (see section 

5.3.2). 

Covariate correlations incorporating all relevant variables in the models elucidate 

individual covariate effects. The included land use and management practices allowed 

us to elucidate the effect of cropping systems, crop rotation and crop productivity. This 
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goes beyond the traditional DSM approaches which only minimally differentiate 

among contrasting land uses, e.g., forest vs annual grain (Zhang et al., 2022), and do 

not represent more detailed effects from crop rotations or productivity.  

The performance of the complete models varied significantly among SH indicators, 

with AWC the lowest with R2 = 0.28 and other indicators with R2 values ranging from 

0.5 to 0.74 and LCCC values from 0.70 to 0.84.  NRMSEs were greater than 0.5 for 

POXC, ln_ACE, and ln_Resp, which can be considered high for this type of analysis. 

The lack of systematic errors or clear spatial patterns on the residual distribution 

observed in the study indicates an accurate model performance across a wide range of 

SH values and locations (Appendix 5.5 and 5.6). Yet, modest underestimations of high 

SH values and overestimations of low values were observed for individual indicators 

(Appendix 5.5), which is characteristic of most modeling approaches and reflects 

limitations of predicting extreme values with tree-based machine learning methods. 

This limitation was not evident when evaluating the composite SH_index, which 

already represents an average of the scored values of individual SH indicators, 

therefore attenuating extreme observations in individual SH indicators.  

SOC/SOM and AWC are, among the evaluated indicators, the only ones previously 

mapped  using DSM techniques with 126 and 20 mapping efforts, respectively (Chen 

et al., 2022). Among these, average R2 values were 0.49 for surface SOC/SOM and 

0.34 for AWC. Our models performed significantly better for SOM but had a lower 

performance for AWC. The lower performance for AWC was unexpected since AWC 

is measured on disturbed soil samples and recognized as easy to predict (Amsili, 2023 

in preparation), especially with soil texture related covariates (Libohova et al., 2018). 
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In our models, texture is derived from the POLARIS dataset which has its own 

associated errors (Chaney et al., 2019). Specifically, POLARIS approximates 

SSURGO map unit composition by disaggregating polygons so that the particular 

pixel may not accurately represent the map unit component at the observation location. 

Estimating SH properties from estimate rather than directly measured soil data implies 

inevitable uncertainties. The R2 between texture values measured in our samples and 

the extracted values from POLARIS for silt and clay were 0.26 and 0.46, respectively 

(Appendix 5.8), similar to those reported by Chaney et al. (2019) for clay but much 

lower for silt (R2=0.58).  Limited representation of landscape variations of soil 

properties by DSM products, like POLARIS, might constrain the accuracy of these 

maps at fine resolution (30 m) (Rossiter et al., 2022). Replacing POLARIS estimations 

with measured texture values generated minor changes in models’ performance for 

most SH variables (Appendix 5.9), but was improvement was significant for SOM 

(R2=0.67 to 0.78) and AWC (R2=0.28 to 0.41) which confirms the importance of 

texture for these indicators. Interestingly, these two indicators are most affected by the 

accuracy of the texture-related variables, but had been previously shown to be less 

affected by short-midterm management.  Overall, potential improvements to the 

generated models are associated with a better prediction of important model 

covariates.  

5.3.2. COVARIATE IMPORTANCE AND IMPACT IN SH INDICATORS  

The use of SHAP values increased the interpretability of ML models, bringing insight 

into relationships between SH indicators and model covariates for the region. Fig. 5.3 

represents covariates importance as its relative SHAP values for each indicator in the 



 

140 

 

smaller domain. Although they varied among indicators, the functional forms remain 

robust, illustrated by SHAP dependence plots for the 14 most important covariates for 

the composite SH index in the smaller domain (Fig. 5.4). Additionally, Fig. 5.5 

summarizes the importance and relationships of the top six covariates and SH 

indicators. Further details on SHAP dependence plots for both extents are in Appendix 

5.10 and 5.11. 

The consistency observed in the SHAP dependence plots among indicators suggests 

that the processes and factors that positively impact one SH indicator tend to have a 

beneficial effect on other indicators as well, suggesting interdependencies among 

different aspects of SH.  Climate-related covariates had the most significant effects for 

most SH indicators ,where increases in the average Mean_Temp from 7 to 12 oC led to 

lower SH. This is consistent with reports for soil carbon and carbon-related variables 

at regional, continental, and global scales (Lamichhane et al., 2019). Among others, 

increases in mean temperature are associated with higher mean annual C oxidation 

rates (Lamichhane et al., 2019). Precipitation had a quadratic relation with SH, 

positive up to 1100-1200 mm, and possibly negative at higher levels (with limited 

observations >1200 mm). Higher annual precipitation may be associated with a more 

positive C balance through higher plant productivity and OM inputs combined with 

less C oxidation due to more prevalent anaerobic microsites, which together can 

promote SOM accumulation (Jackson et al., 2017). 
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Figure 5. 3: SHAP (SHapley Additive explanation) values for each covariate and soil 

health indicator relative to its standard deviation 

Where: SH Index: Composite Soil Health Index; SOM: Soil organic Mater; ; POXC: 

Permanganate-Oxidizable Carbon; ACE: ACE Protein; Resp: Respiration; AWC: 

Available water capacity; WAS: Water aggregate stability.* Addition of SHAP values 

of each dummy covaraite reprecenting the factor. 

Among the soil and topography variables, clay and silt contents most significantly 

influence the majority of SH indicators. For this study, increased clay contents from 7 

to 25%, and silt contents from 35 to 55% were associated with higher SH values, with 

limited observations outside these ranges. Higher SH indicator values in finer-textured 

soils have been broadly recognized, motivating the development of texture-specific 

soil health indicator values (Amsili et al., 2023; Fine et al., 2017; Nunes et al., 2021, 

2020).  

The average order of importance for the remaining soil and topography-related 

indicators was: Soil pH> the integrated effect of Soil_Order > 
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Organic_Matter_p>Drainage_Class> Slope> Bulk_Density. Soil pH had a positive 

quadratic relationship with SH, with an optimal value around 6, coincident with the 

optimal range for plant growth.  

Increasing Organic_Matter_p, from 2 to 4%, positively impacted SH indicators, with 

limited observations outside this range.  A higher contribution of Organic_Matter_p to 

the models was expected, especialy for the estimation of ln_SOM.  The low 

contribution shows that POLARIS maps do not reflect current conditions, as the R2 

values between POLARIS SOM and measured values in our dataset was only 0.14 

(Appendix 5.8c). Similar results are expected for most of the available SOM/SOC 

maps, as they do not incorporate a dynamic component to reflect the current state. 

This is significant given the high interest in these propoertires in the context of current 

climate discussions. 

Management was the main driver for most SH indicators when analyzing the 

combined effects of model covariates by category, on average 42% of the accumulated 

SHAP effects (range 32 to 51%). This suggests a prevalent role of anthropogenic 

processes in SH which follow the expected tendencies giving our current knowledge 

of management effects on SH. The greatest effects were observed for WAS and Resp, 

similar to Amsili et al., (2021) who also found that these two indicators responded 

more to variations in cropping system than texture. The lowest management effects 

were observed for AWC and SOM which are more afected by soil and topography-

related covariates, although management covariates still explained 39 and 32% their 

variability, respectively. The greater influence of soil and topography-related 

covariates in AWC and SOM models explains why POLARIS inacuracies had greater 
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negative impacts and models had less sensitivity to management when compared to 

other SH indicators. 

From the management or land use-related covariates, the integrated effect of the 

production system had the highest average influence in our models. It was followed by 

more specific covariates Annual_grain_perc> Annual_NDVI>Mean_NDVI> 

Past_Hay_Perc> Veg_perc. Those representing the percentage of individual crops or 

pastures had the lowest effects. 
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Figure 5. 4: SHAP dependency plots for the 14 most important covariates in the 

definition of the composite soil health index for the smaller domain. 
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Overall, the land use-related variables that had a positive effect on SH may be 

associated with practices that promote higher biomass production and return to the soil 

through residues or manure. This supports a recent result that aboveground biomass 

returns can explain up to 50% of the variations in SH in long-term experiments on 

Mollisols in South America (Rubio et al., 2023 in preparation). Here, this benefit is 

reflected by the positive effects of annual and mean NDVI values in SH. NDVI is 

directly and positively related to primary vegetation productivity and active plant 

growth periods that can enrich SOM and SH  (Paul, 2016). 

While for SOM it has been reported that covariates that represent long periods of 

NDVI can be more influential than a single year snapshot of this  (Wilson and 

Lonergan, 2013), here annual NDVI had a higher average ranking than mean NDVI 

for POXC and Resp.  The higer average importance of Annual_NDVI (1 yr pre-soil 

sampling) vs Mean_NDVI (6 yr pre-soil sampling), reflects short term management 

effects in SH, but may also be a confounding factor with cropping system that is not 

captured.  For example, corn grain and corn grown for silage have similar NDVI 

profiles but result in different biomass cycling after harvest, while the latter is more 

likely rotated with a perennial forage crop and receives manure applications. This 

supports the need to include short term management covariates for SH modeling. 

Furthermore, the strong positive SH effect of the Past_Hay_sys may reflect the 

benefits of higher production and return of biomass. This is not only associated with 

higher plant productivity of grasslands when compared to most annual crops, but may 

also reflect the effects of common manure applications. The lack of management-

related data surrounding fertilization, harvesting, and manure application practices 
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represents a limitation in our ability to represent management effects in biomass flows, 

and therefore SH. However, we assumed that the similarities in management strategies 

among farmers within the same systems might somehow reflect some of these 

strategies. The important role of land use system in our models, which represent crop 

productivity with NDVI values, shows that land use effects reflect more than the 

short- mid term effects of biomass production.  

The third most important variable associated with land use was the 

Annual_Grain_perc. The higher the percentage of annual grains in the system, the 

lower SH, while Past_Hay_perc had a positive relationship with SH. Veg_perc was 

also negatively related to SH. These suggest that within the mixed systems that 

integrate annual crops with pastures is beneficial for SH. 
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Figure 5. 5: SHAP (SHapley Additive explanation) summary plot representing the top 

six contributing covariates to the XGBoost models for the determination of SH 

indicators in area two. 

Where: Each point represents an observation from the original dataset. The y-axis 

indicates the covariable name in order of importance from top to bottom, the value 

next to them is the mean SHAP value; X-axis is the SHAP value that indicates the 

change in log-odds; The gradient color indicates the original value for that variable. 
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5.3.3. SPATIAL PREDICTIONS AND MAPPING   

All evaluated SH indicators were mapped for the smaller domain with the full 

optimized models at 100 x 100 m resolution. The mean spatial predictions and model 

performance parameters for all the evaluated individual indicators are presented in Fig 

5.7. The prediction of the composite SH Index is presented in Fig 5.6. Pruning low 

predictors from the model did not significantly reduce model performance (average R2 

reduction of 0.015) (Fig 5.6). 

SH indicators varied greatly throughout the study domain at regional scale and also 

among neighboring farms located with different land use or management. Overall, 

higher SH values were observed in the Glaciated Allegheny Plateau, and the Catskill 

Mountains than in the Ontario-Erie Plain and Finger Lakes region. Ontario MLRA had 

a higher mean annual temperature and pH, and lower precipitation and silt content 

than the Allegheny Plateau region. The Ontario MLRA is regarded as a more 

favorable agricultural environment but therefore also has a higher proportion of annual 

grain and vegetable crops, whereas the Alleghany region has a higher proportion of 

pastures. Paradoxically, SH outcomes are on average less positive for the inherently 

more favorable agricultural production environment (soil, climate, etc.), because it is 

ipso facto also more associated with cropping systems that result in lower SH. 
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Figure 5. 6: Composite Soil Health Index prediction for extent two 
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e) Respiration f) AWC 

Figure 5. 7: Prediction maps of biological and physical SH indicators, based on the 

complete model over the small domain.  

Where: SOM: Soil organic Mater (%); WAS: Water aggregate stability (%); POXC: 

Permanganate-Oxidizable Carbon (mg/kg);ACE Protein (mg/g); Respiration 

(mgCO2/g); AWC: Available water capacity (g/g). For full size map please see 

Appendix 5.16-21 

5.3.4. SCENARIO MODEL APPLICATION  

Mapping SH indicators helps establish SH references and can guide regional resource 

policies and land use strategies (Searle et al., 2021).  For example, our maps suggest a 

framework that includes separate SH data interpretation and benchmarking by MLRA 

(data non shown). The generated models can be used to simulate future conditions of 

SH in New York under different scenarios of land use change in the context of climate 

and soil resources. Yet, land use is also defined by economics, including access to 

markets, cultural, and social factors. Cayuga and Seneca Counties have similar natural 

characteristics, but the latter has a high proportion of annual cropping systems, 

whereas Cayuga has a higher proportion of dairies that rotate annual grains with 

perennial hay lands/pastures. Given the observed SH benefits of integrated systems, 

we evaluated the potential changes in SH generated by hypothetically replacing annual 

grain systems with integrated pasture hay grains. Predicted SH changes were small on 

R2=0.49 

NRMSE=0.27 
LCCC=0.68 

 

R2=0.28 

NRMSE=0.04 

LCCC=0.47 
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average, especially with compared with the uncertainty of our model (Appendix 5.6) 

there was a wide range of outcomes with spatial structure to the distribution of 

predicted changes (Table 5.5, Fig. 5.7). For some SH indicators like POXC, there is a 

potential benefit from the land use change in some areas with fine soil texture, 

suggesting interactions between management and inherent soil properties that were not 

easily identified from SHAP values. These complex relationships between land use, 

inherent and baseline soil properties, and climate that are being captured by the model 

and can be used to further increase our understanding of SH drivers. 

Table 5. 5:  Summary table of the estimated changes in soil health evaluated as the 

mean, max, min, and SD. 

 Where: SH Index: Composite Soil Health Index; SOM: Soil organic matter; ; POXC: 

Permanganate-oxidizable carbon; ACE: ACE protein; Resp: respiration; AWC: 

available water capacity; WAS: water aggregate stability. 

  SH 

index 

SOM POXC ACE RESP AWC WAS 

mean 6.7 0.07 2.2 0.30 0.01 0.010 4.91 

max 21,0 0.50 106,0 2.04 0.16 0.042 21.20 

min -7.2 -0.35 -70,1 -0.66 -0.16 -0.016 -4.61 

sd 3.3 0.10 20,3 0.30 0.04 0.012 2.79 
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a) 
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c) 
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e)

 

f) 

  

g)

 

h) 

  

Figure 5. 8:  Hypothetical changes for SH indicator values: a) Current land use 

systems; b) Projected land use systems; c) Changes in soil health indicators generated 

by land use changes.  
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5.4. CONCLUSIONS 

This study provides a comprehensive and data-driven approach that contributes to our 

understanding of the drivers and current status of a comprehensive set of SH indicators 

in different regional domains in NY State. Despite potential limitations with 

inaccuracies on soil sample geolocations and model covariates, detailed management 

information, and number of SH data, results prove that models including climate, soil, 

topography, and short and mid-term management covariates can predict dynamic SH 

indicators with good accuracy. SHAP values can be used to disentangle the role of the 

different covariates in SH. The important role of management in SH was proven, 

which highlights the importance of promoting land use systems and management 

practices that enhance biomass production and return to soils.  It also emphasizes that 

DSM approaches that do not include agronomic variables miss important drivers of 

SH. The generated models were able to accurately predict SH over unknown areas, 

which can help make informed decisions for SH conservation. These maps can be 

used as baseline for evaluating the efficiency of conservation plans and to guide SH 

strategies over different areas within the state. Also, the hypothetical land use change 

scenario illustrates how the generated models can be applied in that context.  Overall, 

the inclusion of land use and management covariates with traditional DSM and ML 

approaches is a promising tool for exploration of SH characterization and 

enhancement efforts.  
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CHAPTER 6: GENERAL CONCLUSION 

Enhancing SH and mitigating soil degradation requires an understanding of SH status 

and drivers. The research findings presented in this study contribute to advancing our 

knowledge on the effects of inherent and anthropogenic factors on SH, and on the 

complex interplay among them, increasing our overall comprehension of SH dynamics 

at different scales. This information can support informed decisions and facilitate the 

design of agronomic management strategies that promote sustainable soil management 

and help understand the consequences of soil degradation in cropping systems.  One of 

the main conclusions of this research is that soil health is impacted by inherent soil 

characteristics (unchangeable), land use system characteristics (limited change 

possible), and agronomic management (most changeable). 

Chapters two to four represent one of the first comprehensive SH evaluations in the 

Pampas region. By evaluating SH in undisturbed areas and long-term experiments, 

which represent agricultural systems with and without the application of the most 

promoted conservation practices, the sensibility of the CASH indicators for Mollisols 

in the Pampas was evaluated. Chapter two provides quantitative evidence confirming 

the serious negative effects of cropping on SH relative to natural grassland areas. This 

highlights the importance of promoting the conservation of grassland biomes which 

are highly threatened natural ecosystem’s globally, with less than 30% of its original 

area remining undisturbed. In fact, the inherently high SH and functioning of natural 

grasslands makes them attractive to conversion to grain production under increasing 

global demand.   



 

162 

 

In chapter three the negative effects SH degradation generated by annualized cropping 

systems, and assessed through SOC declines, on crop yield was proved and quantified. 

Results confirm the connections between SH and soil functions demonstrating that SH 

degradation effects in food production cannot be overcome by fertilization or 

improved production technologies.  

Chapter two also provides evidence on how management practices can mitigate soil 

degradation; thereby minimizing yield losses. Practices that increase crop sequence 

intensification, like the inclusion of perennial pastures or cover crops in low intensity 

annual cropping systems have consistent benefits on SH; however, no benefits of 

tillage reduction were observed in sites with low erosion risk. Our results emphasize 

the complexity of SH drivers, showing that the same management can have different 

outcomes, even under identical climatic conditions, parent material, and soil type.  

This advises against a simple set of practices for SH improvement. 

At the field scale, the effects of agronomic management can be elucidated if SH 

changes are evaluated through the lens of biomass inputs to the system. In chapter 

four, a methodological framework for the evaluation of SH based on aboveground 

biomass is proposed, and quantitative evidence is presented on the importance 

biomass quantity, rather than origin, on conservation practices’ benefits. Practices that 

increase biomass returns to the soil like reducing yield gaps, including high-biomass 

annual crops, cover crops, and perennials into rotations can enhance SH. SH-biomass 

relationships explained 50% of the variations in soil physical and biological indicators. 

Therefore, evaluating these relationships can provide valuable information for 

understanding and evaluating the potential benefits of different cropping systems and 
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agronomic management approaches on SH. Yet, further evaluations are needed to 

prove its value for different soils, climates, and management conditions.  

The results presented in chapters 2 to 4 can be used as a first approximation for the 

interpretation SH values and the design of soil conservation strategies for Argiudolls 

under agriculture and integrated systems in the Uruguayan Pampas region. This 

information can be used to further promote and develop comprehensive SH 

evaluations in the region needed for guiding on-farm agronomic management 

decisions. Given the wide range of soil degradation present in the evaluated 

experiments the measured SH values provide a starting point for interpretation of SH 

indicators in the region. Yet, further evaluations are necessary to encompass more soil 

types and land uses. It is noted that the presented results may not accurately represent 

less traditional cropping areas including Alfisols at the east of Uruguay. Additionally, 

the expected SH conditions and limitations for beef production systems under natural 

grasslands is not reflected. Therefore, less traditional cropping areas and land uses 

different than annual cropping should be considered separately and may require 

further tailored approaches.  

At the regional scale, variations on inherent soil conditions, climate, and management 

drive SH, and these factors should be considered in evaluating and interpreting SH 

indicators. In chapter five, high spatial resolution covariates that represent the main 

SH driving factors were integrated to interpret their role on the definition of SH at the 

regional scale for the state of New York, USA. Digital soil mapping techniques and 

machine learning models showed a high potential for the prediction and mapping of 

dynamic soil properties. In this approach SH drivers were represented by the main 
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land use system, crop frequency and medium- and short-term pre sampling estimations 

of crop productivity (NDVI), which allowed for  the evaluation and representation of 

management effects on SH. Largely, results show that better SH conditions are 

expected under management situations that return higher biomass inputs to the soil, 

which supports the findings observed in chapter four for Uruguayan conditions. 

This research opened a set of opportunities for advancing our knowledge in SH and 

optimizing regional SH conservation strategies by proving the possibility of accurately 

modeling and mapping SH indicators over large areas. Here, the generated models for 

predicting SH changes was evaluated testing a hypothetical management scenario. 

While temporal SH variations should be further validated, this scenario analysis 

provides insights into the expected changes in SH and its spatial variability, helping 

identify areas that should be prioritized in regional soil conservation plans. 

Furthermore, given that many soil functions happen at regional scale, e.g., the 

conservation of water quality, spatial SH estimations can be linked to a broader set of 

soil functions, which is still a challenge in SH research.  

Overall, the insights presented in this dissertation have enriched our understanding of 

the intricate relationship between SH drivers. Moreover, they have provided 

compelling evidence on the significance of preserving SH for enhancing crop 

productivity in the Pampas region. The research emphasizes that biomass inputs into 

the soil plays a prominent role in driving SH at both field and regional scales. Hence, 

it is recommended to adopt a comprehensive perspective on agronomic management 

effects on SH, especially in the context of biomass production and associated C inputs 

and outputs.  
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APPENDIX 

7.1.APPENDIX CHAPTER 3 

Appendix 3 1: Soil chemical properties (0 to 15 cm depth) at the establishment of the 

long-term experiment (1963) and for the last rotation period (2014 to 2019). 

0%PS: continuous agriculture with fertilizer; 33%P: crop pasture rotation (CPR) with 

33% of the time under pasture; 50%PS: CPR with 50% of the time under pasture; 

66%PS: CPR 66% of time under pastures; pH: Soil pH in water; SOC: Percentage of 

soil organic carbon (0-15); Ntot: percentage of nitrogen in soil (0-15 cm); P Bray I: 

Phosphorous content in soil; K: Exchangeable K. 

  

Year Treatment 
pH  

 

SOC 

 (%) 

Ntot  

(%) 

P Bray I  

(ppm) 

K  

(cmol kg-1) 

1963 All 5.9 2.08 0.19 7.1 0.87 

Last rotation 

period  

(2014-2019) 

0 %PS  5.76 1.50 0.17 27.9 0.52 

33%PS  5.66 1.86 0.22 18.0 0.63 

50%PS  5.56 2.02 0.24 17.1 0.61 

66%PS  5.60 2.07 0.23 15.0 0.76 
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Appendix 3. 2:  Number of observations, average corrected yields and standard 

deviation from 1963 to 2018 as a function of percentage of pasture and fertilization 

Treatment  

group 

N° of  

data 
CorreYield 

Estandar 

 desviation 

66PS% 37 3633 A 986 

50PS% 58 3968 A 1027 

33PS% 47 3653 A 1286 

0PS% 111 3186 B 1028 

0%PS_NF 59 1626 C 440 

0%PS_NF: Continuous agriculture without fertilizer input; 0%PS:  continuous 

agriculture with fertilizer; 33%PS: Crop pasture rotation (CPR) with 33% of the time 

under pasture; 50%PS: CPR with 50% of the time under pasture; 66%PS: CPR 66% 

of the time under pastures, CorrYield: Yield corrected to 2018. Different letters in the 

same columns indicate significant differences among treatments. 
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7.2.APPENDIX CHAPTER 4 

Appendix 4. 1: Average and high crop yields and biomass production used in the 

management scenario analysis for crops and pastures, respectively. 

  

  Current mean yield  High yield  

 ----------------------Mg ha-1----------------------- 

Soybean 2 6.5 

Cover crop 3 9 

Corn 5 11 

Pastures 10 17 
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7.3. APPENDIX CHAPTER 5 

SH_Index

 

ln_SOM

 

POXC

 

ln_ACE

 

ln_Resp

 

AWC

 

ln_WAS

 

 

Appendix 5.1: Distribution frequency of soil health indicators for the large and small 

domains. 

Where: Vertical lines represent mean values. The complete line represents Extent one, 

and the dotted line Extent two. SH Index: Composite Soil Health Index; SOM: Soil 
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organic Mater; ; POXC: Permanganate-Oxidizable Carbon; ACE: ACE Protein; 

Resp: Respiration; AWC: Available water capacity; WAS: Water aggregate stability. 

Appendix 5.2: 

CDL code CDL crop 
New 

category  
new code 

0   0 

1 Corn Crop 100 

2 Cotton Crop 100 

3 Rice Crop 100 

4 Sorghum Crop 100 

5 Soybeans Crop 100 

6 Sunflowers Crop 100 

7   
0 

8   
0 

9   
0 

10 Peanuts vegetables 10000 

11 Tobacco vegetables 10000 

12 SweetCorn vegetables 10000 

13 PoporOrnCorn vegetables 10000 

14 Mint vegetables 10000 

15 Developed_MedIntensity urban 10000000 

16   0 

17   0 

18   0 

19   0 

20   0 

21 Barley Crop 100 

22 DurumWheat Crop 100 

23 SpringWheat Crop 100 

24 WinterWheat Crop 100 

25 OtherSmallGrains Crop 100 

26 DblCropWinWht_Soybeans Crop 100 

27 Rye Crop 100 

28 Oats Crop 100 

29 Millet Crop 100 

30 Speltz crop 100 

31 Canola Crop 100 

32 Flaxseed vegetables 10000 

33 Safflower vegetables 10000 

34 RapeSeed vegetables 10000 

35 Mustard vegetables 10000 

36 Alfalfa legume 100000 

37 OtherHay_NonAlfalfa pasture 1000 
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38 Camelina vegetables 10000 

39 Buckwheat Crop 100 

40   0 

41 Sugarbeets vegetables 10000 

42 DryBeans vegetables 10000 

43 Potatoes vegetables 10000 

44 OtherCrops Crop 100 

45 Sugarcane Sugarcane 100000000 

46 SweetPotatoes vegetables 10000 

47 MiscVegs&Fruits vegetables 10000 

48 Watermelons vegetables 10000 

49 Onions vegetables 10000 

50 Cucumbers vegetables 10000 

51 ChickPeas vegetables 10000 

52 Lentils vegetables 10000 

53 Peas vegetables 10000 

54 Tomatoes vegetables 10000 

55 Caneberries vegetables 10000 

56 Hops vegetables 10000 

57 Herbs vegetables 10000 

58 Clover_Wildflowers vegetables 10000 

59 Sod_GrassSeed grass 1000 

60 Switchgrass grass 1000 

61 Fallow_IdleCropland Crop 100 

62   0 

63   0 

64   0 

65   0 

66 Cherries fruticulture 10 

67 Peaches fruticulture 10 

68 Apples fruticulture 10 

69 Grapes fruticulture 10 

70 ChristmasTrees ALG 1 

71 OtherTreeCrops ALG 1 

72 Citrus fruticulture 10 

73   0 

74 Pecans fruticulture 10 

75 Almonds fruticulture 10 

76 Walnuts fruticulture 10 

77 Pears fruticulture 10 

78   0 

79   0 

80   0 

81   0 
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82   0 

83   0 

84   0 

85   0 

86   0 

87   0 

88   0 

89   0 

90   0 

91   0 

92 Aquaculture 
non 

agriculture 
1000000 

93   0 

94   0 

95   0 

96   0 

97   0 

98   0 

99   0 

100   0 

101   0 

102   0 

103   0 

104   0 

105   0 

106   0 

107   0 

108   0 

109   0 

110   0 

111 OpenWater 
non 

agriculture 
1000000 

112   0 

113   0 

114   0 

115   0 

116   0 

117   0 

118   0 

119   0 

120   0 

121 Developed_OpenSpace urban 10000000 

122 Developed_LowIntensity urban 10000000 

123 Developed_MediumIntensity urban 10000000 

124 Developed_HighIntensity urban 10000000 
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125   0 

126   0 

127   0 

128   0 

129   0 

130   0 

131 Barren urban 10000000 

132   0 

133   0 

134   0 

135   0 

136   0 

137   0 

138   0 

139   0 

140   0 

141 DeciduousALG ALG 1 

142 EvergreenALG ALG 1 

143 MixedALG ALG 1 

144   0 

145   0 

146   0 

147   0 

148   0 

149   0 

150   0 

151   0 

152 Shrubland urban 10000000 

153   0 

154   0 

155   0 

156   0 

157   0 

158   0 

159   0 

160   0 

161   0 

162   0 

163   0 

164   0 

165   0 

166   0 

167   0 

168   0 
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169   0 

170   0 

171   0 

172   0 

173   0 

174   0 

175   0 

176 Grass_Pasture pasture 1000 

177   0 

178   0 

179   0 

180   0 

181   0 

182   0 

183   0 

184   0 

185   0 

186   0 

187   0 

188   0 

189   0 

190 WoodyWetlands ALG 1 

191   0 

192   0 

193   0 

194   0 

195 HerbaceousWetlands ALG 1 

196   0 

197   0 

198   0 

199   0 

200   0 

201   0 

202   0 

203   0 

204 Pistachios fruticulture 10 

205 Triticale Crop 100 

206 Carrots vegetables 10000 

207 Asparagus vegetables 10000 

208 Garlic vegetables 10000 

209 Cantaloupes vegetables 10000 

210 Prunes fruticulture 10 

211 Olives fruticulture 10 

212 Oranges fruticulture 10 
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213 HoneydewMelons vegetables 10000 

214 Broccoli vegetables 10000 

215 Avocado fruticulture 10 

216 Peppers vegetables 10000 

217 Pomegranates fruticulture 10 

218 Nectarines fruticulture 10 

219 Greens vegetables 10000 

220 Plums fruticulture 10 

221 Strawberries vegetables 10000 

222 Squash vegetables 10000 

223 Apricots fruticulture 10 

224 Vetch legume 100000 

225 DblCropWinWht_Corn Crop 100 

226 DblCropOats_Corn Crop 100 

227 Lettuce vegetables 10000 

228 DblCropTriticale_Corn Crop 100 

229 Pumpkins vegetables 10000 

230 DblCropLettuce_DurumWht vegetables 10000 

231 DblCropLettuce_Cantaloupe vegetables 10000 

232 DblCropLettuce_Cotton vegetables 10000 

233 DblCropLettuce_Barley vegetables 10000 

234 DblCropDurumWht_Sorghum Crop 100 

235 DblCropBarley_Sorghum Crop 100 

236 DblCropWinWht_Sorghum Crop 100 

237 DblCropBarley_Corn Crop 100 

238 DblCropWinWht_Cotton Crop 100 

239 DblCropSoybeans_Cotton Crop 100 

240 DblCropSoybeans_Oats Crop 100 

241 DblCropCorn_Soybeans Crop 100 

242 Blueberries vegetables 10000 

243 Cabbage vegetables 10000 

244 Cauliflower vegetables 10000 

245 Celery vegetables 10000 

246 Radishes vegetables 10000 

247 Turnips vegetables 10000 

248 Eggplants vegetables 10000 

249 Gourds vegetables 10000 

250 Cranberries fruticulture 10 

251   0 

252   0 

253   0 

254 DblCropBarley_Soybeans Crop 100 
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Appendix 5.2:  Percentage of time under different crops and pastures per land use 

systems 

Productio

n system 
Corn Soybean 

Wheat 

and 

Barley 

Annual 

grains 

Rye 

and oat 

Pasture 

and hay 

Processing 

vegetables 

  
____________________________________________________%_____

______________________________________________ 

Crop_sys 50 24 9 95 2 3 1 

Crop_Past

_Hay_sys 
28 6 3 48 2 49 1 

Mix_Veg

_sys 
37 7 6 55 5 9 35 

Past_Hay

_sys 
1 0 0 1 0 91 1 

 

Appendix 5.3: Tunned hyperparameters of the XGBOOST model and evaluation range 

Hyperparameter Definition Evaluated range 

Max_depth The depth of the tree 6:8 

Min_child_weight The minimum sum of 

weights of all observations  

c(2.0, 2.25, 2.5) 

Colsample_by_tree The number of variables 

supplied to a tree 

c(0.3, 0.4, 0.5) 

subsample The number of samples 

supplied to a tree 

c(0.5, 1) 

eta Learning rate 0.05, 0.075, 0.1 
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Appendix 5. 4: Pearson correlations between model covariates 

 

Where:  *** :p-value=0.001, **; p-value=0.01,: *= p-value= 0.05;  
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Appendix 5.5 : Model fitting results for the validation dataset presented as the 

Observed vs. Predicted values and r-squared for the complete model in the smaller 

domain 

 

Where: SH Index: Composite Soil Health Index; SOM: Soil organic Mater; POXC: 

Permanganate-Oxidizable Carbon; ACE: ACE Protein; Resp: Respiration; AWC: 

Available water capacity; WAS: Water aggregate stability. 
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Appendix 5. 6: Spatial distribution of residuals from the complete model in the smaller 

domainfor each soil health indicator. 

SH Index 

 

ln_SOM 

 

POXC 

 

ln_ACE

 

ln_Resp

 

AWC 
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ln_WAS

 

 

 

SH Index: Composite Soil Health Index; ln_SOM: logarithmic transformation of Soil 

organic Mater; POXC: Permanganate-Oxidizable Carbon; ln_ACE: logarithmic 

transformation of ACE Protein; ln_Resp: logarithmic transformation of Respiration; 

AWC: Available water capacity; ln_WAS: logarithmic transformation of Water 

aggregate stability. 
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Appendix 5.7: Uncertainty in soil health indicators prediction using full models in the 

small domains. 

 

Where: SH Index: Composite Soil Health Index; SOM: Soil organic Mater; ; POXC: 

Permanganate-Oxidizable Carbon; ACE: ACE Protein; Resp: Respiration; AWC: 

Available water capacity; WAS: Water aggregate stability. 

SH_Index

 

ln_SOM

 
POXC

 

ln_ACE

 

ln_Resp

 

AWC

 
ln_WAS
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Appendix 5.8: Correlation analysis between measure silt (a) and clay (b) values and 

extracted data from POLARIS  

a) 

 
b) 

 
c) 
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Appendix 5.9: Soil & topography and full model performances with measured and 

POLARIS estimated silt and clay variables. 

  --Measured silt and clay-- -------POLARIS data ------ 

  
Soil & 

Topography 
Full model 

Soil & 
Topography 

Full Model 

----------------------------------------------R2----------------------------------------------- 

SH index 0.48 0.72 0.49 0.74 

ln_SOM 0.6 0.78 0.5 0.67 

POXC 0.43 0.57 0.44 0.52 

ln_ACE 0.38 0.54 0.35 0.55 

ln_Resp 0.29 0.54 0.25 0.5 

AWC 0.4 0.41 0.11 0.28 

ln_WAS 0.41 0.73 0.5 0.69 

---------------------------------------------RMSE------------------------------------------- 

SH index 0.47 0.35 0.56 0.40 

ln_SOM 0.47 0.36 0.55 0.45 

POXC 0.57 0.50 0.65 0.60 

ln_ACE 0.63 0.54 0.77 0.64 

ln_Resp 0.59 0.46 0.68 0.55 

AWC 0.63 0.62 0.92 0.82 

ln_WAS 0.56 0.39 0.57 0.46 

----------------------------------------------LCCC------------------------------------------- 

SH index 0.65 0.83 0.66 0.84 

ln_SOM 0.76 0.87 0.69 0.82 

POXC 0.6 0.71 0.59 0.69 

ln_ACE 0.54 0.69 0.50 0.70 

ln_Resp 0.52 0.72 0.47 0.70 

AWC 0.6 0.61 0.27 0.47 

ln_WAS 0.54 0.8 0.60 0.76 

SH Index: Composite Soil Health Index; ln_SOM: logarithmic transformation of Soil 

organic Mater; POXC: Permanganate-Oxidizable Carbon; ln_ACE: logarithmic 

transformation of ACE Protein; ln_Resp: logarithmic transformation of Respiration; 

AWC: Available water capacity; ln_WAS: logarithmic transformation of Water 

aggregate stability. 
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Appendix 5.  10: SHAP dependency plots for soil health indicators in over the smaller 

domain 

a) SH_Index  
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b) ln_SOM  
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c) POXC  
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d) ln_ACE 
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e) ln_Resp  

f) 
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ln_WAS  
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g) AWC  

 

 SH Index: Composite Soil Health Index; ln_SOM: logarithmic transformation of Soil 

organic Mater; POXC: Permanganate-Oxidizable Carbon; ln_ACE: logarithmic 

transformation of ACE Protein; ln_Resp: logarithmic transformation of Respiration; 

AWC: Available water capacity; ln_WAS: logarithmic transformation of Water 

aggregate stability. 
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Appendix 5.11: Shap dependency plots for soil health indicators in extent two 

a) SH_Index 
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b) ln_SOM 
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c) POXC 
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d) ln_ACE  
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e) ln_Resp 
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f) ln_WAS 
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g) AWC 

 

SH Index: Composite Soil Health Index; ln_SOM: logarithmic transformation of Soil organic Mater; 

POXC: Permanganate-Oxidizable Carbon; ln_ACE: logarithmic transformation of ACE Protein; 

ln_Resp: logarithmic transformation of Respiration; AWC: Available water capacity; ln_WAS: 

logarithmic transformation of Water aggregate stability. 
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Appendix 5.11: Climate related model covariates over the evaluated smaller domain 

 

  

  

Appendix 5.12: Soil related model covariates over the evaluated smaller domain 
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Appendix 5.13: Land use related model covariates over the evaluated smaller domain 
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a

 

b

 

Appendix 5.14: Six year (a) and one year (b) mean NDVI over the evaluated smaller 

domain 

 

 

Appendix 5.15: Land use systems  
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Appendix 5.16: Predicted Soil organic matter, based on the complete model over the 

small domain 

 

Appendix 5.17: Predicted water aggregate stability, based on the complete model over 

the small domain. 
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Appendix 5.18: Predicted Permanganate-Oxidizable Carbon, based on the complete 

model over the small domain. 

 

Appendix 5.19: Predicted ACE Protein, based on the complete model over the small 

domain. 
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Appendix 5.20: Predicted Respiration, based on the complete model over the small 

domain. 

 

Appendix 5.21: Predicted Available water capacity, based on the complete model over 

the small domain. 

 


