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Key message 14 

Eight QTL conferring additive APR to YR were identified in wheat germplasm using GWAS. The high 15 

accuracy of GP models supports the feasibility of accelerating breeding for YR resistance. 16 

Abstract 17 

Wheat yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), is among the most 18 

devastating diseases affecting wheat worldwide. Since 2000, YR has expanded into regions where it was 19 

previously not considered an economically important disease. The deployment of YR-resistant cultivars 20 

remains the most effective and sustainable control strategy. We assembled a diverse mapping panel (i) 21 

identify genomic regions associated with YR resistance using genome-wide association studies 22 

(GWAS), and (ii) assess the prediction accuracy of genomic prediction (GP) models for YR resistance. 23 

The panel of 366 wheat lines, including germplasm from INIA-Uruguay and other breeding programs, 24 

was phenotyped under artificial field inoculations in 2021 and 2022, and at the seedling stage using the 25 

same two Pst races used for field inoculations. GWAS identified eight genomic regions associated with 26 

field resistance, located on chromosomes 1B, 2B (three regions), 5B (two regions), 5D, 7B, explaining 27 

4.9 to 21.2% of the phenotypic variability. None of these regions were identified with seedling resistance 28 

to race Triticale2015b, the most widely virulent race, indicating that they conferred adult-plant 29 

resistance. Moreover, these regions did not correspond to previously reported Yr genes. Two QTL on 30 

2D and 3A were identified at the seedling stage to race Triticale2015a but did not contribute to field 31 

resistance. GP models achieved an average prediction ability of 0.64, highlighting their potential for 32 
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accelerating the selection of resistant lines. These findings provide valuable insights into the genetic 33 

basis of YR and offer robust tools for enhancing YR resistance breeding efforts in wheat. 34 
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A-BLUP: Additive best linear unbiased prediction 39 
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GP: Genomic prediction 53 
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MAF: Minor allele frequency 58 

MAS: Marker-assisted selection 59 

MSE: Mean squared error 60 

PCoA: Principal co-ordinate analysis 61 

Pst: Puccinia striiformis f. sp. tritici 62 

QTL: Quantitative trait loci 63 

RGDP: Resistant Germplasm Development Program 64 

RR-BLUP: Ridge regression best linear unbiased prediction 65 

SNP: Single nucleotide polymorphism 66 

WBP: Wheat breeding program 67 
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YR: Yellow rust 68 

Introduction 69 

Wheat (Triticum aestivum L.) ranks among the top three staple crops globally, alongside rice and 70 

maize, serving as a critical source of nutrition not only for its caloric contribution but also for its protein, 71 

vitamin, and fiber content, which are essential for human health (Bao and Malunga 2022). In recent 72 

years, global wheat production has been increasingly threatened by the emergence of new, more 73 

aggressive pathogen strains Hovmøller et al. 2008) adapted to diverse environments (Milus et al. 2006). 74 

Of particular concern is Puccinia striiformis Westend. f. sp. tritici (Pst), the causal agent of wheat yellow 75 

rust (YR) (Hovmøller et al. 2011; Sørensen et al. 2014). Historically, Pst has posed a significant 76 

challenge primarily in cooler climates; however, since 2000, the pathogen has shown increased 77 

aggressiveness (Hovmøller et al. 2008) and tolerance to higher temperatures, leading to its spread in 78 

regions previously considered too warm for its establishment (Wellings 2007; Milus et al. 2009). 79 

Additionally, distant geographic areas have reported YR epidemics, either as new incursions in 80 

previously unaffected regions or as re-emergences of novel, more widely virulent strains (Bahri et al., 81 

2009; Hovmøller et al., 2023, Riella et al., 2024). As a result, YR has become one of the most severe 82 

and damaging diseases affecting common wheat globally, with potential yield losses reaching up to 83 

100% under high disease pressure (Ali et al. 2014). 84 

Genetic resistance to rust diseases is generally categorized into two types: all-stage resistance 85 

(ASR), also known as seedling resistance, which is expressed throughout the plant's lifecycle, and adult-86 

plant resistance (APR) (Chen 2013). ASR is typically qualitative, conferred by one or a few major genes 87 

with largely dominant effects and follows a “gene-for-gene” relationship between host and pathogen 88 

(Flor 1955), in which each host gene provides resistance against pathogen races that carry the 89 

complementary avirulence gene. This type of resistance is race-specific, mediated by hypersensitive 90 

responses (Ayliffe et al. 2008), but generally provides short-lived effectiveness, as extensive use over 91 

large areas selects for new, virulent Pst races. Conversely, APR is effective in post-seedling stages, 92 

involves minor additive genes and confers partial resistance or “slow rusting” resistance, characterized 93 

by prolonged latent periods, fewer and smaller pustules, and reduced spore production (Singh et al. 94 

2000, 2011; Bhavani et al. 2011). APR is generally race non-specific and considered durable; the 95 

accumulation of three to five minor APR genes can confer near-complete immunity (Singh et al. 2000). 96 

At least 87 YR resistance genes have been reported to date, but less than 30% confer APR (McIntosh 97 

2024). The limited number of reported APR genes, coupled with their effects often being influenced by 98 

environmental factors and genetic background (Silva et al. 2015; Yuan et al. 2020; Liu et al. 2022), 99 

highlights the need to identify genomic regions associated with YR APR resistance in locally adapted 100 

materials. The discovery of new genomic regions is essential for making better use of the genetic 101 

diversity available and improving YR resistance effectivity and durability. 102 
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The identification of molecular markers associated with YR resistance is a promising approach to 103 

accelerate the development of resistant cultivars by identifying and pyramiding resistance genes within 104 

the same genotype. Among molecular markers, single nucleotide polymorphisms (SNPs) have gained 105 

widespread use due to their abundance across the genome and the significant reduction in genotyping 106 

costs in recent years (Crossa et al. 2017). One of the most utilized strategies for identifying the genetic 107 

basis of resistance to diseases is the genome-wide association study (GWAS). GWAS leverages linkage 108 

disequilibrium within a population to investigate associations between molecular markers and 109 

phenotypic traits. A statistically significant association suggests that the marker is linked to a genomic 110 

region contributing to the trait of interest, known as a quantitative trait locus (QTL) (Pritchard et al. 111 

2000; Zhu and Yu 2009). GWAS has been successfully applied in wheat, identifying over 160 QTL 112 

across 49 regions on 21 chromosomes associated with YR resistance (Rosewarne et al. 2013; Maccaferri 113 

et al. 2015; Yuan et al. 2018). While GWAS enables fine-scale genome mapping using genetically 114 

diverse populations with extensive recombination histories, it also faces limitations, such as reduced 115 

power to detect rare allelic variants and the need to control for false positives, where marker-QTL 116 

associations are not due to physical linkage (Brachi et al. 2010; Wallace et al. 2014; Zuk et al. 2014). 117 

Moreover, the identification of QTL is often influenced by genotype-by-environment interactions, 118 

emphasizing the importance of detecting QTL that remain stable across different environments to ensure 119 

their utility in breeding programs (Gutiérrez et al. 2015). 120 

Genomic prediction (GP) models using whole-genome data generally have higher power to 121 

capture small-effect loci compared to marker-assisted selection (MAS) (Heffner et al. 2009), particularly 122 

for complex traits controlled by many minor genes (Bernardo 2008; Mayor and Bernardo 2009; Lorenz 123 

et al. 2011; Cerrudo et al. 2018). GP leverages all genome-wide markers and phenotypic data to estimate 124 

genetic values and select candidates based on predicted genetic merit (Mrode 2014; Bernardo 2016; 125 

Crossa et al. 2017; Schmid and Bennewitz 2017). GP requires a training population that has been 126 

genotyped and phenotyped to calibrate a model, which can then predict genetic values of a selection 127 

population based solely on genotypic information (Bassi et al. 2016). GP is expected to reduce the time 128 

and cost required for cultivar development since annual genetic gains using GP are predicted to be two 129 

to three times higher than those achieved through conventional phenotypic selection due to shortened 130 

breeding cycles and increased selection accuracy (Jannink et al. 2010; Crossa et al. 2017). GP for disease 131 

resistance in crops has been applied in numerous studies (Poland and Rutkoski 2016), particularly for 132 

quantitatively inherited traits, with wheat rusts being among the most studied systems (Daetwyler et al. 133 

2014; Rutkoski et al. 2014, 2015, 2016; Muleta et al. 2017; Ornella et al. 2017). GP in wheat rust 134 

resistance breeding could accelerate selection cycles and help pyramid APR genes (Rutkoski et al. 2011). 135 

Objective 136 

With the aim of contributing to the sustainability of wheat production through the development 137 

of YR resistant cultivars, this study focuses on two main objectives: (i) to identify genomic regions 138 
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associated with YR resistance in diverse wheat germplasm through GWAS, and (ii) to assess the 139 

prediction accuracy of GP models for YR resistance in wheat lines. 140 

Materials and methods 141 

Plant material 142 

The GWAS and GP panel consisted of 366 diverse spring bread wheat genotypes, representing 143 

the most currently and historically important wheat cultivars and advanced breeding lines of Uruguay. 144 

The panel includes lines of different origin: 172 lines from the INIA Resistant Germplasm Development 145 

Program (INIA-RGDP), developed to introgress APR to leaf rust, primarily from CIMMYT germplasm, 146 

and to address other prevalent diseases in Uruguay prior to 2017, 117 lines from the INIA-Wheat 147 

Breeding program (INIA-WBP), including advanced and elite lines as well as released varieties, 148 

representing a century of wheat breeding in the country, 73 cultivars from other breeding programs sown 149 

in Uruguay, and four check lines, selected for their diversity in maturity date and susceptibility to YR 150 

(Table S1). For most of the lines present in the panel there was not previous YR phenotypic information 151 

since the disease was not present prior to 2017. Cultivar Morocco was used as a susceptible check in 152 

field and seedling trials but was not included in the GWAS and GP panel. 153 

Phenotypic trait evaluation 154 

Field yellow rust and heading date phenotyping 155 

Field experiments were conducted at INIA La Estanzuela Experimental Station, (latitude 156 

34.3°S, longitude 57.7°W, elevation 70 masl), Colonia, Uruguay, during two consecutive crop seasons 157 

(2021 and 2022). Sowing dates were May 14th 2021 and May 4th 2022. The experimental design 158 

consisted of an alpha lattice resolvable incomplete block design with three replications. Plots consisted 159 

of single 1 m long rows 0.30 m apart. Spreader rows of a mixture of susceptible cultivars (Morocco, 160 

Avocet S, Fuste, Algarrobo, Ceibo, and Onix) were sown perpendicular to all plots to ensure the presence 161 

and even distribution of the disease. Artificial inoculations were performed on the spreader rows with a 162 

mixture of the two most prevalent races in previous years (Triticale2015a and b), both races belonging 163 

to the PstS13 genetic group (Riella et al. 2024). Three and six inoculations with a suspension of inoculum 164 

in lightweight mineral oil Soltrol 170 (Phillips Petroleum Co., Borger, TX) were performed in 2021 and 165 

2022 respectively, between July 20 and August 20. In 2021 the experiment was rainfed, meanwhile, in 166 

2022, due to dry weather conditions, the trial was irrigated using a sprinkler system. Days to heading 167 

for each plot were calculated as the days from seedling emergence to heading date. Heading date was 168 

recorded based on the crop ontology trait CO_321:0000840 as the date when 50% of the head emerged 169 

in 50% of the plot (https://cropontology.org). 170 

First disease assessment took place when the susceptible check Morocco displayed a disease 171 

severity (DS) of at least 50% and continued for six times at 7-12 days intervals. For each evaluation, DS 172 

was visually scored as the percentage of infected tissue (0 – 100%). . The six DS obtained for each plot 173 
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were combined in a single value as the area under the disease progress curve (AUDPC) according to 174 

following formula: 175 

𝐴𝑈𝐷𝑃𝐶 = ∑
(𝑦𝑖 + 𝑦𝑖+1)

2
(𝑡𝑖+1 − 𝑡𝑖)

𝑁𝑖−1

𝑖=1

 176 

where AUDPC for each plot is given by 𝑦𝑖 rust DS at the time of recording 𝑡𝑖 , 𝑦𝑖+1 rust infection rate at 177 

the time of recording 𝑡𝑖+1, 𝑁 the number of records to assess the DS from 1 to 6. 178 

Statistical analyses for field yellow rust phenotyping 179 

The phenotypic data were analyzed using R software (R Core Team 2024). To evaluate quality of 180 

each trial and accurately estimate the phenotypic means, the AUDPC data was analyzed independently 181 

for each year (2021 and 2022) fitting a linear mixed model with the lme function of the lme4 package 182 

(Bates et al. 2015). The statical model, followed the experimental design and including days to heading 183 

as a covariate, was: 184 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝛾𝑘(𝑗) + 𝜆(𝑥𝑖𝑗𝑘 − x̅) + 𝜀𝑖𝑗𝑘 [1] 

where 𝑦𝑖𝑗𝑘 represents the AUDPC (response variable) measured on the 𝑖-th wheat line in the 𝑗-th 185 

complete replicate, in the 𝑘-th incomplete block, µ the overall mean, 𝜏𝑖 the relative effect of the 𝑖-th 186 

wheat line, 𝛽𝑗 the effect of the 𝑗-th complete replicate, and 𝛾𝑘(𝑗) the random effect of the 𝑘-th block 187 

nested in the 𝑗-th complete replicate which is assumed to be random with normal distribution centered 188 

on zero and with constant variance (𝜎𝛾
2), 𝜆(𝑥𝑖𝑗𝑘 − x̅) is a covariate term for days to heading correction, 189 

where 𝑥𝑖𝑗𝑘 is days to heading, x̅ the mean for days to heading, and 𝜆 the regression coefficient associated 190 

with the covariate. Given that the panel consists of highly diverse lines with important variability in 191 

maturity, days to heading was included as a covariate in the model. This adjustment aimed to minimize 192 

potential noise that could lead to the identification of regions associated with phenology rather than YR 193 

resistance. This model assumes that the errors (𝜀𝑖𝑗𝑘) are independent random variables, normally 194 

distributed with zero mean and constant variance (𝜎𝜀
2), and that there is no interaction between blocks 195 

and treatments (Di Rienzo et al. 2009). 196 

To select the best model for estimating phenotypic means while incorporating information from 197 

the experimental design, spatial effects, and covariate (days to heading), the fit of the baseline model 198 

(model [1]) was compared to alternative models. These alternatives included models that incorporated 199 

the spatial position of the plot in the field as an additional factor (e.g., column effects). They also 200 

considered models that assumed different variance-covariance structures for the experimental errors, 201 

such as Gaussian, spherical, and exponential models, to account for potential correlations among the 202 

experimental units. Model comparisons were conducted separately for each year using fit criteria such 203 
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as the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), as well as 204 

performance indicators, including the correlation between observed and predicted values and broad-205 

sense heritability (H2) estimates. Broad-sense heritability was calculated for each trial, the variance 206 

components (𝜎𝑔
2 genotypic variance and 𝜎𝑒𝑟𝑟𝑜𝑟

2  error variance) were estimated from equations [1] and 207 

[2] with genotypes as random effects, using equation 𝐻2 = 𝜎𝑔
2/(𝜎𝑔

2 + 𝜎𝑒𝑟𝑟𝑜𝑟
2 /𝑟𝑒𝑝). The error variance 208 

was corrected for the number of replicates (Falconer and Mackay 1996). Due to the strong correlation 209 

between environments and similar accuracy between the best models each year, the adjusted means 210 

(Best Linear Unbiased Estimators, BLUEs) for AUDPC for each genotype were obtained and estimated 211 

by fitting a combined model using data from both years. This model is similar to model [1] except that 212 

it includes the year effect (𝛼𝑙) as follow: 213 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝜏𝑖 + 𝛼𝑙 + 𝛽𝑗(𝑙) + 𝛾𝑘(𝑗𝑙) + 𝜆(𝑥𝑖𝑗𝑘𝑙 − x̅) + 𝜀𝑖𝑗𝑘𝑙  [2] 

Seedling yellow rust phenotyping  214 

Greenhouse trials were conducted to determine resistance at the seedling stage of the panel, 215 

which indicates the presence of ASR genes. The phenotyping was conducted during 2023 at INIA La 216 

Estanzuela Experimental Station, using two Pst races used in field inoculations, Triticale2015a and 217 

Triticale2015b (Riella et al. 2024). Eight seeds of each genotype were sown in plastic trays with 218 

substrate (mixture of one third soil, one third vermiculite and one third seedbed substrate: Potting mix, 219 

Bioterra), 25 genotypes per tray, plus Morocco as the susceptible check. Fully expanded leaves (8–10 220 

days after sowing) were inoculated by spraying urediniospores suspended in Soltrol 170, incubated at 221 

10ºC in a dew chamber overnight and then kept in the greenhouse at 15–25 °C with supplemental 222 

lighting. Infection type (IT) was recorded for each genotype 15–20 days after inoculation based on a 0–223 

9 scale (McNeal et al. 1971) (crop ontology CO_321:0000606), lines with IT values of 0-3 were 224 

considered resistant, 4-6 intermediate and 7-9 susceptible. Two complete replicates were used for each 225 

genotype and race. The IT adjusted means for each genotype were obtained by fitting a linear model 226 

with the lm function in software (R Core Team 2024). The statistical model used was 𝑦𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗 227 

where 𝑦𝑖𝑗 represents the IT value (response variable) measured on the 𝑖-th wheat line in the 𝑗-th replicate, 228 

µ the overall mean, this model assumes that the errors (𝜀𝑖𝑗) are independent random variables, normally 229 

distributed with zero mean and constant variance (𝜎𝜀
2).. For each inoculation, a tray with the set of YR 230 

differential lines was included in order to corroborate the identity and purity of the race used. 231 

Genotypic Data 232 

The genomic DNA of the 366 wheat lines was isolated from fresh leaves of 20-day old plants 233 

by the CTAB method (Saghai-Maroof et al. 1984). Genotyping was performed by Genotyping-by-234 

sequencing (GBS) using an Illumina 150 bp paired-end sequencer at the University of Wisconsin-235 

Madison DNA Sequencing Facility. Analysis of the genotypic data first involved SNP calling using the 236 

https://cropontology.org/rdf/CO_321:0000606
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TASSEL GBSv2 pipeline (Glaubitz et al. 2014), and the cv Chinese Spring as the reference genome 237 

(IWGSC CS RefSeq v2.1) (Zhu et al. 2021). SNPs with >80% missing data and SNPs with a minor 238 

allele frequency (MAF) less than 0.01 were also removed. Missing data were imputed with BEAGLE 239 

5.4 (Browning et al. 2018). Data were transformed to numerical coding (0, 1, and 2 for homozygotes for 240 

the major allele, heterozygotes, and homozygotes for the minor allele, respectively) for analyses, 241 

obtaining the complete matrix with a total of 156,032 SNPs. 242 

In addition, the presence of APR genes Yr18 (TCCIND, Rasheed et al. 2016), Yr29 (SNP1G22, 243 

Lagudah et al., pers. comm.), and Yr46 (csSNP856, Forrest et al. 2014) within the wheat panel was 244 

verified based on competitive allele-specific PCR (KASP) assays. These assays were performed at 245 

INIA-Las Brujas lab following CIMMYT protocols (Dreisigacker et al. 2016). 246 

Population structure and Linkage disequilibrium (LD) 247 

The genetic structure of the population was studied using the Admixture program (Alexander et 248 

al. 2009) to determine the number of subpopulations (K). The ΔK was observed as the number of 249 

subpopulations increased (K = 0 to K = 20). Additionally, with the SNP matrix obtained in the previous 250 

step, Euclidean genetic distances were calculated between the panel lines, from which a principal co-251 

ordinate analysis (PCoA) and a genetic distance plot were created using the R package ade4 (Dray and 252 

Dufour 2007). The extent of linkage disequilibrium (LD) in this association panel was calculated 253 

according to (Zhang et al. 2018), based on pairwise squared LD correlation coefficients (r²) for all 254 

intrachromosomal SNP loci. Nonlinear model, described by Remington et al. (2001), was fitted to study 255 

the relation between r² and physical distances. To fit the non-linear model nls function in R was used (R 256 

Core Team 2024). The physical distance at which LD fell below the r² thresholds determined according 257 

to Zhang et al. (2018)Haga clic o pulse aquí para escribir texto. was used to define the confidence 258 

intervals of the QTL detected in the GWAS analysis. 259 

Genome-wide association analysis between phenotype and genotype 260 

GWAS was performed to identify genomic regions associated with YR resistance, using a matrix 261 

of 156,032 SNPs and 366 genotypes. The R package GWASpoly (Rosyara et al. 2016) was used to 262 

conduct the GWAS. GWAS was performed using mixed model with best linear unbiased estimates 263 

(BLUE) for AUDPC (from join analysis of both years) as response variable, SNP coded as 0,1,2 as fixed 264 

effect and random polygenic effect to control for population structure, commonly known as the K model 265 

(Yu et al. 2006). This method uses a covariance matrix, effectively treating all markers as random effects. 266 

However, as this can lead to "proximal contamination" (Listgarten et al. 2012), where markers tested as 267 

fixed effects are also included as random effects, reducing model performance. The leave-one-268 

chromosome-out (LOCO) approach (Yang et al. 2014) was used to improve accuracy by calculating 269 

covariance matrices for each chromosome using markers from other chromosomes. The results were 270 

summarized with Manhattan plots to visualize associations between SNPs and traits, utilizing functions 271 
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in GWASpoly. Population structure was controlled by incorporating a kinship matrix, as implemented 272 

in GWASpoly, to avoid spurious associations. Quantile–quantile (QQ) plots were used as a visual 273 

criterion for assessing the model fit of the GWAS. To minimize the risk of false positives, GWASpoly 274 

applies corrections such as the false discovery rate (FDR). In this study, a significance threshold of 275 

FDR=0.1 was used. 276 

QTL identified in this study were named following (Boden et al. 2023), using the prefix "Q" for 277 

QTL, "Yr" for yellow rust, and "uy" to indicate Uruguay, followed by a hyphen and the corresponding 278 

chromosome number and genome  and the chromosome arm (short: S, long: L). When more than one 279 

QTL were identified on the same chromosome arm, an additional number was added after a decimal 280 

point (Boden et al. 2023). Additionally, the chromosome arm (short: S, long: L) was also specified. 281 

A region was considered a QTL if it contained at least two markers in LD above the threshold. 282 

All significantly associated markers within each region were considered to define haplotypes. The 283 

physical position of the first and last markers above the threshold was defined as the start and end of the 284 

QTL, respectively. The p-value, effect, and percentage of explained variance for each QTL were 285 

obtained by fitting a separate linear regression model for each QTL. The regression model includes 286 

BLUE of AUDPC as the response variable. It is regressed on a dichotomous variable where one (1) was 287 

assigned to the favorable more resistant haplotype (lower AUDPC) and two (2) to the more susceptible 288 

haplotype (higher AUDPC). 289 

To determine whether the significant SNPs detected in this study were located in the same 290 

position as previously reported Yr genes and resistance QTL, the physical locations of the identified 291 

genomic regions were compared with positional data from the most updated database of wheat rust 292 

resistance genes and QTL currently available in the literature (McIntosh 2024; Tong et al. 2024). 293 

To determine the effect of accumulation of favorable YR QTL alleles on AUDPC, wheat lines 294 

were grouped according to their number of favorable QTL alleles. The AUDPC means for each group 295 

were compared using a Tukey multiple comparisons test (P < 0.05). 296 

Genomic prediction (GP) 297 

We assessed the predictive ability of seven genomic prediction models with different 298 

assumptions regarding marker effect distributions. The first model, additive best linear unbiased 299 

predictor (A-BLUP), used only the pedigree-based relationship matrix without including genetic marker 300 

data. The pedigree matrix was created using the prepPed and makeA functions of the nadiv package 301 

(Wolak 2012) based on parental information from INIA-WBP, however, information was missing for 44 302 

of the commercial lines present in the panel (12% of the total). Subsequently, other models incorporating 303 

genetic information in different ways and assuming different marker effect distributions were tested. 304 

The models compared included two mixed models: ridge-regression best linear unbiased predictor (RR-305 

BLUP), which uses information from all markers, genomic best linear unbiased predictor (G-BLUP), 306 
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which leverages genetic distance between lines for predictions, and four types of Bayesian models: 307 

Bayesian A (BA), Bayesian B (BB), Bayesian C (BC), and Bayesian Lasso (BL). 308 

To conduct the comparisons, a 10-fold cross-validation with 100 iterations was performed. This 309 

validation strategy involves randomly dividing the panel lines (366 lines) into 10 groups (with 36 or 37 310 

lines); nine groups were used to train the model, and predictions were made for the lines in the tenth 311 

group. This process was repeated for each of the 10 groups over 100 iterations. All analyses were 312 

conducted in R software, using the BGLR package (Pérez and De Los Campos 2014). 313 

Predictive ability was estimated as the Pearson’s correlation between observed and predicted 314 

values in each iteration. The mean squared error (MSE) was calculated as the difference between 315 

observed and predicted values. Additionally, in a second phase, identified QTL from the previous GWAS 316 

were sequentially added to the genomic prediction model as fixed effects, ordered by the amount of 317 

variance they explained. The performance of these models was then compared with the model excluding 318 

these fixed effects. 319 

Results 320 

Phenotypic Traits 321 

Field trials in both years had uniform infection levels, with high infection levels in check lines. 322 

The AUDPC values for the check cultivar Morocco in 2021 ranged between 5075 and 5260 among reps, 323 

and in 2022, between 6125 and 6475. The panel of 366 wheat lines displayed a continuous distribution 324 

of YR AUDPC values over the two years (Fig. S1), ranging from 0 to 5491 (Table 1). The average 325 

AUDPC for INIA-RGDP lines was the lowest with value of 2624 followed by the cultivars from other 326 

breeding programs with 2908, while INIA-WBP lines presented an average AUDPC of 3433. The 327 

proportion of phenotypic variance attributed to genetic factors, as estimated by broad-sense heritability 328 

(H²) was 0.98 (Table S2). Seedling tests also showed high and uniform infection, with the check cultivar 329 

Morocco consistently exhibiting IT scores of 8 or 9. In seedling tests with race Triticale2015a, 30.6% 330 

of genotypes showed resistant reactions (IT = 0–3), 42.6% displayed intermediate reactions (IT = 4–6), 331 

and 26.8% were susceptible (IT = 7–9). For the more widely virulent race Triticale2015b, 18.3% of 332 

genotypes were resistant, 41% showed intermediate reactions, and 40.7% were susceptible (Fig. S2). 333 

Table 1. Average (Mean), minimum (Min), maximum (Max), and standard deviation (SD) and 334 

heritability (H2) of field yellow rust area under the disease progress curve (AUDPC) and seedling 335 

infection type (IT) of the 366 wheat lines of the genome-wide association study (GWAS) panel evaluated 336 

in field conditions during 2021-2022, and under greenhouse conditions in the seedling stage after 337 

inoculation with two locally prevalent Pts races. 338 

Resistance type Trait Trial Mean Min Max SD H2 

Field evaluation AUDPC 2021 2949 0 4973 1293 0.98 
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2022 3234 0 6468 1793 0.98 

Both years 2955 0 5491 1423 0.92 

Seedling stage IT Triticale2015a 4.24 0 9 2.18 0.95 

Triticale2015b 5.17 0 9 2.08 0.98 

The BLUEs for YR AUDPC values obtained from field trials were calculated for each year using 339 

the best-fitting statistical model. In addition, all models evaluated showed similar accuracy and fit 340 

indicators (AIC, BIC, heritability and correlation between observed and predicted values). For 2021, the 341 

model base was selected, as it showed lower AIC and BIC values, minimal differences in heritability 342 

and correlation between observed and predicted values compared to the same model but including the 343 

column effect (Table S2), and a homogeneous and normal residual distribution (Fig. S3). In contrast, 344 

for 2022, the model including the random column effect provided a better fit, evidenced by lower AIC 345 

and BIC values, higher heritability and correlation between observed and predicted values (Table S2), 346 

and a more uniform residual distribution (Fig. S3). In both years, incorporating a spatial correlation 347 

structure for the residuals did not improve model fit (Table S2). 348 

Pearson correlation analysis of the AUDPC BLUEs from the selected models for 2021 and 2022 349 

revealed a strong correlation between the two years (r = 0.74), and similarly high correlations among 350 

replicates within each year (Fig. S1). Based on these results, the data from both years were combined 351 

into a single dataset and AUDPC BLUEs were obtained using the model [2] which includes effects for 352 

experimental design, days to heading as covariate and the year effect for the combined data from 2021 353 

and 2022 (Table S2). 354 

Genotypic Data 355 

SNP calling using TASSEL identified 237,282 SNPs for all lines. SNPs with >80% missing data 356 

(~38,000) and those with a minor allele frequency (MAF) <0.01 (~43,000) were removed. The final 357 

dataset included 366 wheat lines and 156,034 SNPs, with missing data imputed using BEAGLE. The 358 

detected SNPs provided good coverage of all chromosomes, with a low marker saturation in the D 359 

genome (Fig. S4). Heatmap with cluster analysis using the Euclidean distance matrix revealed no 360 

distinct groups (Fig. S5 A). Similarly, no clear clustering was observed in the PCoA, where the two 361 

principal components explained only 0.020 and 0.022 of the variances, respectively, with no relationship 362 

to YR AUDPC values or the panel lines’ origins (Fig. S5 B and C). The admixture analysis also provided 363 

no significant evidence of population stratification (Fig. S5 D). Together, these results indicated that 364 

including subpopulation effects was unnecessary for subsequent analyses. Linkage disequilibrium (LD) 365 

analysis showed rapid LD decay along the chromosomes, with average r² values falling below 0.2 within 366 

0.12 Mb. 367 
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Genome-Wide Association Study (GWAS) 368 

Eight genomic regions associated with field YR resistance were identified (Fig. 1) using a false 369 

discovery rate (FDR) threshold of -log10(p), P < 0.1 resulting in a value of 3.7. These regions were 370 

located on chromosomes 1BL, 2BL (three regions), 5B (one in 5BS and the other in 5BL), 5DL and 7BL 371 

(Table 2). The three regions identified on chromosome 2BL (as well as the two on chromosome 5B) 372 

were considered independent because their physical distance was larger than the 0.12 Mb distance 373 

estimated by the LD analysis. Regions with at least two markers above the significance threshold were 374 

classified as quantitative trait loci (QTL). When we analyzed all significantly associated markers within 375 

each QTL region together to define haplotypes, we found only two haplotypes in each QTL region. 376 

The QTL explaining the highest proportion of the phenotypic variance was QYr.uy-2BL.3 377 

(21.24%), followed by Qyr.uy-2BL.2 (12.1%), Qyr.uy-5BS, Qyr.uy-5BL, Qyr.uyt-5DL, Qyr.uyt-7DL, 378 

Qyr.uyt-2BL.1 and Qyr.uy-1BL explained progressively lower proportions of the phenotypic variance 379 

(Table 2). The effect of each QTL on AUDPC is illustrated by the boxplots in Fig. 2. The favorable QTL 380 

allele (associated with lower AUDPC values) was assigned the value "1", while the less favorable QTL 381 

was assigned the value “2”. Furthermore, Fig. 2 represents the distribution of the number of lines 382 

according to their YR AUDPC values for each allele of each QTL, based on the width of the surface 383 

surrounding each boxplot. 384 

The proportion of lines carrying the favorable YR resistant QTL varied according to their origin 385 

(INIA-WBP, INIA-RGDP, and cultivars from other breeding programs). Qyr.uy-5BL was present in 84% 386 

of all lines, Qyr.uy-1BL in 80%, Qyr.uy-5DL in 75%, Qyr.uy-7BL in 61%, Qyr.uy-5BS in 36%, Qyr.uy-387 

2BL.1 in 35%, Qyr.uy-2BL.3 in 27%, and Qyr.uy-2BL.2 in 18%of the lines. Qyr.uy-1BL, Qyr.uy-2BL.3, 388 

Qyr.uy-5BS, Qyr.uy-5BL, and Qyr.uy-7BL were found in a higher percentage of lines from INIA-RGDP, 389 

in contrast, Qyr.uy-2BL.1 and Qyr.uy-2BL.2 were more frequent in cultivars from other breeding 390 

programs (Table 3). 391 

Figure 1. Manhattan plot for yellow rust (YR) resistance based on area under the disease progress curve 392 

(AUDPC) values from 2021 and 2022 field trials combined in 366 wheat lines of the panel. The 393 

horizontal line indicating the genome-wide significance threshold 394 

Table 2. Summary of significant Quantitative trait loci (QTL) associated with yellow rust (YR) 395 

resistance. The table includes QTL identified for field resistance based on area under the disease progress 396 

curve (AUDPC) combined values from 2021 and 2022, and seedling resistance based on infection types 397 

(IT) for Pst race Triticale2015a of 366 wheat lines of the panel. 398 

Trait QTL Chr.a Physical position of 

flanking markers 
(Mb)b 

P value Effect PVE (%)c 
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Field 

AUDPC 

Qyr.uy-1BL 1B 540.16 - 541.70 2.7e-5 -848.82 4.9 

QYr.uy-2BL.1 2B 400.34 - 464.32 5.5e-6 -706.7 5.7 

QYr.uy-2BL.2 2B 564.47 – 564.82 9.1e-12 -1268.2 12.1 

QYr.uy-2BL.3 2B 690.94 – 709.24 <2e-16 -1425.2 21.2 

QYr.uy-5BS 5B 69.74 – 74.92 3.5e-10 -973.2 10.6 

QYr.uy-5BL 5B 537.95 – 538.48 1.3e-8 -1156.8 8.6 

QYr.uy-5DL 5D 548.10 – 552.03 2.1e-7 -898.4 7.3 

QYr.uy-7BL 7B 617.83 – 657.05 1.5e-6 -777.2 6.6 

Seedling IT 
Triticale2015a 

QYr.uy-2DS 2D 15.34 - 18.30 2.2e-16 -2.3 19.1 

QYr.uy-3AL 3A 488.45 - 490.15 5.4e-8 -1.4 7.9 

aChromosome, bPhysical positions (Mb) of flanking markers are based on the Chinese Spring reference 399 

IWGSC RefSeq v1.0; bPVE, phenotypic variance explained.Figure 2. The effects of quantitative trait 400 

loci (QTL) identified for yellow rust (YR) resistance based on area under the disease progress curve 401 

(AUDPC) combined values from the 2021 and 2022 field trials. The AUDPC value for the 366 wheat 402 

lines of the GWAS panel are shown based on their haplotype for each QTL, with (1) being the more 403 

favorable resistant allele, and (2) being the more susceptible allele. 404 

Table 3. Percentage of lines carrying the favorable allele for each quantitative trait loci (QTL) associated 405 

with area under the disease progress curve (AUDPC) in field trials and infection type (IT) in seedling 406 

tests for the Triticale2015a race, within each group of lines according to their origin and the full panel 407 

of 366 wheat lines. 408 

Trait QTL 
Line origin 

Full panel 
INIA-RGDP INIA-WBP 

Other breeding 

programs 

Field AUDPC 

QYr.uy-1BL 84 80 68 80 
QYr.uy-2BL.1 19 33 77 35 
QYr.uy-2BL.2 14 12 38 18 
QYr.uy-2BL.3 30 21 27 27 
QYr.uy-5BS 44 23 38 36 
QYr.uy-5BL 89 82 77 84 
QYr.uy-5DL 78 80 62 75 
QYr.uy-7BL 67 54 62 61 

Seedling IT QYr.uy-2DS 20 25 14 20 

Triticale2015a  QYr.uy-3AL 25 26 32 27 
 409 
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The lines were grouped into six categories based on the number of favorable QTL alleles for 410 

YR AUDPC determined in the field trials, ranging from zero to eight favorable QTL. A pronounced in 411 

AUDPC values was observed as the number of favorable QTL increased (Fig. 3). 412 

Figure 3. Effect of the number of quantitative trait loci (QTL) associated with yellow rust (YR) 413 

resistance based on area under the disease progress curve (AUDPC) combined values from 2021 and 414 

2022 field trials of 366 wheat lines. The number of lines in each group according to their origin is 415 

indicated below each boxplot. Different letters above the boxplots indicate significant differences (P < 416 

0.05) in AUDPC between groups, as determined by Tukey′s test. Boxplots show the distribution of a 417 

dataset through five key summary statistics: minimum (lower whisker), first quartile (bottom of the 418 

box), median (line inside the box), third quartile (top of the box), and maximum (upper whisker). Points 419 

beyond the whiskers are values outside 1.5 times the interquartile range from the quartiles. 420 

Two genomic regions associated with YR seedling resistance to race Triticale2015a were 421 

identified (Fig. S6 A). Haplotype analysis revealed two haplotypes for each identified region. The QTL 422 

on chromosome 2D explained 19.1% of the phenotypic variance, while another QTL on chromosome 423 

3A accounted for 7.9% (Table 2). The favorable allele for QYr.uy-2DS was present in 20% of all lines, 424 

while the favorable allele for QYr.uy-3AL was found in 27%. The favorable allele of QYr.uy-3AL was 425 

present in a higher proportion in INIA-WBP lines while the favorable allele of QYr.uy-2DS was present 426 

in a higher proportion of cultivars from other breeding programs (Table 3). GWAS for the more widely 427 

virulent race Triticale2015b did not identify any genomic regions significantly associated with YR 428 

resistance (Fig. S6 B). 429 

Through GWAS, we detected one mayor QTL for days to heading on chromosome 2D, which did 430 

not co-localized with any of the QTL associated with YR resistance in the field or seedling trials (Fig. 431 

S6 C). Additionally, the identified QTL for YR resistance did not coincide with the location of previously 432 

reported phenology-related genes (data not shown). 433 

Genomic Prediction (GP) 434 

From the seven GP models evaluated, the A-BLUP model had the lowest prediction accuracy, 435 

with correlations between observed and predicted AUDPC values below 0.5, and the highest MSE (Fig. 436 

S7 A). The G-BLUP and RR-BLUP models performed similarly, achieving correlations between 437 

observed and predicted AUDPC values around 0.7 and a lower MSE compared to other models MSE 438 

(Fig. S7 B). Bayesian models (BA, BB, and BC) demonstrated comparable prediction accuracies as G-439 

BLUP and RR-BLUP, with correlations near 0.7 and moderate MSE values. In contrast, the Bayesian 440 

LASSO (BL) model exhibited poorer performance, with accuracy closer to the A-BLUP model and 441 

higher MSE values. Overall, G-BLUP, RR-BLUP, and Bayesian (BA, BB and BC) models showed the 442 

most robust predictive performance. 443 
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The BL model performed worse than RR-BLUP, and the prediction ability of RR-BLUP model 444 

was nearly identical to that of the G-BLUP model. Therefore, the G-BLUP model was selected for 445 

further comparisons due to its simplicity and lower computational requirements. Subsequently, we 446 

investigated whether incorporating fixed effects for the identified QTL could improve the GP accuracy. 447 

We compared the AUDPC predictions from the G-BLUP model without fixed QTL effects and with the 448 

sequential addition of fixed effects for the eight QTL, added in descending order of the explained 449 

variance. The inclusion of fixed effects in the model led to an improvement in prediction accuracy, with 450 

correlations between observed and predicted values increasing from an average of 0.64 in the G-BLUP 451 

model without fixed effects to 0.69 in models that included GWAS-identified QTL as fixed effects. 452 

Notably, the inclusion of QYr.uy-2BL.3 alone was sufficient to achieve this improvement, as no further 453 

gains were observed when additional QTL were incorporated as fixed effects (Fig. S8 A). Moreover, the 454 

inclusion of fixed effects also impacted the MSE, which was reduced by 10.4% when QYr.uy-2BL.3 was 455 

included, compared to the G-BLUP model without it (Fig. S8 B). 456 

Discussion 457 

Recent outbreaks of YR in major wheat-producing regions worldwide (Bouvet et al. 2022) pose 458 

a significant threat to wheat production and global food security. Particularly in the Southern Cone of 459 

South America, recent epidemics (Campos et al. 2016; Germán et al. 2018; Campos 2020; Silva et al. 460 

2023; Riella et al. 2024) have been linked to the incursion of new Pst genetic groups and races 461 

characterized by increased aggressiveness and improved adaptation to diverse temperature ranges 462 

(Rajaram and Campos 1974). Argentina and Uruguay are located in the same rust epidemiological zone 463 

(Rajaram and Campos 1974) where there are no geographical barriers for urediniospores dispersal, 464 

which likely explains the almost simultaneous development of severe epidemics in both countries 465 

(Rudolf and Job 1931). In Uruguay, Pst was first detected in 1929 (Rudolf and Job 1931). It caused 466 

widespread epidemics and substantial yield losses across the Southern Cone region during 1929 and 467 

1930 (Boerger 1934; Vallega 1938). From its initial detection until 2016, Pst outbreaks remained 468 

sporadic, rarely reaching epidemic levels in Uruguay (Germán and Caffarel 1999; Germán et al. 2007, 469 

2018). However, since 2017, wheat crops grown in Uruguay and Argentina have experienced 470 

widespread epidemics, likely due to an earlier onset of the disease during the growing season, the 471 

extensive planting of susceptible or moderately susceptible cultivars (covering more than 50% of the 472 

wheat-growing area) (Silva et al. 2023), and the emergence of novel races in the region (Riella et al. 473 

2024). 474 

YR is currently the wheat foliar disease, which requires the largest number of fungicide 475 

applications in Uruguay. Deploying resistant wheat cultivars is an economically and environmentally 476 

sustainable strategy, significantly reducing the use of fungicides (Chen 2005, 2013). Therefore, it is 477 

essential to identify diverse resistance sources effective under local conditions, which can be utilized in 478 
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breeding programs to introgress and pyramid resistance genes into locally adapted germplasm. From the 479 

perspective of resistance breeding, the most relevant phenotype is that expressed in the field (APR). 480 

However, this must be complemented with the seedling phenotype (ASR) to determine which types of 481 

resistance genes are effective: ASR and/or APR. Additionally, early identification of promising lines or 482 

parental candidates for breeding crosses is crucial to accelerate the development of wheat lines with 483 

durable YR resistance. 484 

Despite Uruguay’s longstanding wheat breeding program at the National Institute of Agronomical 485 

Research (INIA), which has focused on developing resistance to major regional diseases such as leaf 486 

(Silva et al. 2015) and stem rusts (Baraibar et al. 2020), Fusarium head blight, Septoria tritici blotch and 487 

tan spot, YR was historically considered a minor threat. Consequently, no breeding efforts specifically 488 

targeting YR resistance were implemented, leaving the genetic basis of resistance in the local germplasm 489 

largely unknown (Germán and Luizzi 2018). In Uruguay, the PstS13 genetic group has been reported as 490 

the most prevalent since the 2017 epidemics (Riella et al. 2024). Within PstS13, the two races used in 491 

this study for field inoculations, Triticale2015(a) and its locally discovered variant, Triticale2015b, with 492 

additional virulence to Yr17 and Yr32, have been the most prevalent in recent years. The original PstS13 493 

race, Triticale2015, was first reported in Europe in 2015, primarily affecting triticale and durum wheat 494 

(Hovmøller et al. 2018). Since 2017, PstS13 has been the predominant genetic group in Argentina 495 

(Hovmøller et al. 2018, 2019; Carmona et al. 2019), it was also detected in Chile (Hovmøller et al. 2019) 496 

and more recently in Paraguay (Fernández-Gamarra et al. 2023). 497 

Phenotypic Variation for Wheat Resistance to Yellow Rust 498 

The panel of 366 wheat lines, including INIA germplasm and other commercial varieties widely 499 

used locally, was phenotyped in field trials over two consecutive years under artificial inoculations with 500 

the predominant Pst races. Additionally, seedling assays were performed with the same races used for 501 

field inoculations. Phenotypic data showed significant variation among lines for all evaluated traits. 502 

Seedling IT exhibited a bias toward susceptibility (Fig. S2), for the broader virulent race 503 

(Triticale2015b), conversely, field YR AUDPC showed a bias toward resistance, suggesting a low 504 

presence of effective ASR genes in the panel and the presence of APR genes, which are more effective 505 

in the adult plant stage. This is consistent with the panel composition, as many lines originate from 506 

crosses with sources of leaf rust APR (generally pleiotropic for YR APR), while no intentional 507 

introgressions of YR ASR genes have been performed in the WBP. Another evidence of absence of 508 

effective ASR genes in the panel is the lack of significant correlation between seedling IT and field 509 

AUDPC (r2=0.46). 510 
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The high broad-sense heritability for AUDPC across 2021 (0.98), 2022 (0.98), and combined 511 

years (0.97), as an indicator of repeatability, coupled with strong correlations among replicates 512 

within each year (0.94–0.95) and between BLUEs AUDPC values across years (0.74), 513 

underscores the robustness of this phenotypic dataset for GWAS and GP analyses.Population 514 

Structure of the Wheat Panel 515 

Accounting for population structure is critical in GWAS to minimize false-positive marker-trait 516 

associations (Pritchard et al. 2000; Yu et al. 2006; Zhu et al. 2008). In this study, population structure 517 

analyses revealed no strong genetic stratification among the 366 wheat lines that would require inclusion 518 

in subsequent GWAS analyses. Lines did not cluster based on origin (INIA-WBP, INIA-RGDP, or other 519 

breeding programs), likely reflecting the diverse germplasm and resistance sources used by INIA. 520 

Moreover, no clear association was observed between AUDPC values and line origin. Interestingly, lines 521 

from the INIA-RGDP, which were selected for APR to leaf rust, exhibited lower average YR AUDPC 522 

values than commercial varieties or advanced INIA-WBP lines. This observation suggests the presence 523 

of potentially pleiotropic APR genes in these lines, providing a valuable genetic resource for breeding 524 

wheat lines with enhanced YR resistance. Exploiting these genetic resources could accelerate the 525 

development of cultivars with durable, broad disease spectrum resistance. 526 

Genome-Wide Association Study (GWAS) 527 

The high-quality phenotypic data collected from the GWAS panel of 366 wheat lines evaluated 528 

in both field and greenhouse trials, combined with a dense set of SNPs distributed across the genome 529 

(Fig. S4), provided a robust framework for identifying genomic regions associated with YR resistance. 530 

As no strong population structure was found, the K model was enough to control for spurious 531 

associations, as confirmed by quantile-quantile (QQ) plots (Fig. S9). 532 

Eight genomic regions associated with YR resistance were identified in field trials, with stable 533 

expression as these were consistently detected across data from both years (data not shown). Pyramiding 534 

the identified QTL for YR resistance significantly reduced YR AUDPC (Fig. 3), aligning with findings 535 

from other studies (Maccaferri et al. 2015; Zhou et al. 2021; Franco et al. 2022; Lin et al. 2023; Miedaner 536 

et al. 2024; Wang et al. 2024), which also highlight additive effects improving YR and leaf rust resistance 537 

as the number of favorable QTL increases. 538 

GWAS analyses for seedling resistance did not identify any of the regions detected in the field. 539 

The two regions associated with seedling resistance for one of the Pst races were ineffective to the other 540 

race. While both races belong to the same genetic group, race Triticale2015b has additional virulence to 541 

Yr17 and Yr32 (Riella et al. 2024) which are located in distinct genomic regions from the QTL identified 542 

in field tests. These results confirm that the QTL identified in the field confer APR. 543 



18 

 

Analysis of identified genomic regions associated with yellow rust resistance 544 

Eight genomic regions associated with YR resistance were identified: one on chromosome 1B, 545 

three on 2B separated by more than 126 Mb, two on 5B, one on 5D and one on 7B. Regions significantly 546 

associated with YR resistance identified in this study were compared with previously mapped Yr genes 547 

and QTL using the most updated atlas available (McIntosh 2024; Tong et al. 2024). The possibility that 548 

these associations were due to differences in heading date was excluded, since GWAS analyses using 549 

days to heading as the response variable revealed no overlap between the QTL associated with YR 550 

resistance and QTL associated to heading date (Fig. S6 C). Additionally, two QTL associated with 551 

seedling resistance to the Pst race Triticale2015a were identified on chromosomes 2D and 3A, but none 552 

were identified to race Triticale2015b, indicating that the resistance detected in the field was expressed 553 

after the seedling stage and is most possibly conferred by APR genes. 554 

Adult-plant resistance QTL 555 

Chromosome 1B 556 

QYr.uy-1BL located on the long arm of chromosome 1B explained only 4.9% of the total variance, 557 

and had the lowest effect, reducing YR AUDPC by 848.8 (Table 2), which represents an average 558 

AUDPC reduction of 12% compared to the lines with the less favorable allele. This QTL was widely 559 

present in the lines (80%), predominantly in germplasm from INIA (Table 3). Chromosome 1B, is 560 

considered a hotspot for YR resistance, as at least eight Yr genes have been mapped on this chromosome, 561 

including Yr9 (Lukaszewski 2000), Yr10 (Liu et al. 2014), Yr15 (Klymiuk et al. 2018), Yr24/Yr26 562 

(McIntosh 2024), Yr29 (William et al. 2003), Yr64 (Cheng et al. 2014), and Yr65 (Cheng et al. 2014). 563 

Numerous other temporarily designated genes, such as YrChk (Liu et al. 2007), YrExp1 (Lin and Chen 564 

2007), and YrGn22 (Li et al. 2016), are also located on 1B. However, all these genes have been mapped 565 

far from the QYr.uy-1BL region detected in our study. Yr29, a pleiotropic APR gene with a moderate 566 

effect, located on chromosome 1BL at 661.86 Mb (Li et al. 2020), is the closets among these Yr genes, 567 

but still lies more than 120 Mb away from QYr.uy-1BL region.. Genotyping of the panel using a KASP 568 

marker for Yr29 (Table S1) revealed that it was present in 85% of the lines. However, Yr29 did not show 569 

a significant effect on YR AUDPC. This evidence indicates that QYr.uy-1BL is not Yr29. In addition, 570 

over a dozen studies have reported QTL for YR resistance on this chromosome (Alemu et al. 2021; Draz 571 

et al. 2021). QYr.uy-1BL might correspond to the closest reported QTL located at approximately 8 Mb 572 

(Rosewarne et al. 2012) (Table S3). 573 

Chromosome 2B 574 

Three QTL were identified on the long arm of chromosome 2B. QYr.uy-2BL.1 accounted for 5.7% 575 

of the total phenotypic variance, with an estimated effect of 706.7, corresponding to a 45.3% reduction 576 

in AUDPC relative to lines carrying the susceptible allele. The favorable allele of QYr.uy-2BL.1 was 577 

present in 35% of the lines and was more frequently observed in germplasm from breeding programs 578 
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other than INIA (Table 3). QYr.uy-2BL.2 explained 12.1% of the variance, with an estimated effect of -579 

1268.2, corresponding to a 49% reduction in AUDPC. The favorable allele was detected in 18% of the 580 

lines, and was more prevalent in non-INIA cultivars (Table 3). QYr.uy-2BL.3 had the largest effect 581 

among all QTL detected in this study, reducing YR AUDPC by 1425.2 (61%) and explaining 21.2% of 582 

the total variance (Table 2). The favorable allele was present in 27% of the lines (Table 3). 583 

Several Yr genes, including Yr5, Yr7 (Marchal et al. 2018), Yr41 (Luo et al. 2008), Yr43 (Feng et 584 

al. 2015), Yr44 (Sui et al. 2009), Yr53 (Xu et al. 2013), and Yr72 (Chhetri et al. 2023), along with 585 

numerous temporarily designated genes and QTL, have been mapped to the long arm of chromosome 586 

2B. Several loci associated with APR have also been identified on this chromosome. QYr.uy-2BL.1, 587 

located between 400.34 and 464.32 Mb, overlaps with two previously reported QTL: QYr.caas-2BS.1 588 

(Bai et al. 2012) and QYr.ifa-2BL (Buerstmayr et al. 2014) (Table S3). QYr.uy-2BL.2, located between 589 

564.47 and 564.82 Mb, lies approximately 40 Mb from Yr53, which has not been introgressed into INIA-590 

WBP germplasm. Two nearby QTL, QYr.nafu-2BL (Zhou et al. 2015) and QYrqn.nwafu-2BL (Zeng et 591 

al. 2019a) are located 8 Mb and 15 Mb away, respectively, and confer YR APR. Due to its low frequency 592 

in the panel QYr.uy-2BL.2 represents a QTL with potential from the breeding perspective. 593 

The physical position of QYr.uy-2BL.3 is close to ASR genes Yr5, Yr7, and YrSP which belong to a 594 

complex gene cluster (Marchal et al. 2018). Yr7 and YrSP are ASR genes ineffective to the Pst races 595 

present in Uruguay (Riella et al. 2024) therefore these genes are not QYr.uy-2BL.3. Only ASE gene Yr5 596 

remains effective in Uruguay. Moreover, GWAS analyses of seedling ITs using the same Pst races as 597 

those used in field inoculations did not identify associations near the Yr5 locus. Among lines carrying 598 

the favorable allele for QYr.uy-2BL.3, both resistant and susceptible seedling responses were observed, 599 

whereas the expected IT for Yr5 carriers is 0; to ; (McIntosh et al. 1995). In race identification tests, 600 

Avocet Yr5 which carries Yr5 as the sole gene consistently showed an IT of 0 or 1 for both races. 601 

Additionally, KASP marker analysis (Marchal et al. 2018) indicated the absence of Yr5 in the tested 602 

lines, including those carrying QYr.uy-2BL.3 (data not shown). This evidence indicates that QYr.uy-603 

2BL.3 is not Yr5, but rather a distinct QTL associated with YR APR. QTL reported in this region, includ 604 

QYrsnb.nwafu-2BL (Zeng et al. 2019a) and Qyr.gaas.2B.1 (Cheng et al. 2022), both located 605 

approximately 10 Mb from QYr.uy-2BL.3 (Table S3). QYr.uy-2BL.3 stands out as the most promising 606 

QTL for INIA-WBP due to its strong effect and relatively low frequency in the germplasm 607 

panel.Chromosome 5B 608 

Two QTL were identified on chromosome 5B: QYr.uy-5BS on the short arm and QYr.uy-5BL on 609 

the long arm. QYr.uy-5BS explained 10.6% of the phenotypic variance, had an estimated effect of 973.2, 610 

corresponding to a 13.9% reduction in AUDPC relative to lines carrying the susceptible allele. The 611 

favorable allele of QYr.uy-5BS was present in 36% of the lines and was more frequently observed in 612 

germplasm from the INIA-RGDP program (Table 3). QYr.uy-5BL reduced YR AUDPC by 1156.8 (16%) 613 
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and accounted for 8.6% of the phenotypic variance (Table 2). It is present at high frequency (84%), with 614 

greater representation in INIA-RGDP (Table 3). 615 

Two YR resistance genes have been previously reported on chromosome 5B: Yr47 (Bansal et al. 616 

2011) and Yr19 (Chen et al. 1995). However, the genomic region of Yr47 on the short arm of the 617 

chromosome is 64 Mb from QYr.uy-5BS. Therefore, Yr47 is not any of the QTL reported in our study. 618 

Yr19 is an ASR gene, whose physical position on chromosome 5B is not known (Chen et al. 1995). 619 

Since both QYr.uy-5BS and QYr.uy-5BL were detected only in our field trials but not at the seedling 620 

stage, they do not correspond Yr19. 621 

The closest previously reported QTL to QYr.uy-5BS is QYr.ufs-5B (Agenbag et al. 2012) but is 622 

located more than 40 Mb away (Table S3). This strongly suggests that QYr.uy-5BS may represent a 623 

novel QTL which valuable for INIA-WBP and other breeding programs. Three QTL reported on 624 

chromosome 5BL, are located 10 Mb or less from QYr.uy-5BL (QYr.YBZR-5BL, Deng et al. 2022; 625 

QYr.AYH-5BL, Long et al. 2021; QYrdr.wgp-5BL.2, Hou et al. 2015). QYr.uy-5BL might be QYrdr.wgp-626 

5BL.2 which lies less than 1Mb from it. 627 

Chromosome 5D 628 

QYr.uy-5DL, located on the long arm of chromosome 5D, explained 7.3% of the phenotypic 629 

variance and reduced YR AUDPC by 898.4, representing a 14% average reduction compared to lines 630 

carrying the less favorable allele (Table 2). This QTL was detected in 75% of the lines, being been more 631 

frequently present in germplasm from INIA (Table 3). Yr70 (Pasam et al. 2017), the only nominated 632 

gene located on this chromosome is over 200 Mb away. Two previously reported QTL, QYrdr.wgp-5DL 633 

(Hou et al. 2015) and QYrbr.wpg-5D (Case et al. 2014), have been identified on 5DL, at about 5 Mb 634 

from the region where QYr.uy-5DL is located (Table S3). It is present in high frequency in INIA 635 

germplasm, efforts should be made to maintain this QTL in the breeding germplasm. 636 

Chromosome 7B 637 

QYr.uy-7BL, located on the long arm of chromosome 7B, explained 6.6% of the phenotypic 638 

variance and reduced YR AUDPC by 777.2, corresponding to an average reduction of 12.7% compared 639 

to lines carrying the less favorable allele (Table 2). This QTL was present in 61% of the lines, with no 640 

major differences in frequency across germplasm origins (Table 3). Yr67 (Bariana et al. 2022) has been 641 

reported approximately 40 Mb from the physical position of QYr.uy-7BL. QTL QYr.hebau-7BL (Zhang 642 

et al. 2019), QYr.niab-7B (Powell et al. 2013), and QYr.cim-7BL (Calvo-Salazar et al. 2015) colocalize 643 

with the region where QYr.uy-7BL is located (Table S3). 644 
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All-stage resistance QTL 645 

QYr.uy-2DS  646 

QYr.uy-2DS, identified for the Triticale2015a race, was the QTL with the largest effect at the 647 

seedling stage, explaining 19.1% of the phenotypic variance. Lines carrying the favorable allele for this 648 

QTL (20%) had an average IT of 2.4, representing a reduction of 2.3 IT units (49%) compared to the 649 

lines lacking it (Table 2). No Yr genes have been mapped to the region where QYr.uy-2DS is located, 650 

although the major QTL Yrq1 (Cao et al. 2012) colocalize with QYr.uy-2DS and QYr.hbau-2DS 651 

(Gebrewahid et al. 2020) is only 3 Mb away (Table S3). 652 

QYr.uy-3AL  653 

QYr.uy-3AL was the QTL with the smallest effect in the seedling stage to race Triticale2015a, 654 

reducing IT in 1.4 (49%) and explaining 7.9% of the phenotypic variance (Table 2). QYr.uy-3AL was 655 

the most frequent seedling QTL within cultivars from breeding programs other than INIA (Table 3). 656 

QYr.uy-3AL is located on the long arm of chromosome 3A. Yr76, the only Yr gene previously mapped 657 

on chromosome 3A (Xiang et al. 2016), is located on the short arm, indicating that QYr.uy-3AL is 658 

distinct. Several QTL for YR resistance have also been reported on 3AL; among them, QYr.nmbu.3A.2 659 

(Lin et al. 2023) and QYr.hbaas-3AL (Jia et al. 2020), are the closest to QYr.uy-3AL, located 660 

approximately 7 and 12 Mb away, respectively (Table S3). 661 

Both, QYr.uy-2DS and QYr.uy-3AL, are not effective to race Triticale2015b and were not 662 

detected in field tests, therefore their relevance for resistance breeding is limited. 663 

Implication of identified QTL in the breeding program context 664 

The identification of eight genomic regions associated with YR resistance in field trials and two 665 

regions in seedling assays highlights the value of exploring local genetic resources. Local breeding 666 

programs represent a valuable reservoir of genetic diversity adapted to local conditions and are key 667 

resources for breeding programs. While several ASR Yr genes remain effective to the current Pst 668 

population, the variability of the pathogen requires the continuous exploration and introgression of new 669 

resistance sources to increase the genetic diversity. PstS13, the predominant genetic group of Pst in local 670 

conditions, is virulent to several widely deployed Yr genes (Tadesse et al. 2014; Hovmøller et al. 2016). 671 

Other races within the PstS13 group identified locally, acquired virulence to Yr3, Yr17, Yr25, Yr27, and 672 

Yr32 (Riella et al. 2024). 673 

Among the eight QTL identified in field trials, only QYr.uy-2BL.3 co-localized with previously 674 

reported ASR Yr gene cluster (Yr5, Yr7, YrSP), but it was demonstrated it was not any of these genes. 675 

QYr.uy-5BS appears to be a novel QTL. Other QTL identified in this study are located near (10 Mb or 676 

less) of previously reported QTL, therefore, further confirmatory studies are required to determine 677 

whether these QTL correspond to known loci or represent new, distinct QTL, e.g. using markers for 678 
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QTL reported in the literature near those identified in this study as well as developing functional markers 679 

and validating QTL through biparental populations. 680 

The QTL identified in field trials were not detected in seedling tests (Fig. S6), indicating that 681 

these correspond to APR genes. Their additive effects (Fig. 3) further support that these are likely race 682 

non-specific and durable, which is expected within INIA germplasm, where ASR genes have not been 683 

deliberately used. Many of the INIA-RGDP lines with low YR AUDPC are derived from crosses 684 

between locally adapted materials and sources of leaf rust APR, mostly from CIMMYT. These lines 685 

were selected for leaf rust resistance, suggesting a pleiotropic effect of the APR to both rusts. In that 686 

sense, it would be expected that APR genes such as Yr18, Yr29, and Yr46, frequently present in 687 

CIMMYT germplasm, or QTL for YR resistance found in this germplasm (Singh 1992; Singh and 688 

Rajaram 1992, 1993) should have been detected in the GWAS analysis. However, genotype-by-689 

environment interactions involving minor APR genes might influence their expression, as previously 690 

reported for rust diseases (Lillemo and Singh 2011; Calvo-Salazar et al. 2015; Silva et al. 2015). 691 

KASP marker results revealed that Yr18 was present in 28.7% of the lines (Table S1) and was 692 

associated with a non-significant reduction in AUDPC (~307) which was not detected in the GWAS 693 

analysis. One possible explanation is the low marker saturation of the D genome, particularly in the 694 

region where Yr18 resides (Fig. S4), which reflects the overall lower polymorphism of this genome 695 

compared to the A and B genomes. To address this, GWAS was performed incorporating the KASP 696 

marker for Yr18 into the SNP matrix. However, the marker still did not surpass the significance threshold 697 

in the updated models, suggesting that low marker density was not the cause of its non-detection. 698 

Therefore, this result might be explained by the relatively small effect of Yr18 in reducing AUDPC, 699 

consistent with previous studies reporting partial resistance conferred by this gene (Wu et al. 2015; Zelba 700 

et al. 2024). Similarly, Yr29 was not detected by GWAS even after including its KASP marker in the 701 

SNP matrix, despite showing a statistically significant AUDPC reduction (~349) (data not shown). Its 702 

high frequency in the panel (present in 85% of lines) likely reduced the statistical power to detect 703 

associations. Nevertheless, Yr29 has been shown to have a stronger effect under Mexican field 704 

conditions (Liu et al. 2022), suggesting that its effectiveness may be influenced by the environment. In 705 

contrast, KASP marker results showed that Yr46 was absent from the panel except for the check line 706 

Thatcher Yr46 (Table S1). Notably, this gene had a marked effect on disease resistance: Thatcher showed 707 

an AUDPC of 4808, whereas Thatcher Yr46 exhibited a much lower value (3315), highlighting the 708 

potential of Yr46 for introgression into INIA-WBP germplasm. However, its very low frequency in the 709 

panel (<1%) prevented its detection in the GWAS, as it did not meet the MAF threshold used in this 710 

study.A marked decrease in AUDPC was observed as the number of favorable QTL per line increased 711 

(Fig. 3), indicating additive effects among the identified QTL. This highlights QTL pyramiding is a 712 

promising strategy for breeding wheat with higher levels of durable resistance. Clearly, two of the QTL 713 

(QYr.uy-1BL and QYr.uy-5BL) were already present at high proportion in the INIA-WBP advanced 714 
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germplasm and in cultivars of other origin. However, the other three QTL were present at much lower 715 

proportion and pyramiding them with those QTL already present may contribute to the development of 716 

YR resistant cultivars. Notably, the eleven lines carrying the favorable alleles for all eight QTL showed 717 

final disease severity values below 20%. Among them, two pre-breeding lines from the INIA program, 718 

R15F57341 and R17F57132, exhibited near-immunity levels at the adult plant stage, making them 719 

invaluable resources for resistance breeding and future research. 720 

Genomic Prediction (GP) 721 

Modern breeding programs, especially in a context where genotyping costs are increasingly 722 

affordable and accessible, require the optimization of strategies not only for selecting lines but also for 723 

efficiently identifying parents for crosses at an early stage. This is key to developing adapted and 724 

resistant cultivars in the shortest possible time. This study aimed to determine the predictive ability of 725 

different GP models using the genomic and phenotypic information of the panel lines. Additionally, it 726 

sought to demonstrate whether incorporating the presence of the QTL identified through GWAS for YR 727 

AUDPC as fixed effects could improve the GP models’ predictive ability. Seven different GP models, 728 

which assume different distributions for marker effects, were evaluated. These models included A-BLUP 729 

model; RR-BLUP, which uses information from all markers; G-BLUP, which uses information about 730 

the genetic distance between lines to make predictions; and four types of Bayesian models: BA, BB, 731 

BC, and BL. The results of the comparison between the seven models showed no significant differences 732 

in performance between RR-BLUP and G-BLUP, with both models having correlations between 733 

observed and predicted AUDPC values close to 0.7, which is not suppressing given that the equivalence 734 

between these two models has been previously reported (Habier et al. 2007). No differences were 735 

observed with the Bayesian models BA, BB, or BC. In contrast, the BL model showed worse 736 

performance, with correlations between observed and predicted values around 0.5. BL results were 737 

similar to the A-BLUP model, which only uses the available pedigree relationships between the panel 738 

lines. Similar results, with minimal differences between prediction models for this disease, were reported 739 

by Tehseen et al. (2021) and Manickavelu et al. (2016). The G-BLUP and Bayesian models investigated 740 

in this study gave nearly identical prediction accuracies, despite assuming similar variances for all 741 

marker effects in the G-BLUP model, as reported by Tehseen et al. (2021). However, since no significant 742 

differences were observed between the regression-based G-BLUP and RR methods, and the Bayesian-743 

based models, the assumption of marker effects having equal variances proved to be effective for YR 744 

AUDPC. Therefore, the higher computational time required for the prior densities and shrinkage of 745 

Bayesian models may not be necessary. G-BLUP or RR models have also been reported to offer similar 746 

prediction accuracies as the BC and BL methods for YR and stem rust (Ornella et al. 2012), stem rust 747 

(Rutkoski et al. 2014), and Fusarium head blight in wheat (Rutkoski et al. 2012). 748 
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GP proved to be efficient in predicting the response to YR within the GP panel, with prediction 749 

accuracies of around 0.7 for the equivalent models RR-BLUP and G-BLUP. The inclusion of GWAS-750 

identified QTL as fixed effects in the G-BLUP model led to an improvement in prediction accuracy. 751 

Notably, the inclusion of the QTL with the highest effect was sufficient to achieve this improvement, as 752 

no further gains were observed when additional QTL were incorporated as fixed effects (Fig. S8 A). 753 

Moreover, the inclusion of fixed effects also impacted the MSE, which was reduced by 10.4% when 754 

QYr.uy-2BL.3 was included, compared to the G-BLUP model without it (Fig. S9 B), likely due to their 755 

high effect on the response variable. In simulation studies it was demonstrated that modeling a large-756 

effect locus as a fixed effect was advantageous when the heritability of the trait exceeded 0.5 and the 757 

locus explained more than 25% of the genetic variance (Bernardo 2014). Consequently, studies with real 758 

data have shown that G-BLUP models incorporating fixed-effect markers outperformed standard G-759 

BLUP for traits where the fixed-effect markers explained a substantial proportion of the variation 760 

(Juliana et al. 2017). Similarly, Rutkoski et al. (2014) found that including fixed-effect markers in G-761 

BLUP increased accuracy for quantitative APR to stem rust in wheat. This approach would maximize 762 

genetic gain only if GP was applied to the specific dataset used in their study. However, for new samples, 763 

outcomes from GP using G-BLUP alone could be just as favorable as those obtained by including fixed-764 

effect linked markers. 765 

Conclusions 766 

The results of this study lay the foundation for understanding the genetic basis of the YR 767 

resistance present in a diverse wheat panel and can be directly applied to the development of new locally 768 

adapted cultivars with better YR resistance. We report eight genomic regions associated with field 769 

resistance, none of these regions were identified at seedling stage to race Triticale2015b. All loci 770 

conferred quantitative APR and did not correspond to known Yr genes. QYr.uy-5BS is most likely a 771 

novel QTL. The positions of the other seven QTL were close to previously reported QTL, further studies 772 

are needed to determine whether they represent known or novel QTL. Two QTL on 2D and 3A identified 773 

at the seedling stage to race Triticale2015a did not confer field resistance. Once validated, these QTL 774 

could be used to develop and select varieties with high levels of YR resistance. Similarly, GP was highly 775 

effective (with prediction ability around 0.7) in predicting disease levels, positioning GP as a valuable 776 

tool for selecting parents in breeding programs, as well as for selecting lines. The methodology used for 777 

analyzing both phenotypic field data and genotypic data enabled the identification of genomic regions 778 

associated with YR resistance and the evaluation of GP models which can be applicable to projects on 779 

other wheat diseases and crop species. Moreover, it proved to be highly robust and capable of delivering 780 

high-quality data, which serves as the foundation for any solid breeding strategy. These findings provide 781 

valuable insights into the genetic basis of YR and offer robust tools for enhancing YR resistance 782 

breeding efforts in wheat. 783 
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National Institute of Agronomical Research (INIA) - Resistant Germplasm Development Program 1240 
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Figure S7. Predictive ability expressed as the Pearson's correlation between observed and predicted 1247 

values (A), and mean squared error (MSE, B) of seven genomic prediction (GP) models for yellow rust 1248 

(YR) resistance based on area under the disease progress curve (AUDPC) values in the field evaluations. 1249 

Models compared include Pedigree-based (A-BLUP), G-BLUP, RR-BLUP, Bayesian A (BA), Bayesian 1250 
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B (BB), Bayesian C (BC), and Bayesian LASSO (BL). Results are based on a 10-fold cross-validation 1251 
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Figure S8. Predictive ability expressed as the Pearson's correlation between observed and predicted 1256 

values (A), and mean squared error (MSE, B) of the G-BLUP model prediction for yellow rust (YR) 1257 

resistance based on area under the disease progress curve (AUDPC) values in the field evaluations 1258 

incorporating QTL as fixed effects. The model progressively incorporates up to five QTL identified via 1259 

genome-wide association study (GWAS) as fixed effects. Results are based on a 10-fold cross-validation 1260 

scheme with 100 iterations. Boxplots show the distribution of a dataset through five key summary 1261 

statistics: minimum (lower whisker), first quartile (bottom of the box), median (line inside the box), 1262 

third quartile (top of the box), and maximum (upper whisker). Points beyond the whiskers are values 1263 

outside 1.5 times the interquartile range from the quartiles. 1264 

Figure S9. Quantile–quantile (QQ) plots of observed vs. expected p-values, obtained from the GWAS 1265 

model used to detect QTL for the variables (A) field AUDPC, (B) seedling IT for the Triticale2015a 1266 

race, (C) seedling IT for the Triticale2015b race. 1267 
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