WHEAT YELLOW RUST, BEHIND THE UNDERSTANDING OF THE GENETIC ARCHITECTURE AND IN SEARCH OF RESISTANCE SOURCES IN GENETIC RESOURCES OF URUGUAY

VENANCIO RIELLA^{1,2}, BETTINA LADO², PAULA SILVA¹, LUCÍA GUTIÉRREZ³, SILVIA GERMÁN¹

¹ INSTITUTO NACIONAL DE INVESTIGACIÓN AGROPECUARIA (INIA), ESTACIÓN EXPERIMENTAL LA ESTANZUELA, COLONIA, URUGUAY ² DEPARTAMENTO DE BIOMETRÍA, ESTADÍSTICA Y COMPUTACIÓN, FACULTAD DE AGRONOMÍA, UNIVERSIDAD DE LA REPÚBLICA ³ DEPARTMENT OF PLANT & AGROECOSYSTEMS SCIENCES, UNIVERSITY OF WISCONSIN - MADISON

INTRODUCTION. Yellow rust (YR) in Uruguay

- Caused by *Puccinia* striiformis f. sp. tritici (Pst)
- Pst population composed of races virulent over many local cultivars
- Breeding for cultivars resistant to *Pst* is the • most cost-effective and environmentally friendly way to control YR

1929-1930

Widespread, severe epidemics. Significant grain yield losses

Sporadic occurrence, rarely epidemic

Since 2017, associated with the presence of more aggressive *Pst* races migrated from other continents,

Generalized epidemics in Uruguay and Argentina. Yield losses of up to 80%

OBJECTIVES

- Characterize the wheat resistance architecture using genome-wide association studies (GWAS), and - predict wheat lines' behavior against yellow rust employing genomic prediction (GP) models, as prerequisites for the breeding of wheat cultivars with resistance to yellow rust.

MATERIALS & METHODS

GWAS panel:

293 lines from the INIA Wheat Breeding Program +

75 commercial cultivars used locally = **368 wheat lines**

Phenotyping


Field trials in 2021 and 2022 **Experimental design: Incomplete block** design (resoluble), 3 reps Plots: 1 linear meter Artificial inoculation on susceptible spreaders rows with the two most prevalent races of 2020 (*PstS13*)

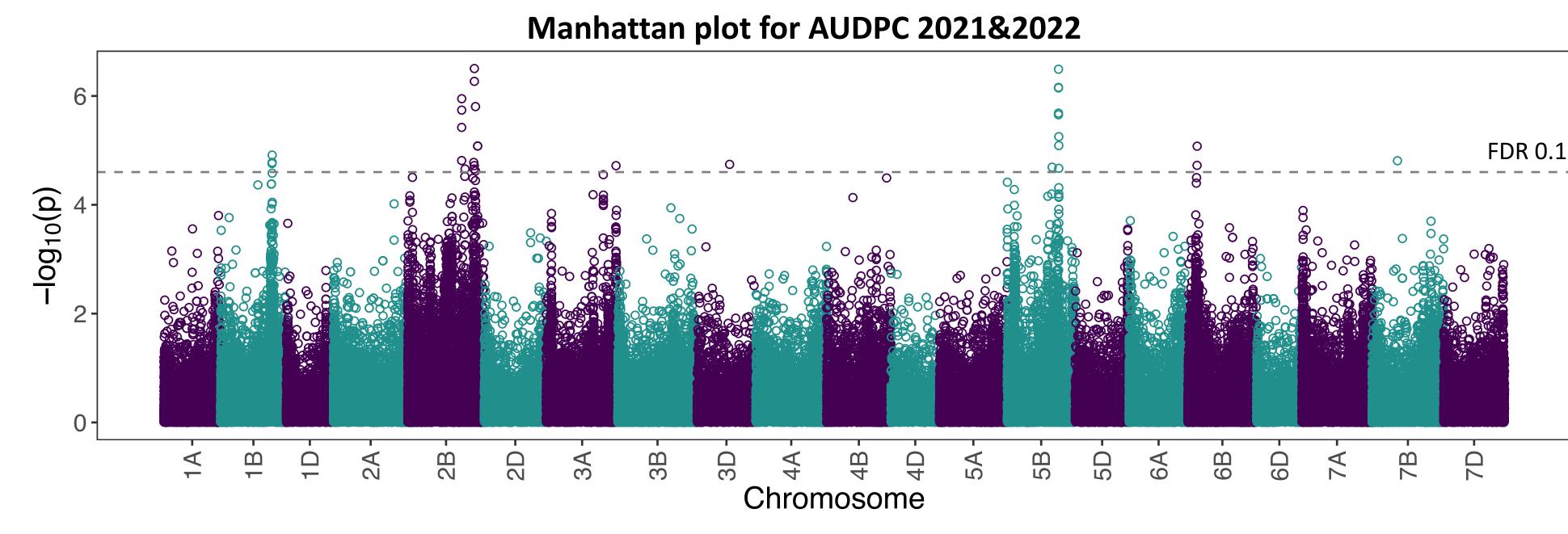
GWAS Model: GLMM R package GWASpoly

Genotyping Sequencing: by GBS, University of Wisconsin Biotechnology Center SNPs calling: TASSEL 5.0 SNPs filtered:

+ 80% missing data and MAF 0.05 SNPs imputation: Beagle 5 **Population structure:**

Correlations between means of AUDPC scores for 2021, 2022 and 2021&2022

Response variable: AUDPC, calculated with 6 evaluations of Infection Type and Severity

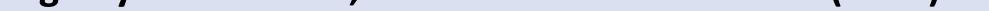

Model: Bayesian GBLUP R package BGLR

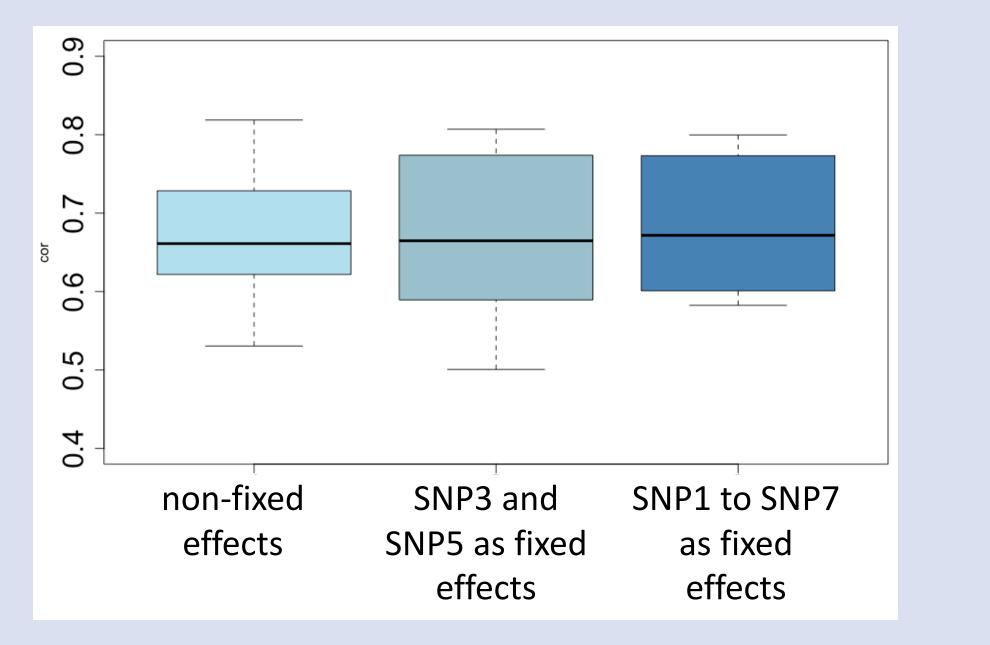
GP

RESULTS

GWAS – AUDPC 2021&2022

Marker information for SNPs with significant association with AUDPC


Chrom	Position	Marker	pval	Score	Effect	% variance explained
1B	541,787,212	SNP1	0.000897	4.91	355.83	2.95
2B	564,816,352	SNP2	0.000036	5.95	-399.20	4.53
2B	697,387,393	SNP3	0.000007	6.50	-300.57	5.37
3A	547,640,746	SNP4	0.000019	5.01	810.27	4.85
5B	538,482,302	SNP5	0.000002	6.49	430.35	5.91
6B	95,515,580	SNP6	0.000245	5.08	-271.95	3.59
7B	266,136,929	SNP7	0.000222	4.97	-231.44	3.77


DISCUSSION

- YR phenotyping data showed a strong genetic basis of resistance. A wide variability was

Genomic Prediction

Boxplots for correlations between observed and predicted AUDPC values using Bayesian GBLUP, for k-fold cross-validation (k=10)

observed for AUDPC between genotypes and high correlations between replications (data not shown) and years.

- 7 genomic regions statistically associated with resistance to YR were identified, explaining 32% of the phenotypic variability.

- SNP1 is located close to Yr29/Lr46 gene. The remaining SNPs could be new QTL.

- We obtained highly accurate predictions for AUDPC (>0.66) generated by Bayesian GBLUP. Adding the SNPs obtained in the GWAS analysis as fixed effects to the GP model (either the 2 QTL with the greatest effect or the total of the 7 QTL) did not lead to an important increase in the predictive ability of the model.

