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ABSTRACT

This dissertation addresses source attribution problems, an inferential task that contrasts two

opposing propositions regarding the origin of items. These inferential problems arise in multiple

domains but play a key role in forensic science. Due to the complexity of evidence found in

practical applications, machine learning has been proposed as an alternative to evaluate the

similarity between items when a probabilistic model is not feasible to construct a traditional

Likelihood ratio. Score-based likelihood ratio inference hence provides an alternative framework

to assess the strength of statistical evidence in this context.

Our work focuses on the common and specific source inferential problems and addresses the

dependence structure generated when creating training and estimation sets to develop these

inferential systems. We present resampling plans to remedy these shortcomings and how ensemble

learning approaches could strengthen the current methods. Chapter 2 introduces Strong Source

Resampling (SSR), a source-aware resampling plan for the common source problem. This idea is

extended to Weak Source Resampling (WSR) in Chapter 4. These resampling plans are the basis

for developing base systems combined into a final value of evidence using an ensemble learning

approach proposed in Chapter 2. Chapter 3 focuses on the specific source problem, introducing

synthetic source anchoring, which uses synthetic items as data augmentation, allowing the

development of specific source score likelihood ratios. Lastly, Chapter 4 introduces discrepancy

metrics for score likelihood ratio-based inference that can be used to study model misspecification

and the effects of not accounting for dependence. Simulation results and applications in both

chapters suggest that combining ensemble learning with a source-aware resampling could provide

stronger, more stable statistical evidence value in the correct direction for machine learning and

simple score-based likelihood ratios. Chapter 5 provides general conclusions and some avenues for

further research.
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CHAPTER 1. GENERAL INTRODUCTION

Source attribution problems are a class of inferential tasks where researchers are faced with

opposing propositions regarding the origin of items. There are two types of source attribution:

common source and specific source. Under the common source framework, the origin of items

under consideration is unknown, and the inferential problem is to provide a probabilistic

statement if the items share a common source or not. Under the specific source, the origin of a

subset of items is known with certainty, and the inferential problem is to assess if the remaining

subset of items could have originated from that specific source under consideration [3].

These inferential problems arise in multiple domains but play a key role in forensic science.

An example in ballistic examination allows us to illustrate the relevance and the distinctions

between the types of source attribution problems. Consider the case where bullet casings (items)

were found in two distinct crime scenes. Forensic experts may be asked to assess if the two crime

scenes are related via the source of the bullet, in this case, the firearm used. The evidence can be

analyzed in the absence of the firearm(s) that shot the bullets. This is an example of a common

source problem where the origin of the items is not known.

Following this example, consider that a person of interest was detained after an investigation,

and a firearm registered to the individual was recovered (gun). In this scenario, the expert may

generate bullet casings (items) under controlled conditions; hence, the source-item relationship is

known with certainty for those casings, and experts are tasked with comparing those to the ones

found at the crime scene. Under this specific source scenario, experts aim to link the person of

interest’s firearm to a crime scene.

Professional guidelines have encouraged forensic experts to express their findings in

probabilistic terms to achieve balanced, logical, robust, and transparent communication with

judges and jurors while incorporating uncertainty about their results [6]. Statisticians have
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contributed to this task from different inferential frameworks, including the more prominent

Bayesian, Fiducial, and Likelihood perspectives. The latter is the focus of this dissertation, in

particular, score-based likelihood ratio inference.

The complexity of evidence found in practice has led to new applications in machine learning

to derive scores that can be used to evaluate similarity between items [5, 4, 1, 2], score-based

likelihood ratio inference provides a framework to assess the strength of statistical evidence

supporting opposing propositions. These propositions are often designed to reflect the two

opposing sides in a criminal trial: the prosecution and the defense.

Our work addresses the dependence structure generated when creating training and

estimation sets to develop these inferential systems since sources and items are used multiple

times. We also explore how resampling plans can remedy this situation and how ensembling

learning approaches could strengthen the current methods.

Chapter 2 introduces a source-aware resampling plan for the common source problem, namely

Strong Source Resampling (SSR). Chapter 4 extends this idea to Weak Source Resampling

(WSR). The strong version enforces that sources are used only once, while the weaker enforces

that items are used only once. These resampling plans are the basis for developing weak learners

that are combined into a final ensemble value of evidence.

Chapter 3 focuses on the specific source problem. The lack of available data compounds with

the dependence structure to reduce system performance. We introduced synthetic anchoring,

which used synthetic items as a data augmentation procedure to create learning instances,

allowing the development of proper specific source score likelihood ratios.

Simulation results and applications in both chapters suggest that combining ensemble

learning with a source-aware resampling could provide stronger, more stable statistical evidence

value in the correct direction for machine learning and simple score-based likelihood ratios. While

these results are promising for forensic science, our approach could also be applied to source

inference problems in other domains.



3

To further understand the condition under which this improvement could be observed,

Chapter 4 introduces discrepancy metrics for score likelihood ratio-based inference. This

discrepancy metric can be generally used to study model misspecification, and we focus our work

on the estimation stage for the common source problem. We illustrate how they can be used to

assess dependence’s effect on inference. We provide a simple univariate example that is the basis

for our simulation study. Simulation results suggest that while dependence can alter the inference

drawn, there may be a tradeoff between thinning out the dependence and retaining more learning

instances and that some estimation methods may be more sensitive to dependence.

Lastly, Chapter 5 provides a general conclusion for the dissertation and some avenues for

further research.
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CHAPTER 2. ENSEMBLE LEARNING FOR SCORE LIKELIHOOD

RATIOS UNDER THE COMMON SOURCE PROBLEM

Federico Veneri and Danica M. Ommen

Department of Statistics, Iowa State University

Modified from a manuscript published in

Statistical Analysis and Data Mining: The ASA Data Science Journal

2.1 Abstract

Machine learning-based Score Likelihood Ratios (SLRs) have emerged as alternatives to

traditional Likelihood Ratios and Bayes Factors to quantify the value of evidence when

contrasting two opposing propositions. When developing a conventional statistical model is

infeasible, machine learning can be used to construct a (dis)similarity score for complex data and

estimate the ratio of the conditional distributions of the scores. Under the common source

problem, the opposing propositions address if two items come from the same source. To develop

their SLRs, practitioners create data sets using pairwise comparisons from a background

population sample. These comparisons result in a complex dependence structure that violates the

independence assumption made by many popular methods. We propose a resampling step to

remedy this lack of independence and an ensemble approach to enhance the performance of SLR

systems. First, we introduce a source-aware resampling plan to construct data sets where the

independence assumption is met. Using these newly created sets, we train multiple base SLRs

and aggregate their outputs into a final value of evidence. Our experimental results show that

this ensemble SLR can outperform a traditional SLR approach in terms of the rate of misleading

evidence and discriminatory power and present more consistent results.
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2.2 Background

The common source problem refers to an inferential problem where an expert’s objective is to

provide some probabilistic statement regarding the origin of two items and whether the same

source has generated them. While the common source problem may arise in different disciplines,

it is particularly interesting to the criminal justice system and forensic experts. In forensic

science, the source of the items may refer to a person - in the case of handwriting, the source

refers to the writer -, or an object - in the case of bullets, the source refers to firearms [37, 9].

Regardless of the source type, under the common source problem, experts will assess two

contrasting propositions after observing some data, in the case of forensic analysis: given the

evidence, do these two items share a common unspecified source?

Professional guidelines encourage forensic experts to provide their findings in a balanced,

logical, robust, and transparent way so that judges and jurors can assess the strength of the

evidence presented. To achieve this requirement, an expert should present their results in terms of

probabilities to communicate the measure of uncertainty in their findings. Under this framework,

experts can use likelihood ratios to provide a numerical assessment of the strength of the evidence

[48]. Using likelihood ratios requires formulating a probabilistic model for the joint distribution of

the features that may be challenging, if not infeasible, to estimate, leading researchers to consider

score-based likelihood ratios (SLRs) as an alternative [43, 34]. This score measures the

(dis)similarity between the feature vector of two items, reducing a complex model to a lower

dimensional value [43]. To assess the (dis)similarity, researchers have begun using machine

learning to construct these scores and estimate their conditional density to assess the likelihood of

the score under the contrasting propositions.

Although the SLR framework has shown promise in different areas of forensics (handwriting:

[21, 25, 8, 13], glass: [40, 41], fingerprints: [35, 28, 20], speaker recognition: [19], ink: [36], MDMA

tablets: [3, 4], digital: [17], cameras: [42]), concerns have been raised regarding their behavior and

use in forensic settings [34, 32], and their evaluation has been the subject of extensive research in

the literature [18, 33]. Ishihara and Carne [22] summarize the benefits and shortcomings of using
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score-based methods; using a lower dimensional metric reduces the need for complex models, and

simpler estimation procedures are required to estimate univariate conditional scores. As a

drawback, this dimensional reduction may imply a loss of information and does not address the

typicality of the features.

One less-studied aspect is the role of pairwise dependence structure on developing SLRs. It is

often assumed that experts have an independent sample of the background population from which

they can construct training and estimation sets to develop their algorithms. In practice, pairwise

comparisons are used to create these sets, generating a complex dependence structure often

overlooked or ignored. However, this dependence violates the independence assumption required

by most popular machine learning and density estimation procedures. Our work aims to address

this issue.

To remedy the lack of independence, we introduce a source-aware sampling plan to generate

samples where the independence assumption is met. This sampling plan is the basis for our

proposed ensemble approach for SLRs. By resampling the data, we generate multiple base SLRs

mimicking the role of weak learners in ensemble learning and combine their outputs into a final

score to measure the probative value of the evidence. By ensembling multiple base learners, we

aim to provide stronger and more stable values of evidence, updating prior beliefs in the correct

direction.

To illustrate our approach, we explore forensic handwriting data collected by the Center for

Statistics and Applications in Forensic Evidence (CSAFE) [11] and the CVL database [26].

Traditionally, document comparison has relied on visual inspection to identify individual

characteristics or features. There has been a general call to strengthen the scientific basis and

statistical foundations in criminal justice and to push for more objective means of comparison in

forensic analysis [27], and handwriting analysis has been previously identified as an area to be

strengthened [10]. Previous work has shown the potential of the SLR approach in handwriting

analysis [21, 25], and our work contributes in the same direction. The simulation study suggests

that an ensemble approach can enhance traditional SLRs. The proposed ensemble version
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produced fewer misleading results for known matches at the cost of a slight increase of the rate of

misleading evidence for non-matches, and more discriminatory results overall. Furthermore,

aggregation methods provided more consistent conclusions for the same hold-out evidence. While

these results are promising for handwriting, we believe that our proposed resampling plan and

ensembling approach could also be applied to the common source problem in other domains

outside of forensic sciences where learning instances are generated using pairwise comparisons.

2.3 Handwriting Data

As part of an ongoing project, CSAFE at Iowa State University has collected handwriting

data and made it available to researchers [11] 1. Participants in the study were tasked with

transcribing three prompts across three sessions spaced in time (at least three weeks). Each

prompt is transcribed three times in each session, resulting in nine samples per writer of the same

prompt at the end of the study. For our work, we used the London Letter (CSAFE-LND), as the

sample from the background population to construct our SLR systems. The London Letter is the

longest prompt collected in CSAFE’s study and is a common exemplar used in handwriting

analysis that includes every letter (in both lower and upper case) and numbers [39]. At the time

of our analysis, the databases consisted of 241 writers. To construct validation sets, we used the

CVL database [26]. The original database consists of 311 writers who were asked to transcribe

different texts chosen from literary works in English and German. Traditional feature generation

in questioned documents is based on visual inspection by a trained expert who, based on years of

training and expertise, can identify distinctive traits. We follow an approach developed by

CSAFE authors [12, 2] that decomposes writing samples into graphs, roughly matching letters,

and assigns each into one of 40 clusters. Hence for each document, we obtain a forty-dimensional

vector of cluster counts. To account for documents of different lengths, we transform the vector of

counts into proportions, each entry being between 0 and 1. A zero entry indicates that the writer

did not write any graphs that could be categorized into that particular cluster in the documents.

1The most up-to-date database can be accessed online https://forensicstats.org/data/
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These features have been proven useful for forensic comparison under the common and specific

source problem [25] and the closed-set writer identification problem [12] since writers tend to

reproduce similar writing patterns. Appendix 2.8 illustrates this fact for selected writers.

2.4 Methods

2.4.1 Likelihood ratios and the common source problem

In a criminal case, forensic scientists examine the evidence and present their findings to jurors

(or a judge), who are, in terms, the ones that will combine all the information to deliver a final

judgment. Under a probabilistic framework, the jurors are contrasting two propositions

traditionally referred to as the prosecutor (Hp) and the defense propositions (Hd) conditional on

the evidence observed [1]. Applying Bayes theorem, the ratio of probability can be expressed as:

P (Hp|E)

P (Hd|E)
=

P (E|Hp)

P (E|Hd)︸ ︷︷ ︸
Likelihood ratio

P (Hp)

P (Hd)︸ ︷︷ ︸
Prior odds

. (2.1)

In equation 2.1, the juror’s prior beliefs regarding the propositions are updated via a likelihood

ratio. Forensic experts are advised to present their findings in this manner by scientific and

professional organizations [48]. In the case of forensic handwriting, experts may be presented with

a pair of questioned documents as evidence E = (Ex, Ey) and asked to evaluate if a common

writer wrote the two documents. Under the common source framework [37], we can state the

propositions as follows:

• Hp : Ex and Ey were written by the same unknown writer.

• Hd : Ex and Ey were written by two different unknown writers.

To assess these competing propositions, forensic experts can rely on observed features of the

questioned document. Let ui denoted the features of Ei (i = x, y). If the joint distribution of the

features under each of the competing propositions, denoted by f(ux, uy | Hj) (j = d, p), is known,



9

the likelihood ratio could be computed as:

LR =
f(ux, uy|Hp)

f(ux, uy|Hd)
, (2.2)

and interpreted as follows: a LR > 1 would indicate that the priors are being updated towards

the prosecutor, meaning the evidence supports the prosecutor’s proposition, while a LR < 1

would be interpreted as being updated towards the defense. To estimate the joint probability

model, researchers use a sample of the background population or reference set composed of

information previously collected. Let A denote the reference set, EA
ij an individual item j

(j = 1, . . . , ni) from source i (j = 1, . . . ,m) and Aij the corresponding measurement from item j

from source i. Ommen and Saunders [38] express the forensic proposition and the process that

generated the data available to the expert as a sampling model. They consider that the reference

set A was generated first by randomly sampling m sources from a reference population and,

within each source, sampling ni items. In the case of handwriting evidence, it would be equivalent

to procuring a sample of writers and, within each writer, procuring some handwriting samples

from each of them. The authors denote this sampling mechanism as Ma. Under the prosecutor

proposition, Hp, in terms of sampling, a single new source was obtained from the population, and

two items were subsequently generated Ex and Ey. Under the defense proposition, Hd, two new

sources have been generated, one associated with Ex and another associated with Ey
2. In

essence, the experts provide information that allows the decision maker to infer if two sources

(Hd) or one source is at play (Hp) [37]. Developing a model can be challenging, especially for

complex measurements that often arise in pattern evidence. Even if the model can be formulated,

the estimation could prove challenging [21]. Hence, experts have relied on machine learning

comparison metrics and density estimation procedures to construct SLRs.

2The original common source problem allows for multiple items being generated from the same source, we consider
only one for simplicity
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2.4.2 The score likelihood ratio approach

An alternative to the LR relies on using a score-based likelihood ratio, often involving popular

machine learning algorithms. Adapting the notation presented in [25, 21, 43] , the SLR can be

generically defined as:

SLR(ux,uy) =
g (∆(ux, uy) | Hp)

g (∆(ux, uy) | Hd)
(2.3)

where ∆() is a (dis)similarity metric that allows the comparison of items Ex and Ey via their

observed features ux and uy, respectively, and the conditional density functions g (· | Hp) and

g (· | Hd) allows to assess the likelihood of the score obtained under the alternative propositions.

The numerator (denominator) in equation 4.8 can be interpreted as the likelihood of the score

under Hp (Hd). Hence, an SLR > 1 (SLR < 1) can be interpreted as evidence toward the

prosecutor (defense), resulting in a similar interpretation to likelihood ratios. The development of

an SLR system can then be decomposed into two steps, 1) developing a (dis)similarity function

and 2) estimating the conditional densities of the scores under both propositions. To complete

that endeavor, experts may have at their disposal a reference data set as described in Section

2.4.1, where Aij denotes the measurements from item j and source i. Experts may split the

sources into two data sets, one for developing their (dis)similarity metric and a second set to

estimate the density functions. In each set, pairwise comparisons are created by taking

combinations of items in the reference set.

Without loss of generality, assume that the reference set consists of m sources and n items

within each source for a total of N = n ∗m; hence the total pairings are
(
mn
2

)
. Consider a

particular pairing with two measurements: Aik and Ajl. If the pair came from the same source

(i = j), they are considered a known match (KM), while in the case that the pair do not share the

same source (i ̸= j), they are considered a known non-match (KNM). In total, the comparison

dataset consist of
(
n
2

)
m = nKM known matches and

(
mn
2

)
−
(
n
2

)
m = nKNM known non-matches.

As in Veneri and Ommen [47], we illustrate generating a comparison set using a diagram.

Consider the case of m = 10 sources and n = 3 items. The total number of items is 30, and
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comparisons are 435 (nKM = 30, nKNM = 405). The first arc diagram of Figure 2.1 illustrates all

pairwise comparisons, nodes representing items, and edges comparisons, red for KM and blue for

KNM. Consider the case where the measurements are a vector of dimensions P , indexed by p

(p = 1 . . . , P ). Features can be created for each comparison considering element-wise absolute

differences:

dp(ux[p], uy[p]) = |ux[p] − uy[p]| (2.4)

An aggregated feature can be generated considering the L1 norm of the differences.

dL1(ux, uy) =
P∑

p=1

|ux[p] − uy[p]| (2.5)

For handwriting data, each element in the vector is the proportion of the graphs in the document

that was assigned to one of the P = 40 clusters, and the L1 distance is the sum across all absolute

differences resulting in a 41-dimensional vector that can be used as a feature in a classification

problem. Pairs from the same source (KM) can be considered as positive cases (y = 1), and pairs

from different sources (KNM) as negative cases (y = −1). The Random Forest classifier [6] has

become a popular model in forensic science to construct a similarity metric [25, 40, 41]. Once the

Random Forest classifier is trained, it can be used to map from the features space to a univariate

score between zero and one, r̂f : (R+)
P+1 7→ [0, 1]. We can consider the outputs of the Random

Forest as similarity metrics since larger values (closer to 1) would be associated with pairs from

the same source.

The SLR framework requires estimating the conditional densities to assess how likely the

score is under both propositions. In practice, if the practitioner has available a set for estimation

purposes, the newly trained classifier can be used to compute the score of the pairs in the

estimation set to generate scores for pairs under both propositions:
{
δ
(KM)
i

}nKM

i=1
and{

δ
(KNM)
j

}nKNM

j=1
. This relates to the density ratio estimation problem [44]. Under this framework,

let the scores observed be independent and identically distributed (iid) samples from their

corresponding conditional distribution, meaning:{
δ
(KM)
i

}nKM

i=1

iid∼ g(δ | Hp) and
{
δ
(KNM)
j

}nKNM

j=1

iid∼ g(δ | Hd), (2.6)
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and popular parametric and non-parametric density estimations have been used to convert the

scores to SLRs. The end goal for developing an SLR system is not the estimation of the densities

but finding the boundaries between both propositions and using that information to update the

conclusions. Morrisson [31] distinguishes between generative methods that explicitly model

distribution in each proposition and discriminative methods that focus on the boundary between

propositions. Logistic regressions have been widely used in the latter category, especially in

forensic voice comparison [31]. Outside of the forensic domain, Sugiyama et al. [44] describe using

a probabilistic classifier as a density ratio estimator. The densities of interest can be re written as

g(δ | Hp) = g(δ | y = 1) and g(δ | Hd) = g(δ | y = −1). Considering the ratio and applying Bayes

Theorem to the density ratio results in

g(δ | Hp)

g(δ | Hd)
=

p(y = −1)
p(y = +1)

p(y = +1 | δ)
p(y = −1 | δ)

. (2.7)

The first ratio in the right-hand side of equation 2.7 can be approximated by the proportion in

the sample, meaning:

p(y = −1)
p(y = +1)

≈ nKNM

nKM
. (2.8)

The second ratio consists of the probability of belonging to a class given the score, and a logistic

regression classifier can be used for this purpose to obtain

ˆSLR(ux, uy) =
nKNM

nKM
exp(β0+β1δ), (2.9)

where δ = ∆(ux, uy) is the similarity score obtained using the trained random forest. If the

estimation sample is balanced, meaning nKM = nKNM , the ratio estimator simplifies.

Furthermore, it is a well-established fact in the literature that an imbalanced dataset affects the

performance of classifiers as the one used to construct the (dis)similarity metric [7, 24] and also

affects density estimation procedures [50].

In practice, when developing their models, forensic statisticians can preprocess the data by

down-sampling the majority class before developing their (dis)similarity metric and estimating

the conditional distribution of the scores. This results in known non-matching pairs being

dropped from the sample. We illustrate this in panel B of Figure 2.1, where the comparisons from
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Panel A have been down-sampled to have a balanced dataset of 30 observations from known

matches and 30 for known non-matched pairs. The diagram allows us to illustrate that even if

down-sampling has solved the imbalanced problem, it has not addressed the underlying

hierarchical dependence generated by having sources and items. Popular classification and density

estimation methods assume independence in the data, even when the data are not iid, but this is

not the case in pairwise comparisons where the same source is used in multiple comparisons, and

the same items are used multiple times. In our diagram, source one is used in three known match

comparisons and multiple known non-match comparisons. Furthermore, the first item of source

one is used in four comparisons.

2.4.3 Sampling and ensembling for SLR systems

Utilizing training and testing sets has been broadly adopted as a common practice in machine

learning problems. In forensic statistics, a similar idea has been adopted under the likelihood ratio

framework by splitting the data used for estimating the joint probability model and for assessing

the performance [29]. In the case of SLR evaluation, scores that do not require an additional

training stage (e.g., distance-based score) have been featured more prominently (e.g.:[3, 18]).

When a new metric is trained using machine learning methods, three sets are required for

training, estimation, and validation [47]. The training set is used to develop the (dis)similarity

score, an estimation set to estimate the conditional density functions, and a separate validation

set to compute the performance. Different authors have addressed how these sets should be

constructed. For the common source, Neumann et al. [34], and Ommen and Saunders [38]

proposed a thought experiment to establish how the estimation sets could be constructed for a

distance-based metric. Under the prosecutor’s proposition, the sampling distribution can be

studied by considering a large sample of sources and comparing a single pair of items from each

source to create a sufficiently large set of independent scores. Under the defense proposition, the

distribution of the score can be studied by sampling a large number of independent pairs of

sources and comparing an item from the first source to an item from the second source to create a
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sufficiently large set of independent scores. In practice, however, pairwise comparison is used to

generate learning instances, inducing a dependency among scores. This process generates a

dataset from the background sample A that results in the same source and items used for

multiple comparisons, as is the case of item one of source one in Panel A and B of Figure 2.1.

Following the principled way outlined by previous authors, it would be desirable for each

source to be used only once, either as a known match or a known non-match comparison. A

weaker constraint would be to use items only once, but that would disregard the hierarchical

structure of the data. We implemented Strong Source Resampling (SSR, Section 2.4.3.1) to

emulate the sampling process suggested by the authors and impose this stronger constraint,

ensuring that items and sources are used only once. We illustrate the result of applying SSR to

our initial example in panel C of Figure 2.1. While this sampling step remedies the dependence

structure, the drawback is a drastic loss of information. To make the most out of the data, we

propose using our resampling approach as a preprocessing step within an ensemble learning

framework. We propose to train base score-likelihood ratios, which fulfill the role of weak learners,

and combine their outputs into an ensemble score likelihood ratio (ESLR, Section 2.4.3.2).

2.4.3.1 Strong Source Resampling

To remedy the dependence structure, we introduced a source-aware sampling plan we denote

as Strong Source Resampling (SSR). Our approach can be classified as a resampling plan, a

category including methods like a jackknife, cross-validation, and bootstrap sampling, among

others [14]. Among these methods, our proposed method shares the most similarities with

bootstrap sampling.

Bootstrap sampling [15] was proposed to study the properties of statistics that can be

considered a function of an unknown distribution F by using its empirical counterpart F̂ . In

machine learning, it has become a popular approach to emulate the process of generating new

training data [23]. A particular application is bagging, a special case of ensemble learning, where

sampling without replacement is used to create new data to train base learners and aggregate
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Figure 2.1 Pairwise comparison and sampling algorithms

Note: Nodes in the diagram represent the items in the set, indexed by labels to indicate the source. Edges represent
comparison for KM (red) and KNM (blue) under different sampling schemes. All denote all potential comparisons,

DS denotes down-sapling, and SSR Strong Source Resampling algorithm
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their results into a final prediction [5]. By applying bootstrap sampling, the authors approximate

the ideal scenario of having independent base learners that when combined would exhibit an

increased performance [49]. Our approach is similar in that we try to build weak independent

learners by taking a source-aware sampling approach that respects the data’s hierarchical

structure of sources and items.

Let A denote the original sample from the population of interest. We assume that information

about items has been collected, their features created, and the information about their sources is

known with certainty. Our initial proposed approach starts by constructing all potential pairwise

comparisons. We denote this as the candidate pool of comparison, and the set of independent

comparisons can be constructed by iterative removing sources selected in the previous step. The

pseudo-code in Algorithm 1 illustrates our approach.

Algorithm 1 Strong Source Resampling Algorithm (SSR)

Construct all pairwise comparisons available.

while nKM > 0 & nKNM > 0 do

Sample randomly one KM pair to be used in the comparison set.

Remove all pairs in the dataset involving sources selected in the previous step from the

candidate pool

Sample randomly one KNM pair to be used in the comparison set.

Remove all pairs in the dataset involving sources selected in the previous step from the

candidate pool

end while

The pseudo-code depicted in 1, while didactic, implies more computing time if the sample is

larger. A faster approach can be implemented as in Algorithm 2 if there are at least two items per

source. This approach is not only more efficient but also avoids the step of constructing all

possible comparisons in the data, which can become challenging as the data increases.

Algorithm 2 Fast Strong Source Resampling Algorithm

Split sources into three sets: set 1, set 2, and set 3.

For each source in set 1, sample two items. This will generate the KM pairs.

For each source in set 2, sample one item.

For each source in set 3, sample one item.

Pair the items from two previous steps to generate the KNM pairs.
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The result of both algorithms is a new set A∗ that will be used in the following steps. While

SSR and its faster version can be used interchangeably, we will use the second implementation for

computational efficiency.

The ensemble learning literature has acknowledged that having more diverse learners results

in better model performance under certain conditions. As summarized by Zhou [49], base learners

should be both diverse and accurate simultaneously. While we cannot make any claims regarding

the necessary conditions that would result in increased performance for ensembled SLR, since it

would depend on the density estimation method used and if a scoring function is trained, we

provide some back-of-the-envelope calculations in Appendix 2.10 to support some intuition on the

effect of data composition in terms of the numbers of sources and items.

In a broad sense, the resampling plan will be mainly constrained by the total number of

available sources. The total number of learning instances is limited to 4× ⌊m/3⌋. The number of

items within sources influences the proportion of original instances used, hence the diversity of

newly generated data.

2.4.3.2 Base Score Likelihood Ratio and ensembling

The proposed resampling step is the cornerstone of our ensemble approach, and we use the

algorithm to create sets where the independence assumption is met to develop a “base score

likelihood ratio” (BSLR). The BSLRs fulfill the same role as weak learners in ensemble learning.

Algorithm 3 presents the pseudo-code for our approach. If the (dis)similarity metric requires a

training stage, a training set is generated using SSR and the metric developed. For the estimation

stage, the SSR is also used to generate a data set to study the conditional densities or compute a

ratio estimator. In both stages, the data is generated independently.

In the metric training stage, A∗ will provide a balanced independent data set of size

4× ⌊m/3⌋, where sources are used to estimate ∆̂(m) a new (dis)similarity metric. To study the

conditional distribution of the scores (Equation 2.6), a new set A∗ is generated, and predictions

are made for known matches and known non-matches:
{
δ̂
(KM)
i

}2×⌊m/3⌋

i=1
and

{
δ̂
(KNM)
j

}2×⌊m/3⌋

j=1
.
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These predictions are used to estimate the conditional distribution of the score or a density ratio

estimator.

The combination of the (dis)similarity metric and its estimated conditional distribution (or

ratio) constitute a single BSLR. This procedure is repeated M times, resulting in M BSLR

systems that can be aggregated into a final score; hence our approach can be classified as a

parallel ensemble method.

Algorithm 3 Ensemble Score Likelihood Ratio (ESLR) System

for m=1:M do

if ∆(·, ·) requires training. then
Use SSR to generate a pseudo training set.

Train a comparison metric.

end if

Use SSR to generate a pseudo estimation set.

Predict a comparison score for all cases of the estimation set.

Estimate conditional densities (or ratio estimator).

Store comparison metric and estimated densities or ratio estimator.

end for

Each BSLR is a function that maps from the features space to [0,∞). For our work, we

consider the base-ten logarithm of the SLR meaning, BSLR(ux, uy) : (R+)
P+1 7→ R. We consider

three naive approaches to combine their information into a final score: mean, median, and

majority vote 3.

The mean ESLR consists of averaging the M numeric outputs into a final value,

Mean.ESLR =
1

M

M∑
i=1

BSLR(i)(ux, uy) (2.10)

To reduce the effects of outliers, we explore the median ESLR as an aggregator,

Median.ESLR = median
{
BSLR(i)(ux, uy)

}M

i=1
(2.11)

3An extra optimization steps can be done to assign differential weights to each base learner and will be addressed
in the future.
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Our third aggregator, the majority vote, considers the output of each BSLR and maps them

into a verbal scale that reflects the strength of the evidence. The most voted category is

considered the final outcome. For our work, we consider a ten-level verbal category based on the

log10 scale presented in Evett et al. [16].

Let BSLRC(·, ·) denote a base SLR system where the log10 output has been categorized into

one of the ten verbal categories,BSLRC(ux, uy) : (R+)
P+1 7→ {B10}, where B10 denotes the ten

verbal categories4:

B10 ≡ {(−∞,−4) , (−4,−3) , (−3,−2) , (−2,−1) , (−1, 0) , (0, 1) , (1, 2) , (2, 3) , (3, 4) , (4,∞)}

(2.12)

We consider V.ESLR to denote the aggregated output using majority voting,

V.ESLR = majority vote
{
BSLR

(i)
C (ux, uy)

}M

i=1
(2.13)

2.4.4 Evaluation Metrics for SLRs

SLRs provide an alternative way to present information to jurors and judges in a criminal

case. In this context, specific performance characteristics that may not be part of the traditional

machine learning toolbox are more relevant. In a criminal case, we are interested in evaluating if

the information provided will lead jurors in the correct direction, obtain a measure of the size of

the error committed, and if the evidence presented is strong enough. In addition, we would aim to

develop reliable methods. If the training and estimation sets are altered, the conclusion reached

for the same validation pair should be similar. Several popular metrics associated with these

performance characteristics are discussed in [29], and we present detailed notation in Appendix

2.9.

In the case of an SLR system, a value larger than one (zero in the log10 scale) indicates that

the evidence supports the prosecutor’s proposition, while the opposite indicates that the evidence

4A more detailed discussion of the categories, and their verbal qualifier can also be found in [18, 47]
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Figure 2.2 Forensic confusion matrix

supports the defense’s. In the case of a known match (known non-match), evidence toward the

defense (prosecutor) is considered misleading. Over the validation set, we compute the rate of

misleading evidence for known matches (RMEKM ) as the proportion of cases where the

prosecutor proposition is correct, but the system indicates the opposite, and the rate of

misleading evidence for known non-matches (RMEKNM ) as the proportion of cases where the

defense proposition is correct but the system output supports the prosecutor.

To bridge the gap in nomenclature between forensic and machine learning performance

metrics, we present an extension of the confusion matrix for classification problems (Figure 2.2).

If the KM are considered “positive”, the rate of misleading evidence for KM is, in essence, the

false negative rate, and the rate of misleading evidence for KNM is the false positive rate.

However, the difference in nomenclature arises because there is no clear assignment of the positive

label in criminal justice.

SLR systems should also provide strong probative value in the correct direction. This

translates to outputting “large” (“small”) values for known match pairs (known non-matches)

above (below) a given threshold CKM (CKNM ). While there is no consensus regarding these

thresholds, we illustrate this performance characteristic by taking CKM = 100 and

CKNM = 1/100, defining three previously used regions in the literature [21]. Figure 2.2, depicts

these regions that can be interpreted as strong evidence for the defense, inconclusive, and strong

evidence for the prosecutor. These categories are a less granular version of the 10-category scale

introduced for the majority voting scheme.
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As an aggregated performance measure, we consider the log-likelihood-ratio cost function

(Cllr) [30]. This cost function penalizes strong conclusions in the incorrect direction, resulting in

smaller values of the metric being associated with better-behaved systems.

To assess reliability, consider the case of S systems developed using the same methodology,

but the learning data available is modified somehow. The variability in our problem is due to

splitting the sources and downsampling in the traditional SLR approach and the SSR step in our

proposed Ensemble SLR approach. To assess the method’s reliability, we trained multiple systems

(SLR and ESLR) and compared their conclusions when faced with the same holdout evidence

using a distance-based and a consensus metric (Section 2.4.5 provides additional details about the

simulation strategy). In the case of a system that outputs a numeric value, we consider the

average Euclidean distance in the log10 scale to the mean evidence value obtained for pair t

across the S systems. A better-behaved system would present less variability in its results,

associated with a smaller average distance.

For systems that output a categorical value or if their results are mapped into the categorical

scale, we consider a consensus metric that penalizes more heavily methods that generate more

polarized results by considering the ordinal nature of the ten-level verbal categories. Additional

details about this metric and its computation are presented in Appendix 2.9.

2.4.5 Simulation strategy

To illustrate our approach, we focus on forensic handwriting data under the common source

problem. We used CSAFE’s London Letter as the reference sample and the CVL data to construct

validation sets; we considered a Random Forest as a similarity metric and a logit-based density

ratio estimator (Section 2.4.2). In each iteration of our experiment, we develop a traditional SLR

- which will serve as our baseline - by splitting the sources into training and estimation sets and

applying a down-sampling step to obtain a balanced sample. We use Strong Source Resampling

(SSR) in each iteration to construct 50 base SLRs (M = 50) that will be aggregated into a final

Ensemble SLR. We present three aggregation approaches: mean, median, and majority vote. We
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Figure 2.3 Proposed workflows

introduce two diagrams in Figure 2.3 to summarize and compare our proposed workflow. A new

validation set was generated for each iteration by sampling 1000 known matches and 1000 known

non-matches from the CVL data set, and used to compute performance metrics for the four

proposed methods (SLR, Mean.ESLR, Median.ESLR, V.ESLR). We repeated this process five

hundred times to obtain a sample of performance metrics. We consider this our first experiment.

To evaluate the agreement, we run a second experiment. Using the same ensembled SLR and

SLRs trained for the first experiment, we held the validation set for the first iteration fixed across

iterations. If the method is reliable, we expect to see the same conclusion reached for the same

pair in the validation set, even if the training and estimation data is changed.

2.5 Results

We present descriptive statistics for the performance metrics across iterations in Table 2.1 for

experiment 1. Traditional SLR delivers a higher rate of misleading evidence for the KM on

average than the ensemble approaches (approximately two percentage points more), with the

mean ensemble providing the lowest rate. However, our ensemble approach presents about half a

percentage point higher rate of misleading evidence for known non-matches. Figure 2.4 further
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illustrates the distribution of these performance metrics and shows that their distribution is

slightly more spread for traditional SLR.

Regarding strong evidence or discriminatory power, mean and median Ensembled SLR

presented larger discriminatory power statistics for known and known-non matches. On average,

the mean ensemble achieves almost twice the discriminatory power compared to its traditional

counterpart. The majority voting presented smaller discriminatory power for known matches but

was on par with the median aggregation for known non-matches, above the conventional approach.

As before, we present Figure 2.5 to illustrate the distribution of the performance metrics

across iterations of our experiment. Traditional SLR failed to achieve a positive value for

discriminatory power in most iterations, the average being driven by outliers in the case of Known

Matches. The mean aggregator may be subject to a similar issue, although to a smaller degree.

The median and majority voting achieve similar performance more consistently. This result

suggests that while ensembling can improve performance, some aggregators are more robust.

The last lines of Table 2.1 present the cost functions, the aggregated performance metric for

SLR systems that output a numeric value. The mean ensemble performs better than its median

and traditional counterparts, achieving smaller costs on average. This reduction seems to be due

to lower costs for known matches (Figure 2.6).

Table 2.2 presents descriptive statistics for the performance metric for experiment 2, while

Figures 2.8 and 2.7 provide additional information on their distributions. In terms of the average

distance in the log10 scale, the ensemble methods are associated with smaller values, indicating

that the numeric conclusion reached tends to be more similar for the ensemble than the

traditional SLR approach. The consensus statistic provides a numeric summary of the level of

agreement in the verbal scale and allows for comparing all aggregators. A value of one indicates a

perfect agreement, while smaller values indicate deviations. Our ensemble SLRs tend to achieve

consensus more consistently than the traditional approach. The classic SLR presents smaller

consensus metrics on average, and the results are less concentrated than our ensemble approach.
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Figure 2.4 Rate of Misleading Evidence by Match

Figure 2.5 Discriminatory Power by Match
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Figure 2.6 Cllr and Cost by Match

2.6 Conclusions

Machine learning-based SLRs are gradually playing a more relevant role in the forensic

statistics community as an alternative to feature-based likelihood ratios to compute the probative

value of evidence.

Under the common source problem, the current procedure to generate training an estimation

set relies on creating pairwise comparisons from a sample from the background population. These

comparisons are used as instances for statistical learning; however, they can’t be considered

independent since items (and source) are used in multiple comparisons.

Independence is a common assumption made in popular machine learning and density

estimation methods, both cornerstones in developing machine learning-based SLRs. Our work

introduces a sampling algorithm to remediate the complex dependence structure in the common

source problem. The sampling step can be used as pre-processing to create new samples that will

serve as training and estimation sets. While we are unable to provide sufficient conditions where

the resampling will guarantee an improvement, Appendix 2.10 provides some intuition on the
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Figure 2.7 Average distance in the log10 scale
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Figure 2.8 Consensus metric
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effects of the composition of the original sample. Increasing the number of sources, rather than

items within sources, will contribute to more independent learning instances. The number of

items within sources contributes to a lesser extent, increasing the diversity of the samples

generated. This intuition could potentially be used to guide data collection efforts in the future.

We propose the use of our sampling algorithm as a resampling plan to generate multiple base

SLRs that serve as weak learners, learning from a partial view of the data where assumptions are

met, and aggregate their outputs into a combined result we denoted as an Ensembled SLR.

Our simulation result suggests that our sampling and ensemble approach is not detrimental to

SLR systems; ensemble learning can enhance the performance of traditional SLRs. For the

handwriting data used in our experiment, ESLRs presented more discriminatory power and

reduced the rate of misleading evidence for known matches at the cost of a slight increase in the

rate of misleading evidence for known non-matches.

We explored three aggregation methods: mean, median, and majority vote, to combine base

SLRs. Our result suggests that the aggregating method is relevant to the performance metrics.

While the mean ESLR presented better results, the median and majority voting aggregators

achieved comparable results and did so more consistently. The current aggregation methods

followed a similar spirit as bagging but can be considered näıve. In future work, we plan to

explore assigning differential weights to each base learner according to their performance on an

optimization set or using a sequential procedure, analogous to boosting.

Our secondary concern was assessing if an ensemble approach could result in more stable

conclusions for the same hold-out sets, as traditional SLRs are sensitive to perturbation in the

training and estimation sets [47].

To assess this, we performed a second experiment which showed that the ensemble approach

could provide more consistent conclusions for the same hold-out evidence. This is a less studied

characteristic of the SLRs system but is highly relevant for criminal justice.

While our work illustrates ensemble learning to improve traditional Score Likelihood Ratio

systems for forensic handwriting, our approach is not limited to handwriting analysis or problems
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in the forensic sciences. It could be feasibly applied to other domains for the common source

problem or situation where learning instances are generated based on pairwise comparisons.
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2.8 Appendix A: Select descriptive statistics and figures

This appendix presents the reader with selected figures to illustrate the results of the feature

creation process. Figure 2.9 presents the raw cluster proportions for a subset of writers in the

CSAFE-LND data set to illustrate how these features can be used to characterize writers. Each

dot represents the cluster proportion for a particular sample writing for one of three writers:

writers 12, 66, and 100. Even if some variability exists within writers, the difference between

them could be considered a relevant feature for the common source problem. While writer 66

(depicted in green) tended to write characters more frequently assigned to clusters 26 and 27,

writer 100 tended to write characters in clusters 34 and 11 relative to the other writers selected.

Figure 2.9 Raw cluster proportion for selected writers

Using the same writers and their prompts, the first panel in figure 2.10 depicts features

created using all possible pairwise comparisons for the subset of writers as described in Section

2.4.2. Different source cases (KNM) present larger absolute differences than comparisons from the

same source (KM) across the different clusters. The second panel depicts the L1 distance as an

aggregated feature used in the comparisons. Comparison from known non-matches exhibits larger

distances than pairs from the same source.
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Figure 2.10 Features for known matches and known non-matches for selected writers

2.9 Appendix B: Performance metrics in Forensic science

This appendix presents the interested reader with the notations and formulas for popular

performance metrics in forensic statistics and introduces the use of consensus metrics and

distance for measuring reliability in forensics. Notation is adapted from [47]. Assume that the

validation set consists of T pairs of items, nKM being from the same source and nKNM from

different sources (T = nKM + nKNM ). Let SLRt denote the output of the SLR or ESLR system

for pair t and let yt a numeric label for pair t, same source or known match (yt = 1) and different

source or known non-match (yt = 0). Also, let 1{} denote the indicator function.

The first performance metric refers to the rate of misleading evidence, which will be

independently computed for known and known non-matches. A value smaller than one in the real

scale (or smaller than zero in the log10 scale) would be considered misleading for known matches,

and the opposite holds for known non-matches. Using the previously introduced notation, we

compute the rates as follows:

RMEKM =

∑T
t yt1{SLRt<1}∑T

t yt
=

∑T
t yt1{SLRt<1}

nKM
(2.14)

RMEKNM =

∑T
t (1− yt)1{SLRt>1}∑T

t (1− yt)
=

∑T
t (1− yt)1{SLRt>1}

nKNM
(2.15)
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The discriminatory power aims to answer if the system is providing “strong” evidence, with

strong referring to a pre-established threshold. In the case of a known match, ideally, SLRt would

be larger than CKM , and for known non-matches, we would expect to see SLRt smaller than

CKNM . The discriminatory power can be computed as:

DpKM =

∑T
t yt1{SLRt≥CKM}∑T

t yt
=

∑T
t yt1{SLRt≥CKM}

nKM
(2.16)

DpKNM =

∑T
t (1− yt)1{SLRt≤CKNM}∑T

t (1− yt)
=

∑T
t (1− yt)1{SLRt≤CKNM}

nKNM
(2.17)

As in Hepler et al. [21], we set CKM = 100 and CKM = 1/100 as cut-off values for illustration

purposes. These values define three regions that can be considered as strong support for the

defense, inconclusive and strong support for the prosecutor (Figure 2.2).

The previous metrics provide a partial view of the model’s performance in terms of correct

direction and strength of conclusions. An aggregated measure is given by the

Log-Likelihood-Ratio Cost Function (Cllr). The Cllr is a popular aggregated metric used in

forensic voice comparisons [30]. The function introduces an increasing penalization for conclusions

leading to wrong conclusions with stronger output values. As in previous metrics, the cost

functions are computed for known and known not matches, but the average is presented as a

combined total cost metric.

CllrKM =
1

nKM

T∑
t=1

ytlog2

(
1 +

1

SLRt

)
(2.18a)

CllrKNM =
1

nKNM

T∑
t=1

(1− yt)log2(1 + SLRt) (2.18b)

Cllr =
1

2
(CllrKM + CllrKNM ) (2.18c)

In terms of interpretation, a smaller cost is associated with a better-performing system.

Lastly, we computed a distance-based and a consensus metric to assess the reliability of the

methods. Let SLRts be the log10 evidence value obtained for the pair t and system s

(s = 1, . . . , S), and let dt the within-pair average distance for comparison t, computed as

dt =
1

S

S∑
s=1

(SLRts − SLRt.)
2 (2.19)
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where SLRt. =
1
S

∑S
s=1 SLRts denotes the mean value obtained for the pair t across the S

systems. Since the evidence under consideration remains the same across SLR systems, more

reliable methods would output similar values; hence a smaller within-evidence distance would

indicate that the conclusions reached in the log10 scale are similar.

In the case of a system that outputs verbal categories (or their outputs are mapped into

verbal categories), specific performance metrics can be used to measure agreement. Let SLR∗
Cts

denote the output expressed in one of the ten level verbal categories of B10 for pair t and system

s, where consecutive numeric values were attached to each category as in a Likert-type scale. For

instance, consider the case of scale ranging from Very Strong evidence for the defense

(SLR∗
Cts = 1) to very strong evidence for the prosecutor (SLR∗

Cts = 10). In this context, SLRCst

can be considered as a discrete variable, and its entropy H(t) or consensus Consensus(t) can be

computed for a pair t which has been assessed over S systems. This information theory metric

has been previously discussed in [45, 46]. The Shannon entropy is given by

H(t) =

S∑
s=1

p(SLR∗
Cts) log2 p(SLR

∗
Cts) (2.20)

where p(SLR∗
Cts) is the probability of observing the particular category for pair t across the S

systems.

While the Shannon entropy would give a measurement of the agreement of the conclusions

reached by the different systems when faced with the same pair t, a value of zero associated with

a complete agreement, it does not account for the ordinal nature of the conclusion. Tastle and

Wierman [45, 46] proposed a consensus metric to account for the ordering by computing:

Consensus(t) = 1 +
S∑

s=1

p(SLR∗
Cts

) log2

(
1−

∣∣SLR∗
Cts
− SLR∗

Ct.

∣∣
range(SLR∗

C)

)
(2.21)

where SLR∗
Ct. and p(SLR∗

Cts) denote the mean and probability as before, and the range(SLR∗
C)

indicates the range of the mapping used to assign numeric values to the verbal scale. The

consensus metric is upper bounded by one, in the case of a total agreement, and lower bounded

by zero, in the case of polarization. To compare Shannon’s entropy and the consensus metric, it is

useful to consider a dissent metric (Consensus(t) = 1−Dissent(t)), where a value of zero is
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associated with complete agreement. Figure 2.11 presents ternary plots for simulated proportions

using the shorter, three-level scale for illustration purposes.

The entropy metric returns higher values, associated with a larger disagreement, along the

center of the diagram. This area in the diagram is associated with a more uniform distribution

between the three potential categories. In the case of the dissent metric, higher values are

associated with more polarized results in the lower part of the diagram, with half the systems

outputting values for the defense and the other half towards the prosecutor, not the uniform case.

For our main results, we used the consensus metric (last panel of Figure 2.11). A value of one is

associated with complete agreement, represented in the vertices of the ternary diagram, where all

systems developed agree in their categorical conclusion.

2.10 Appendix C: Sample size constraints

This appendix presents some intuition on how the original data composition in terms of

sources and items could affect the performances of the ensemble approach for score likelihood

ratios. Let m denote the number of sources in the set A, with n items available for each source.

The total number of pair is given by
(
mn
2

)
, the total number of known match pair nKM =

(
n
2

)
m

and the total number of known non-matches
(
mn
2

)
−
(
n
2

)
m = nKNM .

For the calculation, we used our second implementation of the resampling algorithm

(Algorithm 2). Under this implementation, the number of sources is split into thirds,

m∗ = ⌊m/3⌋. For known matches, two items are sampled randomly from n without replacement;

hence, the total number of KM learning instances is 2×m∗. For known non-matches, one item is

sampled randomly from n for each selected source; hence, the total number of KNM learning

instances is also 2×m∗. The new learning sample is balanced and of size 4×m∗. The resulting

percentage of data use will differ in terms of known and not known matches. Table 2.3 presents

different selected scenarios to illustrate these results. In summary: the number of sources will

affect the total number of learning instances used in the sample, while the number of items within
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sources will impact on the diversity of the sample as measured by the percentage of cases from

matches used.

In all our scenarios, less than 2% of the original data is used. Bootstrap sampling provides a

natural benchmark in this regard. For large sample size, the number of times an original case is

selected is distributed Poisson(λ = 1), leading to the conclusion that approximately 36.8% of the

learning instances is not used to train a particular weak learner [5], hence the weak learners can

be more variable under Strong Source Resampling than bootstrap.
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Table 2.1 Performance Metrics - Experiment 1
Metric Statistic SLR Mean ESLR Median ESLR V. ESLR

RME KM Mean 14.1450 12.6382 12.7242 12.8096

Median 14.1000 12.6000 12.7000 12.8000

Sd 1.0818 0.9984 1.0122 1.0155

RME KNM Mean 2.3804 2.8772 2.8534 2.8280

Median 2.4000 2.9000 2.9000 2.8000

Sd 0.4877 0.5248 0.5244 0.5240

DP KM Mean 3.1854 6.1000 3.1776 2.4538

Median 0.0000 5.5000 2.8000 2.1000

Sd 6.9566 3.2327 1.7540 1.4937

DP KNM Mean 0.0002 0.9438 0.2806 0.2562

Median 0.0000 0.5500 0.1000 0.1000

Sd 0.0045 1.4185 0.4165 0.3935

Cllr Mean 0.2996 0.2768 0.2796

Median 0.2984 0.2767 0.2794

Sd 0.0163 0.0149 0.0146

Cllr KM Mean 0.4267 0.3892 0.3918

Median 0.4262 0.3886 0.3911

Sd 0.0341 0.0274 0.0261

Cllr KNM Mean 0.1725 0.1644 0.1674

Median 0.1727 0.1635 0.1670

Sd 0.0208 0.0170 0.0163

Table 2.2 Performance Metric - Experiment 2
Metric Statistic SLR Mean ESLR Median ESLR V.ESLR

Conensus Mean 0.9816 0.9916 0.9923 0.9922

(10 verbal scale) Median 0.9948 1.0000 1.0000 1.0000

Sd 0.0247 0.0197 0.0189 0.0190

Average Distance Mean 0.0183 0.0036 0.0036

Median 0.0147 0.0035 0.0035

Sd 0.0104 0.0008 0.0008
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Table 2.3 Sample size implications
m n Total nKM nKNM m∗ 4×m∗ %nKM %nKNM

10 10 4950 450 4500 3 12 1.3333 0.1333

10 20 19900 1900 18000 3 12 0.3158 0.0333

10 30 44850 4350 40500 3 12 0.1379 0.0148

10 50 124750 12250 112500 3 12 0.0490 0.0053

50 10 124750 2250 122500 16 64 1.4222 0.0261

50 20 499500 9500 490000 16 64 0.3368 0.0065

50 30 1124250 21750 1102500 16 64 0.1471 0.0029

50 50 3123750 61250 3062500 16 64 0.0522 0.0010

100 10 499500 4500 495000 33 132 1.4667 0.0133

100 20 1999000 19000 1980000 33 132 0.3474 0.0033

100 30 4498500 43500 4455000 33 132 0.1517 0.0015

100 50 12497500 122500 12375000 33 132 0.0539 0.0005

200 10 1999000 9000 1990000 66 264 1.4667 0.0066

200 20 7998000 38000 7960000 66 264 0.3474 0.0017

200 30 17997000 87000 17910000 66 264 0.1517 0.0007

200 50 49995000 245000 49750000 66 264 0.0539 0.0003

300 10 4498500 13500 4485000 100 400 1.4815 0.0045

300 20 17997000 57000 17940000 100 400 0.3509 0.0011

300 30 40495500 130500 40365000 100 400 0.1533 0.0005

300 50 112492500 367500 112125000 100 400 0.0544 0.0002
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CHAPTER 3. SYNTHETIC ANCHORING UNDER THE SPECIFIC

SOURCE PROBLEM
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Modified from a manuscript submitted to Statistical Analysis and Data Mining: The ASA Data

Science Journal

3.1 Abstract

Source identification is an inferential problem that evaluates the likelihood of opposing

propositions regarding the origin of items. The specific source problem refers to a situation where

the researcher aims to assess if a particular source originated the items or if they originated from

an alternative, unknown source. Score-based likelihood ratios offer an alternative method to

assess the relative likelihood of both propositions when formulating a probabilistic model is

challenging or infeasible, as in the case of pattern evidence in forensic science. However, the lack

of available data and the dependence structure created by the current procedure for generating

learning instances can lead to reduced performance of score likelihood ratio systems. To address

these issues, we propose a resampling plan that creates synthetic items to generate learning

instances under the specific source problem. Simulation results show that our approach achieves a

high level of agreement with an ideal scenario where data is not a limitation and learning

instances are independent. We also present two applications in forensic sciences -handwriting and

glass analysis- illustrating our approach with both a score-based and a machine learning-based

score likelihood ratio system. These applications show that our method may outperform current

alternatives in the literature.
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3.2 Introduction

Source identification problems appear in multiple domains under different names. Assessing

the likelihood that particular samples come from a specific batch in manufacturing, verifying

whether a transaction was initiated by someone other than the authorized user, establishing if

biometric data collected belong to a specific person, or if the person of interest’s gun can be

associated with a crime scene. All these examples can be considered source identification

problems.

Regardless of the domain, source problems can be formalized as a statistical inferential

problem where the researcher aims to contrast opposing propositions regarding the origin of some

items (or data). Traditionally, in forensic statistics, these opposing propositions have been

denoted as the prosecutor (Hp) and defense (Hd) propositions.

Depending on the content of propositions, the problem can be classified into common or

specific source problems [33, 31, 42, 15]. In the context of common source problems, presented

with items of unknown origin along with their associated features, the propositions seek to

contrast what is more likely: that items were generated by the same unknown source (Hp) or that

they were generated by two different unknown sources (Hd). Under the specific source problem, a

comparison is made between items from unknown origin (recovered items) and items generated by

the same known source (control items). The proposition addresses whether the recovered items

were generated by the specific source associated with the control items (Hp) or if they were

generated by an alternative unknown source (Hd).

When probabilistic models can be formulated for the features of the items, likelihood ratios

can be used to compare and contrast propositions and evaluate which is more likely given the

information collected. In forensic sciences, while professional guidelines have endorsed this

approach [43], formulating a probabilistic model can be challenging or infeasible, leading

researchers to focus on developing measures of similarity and constructing score-based likelihood

ratios to contrast propositions [38].
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Researchers have mainly focused on the common source rather than specific source problem

which is particularly relevant in criminal justice where the source under consideration may be

associated with the person of interest or a crime scene.

Consider an example in ballistics examination to illustrate the difference. A bullet casing

(recovered item) was discovered at the crime scene, and later, a person of interest with a firearm

(source) was detained. Ballistic experts may test-fire the person of interest’s gun and keep the

new casings (control items). Experts would then examine the markings (features) from the

control and recovered items to assess the likelihood of the propositions- whether the casing

originated from the person of interest’s gun (Hp) or an alternative, unknown gun (Hd). This

would constitute a specific source problem; another scenario would be if there were no particular

gun under consideration, and experts were comparing two recovered items, potentially from two

different crime scenes, to evaluate if there was a common firearm linking both crimes.

While both problems are similar, they address fundamentally different questions. From a

statistical standpoint, the inference conducted under the specific source problem is conditioned to

a source, while under the common source is unconditioned. As noted by Ommen et al. [33],

exchanging the paradigms may result in an incorrect interpretation of the results, even in opposing

conclusions. In the case of the score-based likelihood ratio systems, Neuman et al. [31] provide

evidence that using the common source systems tends to overestimate the specific source results.

Even if the correct paradigm is followed, research may face additional challenges adapting new

developments in machine learning and density estimation to score-based likelihood ratios.

Conditioning to a specific source implies developing a model for each case, resulting in an

increased computational burden and limiting the available data. Further, researchers construct

pairwise comparisons using the same items multiple times to develop their system, resulting in a

complex dependence structure.

In a previous study, Veneri and Ommen [41] introduced a resampling plan as a pre-processing

step to remedy the dependence structure and enhance the performance of score-based likelihood

ratio performance for the common source problem. Our current work extends this approach by
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introducing a resampling plan to the specific source problem. By creating synthetic items, we

generate the necessary large training datasets to develop synthetic anchored specific source

score-based likelihood systems.

Using a simulation study, we compare our proposed approach to a theoretically correct system

developed under ideal conditions, where an extensive collection of independent scores is available.

Results show that while the output from both methods is not perfectly exchangeable, they

generally tend to agree. Notably, our proposed method tended to produce results that favor the

defense position and have smaller rates of errors for the defense, at the cost of a small increase in

the errors when the prosecutor’s statement was correct. This implies an overall improvement in

the performance.

We provide two applications of our approach in well-known forensic domains: handwriting

and forensic glass examination. In the handwriting application, we compared our approach to two

alternative resampling plans: (i) a naive approach disregarding the dependence structure and (ii)

a previously domain-specific resampling approach for questioned documents [20, 12]. In the

forensic glass application, we compare our proposed approach to a common source score-based

likelihood ratio, which can be a tempting alternative when samples are not large enough to

develop a specific source version. Further, we use this application to illustrate how our approach

can be used to develop base systems and combine them into ensemble score-based likelihood

ratios [41] suited for the specific source problem.

While our work focuses on a particular type of anchoring suited for our illustration, our

proposed approach can be extended to different anchoring proposals to remedy the dependence

structure and enhance the performance of specific source score-based likelihood ratio systems.

3.3 Methods

Before introducing our proposed approach, we present the theoretical framework for

developing score-based likelihood ratios under the specific source problem (Section 3.3.1) and how

different interpretations have led to the proposal of various anchored definitions (Section 3.3.2).
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This allows us to illustrate the theoretically correct procedure to generate training data and

highlight how this is not achieved in practice. We then introduce synthetic sampling to create

independent learning instances and demonstrate how it can be used to develop a score-based

likelihood ratio system within a pre-specified anchoring approach (Section 3.3.3).

3.3.1 Score-based likelihood ratios for the specific source problem

Let eij denote a generic item, where j indexes the item (j = 1, . . . , ni) from source i

(i = 1, . . . ,m) and let uij ∈ Rp represent the associated measurement or feature vector for the

item. In specific source problems, researchers are interested in comparing recovered items of an

unknown source (i = u, j = 1, . . . , nu) to items that are associated with a specific source

(i = s, j = 1, . . . , ns) and derive the likelihood associated with the two opposing propositions that

can be generically stated as:

• Hp : The items euj were generated from the same specific source that generated esj .

• Hd : The items euj were not generated from the specific source that generated esj but from

some other unknown source.

In the case of forensic science, euj may have been recovered at the crime scene while esj have

been found after an investigative procedure. In the following sections, we will assume that only

one item from the unknown source was recovered for simplicity (nu = 1).

A common assumption is that researchers have access to a reference set

A = {uij : features from the j-th source an i-th item }, a sample of the background population to

develop their systems. The researchers may have collected the elements of A from previous cases

or have access to reference databases. Further, it is assumed that elements in A are not associated

with the unknown source or the specific source under consideration and that they are suitable to

the problem 1.

1In the ballistic examination example, elements in A would have been filtered such that they share the same
caliber (class characteristics)
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The theoretical framework to develop score-based likelihood ratio systems can be formalized

by stating the propositions into sampling distributions that generated the data following a

two-step hierarchical process [33].

Let Bi denote latent random variables corresponding to the parameters that characterize the

distribution of the features for source i. In the first stage, the latent variable is sampled to

generate the source from a distribution Fb(· | θb) that describes the between source variation,

where the parameter θb characterizes the between distribution. Conditional on the latent variable

representing the source, the measurement for an item j is sampled from Fw(· | bi, θb), Fw being

the distribution describing the within source variation.

For i = 1, 2, . . . ,m and j = 1, 2, . . . , ni the proces can be sumarized as :

Bi ∼ Fb (· | θb) and uij
ind∼ Fw (· | Bi = bi, θb) (3.1)

This mechanism formalizes how the data is generated and clarifies the distinction between the

propositions. While both propositions agree on the general data-generating process, there is a

difference in how the features for euj and esj are generated.

Under Hp, a specific source is generated from Fb and ns + 1 items sampled from

Fw (· | Bi = bs, θb) . While under Hd, the specific source was generated from Fb and ns items

sampled from Fw (· | Bi = bs, θb), with a second unknown source generated from Fb and one items

was sampled from Fw (· | Bi = bu, θb).

If both the between and within distribution were known, the joint densities of the features

could be derived under both propositions, allowing the calculation of the value of evidence using a

likelihood ratio function, as defined in 3.2.

LR(uu, usj | θ) =
f(uu, usj |θ,Hp)

f(uu, usj |θ,Hd)
(3.2)

If the distribution were unknown, assumptions can be made about the joint distributions of

the features. Estimating θ using the reference set A would allow a similar procedure using an

estimated likelihood ratio function.
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In practical applications, such as comparing shoeprint impressions or markings in a bullet

casing, formulating an estimating probabilistic model may not be feasible, leading researchers to

use (dis)similarity scores between items and estimate the conditional distribution of the score to

develop score-based likelihood ratio systems [38].

Let ∆ denote such a (dis)similarity function that maps from the features vector of two generic

items being compared (uij , ulk) to a univariate score δ (∆(uij , ulk) : RP × RP → δ ∈ R).

Let g(δ | Hj), (j =Prosecutor, Defense) denote the conditional distribution of the score under

the proposition Hj . Then, given an observed score δ associated with the items being compared, a

value of evidence could be estimated by plug-in δ into

SLR(δ) =
g(δ | Hp)

g(δ | Hd)
, (3.3)

to evaluate the likelihood ratio of observing the score under the two alternative propositions.

While it is widely accepted that the numerator (denominator) in equation 3.3 can be

interpreted as the likelihood of the score under Hp (Hd), and that ratio larger than one (smaller

than one) can be considered as evidence towards the prosecutor (defense); unlike the common

source problem where constructing (dis)similarity metrics and estimating conditional density is

straightforward, the specific source problem requires additional considerations [22].

Alternate interpretations of the proposition under the specific source suggest different

procedures to develop the system, leading to different versions of the anchored score-based

likelihood ratio and how their output can be interpreted [20, 30]. This also affects how the score

should be obtained to estimate the appropriate conditional densities. Our work considers a

source-anchored version as the stepping stone to introduce synthetic anchored score-based

likelihood ratios, but it could also be extended to other versions.

3.3.2 Source anchored Score-based Likelihood Ratios

Previous authors have explored different anchoring procedures to address the specific source

problem [20]. All definitions agree that the numerator should be interpreted as the likelihood of



49

the observed score (when comparing control and recovered items) being generated by the same

specific source. The logic is that the control and recovered items should achieve similar scores as

pairing randomly selected items from the specific source.

Alternative anchoring definitions stem from the difference in the denominator. In the

source-anchored version, the denominator should be interpreted as the likelihood of the observed

score (comparing control and recovered) when the control items were generated from another

alternative source from the population. The logic is that the control and recovered items should

achieve similar scores as randomly pairing items from the specific source to items from other

sources.

As Hepler et al. [20] noted, the previous interpretations suggest that both densities on Eq 3.3

are conditioned on the specific source under consideration. In contrast to the common source,

where models can be pre-trained to address the inference problem, under the specific source, a

score-based likelihood ratio system needs to be developed for each source; in practice, this means

constructing a new system for each case.

Further, an appropriate sample must be drawn to estimate the conditional densities under

this interpretation. Let
{
δ
(j)
i

}nj

i=1
(j = p, d) denote a sample of size nj that has been drawn under

Hj , common estimation procedures assumee that
{
δ
(j)
i

}np

i=1

iid∼ g(δ | Hj) or at least some level of

independency.

Ommen et al.[33] and Neuman et al. [30] propose a thought experiment on how data should

be generated. To summarize their ideas under general framework presented by Equation 4.1, let

P and D denote a collection of scores for the prosecutor and defense. We can compactly write the

data-generating as follows:

P =
{
δ
(P )
i

}np

i=1
= {δ : δ = ∆(usl, usk), l ̸= k, (3.4)

usj
ind∼ Fw(· | Bi = bs, θb)} (3.5)
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D =
{
δ
(D)
i

}nd

i=1
= {δ : δ = ∆(usj , ukl), s ̸= k, (3.6)

usj
ind∼ Fw(· | Bi = bs, θa), (3.7)

bk
ind∼ Fb(· | θb) (3.8)

ukl
ind∼ Fw(· | Bi = bk, θb)} (3.9)

This introduces two prevalent ideas for generating scores that will be used as learning

instances: items should be independent and randomly selected. It also highlights the source of

randomness since inference is conditioned (anchored) on the specific source held fixed.

In practical application, however, the researcher can not collect a large set of independent

items, measure their features, and pair them to construct sets P and D. Due to the limited data,

scores are generated using all potential pairwise comparisons from a fixed number of items,

resulting in measurements being used multiple times to construct learning instances.

We introduce a small example to illustrate this point in Figure 3.1. The figure describes a

scenario where the researchers are faced with one recovered item from an unknown source (uu),

three control items from the specific source (usj , j = 1, 2, 3), and two alternative sources with

three items each (uij , i = 1, 2, j = 1, 2, 3).

The control items are paired (dotted lines) to generate three learning instances for set P .

Each control item is paired with every item in the reference population (dashed lines) to generate

learning instances for set D. Note that each item from the specific source is used eight times (two

times for P and six times for set. D), while items in the reference population have been used

three times.

The previous example can be extended to larger cases. Without loss of generality, let ns

denote the number of control items, m the number of alternative sources with n items each. The

total learning instances for P is nP =
(
ns

2

)
and for D is nd = ns × n×m.
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This illustration highlights a practical issue: this procedure results in nonindependent learning

instances, as noted by Veneri and Ommen [41], and that ns is one of the strongest limitations for

the specific source inference.

From a practical perspective, it might seem reasonable that the researcher can access more

data from other sources (increasing m) even if n is small. However, obtaining the measurement

from additional items from a specific source, increasing ns, can be a complex task, especially in

forensic sciences. For items generated from the POI (e.g., questioned documents or fingerprints),

it could be argued that if the POI refused to collaborate or that data is obtained under duress, the

measurement may not follow the same data generating process. Even in types of evidence where

the human factor is reduced (e.g., firearms or glass), obtaining additional measurements can be

costly, involving complex laboratory procedures, and can alter or even destroy the original items.

Still, even if alternative sources (m), items within alternative sources (n), and specific source

items (ns) could be freely increased, the dependence would not be directly addressed. The same

item in the specific source is used n×m times to generate learning instances for D, and ns − 1

times for P .

Further, the items from the specific source are also used to compute the final score 2 that will

be plugged into the developed score-based likelihood ratio system to derive a conclusion.

In previous works, the lack of data and privacy concerns have led authors in biometrics and

forensics to create pseudo items (e.g., fingerprints [25] and question documents [20, 22]) using

procedures that are specific to each domain or require a large amount of data. We propose to use

synthetic items adapting a popular sampling mechanism in the machine learning literature to

develop synthetic anchored score-based likelihood ratio.

2Authors have previously computed the mean score δ̄ to accommodate the fact that there are multiple comparisons
possible [22]
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Figure 3.1 Specific source ilustration

3.3.3 Synthetic items and source anchoring

To address the lack of data and independence, we propose a domain-agnostic procedure to

generate a synthetic source-anchored score-based likelihood ratio system that follows the

principles outlined in Section 3.3.2.

The first part of the procedure relies on generating synthetic items. Synthetic learning

instances have been popularized by resampling algorithms like the Synthetic Minority

Oversampling TEchnique (SMOTE) [8]. Originally SMOTE was proposed as a data

augmentation method to enhance model performance under imbalanced classes, and different

variants have been proposed over the years. Fernandez et al. [14] provide a comprehensive review

covering over fifteen years of new developments arising from the initial paper.

A key component of the original SMOTE approach is interpolating between randomly selected

learning instances and their nearest neighbors to generate new cases. Our proposed approach

follows a similar idea. However, instead of interpolating learning instances, we use interpolation

to create new items (and their associated measurements) conditional on a particular source
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(Algorithm 4) that are later used to create learning instances to develop a synthetic anchored

system (Algorithm 5).

Let Ai = {uij : j = 1, . . . , n} denote a collection of feature vectors (measurements) associated

with items from source i, K the number of candidate neighbors to be used and n∗ the requested

number of items to be generated.

The initial step computes the K-nearest neighbors for all items in Ai. For each new synthetic

item, the feature vectors from one of the original items and one of its neighbors are randomly

selected, and data is interpolated. The result of the algorithm is a new database of n∗ synthetic

items for source i.

Algorithm 4 Synthetic Item (SI)

Require: Ai,K, n∗

u
(k)
ij ← Compute the K-nearest neighbors for each j item, (k = 1, . . . ,K).

for l=1:n∗ do

j∗ ← Randomly select one index from 1 : n

k∗ ← Randomly select one index from 1 : K

r ← Sample a random number from U(0, 1)

u∗il ← Generate a new feature vector uij∗ + r(uij∗ − u
(k∗)
ij∗ )

end for

Output: Set A∗
i = {u∗ij : j = 1, . . . , n∗}

Following the principles outlined in 3.3.2, we employ Algorithm 4 to develop a synthetic

source-anchored score-based likelihood ratio system. As before, let Ai = {uij : j = 1, . . . , n} be

the subset of measurements associated with a particular source in set

A = {uij : i = 1, . . . ,m; j = 1, . . . , n}, and S = {usj : j = 1, . . . , ns} denote the set with

measurements associated with control items.

The general workflow in Algorithm 5 accommodates two scenarios: first, when researchers aim

to use a well-established (dis)similarity metric (e.g., L1, L2, cosine); second when researchers

prefer to develop a (dis)similarity metric tailored to the specific problem. The latter could mean

training a random forest or a neural network to differentiate matches from non-matches. As

mentioned before, under the specific source problem, it is not possible to pre-train a model before

the source is known. If a tailored metric is preferred, first Algorimth 4 generates synthetic items,
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three times the number of sources in the reference population. The first two-thirds are used to

obtain matches from the specific source, while the last third is used with newly generated

synthetic items from each alternative source to obtain non-matches. This data can be used as the

training set in a classification algorithm.

Once the new metric is obtained, or if the researchers selected one that did not require

training, the same procedure generates pairs over which scores will be computed. The scores

obtained are collected and used to estimate the conditional densities or a ratio density estimator.

The output of this procedure is the estimated densities (and metrics) that will be used to

compute the value of evidence.

The procedure described follows the principles outlined in Section 3.3.2. Sources in the

alternative population are used once to generate synthetic items, and synthetic items from the

specific source are generated to augment the number of learning instances while reducing the

dependency of using the same data to compute scores. We provide a short illustration of the

algorithms in Appendix 3.8. Sections 4.7 presents the result of a simulation study and Section 3.5

provide two realistic applications in forensic science. Limitations of our approach and potential

modifications are discussed in Section 3.6.

3.4 Simulation study

Our simulation study aims to address to what extent the inference carried out with synthetic

anchoring obtains results similar to those of the traditional anchored systems. This gold standard

is unlikely to be achieved in practice but is a natural benchmark to aim for. Both methods were

compared using standard performance metrics for Likelihood Ratios 3 and reliability statistics to

asses how similar their conclusions were.

Score-based likelihood ratio systems output a numeric value between zero and infinity, where

a value larger than one indicates that the evidence supports the prosecutor rather than the

defense proposition. The rate of misleading evidence (RME) for the prosecutor (defense) can be

3We refer the interested reader to the Appendix B of [41] for detailed notation of these metrics
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Algorithm 5 Synthetic source anchored score likelihood ratio

Require: S,A,K

m← Number of sources in A.

if ∆ requires training then

u∗
shj
← SI(S,K, 3×m), (h = 1, 2, 3; j = 1, . . . ,m) ▷ Apply Algorithm 4

for l=1:m do

u∗l1 ← SI(Ai,K, 1) ▷ Apply Algorithm 4

Tl ← (u∗s1l, u
∗
s2l,Match)

T2×l ← (u∗s3l, u
∗
l1, Non−match)

end for

∆̂← Train metric to diferentiate Match and Non-matches in T

end if

u∗
shj
← SI(S,K, 3×m), (h = 1, 2, 3; j = 1, . . . ,m) ▷ Apply Algorithm 4

for l=1:m do

δ
(P ∗)
l ← ∆(u∗s1l, u

∗
s2l)

u∗l1 ← SI(Al,K, 1) ▷ Apply Algorithm 4

δ
(D∗)
l ← ∆(u∗s3l, u

∗
l1)

end for

ĝ(δ | Hj)← Estimate using {δ(j)i }n
∗

i=1, (j = P ∗, D∗) ▷ ĝ can be replaced by a density ratio estimator

Output: ĝ(δ | HP ), ĝ(δ | HD) (and ∆̂)

computed as the proportion of cases where the system is expected to output a value larger

(smaller) than one, but the opposite is observed over a validation set. We expect that both

methods would result in comparable error rates.

Besides the direction, the numerical output of the system provides researchers with a

measurement of the strength of evidence. We employ a modified version of the Bland-Altman

Plots using the log10 scale to assess our proposed method’s agreement with the theoretical gold

standard. If methods were exchangeable, results would be aligned along the y-axis in the

Bland-Altman plot. Ideally, we would expect that one method does not provide consistently

larger values of evidence compared to the other.

In practical applications, forensic experts may present jurors with a verbal interpretation of

the numerical output [43]. While previous authors have reviewed the benefits and downfalls of

this approach [32, 26], we only focus on the fact that potential discrepancies should be evaluated

in terms of their impact on jurors’ decisions [15].
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Different verbal scales have been proposed to interpret and communicate results; we consider

the symmetric ten-level verbal scale [13], which maps the continuous output into ten categories as

depicted in Table 3.1.

Over this scale, we present a confusion matrix for the ten-level ordered categories to visualize

their agreement. A perfect agreement would be achieved if all elements fall within the diagonal.

To provide a summary statistic that accounts for the different levels of disagreement outside the

diagonal, we employ a weighted version of the Kappa statistics [9] and Gwest’s AC [16], both

measures of between-rater reliability, considering ordinal weights 4.

Table 3.1 Ten level verbal scale
Towards Qualifier SLR scale

Defense Very Strong 0 10−4

Strong 10−4 10−3

Moderately strong 10−3 10−2

Moderate 10−2 10−1

Limited 10−1 100

Prosecutor Limited 100 101

Moderate 101 102

Moderately strong 102 103

Strong 103 104

Very Strong 104 ∞
Note: Ten level verbal scale proposed by Evett, exponents denote the cutt off values in the log10 scale.

3.4.1 Simulation strategy

Our simulation strategy aims to contrast our approach to the gold standard under a

well-known data-generating process. Two-level Gaussian models have been extensively used in

forensic science to account for within- and between-source variation; section 7.6.2 in Aitken et al.

[2] provides a more extensive review of the models.

As before, let uij denote the features associated with the items j (j = 1, . . . , n) in source i

(i = 1, . . . ,m). The two-level Gaussian model can be expressed as a random effects model

uij = µ+ ai + wij , (3.10)

4See Chapter 3 of [17] for a review of ordinal agreement coefficients and weights.
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where µ represents the overall mean, ai is a random effect for the i source, and wij is a

random effect for the j item within source i. The two-level Gaussian derives its name from the

assumption about the distribution of the random effects, ai ∼ N(0,Σb) and wij ∼ N(0,Σw),

where Σb is the between-source covariance matrix, and Σw is the within-source covariance matrix.

Using a two-stage procedure, these models allow straightforward simulation [29, 40]. First,

simulating the mean vector (latent variable) for a particular source (Bi ∼ N(µ,Σb)) and

conditional on the source, sample the observed features vector (uij ∼ N(bi,Σw)). Following the

notation in Section 3.3, we can write:

Bi ∼ N(µ,Σb) (3.11)

uij | Bi = bi ∼ N(bi,Σw) (3.12)

where Fb ad Fw are gaussian distributions and θa = {µ,Σw,Σb}.

To obtain realistic simulations, we consider the previous parameter estimates from forensic

glass applications where the data measured consisted of four elemental compositions (Calcium

(Ca), Potassium (K), Silicone (Si), and Iron (Fe)) and the features consisted of three log ratios

(log(Ca/K), log(Ca/SI), log(Ca/FE) (See section 7.6.4 [2] or [1] 5)

Using these estimates as the true model parameters, we simulated data to create scenarios

with different difficulty levels [34].

To ensure a balanced learning set of 200 comparisons evenly split between prosecutor and

defense sets, we sampled 104 sources (i = 1 . . . , 104), defined the first randomly generated source

as our primary source of interest, and computed the L1 norm to select three sources for the Hd

scenarios. The one associated with the minimum distance (closest non-match), the 5th percentile

(5p non-match), and the 10th percentile (10p non-match) were selected, the closest being the

hardest to differentiate. The remaining sources (without loss of generality,i = 5, . . . , 104) are set

as part of the background population (A).

5The authors present rounded values, and we considered more precise estimates for our simulations.
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From the source associated with the POI, an item (and its associated features) is sampled to

serve as the recovered item. From the same source and the closest, 5p and 10p non-match sources,

300 measurements are generated. Ten additional measurements are sampled for each alternative

source in A.

To generate learning instances as depicted in Section 3.3.2 we selected the L1 norm as a

dissimilarity metric. For each scenario, the first two-thirds of the control items are used to create

match comparisons, pairing the first and second half one-to-one, resulting in 100 learning instances

for P . The remaining third is paired with the first item from the alternative sources in A.

While this approach guarantees balanced learning sets, where scores have been properly

created from independent comparisons, the number of required samples per source may be

infeasible to obtain in practice.

To bypass this limitation, we consider the alternative approach introduced in Section 3.3.3.

We limited the number of samples per source to the first ten items and followed the step

described in Algorithm 5 to construct learning instances for P and D.

Since we consider the L1 norm as a dissimilarity metric for both approaches, a zero value

would indicate that the items are identical regarding their observed features. In contrast, larger

values indicate that they are more dissimilar. We selected Weibull distributions as the parametric

family to characterize the distribution of the scores under both propositions and independently

estimate the conditional density.

Once the densities are estimated, the final score is computed between the recovered and the

first ten control items, and the average score (δ̄) is plugged into the system to obtain a value of

evidence. If the methods introduced to develop specific source systems are exchangeable, we

would expect to observe the values of evidence in agreement.
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3.4.2 Simulation results

The simulation procedure was repeated 1000 times to obtain a sample of estimated evidence

values and compute performance metrics. Results show that while the agreement between the two

methods is imperfect, they may be considered adequate.

Let SLRDGP denote the output obtained using the theoretically correct data-generating

process, and SLRsynth represent the one obtained using our proposed approach. Figure 3.2

present a visualization of the agreement using the Bland Altman plot 6. If the methods tend to

agree, we would observe results aligned along the x-axis. Results show that the difference in the

log10 scale is not constant; dispersion tends to increase towards a more extreme value of evidence.

Overall, the median difference is negative, ranging from -0.6 to -0.92 across different scenarios

(Column 7, Table 3.4), due to our proposed method tending to output smaller evidence values.

The probability of observing a larger value of SLRsynth compared to a SLRDGP ranges between

25-35% for all scenarios (Column 6 Table, 3.4).

In the context of the evidence interpretation, the synthetic anchored version outputs more

conservative evidence values, leaning towards the defense proposition.

This affects the estimated error rates(Columns 4-5, Table 3.4). The rate of misleading

evidence for the defense scenario decreased between 5− 7 percentage points across the different

scenarios at the expense of a 1.2 percentage point increase in the rate of misleading evidence for

the prosecutor. These two errors are not symmetric; the cost of stating that an item originated

from a specific source wrongly (providing evidence supporting a guilty verdict) may be weighted

more heavily. We address this in the conclusion section.

Previous results regarding the level of disagreement may be driven by the extreme value of the

evidence observed, which, in practice, would have a small impact on the evidence interpretation.

We explore the disagreement over the ten-level verbal scale, where the more extreme values are

combined into the categories at the end of the scale. Figure 3.3 presents a visual representation of

6The x-axis represents the average in the log10 scale A = 1
2
(log10(SLRsynth) + log10(SLRDGP )) and the y-axis

the difference in the log10 scale M = log10(SLRsynth)− log10(SLRDGP ) = log10(SLRsynth/SLRDGP )
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the confusion matrix, where tiles represent the joint verbal scale distribution and margins the

verbal scale distribution of each method.

The output of both methods tends to fall more frequently within the diagonal, ranging from

84.8% in the prosecutor scenario to 64 % for the hardest defense scenario (Column 1, Table 3.4).

The previous metric considers elements appearing as off-diagonal errors but does not consider the

scale’s ordinal nature. We computed the ordinal weighted Kapps and Gwet’s agreement

coefficient (Columns 2-3, Table 3.4) to account for this. Both statistics suggest a very good

agreement between both methods 7.

Figure 3.2 Simulation results: Combined Bland-Altman plot

Note: Simulation results for 1000 simulated values for each scenario. Combined Bland-Altman plots (extreme
values removed)

7Different benchmarks have been proposed in the literature for unweighted statistics: Landis and Koocj’s scale
would place the values found on the substantial range (0.61-0.8) or almost perfect range (0.81-1), Fleis’s scale would
place them in the excellent category Excellent (0.75-1), similarly Altman’s scale would place them our results in the
Very good range (0.81-1). We refer the interested reader to Section 6.2.1 in [17]
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Figure 3.3 Simulation results: ten-level verbal scale agreement plot

Note: Simulation results for 1000 simulated values for each scenario. Combined confusion matrix plots using a
ten-level verbal scale

Previous analysis suggests that while the agreement is imperfect, our proposed approach may

be useful in answering the specific source problem, providing a good level of agreement, and

reducing the rate of misleading evidence for the defense.
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Table 3.2 Simulation results: Gaussian DGP statistics
Hypothesis In diagonal Kappa Gwet’s AC RME DGP RME Synth P (SLRsynth > SLRDGP ) Median M

(%) (Ordinal w) (Ordinal w) (%) (%) log10(SLRsynth/SLRDGP )

Match 84.40 0.80 0.99 0.40 1.70 36.20 -0.06

Closest non-match 64.00 0.88 0.95 28.30 22.10 24.70 -0.70

5p non-match 64.70 0.85 0.95 20.40 14.10 26.20 -0.81

10p non-match 68.50 0.84 0.97 13.10 8.40 29.40 -0.92

3.5 Applications

To evaluate the performance of our approach, we present applications in two domains with a

rich history in forensic statistics: question documents (considered pattern evidence) and forensic

glass analysis (considered trace evidence) 8 which provide different types of measurements to test

our approach. In our application, questioned documents are characterized by counts, later

transformed into frequencies. The feature vector can be considered compositional data or a vector

of frequencies. In our second application, glass fragments are characterized by the logarithm of

chemical composition, which is assumed to be a continuous measurement.

In the handwriting analysis application, we selected the cosine similarity metric and the beta

parametric family to estimate the conditional densities. We compare our approach to a naive

approach, where comparisons are created disregarding the structure of the data, and previous

domain-specific resampling plan for questioned documents [20, 12]. We provide additional details

about the previous approach in Appendix 3.8.2.

In the forensic glass analysis application, we selected a random forest to develop a similarity

score and a logit-based probabilistic density ratio estimator. In this case, a training and

estimation set are required, allowing us to illustrate how this can be achieved under our proposed

approach. Further, we illustrate how synthetic anchoring can be used with ensemble learning as

proposed in Veneri and Ommen[41] to develop ensemble score likelihood ratios for the specific

source problem. To the best of our knowledge, there is no established resampling benchmark for

this application, and the small number of learning instances would be further reduced if the

learning instances were split into training and estimation. We compare our approach with a

8We refer the reader to [35, 21] for an introduction to these types of evidence.
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common source score-based likelihood ratio system to illustrate that a pre-trained model for the

common source may not perform as expected for the specific source problem.

To create different scenarios for our applications, we follow a similar approach as the one

already implemented in Section 3.4.1. In each iteration, we selected one source to play the role of

a specific source, defining the first item as the recovered and the remaining as controls. The

closest non-match is selected by computing average features for each source and obtaining the

nearest neighbor. The remaining sources are defined as the reference set. Additional detail about

the simulation strategy is presented in each subsection.

3.5.1 Application in Handwriting Analysis

To motivate this application, consider a scenario where a stalking victim has filed a police

report and submitted the threatening note as evidence. The document not yet associated with a

specific source will be considered the recovered item. After an investigation, a person of interest

was apprehended, and a collection of his previous writings was collected; these items act as

control items for which the source is known to be the person of interest.

Traditional methods for questioned document analysis rely on visual inspection by trained

examiners to assess the similarity between two items. CSAFE authors [11, 6] have developed a

method to decompose writing samples into graphs and assign each to one of 40 pre-established

clusters or groups. For each document, the proportion of the graphs falling into each group is

defined as the writership profile or feature vector. Each entry of the 40-dimensional vectors is

non-negative, and the vector adds up to one.

Writers follow similar patterns, allowing researchers to identify the source of the questioned

documents based on these observed features. These features have been previously used under the

closed-set problem [11], the common and specific source problem [22], and benchmark an

ensembling learning approach to SLRs for the common source problem [41].

Previous applications with similar features have relied on different similarity measurements to

assess the similarity between two writership profiles (e.g., Random forest classifiers [22, 41]
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chi-square and Kullback-Leibler distance [37, 20, 12]). Khocher and Savoy [24] review other

distances used in author profiling. The author reviews the cosine similarity, recently used with

deep learning to compare questioned documents [23].

Let uij be a feature vector with the proportion of graphs classified in each group, and uij[p]

denotes its p-entry (p = 1, . . . , 40) . The similarity between two vectors can be computed as:

∆(uij , ulk) =
uij · ulk
∥uij∥∥ulk∥

=

∑P
p=1 uij[p]ulk[p]√∑P

p=1 u
2
ij[p]

√∑P
p=1 u

2
lk[p]

, (3.13)

Given that all the entries in the feature vectors are non-negative, the cosine distance maps the

features from two documents to a univariate score (∆(uij , ulk)→ [0, 1]), one indicating that

documents are more similar, the proportions are equal across two vectors.

The cosine distance is an example of a metric that does not require training; estimating the

conditional densities is the only requirement to develop a score-based likelihood ratio system. For

our application, scores of zero or one did not occur, so we selected the beta exponential family

due to its flexibility and domain to estimate the conditional densities.

Our database for this application consists of the first batch of 90 writers from the CSAFE

database. We cycle through all 90 writers to develop a specific source system, the first item being

defined as recovered and the remaining eight as controls for Hp. We estimated the selected

source’s nearest neighbors and selected the last eight items as controls for Hd.

Across iterations, we compare the performance of three resampling variants. First, a naive

approach described in Section 3.3.2 where all pairwise comparisons are made within the control

items (np =
(
8
2

)
= 28) and all combination between control items and reference populations

(nd = 8× 8× 88 = 5632) are used to create learning instances. Second, a fixed split of a mega

document, a method introduced in [20, 12] where items from each source are stacked into a mega

document, and random points are selected to split the documents and create new scores for P .

We provide the reader with a summary of this approach and our implementation in Appendix

3.8.2. Under this approach, the recovered mega document is compared to the mega document of

the alternative source to obtain scores for D (nd = 88). Documents were split 44 times to
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generate a score for P (np = 88) so we have balanced learning instances. And third, we apply

algorithm 5 to generate a synthetic source anchored system (nd = np = 88).

To analyze our results, we present the distribution of the scores (Figure 3.4) and empirical

estimates of the rate of misleading evidence and discriminatory power, metrics associated with

the error rate, and the ability to provide strong evidence in the correct direction respectively for

each proposition in Table 3.3. Further, we compute the Cllr, a forensic cost function, as a

composite performance metric.

Synthetic anchoring achieves a smaller cost, as measured by the Cllr (Colum 6, Table 3.3)

due to better performance for the defense scenario.

In both scenarios, synthetic anchoring resulted in more conservative evidence values, favoring

the defense proposition. This resulted in a smaller rate of misleading evidence for the defense at

the expense of increasing misleading evidence for the prosecutor (Colum 1-2 Table 3.3) and a

decrease in the ability of the system to provide stronger evidence for the prosecutor case when it

is true. Further analysis showed that fixed sampling produced larger values of evidence for the

same holdout source.

Table 3.3 Performance metrics of Score Likelihood Ratios for Handwriting analysis
Sampling RMEHp RMEHd DPHp DPHd Cllr Avg.Cost Avg.Cost

method P (SLR < 1|Hp) P (SLR > 1|Hd) P (SLR > 102|Hp) P (SLR < 10−2|Hd) Hp Hd

Naive 3.33 55.56 25.56 16.67 0.95 0.35 1.55

Fix 2.22 63.33 46.67 5.56 0.98 0.17 1.79

Synthetic 11.11 25.56 5.56 11.11 0.60 0.49 0.70

3.5.2 Application in forensic Glass analysis

Glass analysis is a common staple in forensic analysis since it is widely used in daily life (e.g.

containers, window panes, and windshields),it is easily transferable if the glass is broken, does not

degrade over time, and analysis can be done over small fragments [5]. Consider a scenario where

an individual has broken into a car to motivate this application. Upon arrival at the scene,

officers apprehended a person a few blocks from the crime scene who had glass fragments
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attached to their clothing. Forensic analysis arrived at the scene and recovered glass fragments

that will act as a control in their analysis.

In their early inception, glass fragments were characterized by their refractive index, a

univariate measurement, while in modern applications, they are characterized by their chemical

composition, a multivariate measurement.

It is relevant to highlight the limitation of the inference that can be derived from this

analysis. The propositions consider whether the fragments retrieved from the person of interest

can be associated with the crime scene. This is a lower-level proposition [10] regarding the origin

of the items, not if the person broke the glass. Further, recent work has shown that forensic

interpretation may be hindered by the production process, where glass panes are generated in

sequence, resulting in similar chemical composition [3]. We address this limitation in the

discussion section.

Our application uses the Florida International University (FIU) Glass database [4] 9. The

database consists of glass samples, and the feature vector for each item is a 15-dimensional vector

of laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) log measurements

for the stable isotopes Li7, Mg25,l27, K39, Ti49, Mn55, Fe57, Rb85, Sr88, Zr90, Ba137, La139,

Ce140, Nd146, Pb208. The samples were collected from vehicles of different makes and models,

totaling 761 sources and nine replicates (items) each. Some sources represent the same

windshield’s inner and outer sides. There is the possibility that these are more similar and

chemically indistinguishable if both sides were produced at the same plant in a short period.

To illustrate the use of a machine learning-based synthetic anchored score-based likelihood

ratio system, we followed a similar approach to previous authors [36, 35] where a random forest

[7] is trained to be used as a dissimilarity metric. To transform the obtained sample of scores into

a score-based likelihood ratio system, we selected a penalized logistic regression [19] as a density

ratio estimator. Rather than cycle through all sources in the database, we randomly draw one

source and its nearest neighbors across 100 iterations to create validation cases.

9The data can also be accessed through the SK4FGA package in R [18]
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Developing a dissimilarity metric can be framed as a two-class classification problem (matches

vs. non-matches). To construct the learning instances for the random forest, we consider a pair of

items and their feature vectors (uij , ulk), considering a positive case (y = 1) if the two originate

from the same source (i = l) and created features associated with the learning instance as follows:

let uij[p] denote the p-entry in the vector original feature vector (p = 1, . . . , 40), we consider the

absolute difference in each entry (|uij[p] − ukl[p]|) and an aggregated measurement of discrepancy

using the Euclidean distance, dL2(uij , ulk) =
∑P

p=1(uij[p] − ukl[p])
2. After the random forest is

trained, it is used to map between feature vectors and the score ∆̂(uij , ulk)→ δ ∈ [0, 1]

Machine-learning dissimilarity metrics tend to separate the two classes exceptionally well, and

values of zeros and ones are frequent, making the beta exponential family unsuitable for

estimating the scores’ conditional densities. We consider a logistic density ratio estimator 10 to

obtain:

SLR(uij , ulk) =
nd

np
exp(β0+β1∆(uij ,ulk)) . (3.14)

Given the separation observed between the two classes, the regular logistic density ratio

estimator would lead to the score-based likelihood ratio systems to produce more extreme outputs

(β1 →∞), to avoid this issue, a penalized logistic regression [19] was selected to obtain estimates

of β0 and β1 to complete the system, meaning ∆̂, β̂0 and β̂1.

In this application, eight items were selected as the recovered items; hence, if all pairwise

combinations are considered, only
(
8
2

)
= 28 potential learning instances are possible for P .

Further, only fourteen learning instances are available for each step if the researcher follows

standard practices of splitting the data into training and estimation sets.

Researchers may be tempted to use a pre-trained common source score-based likelihood ratio

system to avoid this issue and reduce computational time. We consider this as a natural

benchmark to compare our approach. Under the common source problem, sources not selected as

validation cases were randomly split into two groups of 330 sources, and pairwise comparison used

10See Sugiyama et al. [39] for an introduction to density ratio estimators outside the forensic domain, Morrison
[28] and Ommen and Veneri [41] for examples of the use of the logistic classifier in forensic applications.
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to learning instances. This resulted in
(
330×8

2

)
= 3483480 total learning instances of which,(

8
2

)
× 330 = 9240 were from the same source and 3474240 from different sources. We follow the

common practice of downsampling to obtain a balanced dataset.

This procedure, while practical, addresses a different inferential problem. Our proposed

resampling plan can be used to tackle the correct inferential problem by using Algrotim 5 twice for

each specific source. First, we use the algorithm to generate a training set over which the random

forest is trained. Then, the algorithm is used again to generate an estimation set, features are

constructed, and the random forest developed for the specific source is used to predict new scores

and obtain sets P and D. Over these sets, a penalized logit is estimated to obtain a probabilistic

classifier to transform the scores into a score-based likelihood ratio system. We repeated this

process for each source 30 times to generate a base score-based likelihood ratio that acts as weak

learners that could be aggregated into an ensembled score-based likelihood ratio system.

We present the resulting value of evidence for each specific source base systems (black dots),

the ensembled value of evidence using the mean as an aggregator (red triangles), and the value of

evidence derived from the common source system (blue squares) in Figure 3.5. First, we address

the results for the synthetic anchored and ensemble systems. As noted by Veneri and Ommen

[41], using a resampling step to develop a score-based likelihood ratio system introduces

variability in the results. Still, an aggregator such as the mean can provide more stable results,

reducing the effect of outliers.

Comparing the ensembled evidence values to those derived from the common source system

suggests that the common source problem may result in larger evidence value, resulting in

considerably larger rates of misleading evidence for the defense (Table 3.4). While for the

prosecutor scenario, the common source system has reduced the rate of misleading evidence to

zero, and provided at least moderately strong evidence in the correct direction consistently, we

observed little variability in the evidence values compared to the specific source values of evidence.

This is because the random forest scores are close to one; the system was developed to answer if

the glass fragments were generated from a common unknown window, not any specific one.
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The resulting distribution of the scores for the cases where the prosecutor is correct is highly

concentrated in the largest value outputted by the system, while the defense value of evidence

seem to have shifted to the prosecutor conclusion region compared to our proposed approach

(Figure 3.6). Lastly, we address the forensic cost function (columns 7-8,Table 3.4). The common

source system incurred a Cllr of 4.46, mainly driven by the cases where the defense was correct.

One is usually set as the threshold for the Cllr, values below one indicate the validity of the

system [27]. Overall, results suggest that the common source system is not a reasonable answer to

the specific source question.

Table 3.4 Performance metrics of Score Likelihood Ratios for Glass
Method RMEHp RMEHd DPHp DPHd Cllr Avg.Cost Avg.Cost

P (SLR < 1|Hp) P (SLR > 1|Hd) P (SLR > 102|Hp) P (SLR < 10−2|Hd) Hp Hd

Synth-ESLR 3.00 24.00 75.00 32.00 0.66 0.16 1.15

CS-SLR 0.00 68.00 100.00 15.00 4.46 0.00 8.91

Note: Synth-ESLR denotes the synthetic anchored ensembled score likelihood ratio system, while CS-SLR denotes

the system developed using the common source approach.

3.6 Conclusions

The score-based likelihood ratio has been proposed as an alternative to the traditional

likelihood ratio approach for evaluating evidence when formulating and estimating a probabilistic

model is not feasible. This is particularly relevant for pattern evidence in criminal justice, where

machine learning is increasingly used to assess the value of evidence between two opposing

propositions. The current approach relies on constructing pairs of items under scenarios where

both propositions held true to train a score-based likelihood ratio. By using pairwise comparisons,

researchers create a dependence structure that violates how scores should be created in theory

and impacts the performance of machine learning scores and density estimation procedures.

Previous work by Veneri and Ommen [41] sought to remedy the issue by introducing a

resampling procedure based on source resampling to thin out the dependence under the common

source problem. The methods introduced in their work do not apply to the specific source
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problem, the most relevant problem in a court case where the inference is conditional on a specific

source.

As noted by Vergeer [42], most work has focused on common source problems. This may be

due to the lack of data for machine learning dissimilarity metrics or the computation burden of

creating a specific system for each source. However, this aspect should not be disregarded as

using pre-trained common source machine learning metrics has been shown by previous authors

to underperform [22], with even simpler scores tending to overestimate the evidence value [31].

The results of our forensic glass application seem to indicate similar results.

Our work proposes using synthetic items as a data augmentation tool and a resampling plan

to alleviate the dependence structure. Our proposed approach contributes to a line of research in

resampling methods for source attribution [20, 12, 25] but is not limited to a particular data type

or domain.

Simulation results show that for the well-known two-level Gaussian data-generating process

with realistic parameters, our proposed approach and the theoretically correct system tend to

agree in terms of the verbal scale used to group evidence value, albeit our proposed methods tend

to be conservative and output values that may favor the defense proposition.

In our applications, we illustrated how the method can be used in two forensic domains:

handwriting and glass analysis. In handwriting, it was compared to two other resampling plans,

showing that our proposed method is viable and outperformed them in terms of misleading

evidence for the defense at the expense of an increase in the rate for the prosecutor but in an

overall reduction in the cost incurred as measured by the Cllr.

Using the forensic glass data application, we illustrated how our proposed approach could be

used to develop a machine learning-based score likelihood ratio system for the specific source

problem and that the common source systems, although practical, may underperform for specific

source inference.

Potential limitations of our proposed approach have been previously mentioned. One concern

is that our approach is more lenient toward the defense proposition, producing smaller error rates
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in this direction. However, in the context of forensic science, this may be the lesser mistake to be

made.

Another concern is that synthetic items are generated conditional on the observed data via

interpolating nearest neighbors. Synthetic items are limited to the convex hull in the feature

space generated from the original items, meaning there is no interpolation ”outside” observed

data. The quality and sample size of the candidate pool may impact the results. Further, the

number of closest neighbors (K) in Algorithm4 plays a central role. Small values limit the

possibility of interpolating to areas where data is unlikely, but it also may affect the variability of

the scores. The effects of choosing different values of k should be explored in the future.

In our work we illustrated our approach for source anchoring; forensic statistics literature

offers various anchoring proposals that synthetic items could expand upon. Still, our proposed

approach is not limited to forensic sciences domains. Synthetic anchoring can be applied to other

source attribution problems.
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3.8 Appendix: Algorithm Illustrations

To demonstrate the use of both algorithms outlined in section 3.3.2, and compare it to a naive

approach disregarding dependence, we provide an illustration of how synthetic learning instances

are generated for a simple specific source problem and an introduction to previous resampling

plans for questioned documents.

3.8.1 Synthetic source ilustration

Our illustration follows a simplified multivariate two-level Gaussian data-generating process

described in Section 3.4.1, with only five sources and ten items each, where the features vector is

bi-dimensional.

As before let, uij ∈ R2 denote the feature vector of the jth item (j = 1, . . . , 5) of the ith source

(i = 1, . . . , 10).

Panel A in Figure 3.7 illustrates a realization of the data-generating process outlined in

equations 3.11 and 3.12 to simulate the data. We selected µ = (0, 0),Σb = I2,Σw = I2/10, where

I2 denotes a 2× 2 identity matrix for simplicity. The theoretical contours are added for each

source as references.

For the following steps, we consider source three as the specific source of interest and the

remaining as part of the background population.

Panel B in Figure 3.7 illustrates how pairwise comparisons have traditionally been used in the

source anchored specific source problems. This results in items being used multiple times. In

particular, the ones from the source of interest.

Panel C shows how Algorithm 4 was used to generate a synthetic item depicted as a triangle.

First, an item and one of its nearest neighbors were sampled, and a new measurement was

generated by interpolating the measurements from two original items (connected by a line

segment).
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The third panel depicts the result of using Algorithm 5 to generate synthetic learning

instances for the source anchored specific source problem. Twelve new measurements are

generated for specific sources, eight are paired to generate learning instances (solid lines) for the

prosecutor, while the four remaining are paired with one of the synthetic items generated for each

source (dashed lines) to create learning instances for the defense.

In our illustration, the feature vectors are the coordinates in the Euclidean plane

(uij = (xij , yij)). If the Euclidean distances are selected as dissimilarity metrics between two

items, Panel D also offers an intuition about the likelihood of the scores. An item is more likely to

come from source three, the specific source, if it presents a shorter distance.

3.8.2 Resampling algorithms for questioned documents

Resampling methods in questioned documents have been previously proposed for the specific

source problem. For our work, we implemented a modified version of the approach initially

introduced by Davis, Saunders, Hepler and Buscaglia [12, 20].

Each questioned document or item can be considered a string of symbols, from which forensic

document examiners can extract similarities in handwriting styles or transform symbols into

graphs that can be classified into groups. We followed the method proposed by previous CSAFE

authors [11, 6] to decompose writing into graphs, but this approach has a longer history in

handwriting analysis.

This decomposition approach creates a feature vector for each document uij consisting of

counts or proportions that can be used to assess authorship since writers tend to reproduce

similar writing patterns.

The previous author’s approach to creating pseudo items can be broadly described as a

resampling plan that partitions the string of characters, sampling random position, into two

pseudo items, E1
ij E2

ij from which features are created u1ij u2ij . To create a large enough

questioned document, the different j samples from the writer can be combined into a mega
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document Ei [22] that can later be resampled. In contrast, our proposed approach creates

synthetic items directly from the features vector without combining questioned documents.

We provide our implementation of the Davis et al. approach in Algorithms 6 and how it can

be used to create scores for sets P and D in Algorithm 7.

As before, let Eij be the j question document (item) created by the i writer (source). Let gijk

denote a graph belonging to the question document, where k (k = 1, . . . ,K) indexes the position

of the graph in the document. A fixed position k∗ is randomly selected, splitting the document in

two, and features are extracted for each pseudo document (Algorithm 6).

Algorithm 6 Split documents (SD)

Require: Eij

k∗ ← sample an integer between 1 to K.

if k∗ + ⌊K/2⌋ ≤ H then

E1 ← gijk (k = k∗, . . . , k∗ + ⌊K/2⌋)
else ▷ Cycle to the start of the string

E1 ← gijk (k = 1, . . . ,K − (⌊K/2⌋ − k∗), k∗, . . . ,K)

end if

E2 ← gijk such that gijk /∈ E1 ▷ Graphs not selected in E1 are selected for E2

ul ← (El) for l = 1, 2 ▷ Extract features =0
Note: Algorithm adapted from Hepler et al. [12]. The original version did not cycle to the beginning of the string,
resulting in documents with different lengths.

The algorithm is applied multiple times to create sets P and D in Algorithm 7. As before, we

will assume that there is only one item from the suspect Es (or that they have been combined

into a mega document), and the same has been done for items in the alternative population

E = {Ei : i = 1, . . . ,m}. If the researcher requires n∗ learning instances, Algorithm 6 is applied

n∗ times to generate pairs of pseudo items over which the dissimilarity metric is computed to

create scores for P . From the alternative population, n∗ items are selected and compared to Es to

obtain the scores for D

One potential drawback of this approach is that the document’s content can impact the

sampling process since items are split using a fixed position. A secondary concern is that while

Algorithm 7 respects using alternative sources only once, the same questioned document is used

for all defense scores. It is worth mentioning that the original algorithm was designed for
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Algorithm 7 Subsampling for D,P

Require: Es, E, n∗

for i = 1 : n∗ do ▷ To generate score for P

(u1, u2)← SD(Es).

δPi ← ∆(u1, u2)

end for

E∗
a ← Sample n∗ items w/reposition from E (a = 1, . . . , n∗) ▷ To generate score for D

for i = 1 : n∗ do

δDi ← ∆(f(E∗
i ), f(Es)) ▷ Extract features and compute disimilarity

end for

scenarios where only one questioned document was obtained from the person of interest; the

approach proposed by our work (Algorithm 4) would not be suitable for this scenario but we

believe can be a better alternative to creating a mega document when multiple items are available

for the person of interest.
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Figure 3.4 Boxplot of Score Likelihood Ratios for Handwriting Analysis

Note: Box plot of score likelihood ratios for the specific source problem on the log10 scale. The solid line represents

the standard threshold to classify evidence toward the defense or prosecutor, and the dashed lines are the thresholds

associated with at least moderately strong evidence (10−2 and 102)
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Figure 3.5 Distribution of Score Likelihood Ratios for Glass Analysis

Note: Connected points indicate the output of 30 score likelihood ratios system for the same specific source
problem on the log10 scale. The solid line represents the standard threshold to classify evidence toward the defense
or prosecutor, and the dashed lines are the thresholds associated with at least moderately strong evidence (10−2

and 102). Red triangles denote the average evidence value for the specific source problem. Blue squares denote the
evidence value obtained using a common source system.
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Figure 3.6 Boxplot of Score Likelihood Ratios for Glass Analysis

Note: Box plot of score likelihood ratios for the specific source problem on the log10 scale. The solid line represents

the standard threshold to classify evidence toward the defense or prosecutor, and the dashed lines are the thresholds

associated with at least moderately strong evidence (10−2 and 102). Synth-ESLR denotes the synthetic anchored

ensembled score likelihood ratio system, while CS-SLR denotes the system developed using the common source

approach.
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Figure 3.7 Algorithm Illustration for the Speficic Source problem

Note: Point and triangles represent items within sources. Contour was added as a reference for the DGP
conditioned on each source. The specific source under consideration is source three

Panel A: Original data sampled, Panel B : Learning instances from pairwise comparisons under the specific source

problem,Panel C : Generation of a synthetic item via interpolation (Algorithm 4), Panel D : Learning instances for

synthetic source anchoring (Algorithm 5)
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CHAPTER 4. DISCREPANCY METRICS TO EVALUATE MODEL

MISSPECIFICATION AND DEPENDENCE EFFECTS IN SCORE-BASED

LIKELIHOOD RATIO INFERENCE.

Federico Veneri

Department of Statistics, Iowa State University

4.1 Abstract

Score-based Likelihood Ratios have been proposed as an inferential tool for source attribution

problems. In forensic statistics, the estimated likelihood of observing the derived scores under opposing

propositions is used to guide judges’ and jurors’ decisions regarding the origin of items found at crime

scenes. Developing a Score-based Likelihood Ratio system relies on creating learning instances where the

origin of the items is known with certainty. From a background sample, items are paired, defining a match

if the items originated from the same source, and comparison features are generated. This procedure

induces a complex dependence structure, as items are used multiple times, violating the independence

assumption made by popular estimation methods, which could affect the systems’ performance. Our work

introduces discrepancy metrics that allow us to study the effect of model misspecification, meaning

selecting an estimation method that may not match the target density, failing to account for dependency,

or both. We illustrate their use on a univariate example, the basis for our simulation study, where we

compare the traditional approach to weak and strong source resampling. Simulation results show that

while the induced dependence affects the inference drawn, there is a potential tradeoff between thinning

out the dependence and sample size. Weak source resampling performs on par with the traditional

approach, while strong source resampling presents mixed results depending on the estimation methods

used. These initial results suggest that some estimation methods may be more robust to dependence while

others may benefit from resampling strategies.
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4.2 Introduction

Source attribution is a statistical inference problem where the researcher aims to assess the

likelihood of opposing propositions regarding how items were generated. For instance, under the

common source problem, the proposition traditionally denoted as the prosecutor’s (Hp) states

that the items compared share a common unknown source. In contrast, the defense proposition

(Hd) states that the two items were independently generated by two unknown sources.

Score likelihood ratios have gained terrain as an alternative to classical likelihood ratios and

Bayes factors for source attribution problems [17]. This is partly due to the challenge of

developing a formal probability model for the opposing proposition and the advancements in

machine learning to handle complex data [6]. For instance, in forensic analysis of handwriting and

shoe impressions, images are collected to characterize the pattern evidence found at crime scenes.

Machine learning has been used to extract features and compute a lower dimensional score that

can be used as learning instances to develop a score-based likelihood ratio system.

Previous authors have addressed how learning instances should be created. For the common

source, Neumann et al. [14] and Ommen and Saunders [15] proposed a thought experiment to

establish how the estimation sets could be constructed for a distance-based metric. Under the

prosecutor’s proposition, the sampling distribution can be studied by considering a sample from

sources and comparing a single pair of items from each source. Under the defense proposition, the

distribution of the score can be studied by sampling an independent pair of sources and

comparing an item from the first source to an item from the second source.

In practical applications, researchers have used pairwise comparisons to generate learning

instances using a sample of background population where the sources associated with each item

are known with certainty. When two items are paired, new comparison features are generated,

and the pair is considered a known match if they share the same source or a known not-match if

they don’t. As all possible pairs are considered, this induced a complex dependence structure

since items and sources are used multiple times, violating the independence assumption made by

popular estimation methods and could affect the performance of the systems developed.
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Recent work has addressed these issues and proposed resampling plans to account for

dependence generated under the common source problem [21]. Strong Source Resampling (SSR)

imposes a restriction such that the source and items are used only once to create a learning

instance. We expand on this idea by introducing Weak Source Resampling (WSR), which imposes

a weaker restriction, that items are used only once. While both proposals aim to emulate the

sampling model that generated the observed data under both propositions, following how learning

instances should be created more closely, they result in smaller sample sizes than the traditional

approach.

To make the most out of the data collected, the authors proposed using resampling plans to

develop base score-based likelihood ratio systems equivalent to weak learners, and their output

aggregated into a final value of evidence.

While this approach has been shown to improve the inference drawn from score-based

likelihood ratio systems, no previous research has explored the conditions that would guarantee a

better performance than the traditional approach. In particular, we are interested in examining

scenarios associated with different levels of induced dependencies and comparing the performance

of resampling methods to the traditional approach.

To answer this question, we first review the inferential problem and sampling associated with

the data-generating process for the common source problem in Section 4.3, and how score-based

likelihood ratios can be estimated using the traditional approach and resampling methods in

Section 4.4. We then introduce discrepancy measures in Section 4.5.1 that allows us to examine

the effect of model misspecification. We illustrate their use on an univariate example where the

Score Likelihood ratio system can be derived in closed form as the ratio of two half-normal

densities in Section 4.6. The proposed example is the basis for the simulation study presented in

Section 4.7, where the effect of different levels of dependency is explored for combinations of

resampling methods (Traditional, Strong, and weak source resampling) and parametric estimation

methods (Half Normal, Lognormal, Weibull, Gamma, and logit based density ratio estimator).
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For our first simulation, the total sample size is fixed, and the dependence is augmented by

increasing the number of items within sources; results show that scenarios with higher dependence

are associated with larger expected discrepancy and worst empirical performance metrics. This

result holds for any estimation methods used; smaller discrepancies are observed when a half

normal is chosen as the estimation method, which matches the true system in our examples.

Our second simulation allows for a more realistic comparison by allowing the sample size and

source-item relationship to vary. Results suggest that there may be a trade-off for resampling

methods, as they result in smaller sample sizes. Weak source resampling ensembled approach

performed on par with the traditional approach, while strong source resampling was associated

with a larger expected discrepancy for some estimation methods. This was particularly true for

the half-normal, which matches the theoretical target density in our illustration. Strong source

resampling may contribute to smaller expected discrepancies when other estimation methods are

used. This suggests that some estimation methods may be more sensible to the dependency

introduced by using all potential pairs to create learning instances.

4.3 Sampling models and score likelihood ratio for common source

In source attribution problems, two opposing propositions, traditionally denoted as the

prosecutor (Hp) and the defense (Hd), are contrasted. Let E = {Ex,Ey} denote the evidence

under consideration consisting of two items. The propositions address the data-generating process

that resulted in the observed evidence E, and can be generically stated as:

• Hp : Ex and Ey were generated by the same unknown source.

• Hd : Ex and Ey were generated by two different unknown sources.

Consider the case of ballistic examination in forensics. Suppose that two bullet casings

(items) were recovered from two different crime scenes. The common source would refer to a

common firearm, and the propositions essentially refer to the possibility that the two crime scenes

are connected.



87

The conclusion regarding the likelihood of the propositions is reached by comparing

measurements or feature vectors associated with both items denoted as ui ∈ Rp(i = x, y).

To address source attribution problems, Ommen and Saunder [15] formalized the idea of a

sampling model that generated the feature vector. Let uij ∈ Rp denote a generic feature vector

from item j within source i. The mechanism that generated the observed data can be tough as a

two-stage process sampling process. In the first stage, a latent random variable that characterizes

the source Bi is sampled from Fb(· | θ), where Fb describes the variation between sources and is

characterized by population parameters θ. Conditional on the source, the feature vectors

associated with the items are sampled from Fw(· | bi, θ) a density that characterizes the variation

within sources. This can be summarized as:

Bi ∼ Fb (· | θ) and uij
iid∼ Fw (· | bi, θ) (4.1)

This general mechanism establishes how features are generated and allows the formalization of

the prosecutor and defense proposition in terms of sampling models.

Under the prosecutor model, one unknown source common to both items is generated from

Fb, and conditional on the source two feature vectors are generated.

Bu ∼ Fb (· | θ) (4.2)

ux | Bu = bu ∼ Fw (· | bu, θ) (4.3)

uy | Bu = bu ∼ Fw (· | bu, θ) (4.4)

(4.5)

While under the defense model, two unknown sources have been generated from Fb, and

conditional on each source, the features generated

Bx ∼ Fb (· | θ) and ux | Bx = bx ∼ Fw (· | bx, θ) (4.6)

By ∼ Fb (· | θ) and uy | By = by ∼ Fw (· | by, θ) (4.7)
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If both densities were known, likelihood ratios could be computed by deriving the joint

densities of ux and uy under both propositions. In practical applications, researchers can consider

similarity metrics between items based on their feature vectors, which summarize how similar two

objects are in a univariate score.

Let ∆(ux, uy) denote a similarity metric that allows the comparison of items Ex and Ey via

their observed features ux and uy; and let g (δ | Hj) (j = p, d) denote the conditional density of

the univariate score under the propositions then a score likelihood ratio is defined as

SLR(δ) =
g (δ | Hp)

g (δ | Hd)
(4.8)

If the data-generating process was known, the conditional densities of the score under both

propositions could be derived via the transformation theorem. And if the conditional densities

result in a member of the exponential family, meaning the Radon-Nikodym derivative of the

probability measure can be written as:

g(δ | θ,Hj) = hj(δ)vj(θ) exp [ηj(θ)Tj(δ)] , (4.9)

where vj(·), ηj(·) denotes functions of the parameters associated with the data-generating

process and hj(·) and Tj(·) are functions of the observed data, the score likelihood ratio function

can be written in a more tractable form, and the following lemma follows.

Let g(δ | θ,Hj) denote a density under one of the propositions (j = p, d). If both conditional

densities belong to an exponential family, the likelihood ratio for a score δ can be written as:

SLR(δ | θp, θd) =
hp(δ)

hd(δ)

vp(θ)

vd(θ)
exp [ηp(θ)Tp(δ)− ηd(θ)Td(δ)] (4.10)

Both densities are not required to belong to the same exponential family or exponential

families in general. Theoretical illustration often results in the same exponential family with

different locations or scaling for the densities resulting in hp(·) = hd(·) and score likelihood ratio

as in the following Lemma.
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When both conditional densities belong to the same exponential family, the likelihood ratio

for a score δ is simplified as follows.

SLR(δ | θp, θd) =
vp(θ)

vd(θ)
exp [T (δ)(ηp(θ)− ηd(θ))] (4.11)

where T (δ) denotes a sufficient statistic.

Previous Equations (4.10 4.11 4.8 ) can be interpreted as the score likelihood ratio functions,

the main tool to derive inference under the score-based likelihood ratio paradigm. For a given

score δ, if SLR(δ) > 1, the score is found to support Hp, meaning that the score is more likely

under Hp than Hd. The opposite conclusion is derived when SLR(δ) < 1. Different thresholds

have been proposed to interpret the degree of strength associated with the evidence observed [7].

In the case of Equation 4.11, the inference can be summarized in terms of the statistic T (δ)

and the decision rule stated in terms of vj(·) and ηj(·) (j = p, d).

In practical application, the “true” score likelihood ratio functions are not known, and

researchers may apply different methods to estimate these functions.

4.4 Estimating score likelihood ratios

Different methods have been used within the realm of score likelihood ratio systems, a

common distinction has been made between generative and discriminative methods [13, 10].

Starting from a sample
{
δ
(j)
i

}nj

i=1
generative methods aim to estimate the densities ĝj(δ)

(j = p, d), such that an estimated score likelihood ratio function is found by taking the ratio

ŜLR(δ) =
ĝp(δ)

ĝd(δ)
(4.12)

To select the appropriate parametric family, the researcher can examine the range of the

scores and pre-select a subset of families to explore. If the same exponential family is chosen for

both densities, the estimated score likelihood functions can be written as

ŜLR(δ) =
v̂p(θ)

v̂d(θ)
exp [T (δ)(η̂p(θ)− η̂d(θ))] (4.13)
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In practice, the estimation procedure is done independently for each density.

On the other hand, discriminative methods aim to find the boundary between the densities

and provide a density ratio estimator directly. In particular, logistic regression can be used as a

probabilistic classifier density ratio estimator [13, 18, 21]

ŜLR(δ) =
nKNM

nKM
e(β̂0 + β̂1δ) (4.14)

where the first component is the ratio of the sample sizes used to fit a logistic regression, and

β̂ denotes the resulting estimates trained to classify between known matches and non-matches.

Whichever method is selected, once estimates are obtained, the inference is done by plugging

the observed score into the estimated score likelihood ratio function, and the interpretation is the

same as before.

For the estimation method described, a common assumption is that a random sample of

scores from the target densities was available, meaning

{
δ
(KM)
i

}nKM

i=1

iid∼ g(δ | Hp) and
{
δ
(KNM)
j

}nKNM

j=1

iid∼ g(δ | Hd), (4.15)

This matches the theoretical sampling models (Section 4.3) and how the estimation set should

be created [14, 15]. However, as noted by Veneri and Ommen [21], researchers create samples

using unrestricted pairwise comparison, resulting in multiple data points being used multiple

times. This induced dependence structure may have some effects on the estimation methods and

the quality of the inference drawn.

To account for this, the author’s initial proposal was an iterative algorithm to thin out the

dependence structure, ensuring that sources and items are used only once (SSR, Strong Source

Resampling). We expand their idea to impose a less stringent condition, that items are used only

once (WSR, Weak Source Resampling). We summarize these approaches and present the

pseudocode for resampling implementation.

Let A = {uij : i = 1, . . . ,m; j = 1, . . . , n} denote a background sample or initial dataset

available to researchers, where uij denotes the feature vectors, i index sources, and j index items
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within sources. Without loss of generality, we assumed the same number of items within source n,

and that m sources are available.

The traditional approach takes all possible pairwise comparisons, resulting in
(
mn
2

)
comparisons. Consider uij and ukl a potential pair, when i = k, meaning the items share the same

source they are denoted as a known match (KM), and a known non-match (KNM) if they do not

share the same source. This results in nKM =
(
n
2

)
m known matches and the reminder

nKNM =
(
mn
2

)
−
(
n
2

)
m are known non-matches.

An alternative to the traditional approach are resampling plans that consider the data’s

hierarchical nature and thin out the dependence induced by taking all pairwise comparisons.

Strong Source Resampling (Algorithm 8) ensures that sources are used only once. In their

main implementation [21] splits the available source in thirds, m∗ = ⌊m/3⌋. If the source was

selected to create known matches (set 1), two items are resampled within each of them

independently and paired. If the sources were selected to create known non-matches ( sets 1 and

3), one item is sampled for each source in each set and paired to generate m∗ known non-matches.

The result of this algorithm is an estimation set where sources (and items) are used only once.

Algorithm 8 Strong Source Resampling

Split sources into three sets: set 1, set 2, and set 3.

For each source in set 1, sample two items. This will generate the KM pairs.

For each source in set 2, sample one item.

For each source in set 3, sample one item.

Pair the items from two previous steps to generate the KNM pairs.
Note: Pseudocode first introduced in Veneri and Ommen [21].

While Algorithm 8 is appropriate in terms of independence and adequacy with the

data-generating process (Section 4.3) it may impose a too stringent condition, resulting in a loss

of data. In the same spirit, we implemented a weaker version that provides a middle ground

between the traditional approach and the correct data-generating process. Weak Source

Resampling (Algorithm 9) ensures that items are used only once to create comparisons.

Our simple implementation uses Algorithm 8. After strong source resampling is applied to set

A, the items selected are removed. Strong source resampling is implemented again until there are
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no more possible comparisons in A 1. The result of this algorithm is an estimation set where

items are used only once, but sources can be used multiple times.

Algorithm 9 Weak Source Resampling

while Set A is not empty do

Apply SSR to set A

Store comparison scores

Remove items used from A.

end while

The result of both algorithms is an estimation set that can be used to estimate score

likelihood ratio functions. Veneri and Ommen [21] proposed an ensemble approach to strengthen

inference drawn, we follow the same idea to generate an ensemble approach for both weak and

strong resampling methods and compare their performance to the traditional approach in our

second simulation study.

4.5 Discrepancy and performance metrics for Score Likelihood Ratio inference

In practical application, the true score likelihood ratio function is unknown, and the evaluation

of model performance is based on performance metrics computed over a validation set [11, 10] 2.

A popular metric is the rate of misleading evidence for (not) known matches, which is the

percentage of cases where the system should have outputted a value (lower than one) larger than

one, but the opposite occurred. This can be considered as the error rates in score-based likelihood

ratio inference.

The log-likelihood ratio cost (Cllr) provides an aggregated metric of the model performance

[19, 12]. Originally introduced for speaker recognition [5], the metric penalizes errors and weak

evidence in the correct direction. Smaller values of Cllr are associated with better performance,

and authors have established a threshold of Cllr = 1 to consider a system as uninformative. Still,

there is no consensus on interpreting other values [19].

1We determine that there are no more comparisons available if the number of available sources is less than four,
the minimum required for Algorithm 8

2For a more formal notation, we refer the reader to Appendix B of [21]
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These two metrics evaluate the performance from a decision rule perspective, the last stage in

the inference pipeline. However, fewer studies have concentrated on the theoretical aspect of

Score Likelihood ratio-based inference.

Seminal Work by Royall [16] established the groundwork for interpreting evidential values and

computing the probability of misleading evidence for likelihood ratios. Garton et.al. [8] addressed

a probabilistic bound for the discrepancy between likelihood and Score Likelihood ratios. Our

work follows this line of research, focusing on the discrepancy between a true score likelihood

ratio and the estimated counterpart. We first derive discrepancy metrics in Section 4.5.1 and

address computing the probability of misleading evidence as benchmarks in theoretical studies of

score likelihood ratios. We illustrate their use in Section 4.6 with a univariate example, which is

the basis of a simulation study in Section 4.7

4.5.1 Discrepancy metrics

In this section, we propose discrepancy metrics that can be used to evaluate the estimated

score likelihood ratio function to their theoretical counterpart.

We assume that the scores under both propositions follow a known conditional density as in

Equation 4.15 or can be derived from the data-generating process for the features. Let ŜLR(δ)

denote an estimated score likelihood ratio function using a combination of a resampling and a

parametric estimation method. And let SLR(δ) denote the true score likelihood ratio function.

We will consider three discrepancy metrics based on the discrepancy function on Equation 4.16.

h(δ) =
∣∣∣log10(ŜLR(δ))− log10(SLR(δ))

∣∣∣ = ∣∣∣∣∣log10 ŜLR(δ)

SLR(δ)

∣∣∣∣∣ (4.16)

A common practice in score likelihood-based inference is considering the log10 version, resulting

in evidential value in (−∞,∞). Where the zero threshold is associated with the change of

support towards one of the propositions, negative values are associated with evidence supporting

the defense, and positive values support the prosecutor.
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When the true SLR function can be expressed as the ratio of two conditional densities as in

Eq 4.8 and their empirical counterpart were also independently estimated, the discrepancy

function can be rewritten as

h(δ) =
∣∣∣log10 ˆSLR(δ)− log10 SLR(δ)

∣∣∣ (4.17)

= |log10 gp(δ)− log10 gd(δ)− log10 ĝp(δ) + log10 ĝd(δ)| (4.18)

=

∣∣∣∣log10 gp(δ)ĝp(δ)
+ log10

ĝd(δ)

gd(δ)

∣∣∣∣ (4.19)

=

∣∣∣∣log10 gp(δ)ĝp(δ)
− log10

gd(δ)

ĝd(δ)

∣∣∣∣ (4.20)

to highlight the discrepancy between the estimated and true conditional densities under the

prosecutor and defense propositions.

By considering the triangle inequality, Upper and lower bounds can be derived,

∣∣∣∣∣∣∣∣log10 gpĝp
∣∣∣∣− ∣∣∣∣log10 ĝdgd

∣∣∣∣∣∣∣∣ (From triangle ineq ) (4.21)

≤
∣∣∣∣log10 gp(δ)ĝp(δ)

− log10
gd(δ)

ĝd(δ)

∣∣∣∣ (4.22)

=

∣∣∣∣log10(δ) gp(δ)ĝp(δ)
+ log10

ĝd(δ)

gd(δ)

∣∣∣∣ (4.23)

≤
∣∣∣∣log10 gp(δ)ĝp(δ)

∣∣∣∣+ ∣∣∣∣log10 ĝd(δ)gd(δ)

∣∣∣∣ (From triangle ineq ) (4.24)

Since the h(δ) is lower bounded by zero when the estimated and true densities match, we will

consider only the upper bound for our discrepancy metrics.

The first metric considered (Equation 4.25) evaluates the maximum discrepancy observed

between the two functions, similar to Kolmogorov-Smirnov type discrepancy statistic.

KS = sup
δ

h(δ) (4.25)

δKS = argmax
δ

h(δ) (4.26)

where KS denotes the maximum observed and δKS the associated score. While it is

straightforward to compute, the point of maximum discrepancy can be found using a simple grid
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search, a desirable property of a score likelihood system is monotonicity. In the case of a

similarity score, smaller values should be associated with more similar items and more likely

under the prosecutor. Larger values of the score depict more dissimilar items and should be more

likely under the defense. This holds for the parametric estimation methods described in Section

4.4; hence, it may not be an informative metric since we expect a more significant discrepancy to

be found for extreme values of the scores. However, this metric can be informative when

non-parametric methods (e.g. kernel density estimation) are used, as they have been shown to

result in nonmonotonic score likelihood ratio functions [20, 10].

Another drawback of the Kolmogorov-Smirnov-inspired metric is that it fails to consider

which proposition is true. The discrepancy could affect one proposition more than the other. Our

second metric is inspired by Von-misses type statistics, and we denote it as the expected

discrepancy under the prosecutor and the defense (Equation 4.27).

Ej [h(δ)] =

∫
h(δ)g(δ | Hj)dδ (4.27)

Were Ej [h(δ)] indicates the expected discrepancy under the proposition Hj being true. If the

score likelihood ratio and its empirical counterpart are estimated independently, the previous

inequality in Equation 4.24 can be used to find an upper bound of the expected discrepancy.

Ej [h(δ)] ≤ Ej

[∣∣∣∣log10 gp(δ)ĝp(δ)

∣∣∣∣+ ∣∣∣∣log10 ĝd(δ)gd(δ)

∣∣∣∣] (4.28)

= Ej

∣∣∣∣log10 gp(δ)ĝp(δ)

∣∣∣∣+ Ej

∣∣∣∣log10 ĝd(δ)gd(δ)

∣∣∣∣ (4.29)

=

∫ ∣∣∣∣log10 gp(δ)ĝp(δ)

∣∣∣∣ gj(δ)dδ (4.30)

+

∫ ∣∣∣∣log10 ĝd(δ)gd(δ)

∣∣∣∣ gj(δ)dδ (4.31)

Hence, the expected discrepancy under one of the propositions can be upper bounded by two

expected divergences that can be interpreted as the discrepancy between estimated and true

densities weighted by a density associated with the true proposition.
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Our last discrepancy statistic proposes an alternative by considering an integration area

critical for the system. Previous authors [9, 21] have considered cut-off values for the score

likelihood ratio functions that can be interpreted as weaker evidence towards the prosecutor or

the defense [22] and define an inconclusive range.

Let δt = {δ | log10 SLR(δ) = t} denote the scores that achieve a specific threshold t; for

instance in the log10 scale t ∈ (−2, 2) have been considered as weak or moderate evidence range.

We can define Aδ as the score that falls in a particular range associated with weak or moderate

evidence, and define the discrepancy over the inconclusive area as

I[h(δ)] =

∫
h(δ)⊮Aδ

dδ (4.32)

As before, an upper bound for the discrepancy function can be found using Equation4.24

I[h(δ)] ≤
∫ ∣∣∣∣log10 gp(δ)ĝp(δ)

∣∣∣∣⊮Aδ
dδ (4.33)

+

∫ ∣∣∣∣log10 ĝd(δ)gd(δ)

∣∣∣∣⊮Aδ
dδ (4.34)

While this metric focuses on an area deemed critical to inference, some drawbacks should be

considered. As previously mentioned, monotonicity is a desirable property for a score likelihood

ratio function. Since Aδ is defined over the true function, which we can assume fulfills this

property, the integration area is not affected by the estimation method. However, the thresholds

are not always achieved in some problems which can complicate the interpratation of this metric.

We further discuss the application and limitation of the different metrics in our illustration in

Section 4.6. Overall, we argue that the expected discrepancy is the most informative and has a

clear interpretation in terms of an expectation under the prosecutor or defense being correct.

4.5.2 Theoretical rate of misleading evidence and thresholds

In the context of studying properties of score likelihood ratio functions, when SLR(δ) is

known, rather than studying the empirical rate of misleading evidence as described in Section 4.5,
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it is worthwhile to study the theoretical error rate which provides a natural benchmark to assess

the empirical performance of estimated score likelihood ratio functions.

Misleading evidence can be observed even if a model has been correctly specified and all

assumptions are met. Royal [16] addresses the probability of observing strong misleading evidence

for likelihood ratio inference, the existence of universal bounds, and illustrates how the

probability can be considerably smaller than the bounds.

We follow a similar approach to compute the probability of observing misleading evidence in

terms of model parameters. In the context of score-based inference, misleading evidence for the

prosecutor (defense) means that δ is more likely under Hp (Hd) than Hd (Hp) resulting in a ratio

larger than one (smaller than one). We can denote these conditional probabilities as

P (SLR(δ) > 1 | Hd) = Pd(SLR(δ) > 1) (4.35)

P (SLR(δ) < 1 | Hp) = Pp(SLR(δ) < 1) (4.36)

where SLR(δ) denotes the true function. When Lemma 4.3 holds, and the parameters are

known, the probability of misleading evidence can be written as a function of the statistic T (δ),

and its distribution under the prosecutor or defense used to compute the desired conditional

probability.

A similar argument can be used to compute the probability of observing a score over any

threshold selected. We provide an illustration in Section 4.6.

4.6 An univariate Illustration

To illustrate the discrepancy metrics, we will consider an example in forensic glass analysis:

the refractive index. The refractive index is a common feature that can be measured in glass. The

sources could be window panes, and the items could be glass fragments found during a criminal

investigation 3. Hence uij denotes a univariate measurement taken from j − th fragment (item)

that came from the i− th window (source).

3See Section 1.3.3 in [1] for more details and historical overview
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The logic behind the inference is that sources are associated with an overall refractive index

value. While there is variability within sources, resulting in different refractive indices observed in

items from the same source, the variability between sources is larger. This allows us to conclude

that if two fragments (items) share a similar refractive index, it is more likely the same source has

generated them.

We will assume that the measurements follow a two-level Gaussian distribution following. The

data-generating process described in Equation 4.1 can written as :

Bi ∼ N (· | µa, σb) and uij
iid∼ N (· | bi, σw) (4.37)

for this illustration, where µa denotes an overall refractive index, σb the parameter associated

with the between source variation, and σw the within source variation. Both Fb and Fw are

assumed to be Gaussian.

In the case of the common source problem, the two measurements ux and uy, will follow a

joint multivariate distribution with the covariance structure depending on the proposition

(Equation 4.38 and 4.39). The measurements are independent under Hd , while under Hp they

have a covariance σ2
b since they share the same source.

ux

uy

 | Hp ∼ N


µa

µa

,
σ2

w + σ2
b σ2

b

σ2
b σ2

w + σ2
b


 (4.38)

ux

uy

 | Hd ∼ N


µa

µa

,
σ2

w + σ2
b 0

0 σ2
w + σ2

b


 (4.39)

In practical applications, it has been noted that the between variation is considerably larger

than the within variation, σ2
b ≫ σ2

w.

In this illustration, likelihood ratios can be easily computed from the ratio of the joint

distribution under the prosecutor and defense. We will consider distance as a score to develop a

score likelihood ratio system instead.
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Several scores have been used in forensic statistics [8, 4, 3]. We will focus on three classical

distances

∆2d(ux, uy) = (ux − uy)
2, (4.40)

∆L2(ux, uy) =
√

(ux − uy)2 (4.41)

∆L1(ux, uy) = |(ux − uy)| (4.42)

In a univariate setting, the L1 and L2 are equivalent, but we will treat them differently for the

moment. The following lemma from Hepler et al. [9] on the properties of squared normal

distribution and the additional two extra lemmas allow us to find the conditional distribution

under propositions and distances. Note that under this setting, the choice of distance results in

equivalent score likelihood functions; some will be more useful for our simulations later.

Let X ∼ N(µ, σ2) then X2

σ2 ∼ χ2
1,λ a chi-square distribution with one degree of freedom and a

non-centrality parameter λ = µ2

σ2 . The density function of X2 can be written as a function

fX2(t) =
1

σ2
fχ2

1,λ

(
t

σ

)
, with λ =

µ2

σ2
(4.43)

Let X ∼ χ2
n, then

√
X ∼ χn meaning a chi-distribution with n degrees of freedom.

Let X ∼ χ1, then σX ∼ HN(σ), meaning a half-normal

Let X ∼ N(0, σ2), then |X| ∼ HN(σ), meaning a half-normal

For all our scoring functions in 4.40, since we are considering the difference between two

Gaussian random variables, it follows from properties of Gaussian distribution that the difference

is Gaussian random variables with mean zero under both propositions, variance 2σ2
w under Hp

and 2σ2
a under Hd.

For our first scoring function, ∆2d. Applying Lemma 4.6 results in
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g (∆2d(ux, uy) = δ | Hp) =
1

2σ2
w

fχ2
1

(
δ

2σ2
w

)
(4.44)

g (∆2d(ux, uy) = δ | Hd) =
1

2σ2
a

fχ2
1

(
δ

2σ2
a

)
(4.45)

Where fχ2
1
denotes the density of a chi-square distribution with one degree of freedom,

fχ2
1
(x) =

x−1/2e−x/2

21/2Γ
(
1
2

) , δ > 0. (4.46)

For our second distribution ∆L2 , let σ denote generically σa or σw, we know that

((ux − uy)
2/2σ) ∼ χ2

1 and by lemma 4.6 it follows that

g (∆L2(ux, uy) = δ | Hp) = fHN

(
δ | σ =

√
2σ2

w

)
(4.47)

g (∆L2(ux, uy) = δ | Hd) = fHN

(
δ | σ =

√
2σ2

a

)
(4.48)

For our third scoring function, ∆L1 applying lemma 4.6 to the difference of Gaussian

distributions resutls in:

g (∆L1(ux, uy) = δ | Hp) = fHN

(
δ | σ =

√
2σ2

w

)
(4.49)

g (∆L1(ux, uy) = δ | Hd) = fHN

(
δ | σ =

√
2σ2

a

)
(4.50)

For both results, fHN denotes the density of a half normal distribution with scaling parameter

σ.

fHN (x | σ) =
√
2

σ
√
π
exp

(
− x2

2σ2

)
δ > 0 (4.51)

As noted before, L1 and L2 will match in our illustration. In the following sections, we will

focus on the L1 norm and the squared difference to derive rates of misleading evidence and

divergence results.
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4.6.1 True Score Likelihood ratio functions, thresholds, and probability of

misleading evidence

From the conditional densities obtained in Section 4.6 or applying Lema 4.3, the score

likelihood function can be written as in Equation 4.11. Different thresholds and the probability of

misleading evidence can be derived as a function of T (δ).

In the case of the L1 and L2 norms,

SLRL1(δ | σ2
w, σ

2
b) =

1√
2σ2

w

e
−δ2

4σ2
w

1√
2σ2

a

e
−δ2

4σ2
a

=

(
σ2
a

σ2
w

)1/2

e
−δ2

4

(
σ2
b

σ2
wσ2

a

)
(4.52)

And for the squared difference,

SLR2d(δ | σ2
w, σ

2
b) =

σ2
a

σ2
w

fχ2
1

(
δ

2σ2
w

)
fχ2

1

(
δ

2σ2
a

) =

(
σ2
a

σ2
w

)1/2

e
− δ

4

(
σ2
b

σ2
wσ2

a

)
. (4.53)

Note that δ in Equation 4.53 is the square of the original δ from Equation 4.52, meaning that

inference drawn by either system will match. In what follows, we will consider the L1 score

likelihood representation, where T (δ) = δ2, for brevity. This case explicitly relates the initial

parameters from the data-generating process to the scaling parameters of the half normal, which

can be estimated using maximum likelihood when a sample of scores is obtained.

First, consider the log10 of the equation 4.52, we can write

log10 SLRL1(δ = δt | σ2
w, σ

2
b ) =

1

2
log10

(
σ2
a

σ2
w

)
− log10(e)

δ2t
4

(
σ2
b

σ2
wσ

2
a

)
(4.54)

Note that σ2
w and σ2

b are model parameters and only δ can be considered a random variable.

The conditional distribution for the statistic T (δ) = δ2 can be derived depending on the

propositions considered.

Rates of misleading evidence and different thresholds can be derived from Equation 4.52, in

close form. First we derive the asociated score δt to a generic threshold t in terms of the data

generating process paramters an estimable model parameters following Eq 4.54.
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δt =

√
4

log10(e)

(
σ2
wσ

2
a

σ2
b

)[
1

2
log10

(
σ2
a

σ2
w

)
− t

]
(4.55)

=

√√√√ 4

log10(e)

(
σ2
pσ

2
d

2(σ2
d − σ2

p)

)[
1

2
log10

(
σ2
d

σ2
p

)
− t

]
(4.56)

The last equality results from noting that σ2
w = σ2

p/2 , σ2
b = (σ2

d − σ2
p)/2 ,σ2

a = σ2
d/2 , and can

be used to find δt by plug-in σ2
j (j = p, d) or its estimates to find estimated threshold.

We illustrate the value δt for selected parameter values and t in Figure 4.1. The central panel

depicts the scores associated with t = 0, the threshold that determines whether an SLR is leaning

towards the prosecutor or defense, while the left panel t = 2 depicts the score associated with

strong evidence toward the prosecutor and right panel t = −2 strong evidence toward the defense.

For a fixed value of σw, incresing σb, would result in a larger treshold required to distinguish

between prosecutor and defense propositions. Intuitively, as there is more variability between

sources, refractive indices will tend to overlap, requiring a larger score to decide between

propositions. It is relevant to note that strong evidence towards the prosecutor is not always

achieved since the scores are lower bounded by zero. Achieving a strong conclusion for the

prosecutor would require a larger contribution of the between variance to the total variability.

Achieving a strong conclusion for the defense does not face this limitation as the scores are not

upper bounded, and in general, a smaller threshold is required when sources are more separable.

The previous result illustrates a potential weakness of these scores as the prosecutor may

never observe strong evidence in his direction given certain model parameters and metrics like

Equation 4.32 could be harder to interpret.

Besides these thresholds, a key aspect of score likelihood ratio functions is the probability of

observing misleading evidence for the true system as described in Section 4.5.2. For this

illustration, the probability for the defense can be computed as
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Figure 4.1 Score associated with different thresholds by model parameters

Note: δt denotes the score associated with threshold t

Pd(SLR > 1) = Pd

((
σ2
a

σ2
w

)1/2

e
− δ2

4

(
σ2
b

σ2
wσ2

a

)
> 1

)
(4.57)

= Pp

(
δ2 ≤ −2 ln

(
σ2
w

σ2
a

)
σ2
aσ

2
w

σ2
b

)
(4.58)

= Fχ2
1

(
− ln

(
σ2
w

σ2
a

)
σ2
w

σ2
b

)
(4.59)

(4.60)

and the probability for the prosecutor can be computed as



104

Pp(SLR < 1) = Pp

((
σ2
a

σ2
w

)1/2

e
− δ2

4

(
σ2
b

σ2
wσ2

a

)
< 1

)
(4.61)

= 1− Pp

(
δ2 ≤ −2 ln

(
σ2
w

σ2
a

)
σ2
aσ

2
w

σ2
b

)
(4.62)

= 1− Fχ2
1

(
− ln

(
σ2
w

σ2
a

)
σ2
a

σ2
b

)
(4.63)

(4.64)

For both cases, the last equality comes from the fact that δ follows a half-normal distribution

hence scaling and taking its square result in a Chi-square distribution.

We illustrate the probability or rate of misleading evidence for selected model parameters (σb

and σw) in Figure 4.2. When the between variability is a larger portion of the total variability

(σ2
a = σ2

b + σ2
w), both errors decrease as sources are easier to identify. However, the errors are not

symmetric (Figure 4.3). There is a larger probability of obtaining misleading evidence for the

defense, meaning concluding that the prosecutor is correct when the defense is correct, compared

to the rate of misleading evidence for the prosecutor.

4.6.2 Discrepancy metrics

When the L1 norm is considered, the target densities are half normal with their scaling

parameters a function of the parameters from the process: σ2
p = 2σ2

w under the prosecutor and

σ2
d = 2σ2

a under the defense. We illustrate the discrepancy measures derived in Section 4.5.1 for

our example and provide a close form when the correct parametric family is chosen.

In practice, target densities are not known in advance. An alternative is to select within a

collection of potential flexible parametric families that will adapt to the domain to obtain systems

described by Equation 4.12. In our simulations, we explored the Weibull, Gamma, and

LogNormal families since their support aligns with the potential values of the score. We also

explore using a logit-based density ratio estimator to obtain systems described by 4.14. In the

first case, discrepancy measure and their upper bounds can be computed numerically, while for
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Figure 4.2 Rate of misleading evidence under different model parameters

Note: σ2
b denotes the between variance, σ2

w the within variance. RME denotes the rate of misleading evidence for
the prosecutor (Hp) or defense (Hd) proposition

the density ratio estimator only the original metrics can be computed. We do not provide a close

form for the discrepancy statistics under these alternatives.

If the correct family was chosen, in our case a half normal, but the model parameters are

unknown. Reasonable estimates would result in a good approximation to the true densities

resulting in small discrepancies.

When a sample of scores under a particular proposition is obtained, maximum likelihood

estimation can be used to obtain the scaling parameter σ̂2
j =

∑n
i=1 δ

2
ji

n (j = h, p).

The resulting absolute values of the log densities that acted as the components of the upper

bound of our discrepancy function (Equation 4.24) can be written as
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Figure 4.3 Rate of misleading evidence by ratio of variability

Note: σ2
b denotes the between variance, σ2

w the within variance and σ2
a = σ2

w + σ2
b the total variance.

RME denotes the rate of misleading evidence for the prosecutor (Hp) or defense (Hd) proposition



107

∣∣∣∣log10 gjĝj
∣∣∣∣ =

∣∣∣∣∣δ2 log10(e)2

(
σ2
j − σ̂j

2

σ2
j σ̂j

2

)
+ log10

(
σ̂j
σj

)∣∣∣∣∣ (4.65)

≤ δ2
log10(e)

2

∣∣∣∣∣
(
σ2
j − σ̂j

2

σ2
j σ̂j

2

)∣∣∣∣∣+
∣∣∣∣log10( σ̂j

σj

)∣∣∣∣ (4.66)

These results can be used to summarize several discrepancy statistics, as they provide an

upper bound to the integrands.

Under regularity conditions and iid sample, the MLE estimator is consistent for the true

parameters4, meaning σ̂2
j

p→ σ2
j (j=h,p), hence σ̂2

j − σ2
j

p→ 0 and by the continuous mapping

theorem log10

(
σ̂j

σj

)
p→ 0 .

Hence, the components of the upper bound will converge to zero if the estimators are

consistent, and the discrepancy will go to zero. For completition, we present the closed form and

upper bounds for the different discrepancy metrics in our illustration.

First we apply results found in Equation 4.66 to Equation 4.24 resulting in

h(δ) =

∣∣∣∣log10 gp(δ)ĝp(δ)
+ log10

ĝd(δ)

gd(δ)

∣∣∣∣ (4.67)

≤
∣∣∣∣log10 gp(δ)ĝp(δ)

∣∣∣∣+ ∣∣∣∣log10 ĝd(δ)gd(δ)

∣∣∣∣ (From )

(4.68)

≤ δ2
log10(e)

2

(∣∣∣∣∣
(
σ2
p − σ̂p

2

σ2
pσ̂

2
p

)∣∣∣∣∣+
∣∣∣∣∣
(
σ̂2
d − σd

2

σ2
dσ̂d

2

)∣∣∣∣∣
)

+

∣∣∣∣log10( σ̂p
σp

)∣∣∣∣+ ∣∣∣∣log10(σd
σ̂d

)∣∣∣∣ (4.69)

Hence, for our illustration, the supremum of h(δ) is bounded, and the bound increases as

δ →∞. For a fixed delta, the bound archives its smallest value if the estimates are consistent.

In the case of the expected discrepancy,

4We refer the reader to classical books like [2]
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Ej [h(δ)] =

∫
h(δ)g(δ | Hj)dδ (4.70)

≤
∫

g(δ | Hj)

[
δ2

log10(e)

2

(∣∣∣∣∣
(
σ2
p − σ̂p

2

σ2
pσ̂

2
p

)∣∣∣∣∣+
∣∣∣∣∣
(
σ̂2
d − σd

2

σ2
dσ̂d

2

)∣∣∣∣∣
)

+

∣∣∣∣log10( σ̂p
σp

)∣∣∣∣+ ∣∣∣∣log10(σd
σ̂d

)∣∣∣∣
]

(4.71)

=
log 10(e)

2
Ej(δ

2)

(∣∣∣∣∣
(
σ2
p − σ̂p

2

σ2
pσ̂

2
p

)∣∣∣∣∣+
∣∣∣∣∣
(
σ̂2
d − σd

2

σ2
dσ̂d

2

)∣∣∣∣∣
)

+

∣∣∣∣log10( σ̂p
σp

)∣∣∣∣+ ∣∣∣∣log10(σd
σ̂d

)∣∣∣∣
(4.72)

=
σ2
j log 10(e)

2

(∣∣∣∣∣
(
σ2
p − σ̂p
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The second to last inequality comes from the definition of expectation. And the fact that we

are considering the estimated parameters as fixed. The last equality comes from the variance

(V (δ) = σ2
j (1− 2

π )) and the square of expected value (E(δ)2 = σ2
j
2
π ) ,hence

E(δ2) = V (δ) + E(δ)2 = σ2
j .

Given an estimated parameter value, the expected discrepancy will depend on the proposition

considered via the σ2
j in Equation 4.73. Given that σd =

√
2(σ2

b + σw) and σp =
√
2σw, the

expected discrepancy will be larger for the defense than for the prosecutor.

Similar arguments can be used to derive Equation 4.32 in close form. Results are skipped for

brevity.

4.7 Simulation study

To evaluate the effect of model misspecification, selecting the incorrect parametric family and

not accounting for the dependence structure, during the estimation step to develop a score

likelihood ratio system, we propose a simulation study based on the illustration presented in

Section 4.6. Two scenarios are considered to identify potential channels that affect inference.

In both scenarios, we run 500 iterations, creating a sample of δ’s, and compared results in

terms of expected discrepancy and empirical performance metrics. When the half-normal is
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selected for estimation, the maximum likelihood estimates are compared to the true model

parameters based on their bias, variance, MSE, and MAPE.

For the first simulation study (Section 4.7.1), we created a scenario that would result in the

number of matches roughly held constant at 500 cases. For each iteration of our simulation, 1500

sources with 10 items each are generated, but the available data is restricted to generate varying

degrees of dependence. Table 4.1 presents the overall setup. Let I denote the number of sources

used and J the number of items available. For the first three cases: I11− J10, I24− J7, and

I50− J5, all pairs are generated, resulting in known match and non-match pairs. The first case is

the one with more induced dependence, as more items are available from fewer sources. The latter

provides a smaller dependence structure. After all pairs are created, downsamplig is applied to

balance the classes. We employ Algortithm 8 on the simulated data to generate a scenario we

denote as I1500− J1. This scenario emulates more closely a theoretically correct set of scores.

Table 4.1 Restriction imposed over the sample
Sources (I) Items (J) KM KNM*

All pairs 11 10 495 5500

24 7 504 13524

50 5 495 30625

SSR 1500 10 500 500
Note: KM denotes known matches, and KNM* denotes the number of cases before applying downsampling to

balance cases.
SSR denotes strong source resampling

Our second simulation (Section 4.7.2) does not impose restrictions over the data, it considers

a fixed number of sources (I = 150, 300, 600) and items within the source J (J = 10, 20, 50). For

each iteration, a sample is drawn and comparisons are created using either the traditional

approach, strong or weak source resampling.

One drawback of applying a resampling step is reducing the sample size available for

estimation. Consider the case of I = 150 and J = 10, the traditional method would result in(
10
2

)
× 150 = 111750 known matches, while strong source resampling would imply only 50 known

matches. To account for this drawback, when resampling methods are used, they are applied
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M = 20 time to generate base learners whose output is aggregated into a final value of evidence

[21].

This is the most realistic scenario from a researcher’s perspective since when faced with a

given sample, their decision is what is the appropiate estimation method and if a resampling step

should be applied.

In both scenarios, data was simulated following a univariate hierarchical Gaussian process (Eq

4.37) with σw = 1 and σb =
√
2, and comparisons are generated using the L1 norm. An additional

validation set was generated for each scenario by drawing 1000 observations from each

half-normal target density. These observations are fixed across iterations, allowing us to compute

the variability of the output obtained as a measurement of consensus. In criminal justice, score

likelihood ratios are not only expected to provide strong evidence in the correct direction, but

ideally, they should be less sensible to changes in the training data.

4.7.1 Simulation 1 results-Fixed sample size

Our first simulation scenario provides results when the estimation sample size is fixed and the

degree of dependence changes. We first present the results when the correct estimation method

(half-normal family) is chosen and examine the maximum likelihood estimates in terms of Bias,

Variance, MSE, and MAPE in Table 4.2.

For scenarios associated with larger dependence,i.e., more items per source, estimates present

larger MSE, the major contribution being an increase in variance. In the case of known

(non-)matches, MAPE ranged from 5.79 (12.36) % under the most dependent scenario to 2.54

(2.48) % when a theoretically correct sample is used.

We present the results for the expected discrepancy in Figure 4.4 by estimation method and

dependence structure. Each observation represents the outcome of one of the 500 simulations.

Scenarios closer to the theoretically correct sample are associated with smaller expected

discrepancies for both the prosecutor and defense. Further, the expected discrepancy is smaller
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Table 4.2 Parameter estimates half-normal distribution. Simulation 1
Match Scenario Bias Variance MSE MAPE

KM I11-J10 0.0820 0.0107 0.0107 5.79

I24-J7 0.0659 0.0067 0.0066 4.66

I50-J5 0.0547 0.0049 0.0049 3.87

I1500-J1 0.0359 0.0020 0.0020 2.54

KNM I11-J10 0.3028 0.1399 0.1410 12.36

I24-J7 0.2067 0.0684 0.0683 8.44

I50-J5 0.1606 0.0392 0.0391 6.55

I1500-J1 0.0606 0.0058 0.0058 2.48

when the correct parametric family is chosen. This suggests that the dependence structure and

the selected estimation method can affect the inference drawn.

Additional empirical performance metrics are computed for each simulation using the

validation set. Results are presented in Figure 4.5.

The cost likelihood functions (Cllr) present the system’s overall performance, a smaller value

associated with better performance. Choosing the correct parametric family is associated with

smaller costs, and within a chosen estimation method, the median cost is smaller for the

theoretically correct sample. In the case of the rate of misleading evidence, we observed that for

more dependent samples, the variability of the metric increases. More dependent scenarios are

also associated with more variability in systems output. Choosing the correct estimation method

results in a closer empirical rate of misleading to the theoretical probability of misleading

evidence; however, this is not always associated with the smaller rate of misleading evidence.

Choosing an alternative estimation method may result in smaller errors for one of the

propositions.

While this simulation illustrates that the estimation method and dependence structure affect

the estimation and inference, this exercise compares different starting sample sizes of sources and

items that result in a similar number of learning instances. In practical applications, the

researcher will start with a fixed sample size and decide between estimation and resampling

methods. Our second simulation aim to provide additional information in this regard.
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Figure 4.4 Expected discrepancy by proposition. Simulation 1

Figure 4.5 Empirical Performance. Simulation 1

Note: Cllr denotes the log-likelihood ratio cost, RME the rate of misleading evidence for known matches (KM) and

not known matches (KNM). SD denotes the standard deviation. Red vertical lines present the theoretical

probability of observing misleading evidence.
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4.7.2 Simulation 2 results - Varying the number of sources and items within

Our second simulation presents a more realistic scenario, where the different resampling plans

and estimation methods are compared over a fixed number of sources (I) and items within the

source (J).

As in our previous simulation, we first present the results for the scaling parameter of the

half-normal density comparing the traditional approach, weak and strong resampling. We provide

the full results in Table 4.3 in the Appendix and focus on the MAPE (Figure 4.6) for the

discussion.

Across the different sample compositions, the traditional approach resulted in better

estimates, while strong source resampling produced the worst estimates. This result was expected

as the limited amount of sources acts as a strong limit for strong source resampling, and

increasing the number of items per source does not increase the number of cases available,

resulting in a smaller sample size available for estimation compared to the other methods. Weak

resampling performed better, close to the traditional approach. We also observe that point

estimates improve faster for weak source resampling than the traditional approach as the diversity

of items per source increases.

These results suggest that while dependence may affect the estimation result, as seen in

Section 4.7.1), there is a trade-off when applying a resampling step. Resampling plans alone may

not result in better estimates; more stringent restrictions can result in smaller sample sizes that

outweigh the independence generated.

Given the previous results, when we extend our analysis of expected discrepancy and

empirical performance metrics, rather than compare estimated Score Likelihood Ratio systems

obtained by applying only one resampling step, we followed [21] to create an ensemble system

that has been shown to perform better. We created 20 base systems for each iteration and

aggregated their output by taking a simple average.
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Figure 4.6 MAPE for a half-normal distribution by number of sources, items and methods.
Simulation 2

Note: SSR denotes Strong Source Resampling, WSR Weak Source Resampling, and Trad denotes the traditional
approach.

The first number on the x-axis denotes the number of sources I, and the second the number of items J . Hp denotes

the prosecutor proposition, Hd the defense.
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The average expected discrepancy for the different propositions, estimation methods, and

resampling plans are presented in Table 4.4 in the Appendix. We focus our discussion on two

estimation methods: half-normal and Weibull (Figure 4.7).

When the half-normal density is chosen, the weak source resampling ensembled system

performs similarly to the traditional approach. Strong source resampling ensembles presented

larger expected discrepancies for the prosecutor and defense and more variability. The difference

between the sampling methods and the overall variability of the metric is reduced as the number

of sources is increased.

When an alternative method is chosen, the expected discrepancies are larger (Table 4.4).

Showing the importance of selecting the correct density.

The Weibull density presented the smallest discrepancy within the alternative options. For

smaller samples with more dependency, strong source resampling ensembled systems resulted in a

(larger) smaller expected discrepancy for the (prosecutor) defense. Similar patterns were observed

for the other estimation methods, but the gains were smaller.

Lastly, we present some empirical performance metrics for score-likelihood ratio systems.

Table 4.5 in the Appendix presents the average metrics by estimation and resampling method,

while figure 4.8 focuses on the results obtained for the half-normal and Weibull densities.

Half-normal densities are associated with smaller costs, a smaller rate of misleading evidence

for the prosecutor, and a larger rate of misleading evidence for the defense compared to other

estimation methods. While weak source resampling performed similarly to traditional methods,

strong source resampling ensembles under the half normal density were associated with larger

costs and larger rates of misleading evidence for the prosecutor; however, it was associated with a

smaller rate of misleading evidence for the defense.

When resampling methods are used for alternative parametric estimation methods, results are

mixed. While there is more variability in the metrics for all methods when strong source

resampling ensembles are used, for the Weibull and Gamma, smaller average costs are observed.
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In the case of the Weibull, there is no effect of the resampling methods on the median rate of

misleading evidence. As in Simulation 1, the rate of misleading evidence for defense is smaller for

all numbers of sources, items, and resampling plans compared to the half-normal.

Across all estimation methods, resampling plans were associated with more variability as

measured by the standard deviation of the log10 output of the systems.

These simulation results present mixed results, suggesting that some methods can benefit

more from resampling; the gains seem greater when a small sample and larger dependence are

present. As before, we would like to highlight that an alternative estimation method may result in

a smaller empirical error rate for the defense than the theoretical probability of observing

misleading evidence.

4.8 Conclusions

Score likelihood ratio-based inference is becoming more prevalent in source inference

problems. This is the case in forensic evidence where machine learning-derived scores are used for

complex pattern evidence [6].

Our work examines the effect of model misspecification: selecting an incorrect density and not

accounting for the dependence structure, on score-based likelihood ratio inference. We continue

previous work on resampling plans to alleviate dependence structure [21] by introducing Weak

Source Resampling. This approach imposes that items are used only once, generating more

learning instances than Strong Source Resampling.

We introduced discrepancy metrics that can be used to study the effect of model

misspecification and illustrate our results in a simplified scenario where only conditional density

estimation is required. This univariate example is the basis of our simulations, where alternative

estimation methods and resampling plans are compared.

In both our simulations, selecting the incorrect parametric estimation method was associated

with a larger expected discrepancy. However, alternative estimation methods may produce better
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Figure 4.7 Expected discrepancy by proposition, select densities. Simulation 2

Note: E.SSR denotes Strong Source Resampling ensemble, E.WSR Weak Source Resampling ensemble, and Trad
denotes the traditional approach.

The first number on the y-axis denotes the number of sources I, and the second the number of items J . Hp denotes

the prosecutor proposition, Hd the defense.
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Figure 4.8 Performance metric by proposition, select densities. Simulation 2

Note: E.SSR denotes Strong Source Resampling ensemble, E.WSR Weak Source Resampling ensemble, and Trad
denotes the traditional approach.

The first number on the y-axis denotes the number of sources I, the second the number of items J . Cllr denotes

the log-likelihood ratio cost, RME the rate of misleading evidence for known matches (KM) and not known matches

(KNM). SD denotes the standard deviation.
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empirical performance metrics. We observe that the associated rate of misleading evidence may

be smaller than the probability of observing misleading evidence for our scenario.

Results for the effect of dependence structure were mixed. While our first simulation shows

that there is a detrimental effect of using nonindependent data to estimate score likelihood ratio

functions across the different estimation methods, our second simulation suggests that there could

be a tradeoff between thinning out dependence to obtain theoretically correct learning instances

and sample size available for estimation.

Weak Source Resampling performed comparably to the traditional approach, while Strong

Source Resampling showed mixed results depending on the estimation methods used. This

suggests that some methods can benefit from a resampling step, but further research is needed to

establish the conditions that guarantee improvements.

Further, our work examined simple distances and the dependence effect on the estimation

step. Analogous scenarios are needed to examine the effect on more complex scores that also

require a training stage.

4.9 References

[1] Aitken, C. G. G. and Taroni, F. (2004). Statistics and the Evaluation of Evidence for Forensic
Scientists. John Wiley and Sons, Ltd., West Sussex, UK, 2nd edition.

[2] Berger, R. and Casella, G. (2001). Statistical Inference. Duxbury Press, Florence, AL, 2
edition.

[3] Bolck, A., Ni, H., and Lopatka, M. (2015). Evaluating score- and feature-based likelihood
ratio models for multivariate continuous data: applied to forensic MDMA comparison. Law,
Probability and Risk, 14(3):246–266.

[4] Bolck, A., Weyermann, C., Dujourdy, L., Esseiva, P., and van den Berg, J. (2009). Different
likelihood ratio approaches to evaluate the strength of evidence of MDMA tablet comparisons.
Forensic Science International, 191(1):42 – 51.

[5] Brümmer, N. and Du Preez, J. (2006). Application-independent evaluation of speaker
detection. Computer Speech & Language, 20(2-3):230–275.

[6] Carriquiry, A., Hofmann, H., Tai, X. H., and VanderPlas, S. (2019). Machine learning in
forensic applications. Significance, 16(2):29–35.



120

[7] Evett, I., Jackson, G., Lambert, J., and McCrossan, S. (2000). The impact of the principles of
evidence interpretation on the structure and content of statements. Science & Justice,
40(4):233–239.

[8] Garton, N., Ommen, D., Niemi, J., and Carriquiry, A. (2020). Score-based likelihood ratios to
evaluate forensic pattern evidence. arXiv preprint arXiv:2002.09470.

[9] Hepler, A. B., Saunders, C. P., Davis, L. J., and Buscaglia, J. (2012). Score-based likelihood
ratios for handwriting evidence. Forensic science international, 219(1-3):129–140.

[10] Leegwater, A. J., Vergeer, P., Alberink, I., van der Ham, L. V., van de Wetering, J., El
Harchaoui, R., Bosma, W., Ypma, R. J., and Sjerps, M. J. (2024). From data to a validated
score-based lr system: A practitioner’s guide. Forensic Science International, 357:111994.

[11] Meuwly, D., Ramos, D., and Haraksim, R. (2017). A guideline for the validation of likelihood
ratio methods used for forensic evidence evaluation. Forensic science international,
276:142–153.

[12] Morrison, G. S. (2011). Measuring the validity and reliability of forensic likelihood-ratio
systems. Science & Justice, 51(3):91 – 98.

[13] Morrison, G. S. (2013). Tutorial on logistic-regression calibration and fusion: converting a
score to a likelihood ratio. Australian Journal of Forensic Sciences, 45(2):173–197.

[14] Neumann, C. and Ausdemore, M. (2020). Defence against the modern arts: the curse of
statistics—Part II: ‘Score-based likelihood ratios’. Law, Probability and Risk, 19(1):21–42.

[15] Ommen, D. M. and Saunders, C. P. (2018). Building a unified statistical framework for the
forensic identification of source problems. Law, Probability and Risk, 17(2):179–197.

[16] Royall, R. (2000). On the probability of observing misleading statistical evidence. Journal of
the american statistical association, 95(451):760–768.

[17] Stern, H. S. (2017). Statistical issues in forensic science. Annual Review of Statistics and Its
Application, 4:225–244.

[18] Sugiyama, M., Suzuki, T., and Kanamori, T. (2010). Density ratio estimation: A
comprehensive review (statistical experiment and its related topics). RIMS Kokyuroku,
1703:10–31.

[19] van Lierop, S., Ramos, D., Sjerps, M., and Ypma, R. (2024). An overview of log likelihood
ratio cost in forensic science–where is it used and what values can we expect? Forensic science
international: synergy, 8:100466.



121

[20] Veneri, F. and Ommen, D. (2021). An evaluation of score-based likelihood ratios for glass
data. Master’s thesis, Iowa State University.

[21] Veneri, F. and Ommen, D. M. (2023). Ensemble learning for score likelihood ratios under the
common source problem. Statistical Analysis and Data Mining: The ASA Data Science
Journal, 16(6):528–546.

[22] Willis, S., Aitken, C., Barrett, A., Berger, C., Biedermann, A., Champod, C., Hicks, T.,
Lucena-Molina, J., Lunt, L., McDermott, S., McKenna, L., Nordgaard, A., O’Donnell, G.,
Rasmusson, B., Sjerps, M., Taroni, F., and Zadora, G. (2015). ENFSI Guideline for Evaluative
Reporting in Forensic Science. European Network of Forensic Science Institutes,
http://enfsi.eu/wp-content/uploads/2016/09/m1 guideline.pdf.



122

4.10 Appendix: Additional simulation results

Table 4.3 Parameter estimation for a half-normal distribution by number of sources, items,
and methods. Simulation 2

Bias Variance MSE MAPE

I J Method KM KNM KM KNM KM KNM KM KNM

150 10 SSR 0.1143 0.1933 0.0200 0.0595 0.0201 0.0597 8.08 7.89

WSR 0.0479 0.1092 0.0037 0.0189 0.0036 0.0189 3.38 4.46

Trad 0.0214 0.0776 0.0007 0.0098 0.0007 0.0098 1.51 3.17

20 SSR 0.1074 0.2147 0.0181 0.0710 0.0182 0.0709 7.59 8.77

WSR 0.0291 0.0874 0.0013 0.0122 0.0013 0.0123 2.06 3.57

Trad 0.0144 0.0749 0.0003 0.0089 0.0003 0.0089 1.02 3.06

50 SSR 0.1134 0.1988 0.0203 0.0651 0.0206 0.0651 8.02 8.11

WSR 0.0197 0.0771 0.0006 0.0093 0.0006 0.0094 1.39 3.15

Trad 0.0094 0.0732 0.0001 0.0083 0.0001 0.0084 0.67 2.99

300 10 SSR 0.0786 0.1342 0.0100 0.0281 0.0100 0.0281 5.56 5.48

WSR 0.0357 0.0760 0.0019 0.0093 0.0019 0.0093 2.52 3.10

Trad 0.0153 0.0567 0.0004 0.0052 0.0004 0.0052 1.08 2.31

20 SSR 0.0843 0.1349 0.0112 0.0288 0.0113 0.0288 5.96 5.51

WSR 0.0219 0.0637 0.0008 0.0065 0.0008 0.0065 1.55 2.60

Trad 0.0109 0.0546 0.0002 0.0048 0.0002 0.0048 0.77 2.23

50 SSR 0.0774 0.1386 0.0092 0.0297 0.0092 0.0296 5.48 5.66

WSR 0.0134 0.0569 0.0003 0.0052 0.0003 0.0052 0.95 2.32

Trad 0.0070 0.0532 0.0001 0.0045 0.0001 0.0045 0.49 2.17

600 10 SSR 0.0546 0.0997 0.0048 0.0153 0.0048 0.0154 3.86 4.07

WSR 0.0243 0.0538 0.0009 0.0048 0.0009 0.0048 1.72 2.20

Trad 0.0113 0.0390 0.0002 0.0024 0.0002 0.0024 0.80 1.59

20 SSR 0.0517 0.0940 0.0042 0.0139 0.0042 0.0139 3.66 3.84

WSR 0.0159 0.0451 0.0004 0.0032 0.0004 0.0032 1.12 1.84

Trad 0.0079 0.0380 0.0001 0.0023 0.0001 0.0023 0.56 1.55

50 SSR 0.0602 0.0958 0.0056 0.0142 0.0056 0.0142 4.26 3.91

WSR 0.0095 0.0398 0.0001 0.0026 0.0001 0.0026 0.67 1.63

Trad 0.0051 0.0365 0.0000 0.0022 0.0000 0.0022 0.36 1.49

Note: SSR denotes strong Source Resampling, WSR Weak Source Resampling, and Trad denotes the traditional

approach. I denotes sources and J items within the source.
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Table 4.4 Average Expected discrepancy by estimation and resampling method. Simula-
tion 2

Edh(δ) Eph(δ)

I J Estimation E.SSR E.WSR Trad E.SSR E.WSR Trad

150 10 GLM 0.1342 0.1348 0.1349 0.0733 0.0677 0.0671

gamma 0.1467 0.1503 0.1515 0.0642 0.0582 0.0580

hnorm 0.0371 0.0239 0.0220 0.0182 0.0136 0.0128

lnorm 0.2781 0.2787 0.2802 0.1511 0.1425 0.1428

weibull 0.0973 0.1070 0.1094 0.0481 0.0430 0.0430

20 GLM 0.1340 0.1346 0.1345 0.0726 0.0675 0.0672

gamma 0.1464 0.1507 0.1510 0.0631 0.0580 0.0578

hnorm 0.0344 0.0196 0.0180 0.0169 0.0122 0.0116

lnorm 0.2770 0.2798 0.2799 0.1490 0.1433 0.1427

weibull 0.0970 0.1080 0.1089 0.0473 0.0429 0.0428

50 GLM 0.1340 0.1344 0.1344 0.0726 0.0673 0.0671

gamma 0.1449 0.1509 0.1509 0.0621 0.0580 0.0578

hnorm 0.0334 0.0159 0.0151 0.0169 0.0110 0.0107

lnorm 0.2752 0.2801 0.2801 0.1467 0.1433 0.1430

weibull 0.0950 0.1087 0.1088 0.0463 0.0430 0.0427

300 10 GLM 0.1343 0.1344 0.1344 0.0688 0.0670 0.0666

gamma 0.1484 0.1504 0.1509 0.0591 0.0575 0.0572

hnorm 0.0243 0.0172 0.0160 0.0124 0.0098 0.0093

lnorm 0.2781 0.2797 0.2801 0.1447 0.1429 0.1425

weibull 0.1020 0.1071 0.1084 0.0430 0.0419 0.0417

20 GLM 0.1339 0.1342 0.1343 0.0693 0.0668 0.0665

gamma 0.1477 0.1505 0.1508 0.0593 0.0574 0.0571

hnorm 0.0234 0.0139 0.0132 0.0121 0.0086 0.0084

lnorm 0.2777 0.2798 0.2800 0.1446 0.1427 0.1425

weibull 0.1011 0.1080 0.1083 0.0432 0.0420 0.0416

50 GLM 0.1337 0.1342 0.1342 0.0695 0.0666 0.0665

gamma 0.1483 0.1505 0.1507 0.0602 0.0571 0.0571

hnorm 0.0220 0.0114 0.0111 0.0113 0.0078 0.0077

lnorm 0.2791 0.2798 0.2800 0.1468 0.1423 0.1425

weibull 0.1017 0.1080 0.1082 0.0441 0.0417 0.0416

600 10 GLM 0.1340 0.1342 0.1343 0.0675 0.0665 0.0662

gamma 0.1489 0.1502 0.1506 0.0574 0.0568 0.0566

hnorm 0.0165 0.0127 0.0117 0.0085 0.0071 0.0066

lnorm 0.2785 0.2796 0.2800 0.1428 0.1423 0.1423

weibull 0.1041 0.1072 0.1078 0.0414 0.0411 0.0409

20 GLM 0.1340 0.1342 0.1342 0.0672 0.0662 0.0661

gamma 0.1496 0.1504 0.1505 0.0578 0.0567 0.0566

hnorm 0.0143 0.0099 0.0095 0.0077 0.0060 0.0059

lnorm 0.2797 0.2798 0.2798 0.1444 0.1423 0.1421

weibull 0.1051 0.1077 0.1080 0.0417 0.0410 0.0409

50 GLM 0.1340 0.1341 0.1342 0.0673 0.0662 0.0661

gamma 0.1488 0.1506 0.1505 0.0572 0.0568 0.0566

hnorm 0.0145 0.0081 0.0077 0.0078 0.0055 0.0053

lnorm 0.2782 0.2800 0.2799 0.1424 0.1425 0.1422

weibull 0.1044 0.1080 0.1079 0.0414 0.0411 0.0410

Note: E.SSR denotes Strong Source Resampling ensemble, E.WSR Weak Source Resampling ensemble, and Trad
denotes the traditional approach.

I denotes sources and J items within the source. Ejh(δ) denotes the expected discrepancy under the propositions.
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Table 4.5 Average performance metric by estimation and resampling method. Simulation
2

Cllr RME.KM RME.KM SD.log10(SLR)
I J Estimation E.SSR E.WSR Trad E.SSR E.WSR Trad E.SSR E.WSR Trad E.SSR E.WSR Trad

10 GLM 0.9138 0.9134 0.9134 27.51 27.31 27.30 43.71 43.82 43.82 0.0294 0.0213 0.0197
gamma 0.9155 0.9156 0.9158 28.29 27.84 27.84 43.28 43.50 43.46 0.0345 0.0224 0.0195
hnorm 0.9053 0.9051 0.9050 19.99 19.40 19.31 52.05 52.74 52.84 0.0315 0.0238 0.0221
lnorm 0.9601 0.9568 0.9569 45.58 46.51 46.96 31.75 31.09 30.78 0.0429 0.0241 0.0194
weibull 0.9095 0.9098 0.9100 25.41 25.33 25.42 45.88 45.88 45.76 0.0381 0.0248 0.0218

20 GLM 0.9137 0.9133 0.9133 27.52 27.28 27.28 43.68 43.80 43.80 0.0272 0.0186 0.0170
gamma 0.9153 0.9156 0.9156 28.25 27.83 27.80 43.29 43.45 43.45 0.0323 0.0182 0.0161
hnorm 0.9052 0.9049 0.9049 20.01 19.38 19.34 52.05 52.79 52.83 0.0295 0.0201 0.0186
lnorm 0.9591 0.9569 0.9567 45.53 46.81 46.85 31.81 30.82 30.73 0.0409 0.0182 0.0147
weibull 0.9094 0.9098 0.9099 25.45 25.43 25.46 45.82 45.72 45.67 0.0356 0.0202 0.0179

50 GLM 0.9137 0.9133 0.9132 27.50 27.27 27.27 43.69 43.80 43.80 0.0274 0.0162 0.0154
gamma 0.9150 0.9156 0.9156 28.04 27.81 27.79 43.45 43.42 43.44 0.0331 0.0152 0.0143
hnorm 0.9052 0.9049 0.9049 20.00 19.38 19.36 52.05 52.81 52.82 0.0283 0.0168 0.0162
lnorm 0.9582 0.9568 0.9567 45.00 46.87 46.87 32.09 30.70 30.67 0.0427 0.0144 0.0126
weibull 0.9091 0.9098 0.9098 25.25 25.49 25.48 46.04 45.63 45.63 0.0364 0.0169 0.0158

300 10 GLM 0.9134 0.9132 0.9132 27.38 27.32 27.28 43.73 43.76 43.77 0.0203 0.0152 0.0141
gamma 0.9154 0.9155 0.9156 28.04 27.86 27.82 43.41 43.42 43.44 0.0241 0.0156 0.0142
hnorm 0.9050 0.9049 0.9049 19.65 19.44 19.39 52.44 52.73 52.80 0.0222 0.0171 0.0162
lnorm 0.9575 0.9567 0.9567 46.24 46.86 46.94 31.31 30.81 30.73 0.0295 0.0161 0.0142
weibull 0.9094 0.9097 0.9098 25.37 25.45 25.46 45.88 45.70 45.68 0.0265 0.0176 0.0158

20 GLM 0.9133 0.9132 0.9132 27.41 27.29 27.28 43.70 43.76 43.77 0.0196 0.0131 0.0125
gamma 0.9152 0.9155 0.9155 28.03 27.82 27.77 43.39 43.41 43.43 0.0230 0.0129 0.0119
hnorm 0.9049 0.9048 0.9048 19.68 19.43 19.41 52.41 52.77 52.79 0.0210 0.0144 0.0138
lnorm 0.9574 0.9566 0.9566 46.15 46.86 46.88 31.36 30.72 30.67 0.0287 0.0127 0.0109
weibull 0.9093 0.9097 0.9097 25.40 25.50 25.48 45.82 45.61 45.62 0.0252 0.0143 0.0132

50 GLM 0.9133 0.9132 0.9131 27.41 27.27 27.27 43.68 43.76 43.76 0.0183 0.0116 0.0112
gamma 0.9153 0.9155 0.9155 28.15 27.76 27.76 43.29 43.43 43.43 0.0222 0.0111 0.0104
hnorm 0.9049 0.9048 0.9048 19.70 19.43 19.43 52.38 52.78 52.79 0.0196 0.0122 0.0120
lnorm 0.9582 0.9564 0.9565 46.49 46.82 46.85 31.14 30.68 30.66 0.0286 0.0102 0.0091
weibull 0.9094 0.9097 0.9097 25.51 25.49 25.49 45.67 45.61 45.60 0.0241 0.0123 0.0115

600 10 GLM 0.9132 0.9131 0.9131 27.34 27.27 27.26 43.71 43.75 43.76 0.0140 0.0109 0.0101
gamma 0.9153 0.9154 0.9155 27.89 27.79 27.75 43.41 43.43 43.44 0.0164 0.0115 0.0102
hnorm 0.9048 0.9048 0.9048 19.57 19.47 19.44 52.58 52.74 52.78 0.0155 0.0125 0.0116
lnorm 0.9566 0.9565 0.9565 46.59 46.85 46.88 31.03 30.77 30.70 0.0200 0.0119 0.0102
weibull 0.9094 0.9096 0.9096 25.43 25.47 25.46 45.74 45.66 45.66 0.0180 0.0128 0.0113

20 GLM 0.9132 0.9131 0.9131 27.29 27.25 27.25 43.75 43.76 43.76 0.0133 0.0091 0.0088
gamma 0.9154 0.9154 0.9154 27.91 27.74 27.71 43.41 43.43 43.45 0.0157 0.0090 0.0084
hnorm 0.9048 0.9048 0.9048 19.55 19.46 19.46 52.63 52.77 52.78 0.0138 0.0103 0.0098
lnorm 0.9573 0.9564 0.9564 46.80 46.84 46.82 30.91 30.68 30.66 0.0198 0.0088 0.0075
weibull 0.9095 0.9096 0.9096 25.44 25.47 25.47 45.72 45.62 45.61 0.0171 0.0099 0.0094

50 GLM 0.9132 0.9131 0.9131 27.30 27.24 27.25 43.73 43.76 43.75 0.0132 0.0081 0.0079
gamma 0.9152 0.9154 0.9154 27.84 27.74 27.72 43.44 43.43 43.44 0.0154 0.0077 0.0073
hnorm 0.9048 0.9047 0.9047 19.57 19.47 19.47 52.60 52.77 52.77 0.0139 0.0087 0.0084
lnorm 0.9564 0.9565 0.9564 46.45 46.85 46.82 31.08 30.66 30.67 0.0192 0.0072 0.0063
weibull 0.9094 0.9096 0.9096 25.41 25.48 25.46 45.74 45.58 45.59 0.0170 0.0085 0.0081

Note: E.SSR denotes Strong Source Resampling ensemble, E.WSR Weak Source Resampling ensemble, and Trad
denotes the traditional approach. I denotes sources and J items within the source. Cllr denotes the log-likelihood
ratio cost, RME the rate of misleading evidence for known matches (KM) and not known matches (KNM). SD

denotes the standard deviation.



125

CHAPTER 5. GENERAL CONCLUSION

5.1 Conclusion

This dissertation focuses on source attribution problems and the use of Score based Likelihood

ratio to draw inferences for these problems. Score Likelihood ratios have been proposed as an

alternative to traditional methods for their ability to address open set problems and

accommodate scores derived from modern machine learning methods required for the complex

features found in forensic science [1, 4]

While there have been recent advances in the use of score likelihood ratio in this domain there

are still open challenges and critics to adopt their use fully.

Scores act as a dimensionality reduction technique [11, 3], implying a loss of information.

Further, scores consider the similarity between items, not typically [7]. Ideally, both should be

considered to provide a correct value of evidential strength. Other lines of research have focused

on how appropriate they are within a Bayesian framework [10, 8], how closely they approximate

Likelihood ratio systems [2, 8], and to what extent can specific and common source system be

used interchangeably [12, 9].

From a practitioner’s perspective, other authors have centered their attention on the

validation of the systems developed; see, for example, [6, 5].

We focus on a less studied aspect, system misspecification, particularly the effect of not

considering the dependence structure created when generating learning instances.

While there are proposals on how the scores should be generated following the inference

problem [9, 8], for the specific source, the lack of available data has led research to use common

source systems, leading to incorrect conclusions. Further, practical applications for the common

source have used all potential pairwise comparisons to create learning instances for the common

source problem, generating a complex dependence structure.
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We propose resampling plans for the common (Chapter 2 and 4) specific source (Chapter 3)

to address these issues. These resampling plans can be used as the building block to create weak

learners that can be aggregated to obtain better-performing systems (Chapter 2).

While our simulation and application for these chapters suggest that using resampling and

ensembling can strengthen inference, there are still some avenues of research to explore.

Chapter 4, introduced divergence metrics used to study the effect of model misspecification on

score likelihood ratio-based inference. Our univariate illustration for a simple score suggests that

while there is an effect associated with unaccounted dependence, there may be a trade-off when

applying a too-strict resampling plan for some density estimation procedures. Further research is

needed to delimit the condition under which a gain is expected.

Similarly, our work proposes ensembling M-weak learners using different aggregation methods

(Chapter2). The number of weak learners and how results are combined could be further studied

to boost the system’s performance.

Similarly, for Chapter 3 the number of neighbors to create synthetic items is an input from

the user. We want to extend recommendations associated with the data available and how this

can impact performance. Further, other extrapolation methods could be explored.

Lastly, current score likelihood ratio inference is used to compute the evidential value of the

evidence observed. We believe that our resampling methods could also be used to quantify the

uncertainty associated with the estimates provided to judges and jurors.
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