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Rare diseases (RDs) are a group of pathologies that individually affect less than 1 in 2000 people but 
collectively impact around 7% of the world’s population. Most of them affect children, are chronic and 
progressive, and have no specific treatment. RD patients face diagnostic challenges, with an average 
diagnosis time of 5 years, multiple specialist visits, and invasive procedures. This ‘diagnostic odyssey’ 
can be detrimental to their health. Machine learning (ML) has the potential to improve healthcare 
by providing more personalized and accurate patient management, diagnoses, and in some cases, 
treatments. Leveraging the MIMIC-III database and additional medical notes from different sources 
such as in-house data, PubMed and chatGPT, we propose a labeled dataset for early RD detection in 
hospital settings. Applying various supervised ML methods, including logistic regression, decision 
trees, support vector machine (SVM), deep learning methods (LSTM and CNN), and Transformers 
(BERT), we validated the use of the proposed resource, achieving 92.7% F-measure and a 96% AUC 
using SVM. These findings highlight the potential of ML in redirecting RD patients towards more 
accurate diagnostic pathways and presents a corpus that can be used for future development and 
refinements.

Rare disease (RD) is pathology that affects less than 1 in 2000 people1. Although separately each disease is very 
rare, taken together, there are around 7000 different disorders, they involve a large number of patients (7% of the 
world population)2. Most of them affect children, have a high impact on quality of life and life expectancy, are 
generally chronic and progressive, and most of them have no specific treatment. Moreover, by their infrequency 
nature, they are a diagnostic challenge. On average, it takes five years from the onset of symptoms to diagnosis, 
and it takes a mean of about seven visits to different specialists and dozens of studies, some of them invasive 
or requiring general anesthesia3; this is generally referred to as the “diagnostic odyssey”. According to a recent 
report by Globalgenes (https://globalgenes.org/rare-facts) 40% of general practitioners and 24% of specialists 
state that they do not have the time to work on these diagnoses, which contributes to the difficulty of a time-
efficient diagnostic process. It is important to obtain a time-efficient diagnosis to avoid a detrimental disease 
progression.

RD patients are extremely vulnerable and neglected by the healthcare system since there is usually no global, 
nationwide strategy to tackle and fund this problem efficiently. Genomic approaches such as whole exome or 
genome sequencing have improved the diagnosis rate in RD patients4,5. Depending on the existing pathology 
and method used, the diagnosis rate can vary from 30 to 50%6–8. It is of imperative importance to include these 
types of tests at the right moment in the diagnostic algorithm.

Machine learning (ML) is a powerful tool in several fields of healthcare, allowing for the development of more 
personalized and accurate patient management, diagnoses and treatments9–11. The application of ML methods 
has the potential to improve healthcare and create more efficient, reliable, and cost-effective treatments12–14.

The advent of large scale language models Transformer-based such as BERT15, GPT-315,16 or T517 trained 
on a massive amount of text data has shown to outperform a wide range of natural language processing tasks 
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including text summarization, sentiment analysis, question answering and language translation. The efforts of 
ML researchers have shifted towards the fine-tuning of freely available versions of these models with relatively 
small specialized datasets (few-shot learning). Hence, the importance of generating such smaller corpora related 
to particular fields of interest and making them available to the community.

In this study we aim to propose a resource to contribute to the research in the detection of RD patients in an 
early stage in their passage through a hospital. For this, we have made use of the large, freely-available, MIMIC-
III database18 of de-identified health-related data of over forty thousand patients who stayed in critical care units 
at the Beth Israel Deaconess Medical Center. MIMIC-III includes information of patients such as test results, 
medications, mortality and discharge summaries. Besides, we have collected medical notes from other sources 
such as case reports from Pubmed, our own records and diagnostics automatically generated by chatGPT.

ML techniques applied to several fields in medicine are becoming key in aiding diagnosis of different 
diseases. Models applied to biomedical images to properly diagnose or subclassify diseases19–22 or to predict 
complications of common diseases23–25 are being developed. In addition, more specifically to RD, ML models 
applied to phenotypic data26 and to questionnaire-based and data mining-supported tools have been developed27. 
Moreover, ML models are being specifically applied to clinical records exploration to improve diagnosis of a 
specific rare disease such as AHP28 or to RD in general29. Also, an extension of the large language model BERT, 
called RareBert30, has been trained on administrative claims datasets and tailored specifically for improved 
diagnosis of RD. However, this model is not freely available.

Here, we explored a plethora of methods applied to the proposed (available) corpus, including classical 
supervised machine learning (SVM, decision trees (DT), logistic regression (LR)), deep learning (LSTM and 
CNN), and Transformers (BERT). Using SVM, we identified RD patients (any RD) with 92.7% of F-measure 
and an AUC of 96%. This information could be used to redirect them to a more accurate diagnostic algorithm.

Data and methods
Following, we describe the proposed dataset for the classification of medical records as containing signs of rare 
diseases or not. Then, we introduce the models used in the experimental study. Since the emergence of deep 
learning, models have become more accurate and reliable, outperforming classical machine learning techniques 
in many tasks. However, in many cases classical models are still more suitable than deep learning because they 
are simpler, obtain comparable results and require less computing power. For that reason, we explore several 
methods, from classical to deep learning approaches in order to show their performance in the particular task 
of detecting RDs.

Proposed corpus
With the aim to get diversity, we used discharge summaries from MIMIC-III, some medical education notes 
from the School of Medicine in Uruguay, a few diagnosis reports from the URUGENOMES project (urugenomes.
org), some clinical records scrapped from PubMed and a few clinical records “created” by chatGPT. Because all 
selected sources have different writing styles, we believe this is a positive aspect for the corpus. This variability 
provides a “more realistic” scenario in which medical records appear as unstructured data, with non-specific 
writing style (which depends on the health professional) and containing a variety of medical information. After 
collecting all documents, we checked for the label of each one (rare disease or common disease). Some of them 
such as the medical records from URUGENOMES project and case reports from PubMed had intrinsically the 
assigned category (rare disease or not). The rest of the records were revised and labeled by a medical geneticist to 
determine if each one corresponds to a medical note of a rare or a common disease. Below we describe in detail 
how the documents from the proposed corpus were selected.

MIMIC-III database has been used in previous studies related to the classification of diseases18 and constitutes 
a valuable resource for research. This large and freely-available corpus has more than 2000 K de-identified data 
related to 46 K patients of critical care units of the Beth Israel Deaconess Medical Center (Boston, Massachusetts) 
between the years 2001 and 2012. The information contained is about demographics, vital sign measurements 
made at the bedside, test results of laboratories, procedures performed, medications, caregiver notes, imaging 
reports, data of mortality and discharge summaries. For our study, we used the discharge summaries of patients 
because these have interesting information about the diagnosis that doctors arrived at during their stay at the 
hospital. As we need to label some clinical notes as RDs for consideration in our proposed dataset, we considered 
a published article29 in which the authors found RDs in a subset of discharge summaries taken from MIMIC-III. 
They used a two-steps approach. First, tokens appearing in the text are linked to medical concepts of the Unified 
Medical Language System (UMLS) with the SemEHR tool. The results were refined using particular rules for 
removing abbreviations and text-UMLS pairs with low mention frequencies in the clinical notes. Contextual 
representations of the pairs were obtained with BlueBERT and used to train a Logistic Regressor for a binary 
classification to confirm clinic mentions. Secondly, the UMLS concepts were linked to Orphanet Rare Disease 
Ontology (ORDO) and thus, the authors created a gold standard dataset with 1073 mentions: 146 of rare and 927 
of common diseases. We searched for the discharge summary notes corresponding to these mentions and thus, 
obtained 65 notes containing clues of RD and the remaining 247, common diseases. We also randomly selected 
additional 100 clinical notes of MIMIC-III corresponding to the admission stage of patients. This is to introduce 
variability to the medical texts besides to augment the number of common diseases. We checked that those 
diagnoses were not labeled as rare (according to29). Finally, our proposed dataset has 412 records containing 
medical notes from MIMIC-III.

We also used medical education summaries collected from Oficina del Libro of the Medicine School at 
Universidad de la República (Uruguay)31 which contain diagnostics related to cardiology, hematology, neurology 
and internal medicine. After a rigorous review performed by an expert (medical geneticist), we labeled the 98 
notes in common (64) and rare (34) diseases. Those clinical texts were translated from spanish to english.
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In order to balance both classes of diagnosis, we included 32 RDs obtained from clinical records of a previous 
project, URUGENOMES (urugenomes.org)4,32 and 277 from PubMed. For the last, we scrapped the PubMed 
platform (https://pubmed.ncbi.nlm.nih.gov/) searching for case reports of RDs in free articles.

As obtaining medical notes on rare diseases is challenging, we generated some ones using chatGPT ​(​​​h​t​t​p​s​
:​/​/​c​h​a​t​.​o​p​e​n​a​i​.​c​o​m​​​​​)​. Thus, we included 10 RD clinical records and 13 common diseases generated by the tool 
and these were manually curated by a clinical geneticist, adding 23 diagnostics to the corpus. Our complete 
corpus finally has 842 clinical records, 418 rare and 424 common. It is available under: ​h​t​t​p​s​:​/​/​s​i​t​e​s​.​g​o​o​g​l​e​.​c​o​m​
/​​​v​i​e​w​​/​​l​e​t​i​c​i​​a​​-​c​a​g​​n​i​n​​a​/​​r​e​s​e​a​r​c​h and can be free-used for research issues performing the corresponding citation. 
The interested reader is referred to the supplementary material (Methods Sect. 1) for further discussion of the 
limitations and challenges of using this dataset.

In neither case, no preprocessing nor normalization is done to preserve the data’s genuine characteristics. 
The records collected constitute a balanced corpus which is more reliable to work with. Table 1 shows the main 
characteristics of the dataset. The vocabulary is large, with more than half of the unique words. This could 
be expected since the texts are related to specific medical issues (names of medications, lab tests, symptoms, 
diseases, abbreviations used by doctors, etc.). The diagnoses are written in 4 sentences on average although the 
variability of lengths is high: most clinical notes have only one sentence (possibly the diagnosis is written like a 
paragraph), just one with 340 (short sentences) and the rest with values oscillating the 2 and 70 sentences.

Table 1 (two bottom rows) shows the characteristics of the corpus separated by classes. As mentioned this 
corpus is balanced so it has a similar amount of records of RDs and common diseases (418 vs. 424). Although 
the size of vocabulary used is not very different, it seems that clinical notes of common diseases are much longer 
than ones for RDs (474 K vs. 312k). The same occurs with the number of sentences: RDs are written using one 
third of those included in common diagnostics. In fact, most of the notes of RDs use two sentences while those 
of common are slightly more extensive (6 on average). Only one record has a maximum number of sentences 
of 340 which corresponds to a common disease but the rest of this class are around 1 and 70. Moreover, the RD 
diagnosis has between 1 and 39 sentences as maximum. Examples of clinical notes are in Supplementary figure 
S1A (RD) and B (common diseases).

We also analyzed the contents of the clinical notes by using word clouds, which show the frequency of the 
words in each class. Most used words in common diseases notes are regular medical terms such as blood, pain 
and patient (Fig. 1A). Also some words related to non specific treatment: capsule, daily and hours. Interestingly 
the word cloud corresponding to RD notes (Fig. 1B) shows advanced studies and serious issues found in words 
such as tomography, examination, tumor and mass. Top 50 more representative words in the whole proposed 
dataset are in Supplementary Figure S2.

Figure 1C shows the proportion of medical notes collected from the different sources. Note that no requirement 
was stated in the time to collect the record and thus, the diversity of the distribution of words (log-scaled) is 
high. The distribution corresponding to RDs is approximately normal which is suitable for classification models 
(Fig. 1D). However, some outliers above 3500 words can be observed for this class. The kernel density estimation 
is shown with a narrow kurtosis (leptokurtic) and central tendency around 500. The distribution for the class of 
common diseases seems to be bimodal although the central tendency is around 100 without major outliers (see 
Fig. 1D).

Patient consent, data privacy and ethics
As was previously reported18, data in MIMIC-III was desidentified according to Health Insurance Portability 
and Accountability Act (HIPAA) standards and dates shifted to avoid possible identification of patients. Prior 
to the assembly of the MIMIC-III, the project was approved by the Institutional Review Boards of Beth Israel 
Deaconess Medical Center (Boston, MA) and the Massachusetts Institute of Technology (Cambridge, MA). For 
that reason, the authors state that individual patient consents were not required since there was no impact in the 
clinical care, and protected health information was desidentified. Beyond that, the ethical use of this valuable 
resource requires to complete a specific course related to protecting human research participants including the 
HIPAA requirements and to sign a data use agreement.

Regarding medical education summaries collected from the Medicine School (Universidad de la República), 
these are public learning material created by the Faculty for medical students. These records were already 
desidentified by removing any personal data (names, birthdate, social security number, address and telephone 
number) before publication to the students and preserving some clinically relevant data, such as age, physical 
conditions, ethnic and hereditary background. In that way, we ensure confidentiality and privacy of this portion 
of the data.

All medical records from the URUGENOMES project have signed written informed consents and ethics 
committee approval under the name “Proyecto URUGENOMES - Fortalecimiento de las capacidades técnicas y 
humanas en el proyecto Genoma Humano Uruguay”.

Diagnosis Vocabulary Words Word average Sentences Sentence average Sentence min Sentence max

Corpus 842 41,765 787,277 935 3576 4 1 340

Common 424 29,671 474,648 1119 2753 6 1 340

Rare 418 21,686 312,629 747 823 1 1 39

Table 1.  Dataset statistics.
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From PubMed we extract interesting case reports related to rare diseases. Because the documents are published 
in medical/biomedical journals, most of them (if not all) required ethics statements which imply that the study 
must have signed written informed consents from patients/guardians and the approval of an ethics committee 
(which ensures patient privacy).

Finally, the medical notes artificially generated with chatGPT are synthetic data and therefore there is no need 
to ensure consent or anonymize data. We quickly checked that the obtained records are correct from an ethical 
perspective.

Machine learning models
We employed TF-IDF (Term Frequency-Inverse Document Frequency) weighting and boolean schemes to 
transform text data into numerical feature representations. For TF-IDF, each term’s weight was computed by 
multiplying its frequency in a document by the inverse of its frequency across the corpus. Boolean schemes 
convert term presence into binary values (0 or 1). Before vectorization, the text data was preprocessed by 
converting all text to lowercase, removing punctuation, and filtering out stop words.

For feature selection, we limited the vocabulary size to the top 5000 or 10,000 terms with the highest TF-IDF 
scores, ensuring a balance between model complexity and computational efficiency. We considered two types of 
features: individual words (unigrams) and trigrams (sequences of three consecutive words).

After vectorization, we applied normalization to the resulting feature matrix to standardize the data for the 
machine learning models. L2 normalization scaled each feature vector to have a unit norm (Euclidean distance 
of 1), while L1 normalization scaled feature vectors such that the sum of their absolute values equaled 1. These 
normalization steps ensured that the feature magnitudes were comparable across different samples, which is 
critical for algorithms sensitive to feature scaling, such as SVM and LR.

Finally, the processed feature matrices were used to train several classification models, including SVM, LR, 
and DT. For SVM and LR, hyperparameters such as the regularization strength and kernel types (for SVM) were 
tuned using grid search with cross-validation. Decision Trees were optimized by varying tree depth, minimum 
samples per leaf, and splitting criteria to minimize overfitting and improve generalization. For each baseline 

Fig. 1.  Corpus description. (A) Word cloud that represents the frequency of each word for the Common class. 
(B) Word cloud for the RD class. (C) Number and proportion of records collected from different sources for 
the proposed dataset. (D) Distribution of text length (in log number of words units) for each class.
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model we performed 30 independent runs with different dataset partitions considering 80% for training and 
20% to test. The best results were obtained with the following hyperparameters: LR used Solver Newton-CG, 
TF-IDF norm L2 representation and max features 10,000; SVM included a sigmoid kernel, TFIDF norm L1 
representation; maximum depth of DT was 23 and considered TFIDF norm L2 representation.

We also include models based on deep neural networks such as the Long-Short Term Memory (LSTM)33 and 
Convolutional Neural Network (CNN)34, model architectures are shown in Fig. 2. The input of these models 
are static dense representations of words, that is, embeddings. After several experiments, we decided to use a 
combination of our own pre-trained vectors (obtained from signs and symptoms of rare diseases) and others 
specific for the task to solve in our study (obtained from https://github.com/yao8839836/obesity). We used 
two embedding layers with the pre-trained word vectors which are concatenated to obtain a 400 dimensional 
higher-level representation of each input text. After processing the input with the specific architecture of each 
model, the output is obtained as the result of a fully connected softmax layer to perform the classification using 
the probability distribution over the output labels (RD vs. common). The LSTM includes a layer with 64 units 
(Fig. 2A) while the CNN only 4 1D-convolutional layers for extracting 70 filters with different sizes of kernels 
(varying between 1 and 4) (Fig. 2B). After applying max pooling operation to each feature map, the outputs are 
concatenated, flatted and passed to a dense 64-unit layer. Previous to the output layer, a dropout operation is 
performed to reduce overfitting (rate 0.2). The only change introduced to the previous architecture to construct 
the CNN + LSTM model is the inclusion of a LSTM layer between the concatenation of the 1D-convolutional 
and the dense layer (Fig. 2C). The number of units in the dense layer and filters is lower (here 50). Finally, the 
architecture of the LSTM + CNN is obtained by embedding the CNN between the LSTM and the output layer 
(Fig. 2D). We removed the 64-unit dense layer and the dropout operation to simplify the ended model. We also 
reduced the size of the filters and the units in the LSTM (10 and 16 respectively).

For each deep neural network architecture the input layer is the text to classify. All architectures are shown in 
Fig. 2A-D).These architectures were obtained as the best after testing several models with different configurations 
of hyperparameters.

Large language models are pre-trained using large amounts of data (in an unsupervised way) and usually 
fine-tuned (in a supervised way) with specific data depending on the task to solve. An example of such models is 
the Bidirectional Encoder Representations from Transformers15 (BERT). Unlike the models we proposed before, 
BERT uses contextualized word representation of the input which feeds several stacked Transformer encoders. 
We select BERT for our experiments because, beyond its good performance in various NLP tasks, there are 
several models pre-trained with biomedical texts. We compare a base version of BERT with Bio_ClinicalBERT. 
The latter is a fine-tuned (with medical conditions data) version of the first domain-specific BERT based 
model pre-trained on large scale biomedical corpora, named BioBert35. The model is available in sid321axn/
Bio_ClinicalBERT-finetuned-medicalcondition · Hugging Face. BERT was pre-trained on English Wikipedia 
and General BooksCorpus while Bio_ClinicalBERT, besides the same as BERT, was pre-trained with PubMed 
Abstracts and PMC Full-text articles (that is, biomedical domain-specific texts) and fine-tuned with clinical 
conditions of diseases.

Fig. 2.  Model architecture description. Input layer is the medical record to be processed. The output (dense 
layer) is the probability that the input is RD or common. The architectures vary in number and type of units 
involved. (A). LSTM model. (B). CNN model. (C). CNN + LSTM model. (D). LSTM + CNN model.
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Results
We analyze the results of the different models implemented and show the one that obtained the best performance 
in detecting RDs from medical notes. Then, we perform an error analysis on the systematically misclassified 
records to highlight some characteristics about the proposed corpus.

The SVM better predicts RD patients on discharge summary texts
Table 2 summarizes the results of applying all models and considering the metrics Accuracy (useful when the 
problem has balanced classes), the standard F-measure and Area Under Curve Receiver Operator Characteristic 
(AUC) for complementing the evaluation of the performance.

First rows in Table 2 shows for each one of the baseline models the results obtained with the best configuration. 
The results suggest that SVM outperforms the models obtained with the baseline classifiers but also the advanced 
ones (LSTM, CNN and BERT) when F-measure is considered (0.927).

Regarding the results of deep models (Table 2, rows 4–7), CNN and LSTM perform similarly with a small 
difference between metrics: CNN is better than LSTM in F-measure (0.906 and 0.898, respectively) but LSTM 
is better than CNN in accuracy and AUC (0.899 and 0.893 in accuracy, respectively). It is interesting to note 
that LSTM outperforms the combination of LSTM and CNN models which would indicate that LSTM can 
learn long-term dependencies from sequences of higher-level representations without help of convolutional 
operations. Figure 3A shows the confusion matrix of the best model (SVM). The class 0 corresponds to common 
disease and class 1 to RD. Only one common disease was misclassified and 11 RDs were wrongly classified as 
common. Figure 3B the ROC curve obtained from the data.

The last 2 rows of Table 2 show the results obtained with the Transformer-based models. BioBert obtained 
better performance than BERT considering F-measure (0.873 vs. 0.852) and the same behavior with the other 

Fig. 3.  SVM model metrics. (A) confusion matrix with predictions of common diseases (label 0) and RDs 
(label 1). (B) ROC curve.

 

Accuracy F-measure AUC

LR 0.923 0.922 0.925

DT 0.888 0.893 0.887

SVM 0.929 0.927 0.960

CNN 0.893 0.906 0.944

LSTM 0.899 0.898 0.952

CNN + LSTM 0.893 0.877 0.922

LSTM + CNN 0.888 0.887 0.920

BioBERT 0.882 0.873 0.881

BERT 0.858 0.852 0.858

Table 2.  Best results obtained with each method for the proposed corpus.
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metrics. The reason is probably because BioBERT was trained with biomedical data. BioBert performs quite 
similarly to all models, demonstrating that for this particular task, the complexity of transformed-based models 
is not synonymous with better results.

We chose the AUC metric in model analysis as it provides valuable insights into the model’s ability 
to distinguish between classes and its impact on specific errors like false positives and false negatives, as 
demonstrated in previous studies36. In our case, higher AUC means how better the model is at distinguishing 
between patients with a RD and not. LSTM, CNN and SVM classifiers obtained the highest AUC (0.95, 0.94 and 
0.96, respectively) indicating their ability to correctly classify diagnosis with RDs with relatively small models (in 
comparison to the transformer-based ones).

Systematically misclassified clinical records
The most frequent error of our model is that RDs are misclassified as common diseases. In almost all models 
(baseline and not) a median of ~ 87.25% of all misclassified records correspond to RD wrongly classified as 
common. A median of 80.95% of misclassified RD corresponds to MIMIC-III clinical records that were 
previously classified by another study29. The rest (mostly) correspond to common diseases that were translated 
from Spanish. Focusing on the SVM classification, all misclassified records (11) were in fact RDs (a RD classified 
as common); of the 11 texts “misclassified” 10 of them correspond to the MIMIC-III discharge summaries 
labeled as RD by Dong et al.29. After careful consideration of an expert we found that most of them were actually 
common diseases, but mislabeled as RDs in the corpus since the clinical records describe a large amount of 
complications of common diseases probably in elderly patients. For instance, aortic dilation though rare, is a 
complication of thoracic aortic aneurysm (TAA), a relatively common condition in older people. Similarly, cases 
involving multiple common diseases, such as chronic pancreatitis, chronic kidney disease, or complications from 
alcoholism, can mimic rare diseases due to overlapping symptoms. Infections in immunocompromised patients, 
such as those with HIV, also illustrate this issue, as rare pathogens may complicate a common condition. Hence, 
the clinical text becomes very long, complicated with several interactions with procedures, medical specialties 
staff, drugs, interventions, and so on, which might be an explanation of the misclassification. The expert noted 
that the complexity of these cases, combined with messy medical records and overlapping features, leads to these 
errors. Training data correctness for building the model is an important issue to be considered because wrong 
data for training derive in a wrong model to test. Even though the corpus might have some noise regarding the 
labels (which is a realistic scenario in the context of several applications) the classifiers are able to perform fairly 
well in practice.

Discussion
RDs are difficult to detect, to diagnose and to treat. Patients with RDs have to navigate the healthcare system 
patiently, inefficiently and with economical (and psychological) costs. Timely diagnosis, hence early strategies to 
assess the disease, might be of great importance to control the impact on the patient and the family.

The diagnosis pipeline of RDs is different from other diseases and very frequently includes consultation 
with geneticists and molecular studies for proper diagnosis. An early detection of the presence of a RD might 
be a substantial improvement in many cases. Because we daily observe the positive impact of the application 
of machine-learning-based technologies in many areas, we think that the detection of RDs could benefit from 
these.

Our method aims to timely detect RD patients from medical records (discharge summaries) obtained 
from many sources, specially from an emergency unit. When the discharge summary of a patient classifies 
as a potential RD a flag could be raised in the hospital system and measurements could be set in place, such 
as consultation with geneticist and other specialists, molecular analysis, improving the time until diagnosis. 
Figure 4 illustrates the diagnosis pipeline in a medical center, involving ML models to help the early detection 
of RDs. After admission, medical notes will be processed with our best model (SVM, for example) trained with 
the proposed corpus. The answer will determine if there is a warning for a possible RD, then the patient should 
be referred to the geneticist to deepen with further studies. Otherwise, the patient will be treated as suffering 
a common disease, saving thus, valuable and expensive resources involved in the analysis of rare diseases. A 
pseudocode of the complete process can be observed in Supplementary material (Methods Sect. 2).

Our best ML model (SVM) achieved an AUC of 0.96 and F-measure of 0.927, while previous studies based 
on similar data (clinical records) such as RareBert30 reported an AUC of approximately 0.80 and Dong et al.29 
achieved a F-measure value of 0.702. Although the training and test data are not the same (Pakash et al.30 used 
medical notes with particular comorbid conditions such as disorder of phosphorus metabolism, rickets, muscle 
weakness and bone spurs, while Dong et al.29 considered some MIMIC-III discharge summaries), these metrics 
give us an idea of ​​how different models perform in detecting RDs. Our dataset comprises a variety of diseases 
collected from different sources providing a more general corpus for ML methods. Regarding the performance of 
SVM, the good values for the metrics were obtained thanks to the well-tuned configurations and preprocessing 
techniques used for the proposed model. We considered a sigmoid kernel, which effectively captured non-linear 
relationships in the input data by transforming the input space into a more separable feature space. Additionally, 
the TF-IDF vectorizer with L1 normalization was employed to vectorize the input data of the model, ensuring 
that features are uniformly scaled and the model remains stable. During this process we also removed English 
stop words, further refining the input data by eliminating irrelevant words. Another configuration that was fine-
tuned was the regularization parameter C, which was set to 2, striking an optimal balance between underfitting 
and overfitting ensuring the model generalized well to unseen data. These configurations, along with precise 
preprocessing, enabled the SVM model to achieve a good accuracy (92.9%) and strong balance between precision 
and recall while maintaining high discriminative power, as reflected in the AUC score.
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An accuracy around 90% implies that in 90% of the cases the classification is correct, and the RD flag should 
be raised. The remaining 10% of cases correspond to individuals that have a common disease but they were 
classified as RD. The impact of such an error would be mostly an economical loss for a public hospital, since 
additional unnecessary consultations and/or laboratory examination might be done, however, the savings 
generated by the remaining 90% most likely outweigh the cost of these additional consultations. Besides, 
upon manual reexamination most of these false calls would be easily detected. On the other hand, an error 
misclassifying RD as common would have a higher impact on patients well-being (patients would go through 
the standard algorithmic path, hence probably a diagnostic odyssey) and costs would be even bigger.

Future work relies on the fine-tuning of models that are already close to the clinical aspects of the problem, 
such as Bio_ClinicalBERT (freely available) or even generative open-source large language models such as 
LLama2, with this corpus. The idea is to use a partition of our proposed dataset to obtain models performing 
better for the specific tasks of detection RD clinical notes. This will be achieved by adding a classification-RD-
specific layer after the encoder/decoder stack for adjusting the model to our data and thus, improving our results 
by better understanding the technical words and their contexts.

Also, the tested models are not strong in the explicativeness. In some models, we are not able to understand why 
a specific clinical record or discharge summary is classified as RD. Understanding the results of the classification 
process would improve our knowledge on RDs in general, and also, how to write discharge summaries so that 
models would work properly.

Additionally, we intend to expand the corpus by adding several case reports that we are currently generating 
in the context of new projects (spin-off of previous URUGENOMES project, where we are analyzing hundreds of 
RD patients in the next few years). Common and possible additional rare diseases anonymized clinical records 
are planned to be obtained from different services from a University public hospital in Uruguay.

The inclusion of more reliable RD clinical records and manual curation of those already included, are going 
to improve downstream results.

Finally, we believe that this valuable corpus is in line with the trend of few-shot learning for classification above 
all in the biomedical domain and we would try other transformer-based methods for few-shot identification of 
rare diseases.

Conclusions
We presented a corpus for the classification of rare diseases from clinical notes. We showed a detailed exploratory 
analysis of the data collected and concluded with a balanced dataset with a similar number of notes labeled as 
containing RD or not.

To test the proposed resource, we performed a comparative study of different models for the classification of 
rare diseases, the classical ones SVM, logistic regression and decision tree, the artificial neural networks LSTM 
and CNN and, the recent transformer-based BERT. SVM performs the best with a F-measure of 0.927.

Thus, we conclude that the SVM-based model is able to accurately predict rare diseases based on the clinical 
record of the patients, hence enabling the possibility to be included as a warning and a lead to a more accurate 
diagnostic path.

By making the corpus available we encourage future applications to be developed and refined. In addition 
to helping mitigate the lack of annotated data for the identification of RDs, this resource can be safely used for 
few-shot machine learning algorithms in classification as well as other tasks.

Fig. 4.  Diagnosis pipeline of RDs. (A) Sick person goes to the hospital. (B) After admission, the patient is 
assigned an electronic record (ER). (C) Machine learning (ML) model is executed with the ER to find possible 
RD in medical notes. (D) If the MLmodel detects signs of RD, the patient is referred to specialists to confirm or 
reject the fact (F,G). After the patient has been diagnosed, he or she receives appropriate treatment.
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Data availability
The complete corpus that support the findings of this study is freely available under ​h​t​t​​​​p​s​​:​/​/​​s​i​​t​e​​s​.​g​​o​o​g​l​​e​​.​c​o​m​/​v​i​
e​w​/​l​e​t​i​c​i​a​-​c​a​g​n​i​n​a​/​r​e​s​e​a​r​c​h​.​​
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