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Abstract. We propose a procedure for checking properties of recurrent
neural networks without any access to their internal structure nor code.
Our approach is a case of black-box checking based on learning a prob-
ably approximately correct, regular approximation of the intersection of
the language of the black-box (the network) with the complement of the
property to be checked, without explicitly building automata-based in-
dividual representations of them. When the algorithm returns an empty
language, there is a proven upper bound on the probability of the network
not verifying the requirement. When the returned language is nonempty,
it is certain the network does not satisfy the property. In this case, a
regular language approximating the intersection is output together with
true sequences of the network violating the property. We show that this
approach offers better guarantees than post-learning verification where
the property is checked on a learned model of the network alone. Be-
sides, it does not require resorting to an external decision procedure for
verification nor fixing a specific requirement specification formalism.

1 Introduction

Today, deep recurrent neural networks (RNN), such as LSTM [13], are used
to accomplish safety and security-critical tasks in a number of application ar-
eas, such as autonomous driving [18, 31], intrusion detection [17, 45], malware
detection [28, 30, 39], and human activity recognition [33]. Therefore, there is
increasing interest in verifying their behavior with respect to the requirements
they must fulfill to correctly perform their task. However, accuracy-based met-
rics on test datasets do not provide provable probabilistic guarantees about the
network outcomes [19].

For RNN devoted to sequence classification, one way of tackling this problem
consists in learning a deterministic finite automaton (DFA) out of the network.
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Since RNN are more expressive than DFA [25], the language of the automaton
is, in general, an approximation of the sequences classified as positive by the
RNN. This approach can be implemented by resorting to algorithms such as
the ones proposed in [21, 40, 42, 43]. Once the automaton is obtained, it can be
model-checked against a desired property using an appropriate model-checker.

From a verification perspective, this general approach has several drawbacks,
notably but not exclusively that the automaton learned from the RNN may be
too large to be explicitly constructed. Moreover, the algorithms proposed in [40,
42, 43] do not provide quantitative assessments on how precisely the extracted
automaton characterizes the language of RNN. Besides, these algorithms are
white-box and they are tailored to specific classes of RNN. Thus, they cannot
be used in contexts where privacy and security constraints prevent the network
weights, structure, and/or code to be revealed.

Indeed, these issues are overcome by the black-box algorithm proposed in [21]
which extends L∗ to learn DFA which are probably correct approximations [37]
of the RNN. However, the inconvenience still remains in finding real counterex-
amples on the network when the model-checker fails to verify the property on the
model. To some extent, this complication can be dealt with learning-based black-
box checking (BBC) [29]. BBC is a refinement procedure where finite automata
are incrementally built and model-checked against a requirement. Counterex-
amples generated by the model-checker are validated on the black-box. False
counterexamples are used to refine the automata. However, BBC requires fixing
a formalism for specifying the requirements, typically linear-time temporal logic,
and an external model-checker. Besides, the black-box is assumed to be some
kind of finite-state machine.

To handle the problem of checking properties over RNN on a black-box set-
ting without the downsides of BBC, we propose a method which performs on-
the-fly checking during learning without resorting to an external model-checker.
Our approach considers both the RNN and the property as black-boxes and it
does not explicitly build nor assumes any kind of state-based representation of
them. The key idea consists in learning a regular language which is a probably
correct approximation of the intersection of the language of the RNN and the
negation of the property. On one hand, when the returned language is empty,
this approach ensures there is an upper bound on the probability of the network
not satisfying the property. This bound is a function of the parameters of the al-
gorithm. On the other, if the returned language is nonempty, the requirement is
guaranteed to be false, and truly bad sequences of the RNN are provided together
with a probably correct approximation of the language of faulty behaviors.4

Outline Section 2 briefly reviews probably approximately correct learning and
defines the notion of on-the-fly property checking through learning. Section 3
revisits the problem of regular language learning and develops the main theoret-

4 It is worth noticing that our approach differs from on-the-fly BBC as defined in [29]
which relies on a strategy for seeking paths in the automaton of the requirement.
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ical ideas. Section 4 experimentally validates the results. The other sections are
devoted to related work and conclusions.

2 On-the-fly property checking through learning

2.1 PAC learning

We briefly revisit here Probably Approximately Correct (PAC) learning [37]. This
summary is mostly based on [4].

Let X be the universe of examples. The symmetric difference of X,X ′ ⊂ X ,
denoted X⊕X ′, is defined as X\X ′∪X ′\X, where X\X ′ is X∩X ′ and X is the
complement of X. Examples are assumed to be identically and independently
distributed according to an unknown probability distribution D over X .

A concept C is a subset of X . A concept class C is a set of concepts. Given
an unknown concept C ∈ C, the purpose of a learning algorithm is to output
a hypothesis H ∈ H that approximates the target concept C, where H, called
hypothesis space, is a class of concepts possibly different from C.

Approximation between concepts C and H is measured with respect to D as
the probability of an example x ∈ X to be in their symmetric difference. This
measure, also called prediction error, is formalized as Px∼D [x ∈ C ⊕H].

An oracle EX, which depends on C and D, takes no input and draws i.i.d
examples from X following D, and tags them as positive or negative according
to whether they belong to C or not. Calls to EX are independent of each other.

A PAC-learning algorithm takes as input an approximation parameter ε ∈
(0, 1), a confidence parameter δ ∈ (0, 1), a target concept C ∈ C, an oracle EX,
and a hypothesis space H, and if it terminates, it outputs an H ∈ H which
satisfies Px∼D [x ∈ C ⊕H] ≤ ε with confidence at least 1 − δ, for any D. The
output hypothesis H is said to be an ε-approximation of C with confidence 1−δ.
Hereinafter, we refer to H as an (ε, δ)-approximation.

The concept class C is said to be learnable in terms of H if there exists a
PAC-learning algorithm that terminates in polynomial time, measured in terms
of its relevant parameters ε, δ, the size of the representations of examples and
concepts, and the number of examples generated by EX.

PAC-learning algorithms may be equipped with other oracles. In this paper,
we consider algorithms that make use of membership and equivalence query
oracles, denoted MQ and EQ, respectively. MQ takes as input an example
x ∈ X and returns whether x ∈ C or not. EQ takes as input a hypothesis H and
answers whether H is an (ε, δ)-approximation of C by drawing a sample S ⊂ X
using EX, and checking whether for all x ∈ S, x ∈ C iff x ∈ H, or equivalently,
S ∩ (C ⊕ H) = ∅. The size mS of S must be large enough to ensure the PAC
criterion. Actually, mS must be larger than 1

ε log 1
δ [12].

Lemma 1. Let H be an (ε, δ)-approximation of C. For any X ⊆ C ⊕ H, we
have that Px∼D [x ∈ X] ≤ ε with confidence 1− δ.

3



Proof. For any X ⊆ C ⊕ H, we have that Px∼D [x ∈ X] ≤ Px∼D [x ∈ C ⊕H].
Then, Px∼D [x ∈ C ⊕H] ≤ ε implies Px∼D [x ∈ X] ≤ ε. Now, for any S ⊂ X
such that S ∩ (C ⊕ H) = ∅, it follows that S ∩ X = ∅. Therefore, any sample
drawn by EQ that ensures Px∼D [x ∈ C ⊕H] ≤ ε with confidence 1 − δ also
guarantees Px∼D [x ∈ X] ≤ ε with confidence 1− δ.

Proposition 1. Let H be an (ε, δ)-approximation of C. For any X ⊆ X :

Px∼D
[
x ∈ C ∩H ∩X

]
≤ ε (1)

Px∼D
[
x ∈ C ∩H ∩X

]
≤ ε (2)

with confidence at least 1− δ.

Proof. From Lemma 1 because C∩H∩X and C∩H∩X are subsets of C⊕H.

We will make use of Proposition 1 in the context of property checking.

2.2 Using learning for property checking

Let us suppose we want to verify whether C ⊆ P , equivalently C ∩ P = ∅, for
some concept C ∈ C and for some property P ⊂ X , such that we do not have a
verification procedure for it.

2.2.1 Post-learning verification Let us assume we have a procedure for
checking emptiness in H and P ∈ H. In this case, we can pose the problem as
checking whether H ∩ P = ∅, where H is a PAC-learned model of C.

Proposition 2. Let H be an (ε, δ)-approximation of C. For any P ∈ H:

1. if H ∩ P = ∅ then Px∼D
[
x ∈ C ∩ P

]
≤ ε, and

2. if H ∩ P 6= ∅ then Px∼D
[
x ∈ C ∩H ∩ P

]
≤ ε,

with confidence at least 1− δ.

Proof.
1. If H ∩ P = ∅ then C ∩ P = C ∩H ∩ P . Thus, from Proposition 1(1) we have
that Px∼D

[
x ∈ C ∩H ∩ P

]
≤ ε, with confidence at least 1− δ.

2. If H ∩P 6= ∅, from Proposition 1(2) we have that Px∼D
[
x ∈ C ∩H ∩ P

]
≤ ε,

with confidence at least 1− δ.

In words, whichever the outcome of the verification procedure for H, the
probability of this verdict not holding for C is bounded by the approximation
parameter ε, with confidence at least 1− δ.

Remark 1. This approach has an important drawback. When H∩P 6= ∅, even if
with small probability, counterexamples found by the verification procedure may
not be in C. Therefore, whenever that happens, we would need to make use of
the oracle EX to draw examples from H ∩ P and tag them as belonging to C or
not in order to trying finding a concrete counterexample in C. Moreover, EX
may not be available at this time as it is part of the PAC-learning process but
not the necessarily of the model-checking one.
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2.2.2 On-the-fly property checking through learning Rather than learn-
ing an (ε, δ)-approximation of C, an alternative is to use the PAC-learning algo-
rithm to learn an (ε, δ)-approximation of C ∩ P ∈ C.

Proposition 3. Let H be an (ε, δ)-approximation of C ∩ P ∈ C. Then:

1. if H = ∅ then Px∼D
[
x ∈ C ∩ P

]
≤ ε, and

2. if H 6= ∅ then Px∼D
[
x ∈ H \ (C ∩ P )

]
≤ ε,

with confidence at least 1− δ.

Proof. Straightforward from the fact that Px∼D
[
x ∈ (C ∩ P )⊕H

]
≤ ε, with

confidence at least 1− δ.

Therefore, if the learned hypothesis is the empty set, this approach yields
the same probabilistic assurance of the property being true in C as in the
post-learning verification one. Nevertheless, on-the-fly property checking through
learning has several advantages:

– A model of the target concept C is not explicitly built.

– The property P does not need to be in the hypothesis space H.

– If the result is not empty, it may be the case the oracle EX does actually
generate an example x ∈ C∩P during the run of the PAC-learning algorithm.
In this case, x serves as a witness of the violation.

Hereinafter, we exploit this idea in the context of automata-theoretic prop-
erty checking over RNN.

3 Verification of properties over languages

In this section, we consider the case where the universe X is the set of words
Σ∗ over a set of symbols Σ, the target concept is a language C ⊆ Σ∗, and the
hypothesis class H is the set of regular languages. Such languages, represented
as deterministic finite automata (DFA), can be learned with L∗ [3].

Given C,P ⊆ Σ∗, the verification problem is posed as checking whether
C ∩ P = ∅. The approach consists in learning a regular language which is an
(ε, δ)-approximation of C ∩ P .

Remark 2. It is important to notice that C, P , and P need not be regular.
Hereinafter, regularity is not assumed except otherwise stated.

For the sake of simplicity, we refer to a regular language or its DFA repre-
sentation indistinctly. For instance, we write A = ∅ and A 6= ∅ to mean the
language of A is empty and nonempty, respectively.
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3.1 L∗

L∗ is an iterative learning algorithm that constructs a DFA by interacting with
a teacher which makes use of oracles MQ and EQ. Here, we only consider the
PAC-based version of L∗. The learner builds a table of observations OT by
interacting with the teacher. This table is used to keep track of which words are
and are not accepted by the target language. OT is built iteratively by asking
the teacher membership queries through MQ.

Algorithm 1 shows L∗ pseudocode. OT is a finite matrix Σ∗ ×Σ∗ → {0, 1}.
Its rows are split in two. The ‘upper’ rows represent a prefix-closed set words
and the ‘lower’ rows correspond to the concatenation of the words in the upper
part with every σ ∈ Σ. Columns represent a suffix-closed set of words. Each cell
represents the membership relationship, that is, OT [u][v] = MQ(uv).

Algorithm 1: L∗

Input : ε, δ
Output: DFA A

1 Initialize;
2 i ← 0;
3 repeat
4 i ← i+ 1;
5 while OT is not closed or not consistent do
6 if OT is not closed then
7 OT ← Close(OT );
8 end
9 if OT is not consistent then

10 OT ← Consistent(OT );
11 end

12 end
13 A ← BuildAutomaton(OT );
14 Answer ← EQ(A, i, ε, δ);
15 if Answer 6= Yes then
16 OT ← Update(OT , Answer);
17 end

18 until Answer = Yes;
19 return A;

L∗ initializes OT0 (line 1) with a single upper row OT0[λ], a lower row OT0[σ]
for every σ ∈ Σ, and a single column for λ, with values OT0[u][λ] = MQ(u).

At each iteration i > 0, L∗ makes OTi closed (line 7) and consistent (line 10).
OTi is closed if, for every row in the bottom part of the table, there is an equal
row in the top part. OTi is consistent if for every pair of rows u, v in the top
part, for every σ ∈ Σ, if OTi[u] = OTi[v] then OTi[uσ] = OTi[vσ].

Once the table is closed and consistent, the algorithm proceeds to build the
conjectured DFA Ai (line 13) which accepting states correspond to the entries
of OTi such that OTi[u][λ] = 1.
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Then, L∗ calls EQ (line 14) to check whether Ai is PAC-equivalent to the
target language. For doing this, EQ draws a sample Si of size:

mSi(i, ε, δ) =

⌈
i

ε
log

2

δ

⌉
(3)

If for every s ∈ Si, s belongs to the target language if and only if it belongs to
the hypothesis Ai, the equivalence test is passed. In this case, L∗ terminates and
returns Ai. Otherwise, the learner receives a counterexample which violates the
test and uses it to update OT (line 16). Then, it performs a new iteration.

Figure 1 shows an example of a run of L∗ with target language (ab)∗.

(a)

OT0 λ

λ 1

a 0
b 0

(b)

OT1 λ

λ 1
a 0

b 0
aa 0
ab 1

(c)

OT2 λ b

λ 1 0
a 0 1
b 0 0
bb 0 0

aa 0 0
ab 1 0
ba 0 0
bba 0 0
bbb 0 0

(d)

Fig. 1. L∗ example run.

Property 1 (From [3]). If L∗ terminates, it outputs an (ε, δ)-approximation of
the target language. L∗ always terminates if the target language is regular.

Indeed, from Eq. 3, it follows that L∗ increments the sample size at each
iteration, making it larger than the lower bound 1

ε log 1
δ . Therefore, the actual

approximation error of a particular output of L∗ satisfies the following property.

Lemma 2. If L∗ terminates with an EQ over a sample of size m, then its
output is an (ε̂, δ)-approximation of the target language, for every ε̂ > ε?(m, δ),
where

ε?(m, δ) =
1

m
log

1

δ
(4)

Proof. By Eq. 3, m = mS`
(`, ε̂, δ) > 1

ε̂ log 1
δ , where ` is the last iteration of

L∗. Thus, ε∗(m, δ) is the infimum of the approximation bounds assured by the
output hypothesis, with confidence at least 1− δ.

Lemma 3. For every i > 1, if Ai 6= ∅ then the target language is nonempty.
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Proof. If Ai 6= ∅, there exists at least one accepting state, that is, there exists
u ∈ Σ∗ such that OTi[u][λ] = 1. Therefore, at some iteration j ∈ [1, i], there is
a positive membership query for u, i.e, MQj(u) = 1. Hence, u belongs to the
target language.

Corollary 1. If L∗ returns a nonempty DFA for the target language C∩P , then
C ∩P 6= ∅. Moreover, every u ∈ Σ∗ such that OT [u][λ] = 1 is a counterexample.

Proof. Immediate from Lemma 3.

Proposition 4. If L∗ for C ∩ P terminates with an EQ over a sample of size
m and output a DFA A, then:

1. A is an (ε̂, δ)-approximation of C ∩ P , for every ε̂ > ε?(m, δ).

2. If A 6= ∅ then C ∩ P 6= ∅.

Proof. From Lemma 2, Corollary 1, and Proposition 3.

Remark 3. It is worth noticing that, by Lemma 3, from a verification proint
of view, the execution of L∗ for C ∩ P could just be stopped as soon as the
observation table has a non-zero entry.

3.2 Bounded-L∗

When applied to learning regular approximations of concepts belonging to a
more expressive class of languages, L∗ may not terminate. In particular, this
situation arrives when using this approach for learning languages of recurrent
neural networks (RNN), since in general, this class of networks is strictly more
expressive than DFA [25,32,34].

To cope with this issue, Bounded-L∗ (Algorithm 2) has been proposed in [21].
It bounds the number of iterations of L∗ by constraining the maximum number
of states of the automaton to be learned and the maximum length of the words
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used to calling EX, which are typically used as parameters to determine the
complexity of a PAC-learning algorithm [11].

Algorithm 2: Bounded-L∗

Input : MaxQueryLength, MaxStates, ε, δ
Output: DFA A

1 Initialize;
2 i ← 0;
3 repeat
4 i ← i+ 1;
5 while OT is not closed or not consistent do
6 if OT is not closed then
7 OT , QueryLengthExceeded ← Close(OT );
8 end
9 if OT is not consistent then

10 OT , QueryLengthExceeded ← Consistent(OT );
11 end

12 end
13 if not QueryLengthExceeded then
14 A ← BuildAutomaton(OT );
15 Answer ← EQ(A, i, ε, δ);
16 MaxStatesExceeded ← STATES(A) > MaxStates;
17 if Answer 6= Yes and not MaxStatesExceeded then
18 OT ← Update(OT , Answer);
19 end

20 end
21 BoundReached ← QueryLengthExceeded or MaxStatesExceeded;

22 until Answer = Yes or BoundReached ;
23 return A;

The following property is a direct consequence of Property 1 of L∗.

Property 2 (From [21]). If Bounded-L∗ terminates with an automaton A which
passes the EQ test, A is an (ε, δ)-approximation of the target language.

However, upon termination Bounded-L∗ may output an automaton A which
fails to pass the EQ test, that is, A and the target language eventually disagree in
k > 0 sequences of the sample S drawn by EQ. In such cases, the approximation
bound guaranteed by the hypotheses produced by Bounded-L∗ is given by the
following property, which subsumes the previous property (case k = 0).

Property 3 (From [21]). Assume Bounded-L∗ terminates with an automaton
A producing k ∈ [0,m] EQ-divergences on a sample of size m, computed as in
Eq. (3). Then, A is an (ε̂, δ)-approximation of the target language, for every
ε̂ > ε∗, where

ε∗(m, k, δ) =
1

m− k
log

(
m
k

)
δ

(5)
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That is, ε∗(m, k, δ) is the infimum of the approximation bounds assured by
the output hypothesis, with confidence at least 1−δ, provided k ≥ 0 divergences
with the target language are found on a sample S of size m drawn by EQ.

A DFA output by Bounded-L∗ can be used for post-learning verification.
Clearly, Proposition 2 holds for any approximation parameter ε̂ > ε∗(m, k, δ),
where k ∈ [0,m] is the number of EQ-divergences upon termination (on a sample
of size m).

On the other hand, if Bounded-L∗ is used for on-the-fly verification, the
theoretical guarantees are much more satisfactory indeed.

Theorem 1 (Main result). If Bounded-L∗ terminates with an automaton A
producing k ∈ [0,m] EQ-divergences on a sample of size m for target C ∩ P ,
then:

1. A is an (ε̂, δ)-approximation of C ∩ P , for every ε̂ > ε?(m, k, δ).
2. If A 6= ∅ or A does not pass the EQ test, then C ∩ P 6= ∅.

Proof.
1. It follows directly from Property 3 and Proposition 4.
2. There are two cases. a) If A 6= ∅, then C∩P 6= ∅ by Proposition 4. b) If A = ∅
and A does not pass the EQ test, then ∅ 6= A⊕(C∩P ) = ∅⊕(C∩P ) = C∩P .

Remark 4. As for L∗, by Lemma 3, the execution of Bounded-L∗ for C ∩ P
could just be stopped as soon as OT has a non-zero entry.

4 Experimental results

We implemented a prototype of the proposed black-box on-the-fly property
checking through learning based on Bounded-L∗. The approach consists in giv-
ing C and P as inputs to the teacher which serves as a proxy of C ∩ P . It is
important to emphasize that this approach does not require modeling P in any
particular way. Instead, to answer MQ(u) on a word u, the teacher evaluates
P (u), complements the output and evaluates the conjunction with the output
of C(u). To answer EQ(H), it draws a sample S of the appropriate size and
evaluates MQ(u) ⇐⇒ H(u) on every u ∈ S. Therefore, P may be any kind of
property, even not regular, or another RNN.

We carried out three kinds of experiments. First, we studied RNN trained
with sequences generated by Dyck context-free grammars (CFG) and checked
regular and non-regular properties. Second, we check regular properties over
RNN trained with sequences of software systems modeled as DFA. Third, we
studied domain-specific datasets where the actual data-generator systems were
unknown, and no model of them were available. However, it is important to
remark that CFG, DFAs, and training data are artifacts used only with the
purpose of evaluating the approach on controlled experiments. Actually, in real
application scenarios only the RNN (and its alphabet) is required to be available.

For RNN trained with data generated by CFG and DFA, two experiments
were carried out. On one hand, Bounded-L∗ was run on the RNN alone to extract
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PAC DFA to perform, whenever possible, post-learning verification. Besides, on-
the-fly checking through learning is applied on the RNN against several proper-
ties. The goal of these experiments is to compare both approaches and validate
the theoretical results of the previous section.

4.1 Context-free language modelling

Parenthesis prediction is a typical problem used to study the capacity of RNN
for context-free language modelling [10].

First, we trained an RNN with 500K positive and negative sequences upto
length 20 generated by a 3-symbol Dyck 1 CFG with alphabet {(, ), c}:

S −→ S T | T S | T T −→ ( T ) | () T −→ c

The RNN was trained until achieving 100% accuracy on a test set of 50K se-
quences. This network was checked against 1) its specification, 2) the regular
property (c)∗, and 3) the context-free language (m)n with m < n.

Configuration
Exec. time (s)

Average
EQ
test size

Average
ε∗ε δ

min max avg

0.005 0.005 1.984 7.205 3.072 1,899 0.002792

0.0005 0.005 3.713 10.445 5.997 20,093 0.000264

0.00005 0.005 7.982 30.470 9.997 203,007 0.000026

0.00005 0.0005 8.128 36.621 9.919 249,059 0.000031

0.00005 0.00005 9.625 41.884 12.185 295,111 0.000034
Table 1. Dyck 1: PAC DFA extraction from RNN.

Experimental results are shown in Tables 1 and 2. For each (ε, δ), 5 runs were
executed. All runs finished with 0-divergence EQ. Execution times are in secs.
Figures show that on average, on-the-fly checking is usually faster than extract-
ing a PAC DFA from the RNN. It is important to remark that cases 1) and 3)
fall in an undecidable playground since checking whether a regular language is
contained in a context-free language is undecidable [14]. For case 1), our tech-
nique could not find a counterexample, thus giving probabilistic guarantees of
emptiness, that is, of the RNN to correctly modelling the 3-symbol parenthesis
language. For cases 2) and 3), PAC DFA of the intersection language are found
in all runs, showing the properties are indeed not satisfied. Besides, counterex-
amples are generated orders of magnitude faster (in average) than extracting a
DFA from the RNN alone.

Second, we trained an RNN with 500K positive and negative sequences upto
length 20 generated from a 5-symbol Dyck 2 CFG with alphabet {(, ), [, ], c}:

S −→ S T | T S | T T −→ ( T ) | () T −→ [ T ] | [] T −→ c

11



Prop
Configuration

Exec. time (s)
First
counter-
example

Average
PAC
test size

Average
ε∗ε δ

min max avg

1)

0.005 0.005 0.004 0.012 0.006 - 1,476 0.00359
0.0005 0.005 0.051 0.125 0.067 - 14,756 0.00036
0.00005 0.005 0.682 0.833 0.747 - 147,556 0.00004
0.00005 0.0005 1.164 1.595 1.340 - 193,607 0.00004
0.00005 0.00005 1.272 1.809 1.386 - 239,659 0.00004

2)
0.005 0.005 0.031 34.525 5.762 0.099 1,948 0.00273
0.0005 0.005 0.397 37.846 10.245 0.084 20,370 0.00026
0.00005 0.005 4.713 30.714 6.547 0.825 206,473 0.00003

3)
0.005 0.005 0.025 0.966 0.302 0.006 1,899 0.00279
0.0005 0.005 0.267 1.985 0.787 0.070 20,093 0.00026
0.00005 0.005 4.376 6.479 4.775 0.764 203,007 0.00003

Table 2. Dyck 1: On-the-fly verification of RNN.

The RNN was trained until achieving 99.646% accuracy on a test set of 50K
sequences. This RNN was checked against its specification. For each (ε, δ), 5
runs were executed, with a timeout of 300s. Experimental results are shown in
Tables 3 and 4. For each configuration, at least three runs of on-the-fly checking
finished before the timeout and one was able to find, as expected, the property
was not verified by the RNN, exhibiting a counterexample showing it did not
model the CFG and yielding a PAC DFA of the wrong classifications.

Configuration
Exec. time (s)

Average
EQ
test size

Average
ε∗ε δ

min max avg

0.005 0.005 2.753 149.214 19.958 1,795 0.003

0.0005 0.005 23.343 300.000 105.367 18,222 0.006

0.00005 0.005 42.518 139.763 77.652 186,372 0.002
Table 3. Dyck 2: PAC DFA extraction from RNN.

4.2 Software modelling and verification

4.2.1 E-commerce web application API We analyzed an RNN trained
with a dataset of 100K positive and negative sequences upto length 16 drawn
from the model of the e-commerce system from [26], together with sequences
that violate the properties to be checked. These canary sequences were added
on purpose to check whether the RNN actually learned those faulty behaviors
and whether our technique was able to figure that out. The RNN was trained
until the measured error on a test set of 16K sequences was 0. We overfitted to
ensure the faulty behavior was successfully classified by the RNN.
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Configuration
Exec. time (s)

First
counter-
example

Average
PAC
test size

Average
ε∗ε δ

min max avg

0.005 0.005 0.004 122.388 24.483 90.285 1,504 0.00444

0.0005 0.005 55.084 300.000 215.508 42.462 16,604 0.00145

0.00005 0.005 0.695 324.144 158.195 4.545 166,040 0.00003
Table 4. Dyck 2: On-the-fly verification of RNN.

We checked the RNN against the following regular properties: 1) It is not
possible to buy products in the shopping cart (modelled by bPSC) when the
shopping cart is empty. Symbols aPSC and eSC model adding products to and
emptying the shopping cart, respectively (Fig. 2a); 2) It is not possible to execute
two or more consecutive bPSC (Fig. 2b).

(a) E-commerce property 1 (b) E-commerce property 2

Fig. 2. E-commerce properties

Experimental results are shown in Tables 5 and 6. On-the-fly property check-
ing concluded both properties were not satisfied. In average, it took more time
to output a PAC DFA of the language of faulty behaviors than extracting a
PAC DFA of the RNN alone. Nevertheless, counterexamples were found (in av-
erage) orders of magnitude faster than the latter for requirement 1), while it
took comparable time for requirement 2), which revealed to be harder.

Configuration
Exec. time (s)

Average
EQ
test size

Average
ε∗ε δ

min max avg

0.01 0.01 16.863 62.125 36.071 863 0.00534

0.001 0.01 6.764 9.307 7.864 8,487 0.00054

0.0001 0.01 18.586 41.137 30.556 83,482 0.00006
Table 5. E-commerce: PAC DFA extraction from RNN.
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Prop
Configuration

Excecution time (s)
First
counter-
example

Average
PAC
test size

Average
ε∗ε δ

min max avg

1
0.01 0.01 87.196 312.080 174.612 3.878 891 0.00517
0.001 0.01 0.774 203.103 102.742 0.744 9,181 0.00050
0.0001 0.01 105.705 273.278 190.948 2.627 94,573 0.00005

2
0.01 0.01 0.002 487.709 148.027 80.738 752 0.00619
0.001 0.01 62.457 600.000 428.400 36.606 8,765 0.00053
0.0001 0.01 71.542 451.934 250.195 41.798 87,641 0.00005

Table 6. E-commerce: On-the-fly verification of RNN.

4.2.2 Cruise controller We trained an RNN with a dataset containing 200K
positive and negative sequences upto a maximum length of 16 from a cruise
controller model from [23] (Fig. 3). The measured error of the RNN on a test
set of 16K sequences was 0,09%. The property P is shown in Fig. 4. It models
the requirement that it is not possible to see a break event without having seen
gas | acc before.

Fig. 3. Model of the cruise controller example

14



Fig. 4. Requirement of the cruise controller example

Experimental results are shown in Tables 7 and 8. Every run of the on-the-fly
technique ended up conjecturing C ∩P = ∅ with perfect EQ tests. On the other
hand, we extracted PAC DFA from the network alone, with a timeout of 200s. For
the first configuration, one run timed out and four completed. All extracted DFA
exceeded the maximum number of states bound, and three of them did not verify
the property. For the second one, there were two time outs, and three successful
extractions. Every one of the extractions exceeded the maximum states bound
and two of them did not verify the property. Finally, for the third one, every
run timed out. We used oracle EX to generate 2 million sequences. For each of
the PAC DFA H not checking the property, none was accepted by both H ∩ P
and the RNN. Hence, we cannot disprove the conjecture that the RNN is correct
with respect to the requirement P obtained with the on-the-fly algorithm.

Configuration
Exec. time (s)

Average
EQ
test size

Average
ε∗ε δ

min max avg

0.01 0.01 11.633 200.000 67.662 808 0.05

0.001 0.01 52.362 200.000 135.446 8,071 0.03

0.0001 0.01 - - - - -
Table 7. Cruise controller: PAC DFA extraction from RNN.

Configuration
Exec. time (s)

First
counter-
example

Average
PAC
test size

Average
ε∗ε δ

min max avg

0.01 0.01 0.003 0.006 0.004 - 669 0.00688

0.001 0.01 0.061 0.096 0.075 - 6,685 0.00069

0.0001 0.01 0.341 0.626 0.497 - 66,847 0.00007
Table 8. Cruise controller: On-the-fly verification of RNN.
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4.3 Domain-specific datasets

4.3.1 Analysis of HDFS logs In this case study we deal with a dataset of
logs of a Hadoop Distributed File System (HDFS) from [7]. The logs were la-
beled as normal or abnormal by Hadoop experts. It contains 4855 training normal
variable-length logs. Each log is pre-processed into a sequence of numeric sym-
bols from 0 to 28. These logs were used to train an RNN-based auto-regressive
language model (LM). That is, the output of the RNN is the conditional proba-
bility of the next symbol given all the previous ones [5]. This mechanism can be
used for sequence classification in several ways. In this case, we used the RNN
to compute the probability of a sequence. If the output is greater than a given
threshold, the sequence is considered to be normal, otherwise is labeled as ab-
normal. We used a threshold of 2×10−7 which yields an accuracy of 98.35% with
no false positives in a perfectly balanced test dataset containing 33600 normal
and abnormal logs. That is, no abnormal log is missed by the classifier.

We verified the following properties on the classifier: 1) it does not classify
as normal a sequence that contains a symbol that only appeared in abnormal
logs (12 of the 29 symbols), and 2) the sum of occurrences in a normal log of
symbols ”4” and ”21”, often seen at the beginning of the log, is at most 5.

Prop
Configuration

Excecution time (s)
First
counter-
example

Average
PAC
test size

Average
ε∗ε δ

min max avg

1)
0.01 0.01 209.409 1,121.360 555.454 5.623 932 0.0050
0.001 0.001 221.397 812.764 455.660 1.321 12,037 0.0006

2)
0.01 0.01 35.131 39.762 37.226 - 600 0.0077
0.001 0.001 252.202 257.312 254.479 - 8,295 0.0008

Table 9. HDFS logs: On-the-fly verification of RNN.

The results of on-the-fly checking are shown in Table 9. For each configu-
ration, 5 runs were executed. In the case of property 1), all runs found coun-
terexamples and output a PAC DFA of the sequences violating the property.
This means the classifier can label as normal a log containing symbols that only
appeared in logs tagged as abnormal by experts. This observation exhibits a
discrepancy with the results on the test dataset where the classifier incurred in
no false positives. Moreover, the output PAC DFA can be used to understand in
more detail potential mistakes of the classifier to improve its performance. For
property 2), we found that it is satisfied by the classifier with PAC guarantees.

4.3.2 TATA-box recognition in DNA promoter sequences Promoter
region recognition in DNA sequences is an active research area in bioinformatics.
Recently, tools based on neural networks, such as CNN and LSTM, have been
proposed for such matter [27]. Promoters are located upstream near the gene
transcription start site (TSS) and control the activation or repression of the
genes. The TATA-box is a particular promoter subsequence that indicates to
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other molecules where transcription begins. It is a T/A-rich (i.e., more T’s and
A’s than C’s and G’) subsequence of 6 base pairs (bp) located between positions
–30bp to –25bp, where +1bp is the TSS.

The goal of this experiment is not to develop a neural network for promoter
classification, but to study whether an RNN trained with TATA and non-TATA
promoter sequences is able to distinguish between them, that is, it is capable of
determining whether a DNA sequence contains a TATA region. For such task,
we trained an RNN composed of an LSTM and a dense layer for classification,
with a dataset of the most representative TATA (2067 sequences) and non-
TATA (14388 sequences) human promoters of length 50bp from positions -48bp
to +1bp. The dataset was downloaded from the website EPDnew5, The RNN
was trained until achieving an accuracy of 100%.

We ran the on-the-fly algorithm to check whether the language of the RNN
was included in the set of sequences containing a TATA-box. The property was
coded as a Python program which counts the number of T’s, A’s, C’s and G’s
in the subsequence from position -30bp to -25bp of the genomic sequence, and
checks whether the sum of T’s and A’s is greater than the sum of C’s and G’s. In
this case, the oracle EX was parameterized to generate sequences of length 50
over the alphabet {A, T,C,G}. Table 10 shows the experimental results. Hence,
the RNN is a probably correct approximation of the property.

Configuration
Exec. time (s)

First
counter-
example

Average
PAC
test size

Average
ε∗ε δ

min max avg

0.01 0.01 5.098 5.259 5.168 - 600 0.00768

0.001 0.001 65.366 66.479 65.812 - 8,295 0.00083

0.0001 0.0001 865.014 870.663 867.830 - 105,967 0.00008
Table 10. TATA-box: On-the-fly verification of RNN.

5 Related Work

Learning and automata-theoretic verification have been combined in several ways
for checking temporal requirements of systems. For instance, [2, 6, 8] do compo-
sitional verification by learning assumptions. These methods are white-box and
require an external decision procedure. Learning regular approximations of non-
regular languages (FIFO automata) for verifying safety properties have been
explored in [38]. Still, it relies on a state-based representation and requires being
able to compute successor states of words by transitions of the target automata,
which is not feasible for RNN. The post-learning verification technique presented
in [9] iteratively applies Trakhtenbrot-Barzdin algorithm [36] on several training
sets until the inferred automaton is an invariant sufficient to prove the property.

Learning based testing (LBT) [24] is a black-box checking approach for gen-
erating test cases. It relies on incrementally building hypotheses of the system

5 https://epd.epfl.ch//index.php
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under test and verifying whether they satisfy the requirement through an ex-
ternal model-checker. Counterexamples produced by the model-checker serve as
test-cases for the system under test. To the best of our knowledge, it does not
provide provable probabilistic guarantees. Recent work [22] proposes a sound ex-
tension but it requires relaxing the black-box setting by observing and recording
the internal state of the system under test.

Concerning verification of neural networks, several approaches have been
proposed to check a specific kind of requirement, namely robustness, which eval-
uates artificial neural network resilience to adversarial examples. A technique for
black-box robustness testing is developed in [44]. DeepSafe is a white-box tool
for checking robustness based on clustering and constraint solvers. A white-box
algorithm for feed-forward multi-layer neural networks based on satisfiability
modulo theories is presented in [15]. The method exhaustively searches for ad-
versarial misclassifications, propagating the analysis from one layer to the other
directly through the network source code. These works have been applied for im-
age classification with deep convolutional and dense layers, but not for recurrent
neural networks over symbolic sequences.

For RNN, a post-learning approach for adversarial accuracy verification is
presented in [41] based a white-box rule-extraction technique to extract DFA
from RNN. Experimental evaluation is carried out work on Tomita grammars [35],
which are all regular languages over the {0, 1}-alphabet. That approach does not
offer any guarantee on how well the DFA approximates the RNN. In [16] white-
box RNN verification is done by generating a series of abstractions. Specifically,
the method strongly relies on the internal structure and weights of the RNN to
generate a feed-forward network (FFNN), which is proven to compute the same
output. Then, reachability analysis is performed resorting to Linear Program-
ming (LP) and Satisfiability Modulo Theories (SMT) techniques.

Finally, statistical model checking (SMC) the system under analysis and/or
the property is stochastic [1, 20]. The objective of SMC is to check whether a
stochastic system, such as a Markov decision process, satisfies a property with
a probability greater or equal to a certain threshold θ. The problem we address
in this work is different as neither the system nor the property is stochastic.
Our approach provides statistical guarantees that the language of an RNN C is
included in another language (the property P ) or provides a PAC model of the
language C ∩ P , along with actual counterexamples showing it is not.

6 Conclusions

We presented a learning-based approach for checking properties on RNN. The
approach is black-box since it is not restricted to any particular class of RNN or
property. It is also on-the-fly because it does not build a-priori the state-space
of the RNN but rather it constructs an approximation of the intersection of the
RNN with the negation of the requirement.

Our approach provides better guarantees than post-learning verification as
whenever the language learnt is non-empty it is certain that the property is
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not satisfied, and real counterexamples are provided. Moreover, if the learning
algorithm is run to completion, it outputs a probably correct approximation of
the set of incorrect behaviors.

We implemented the approach and applied it to verifying properties on sev-
eral case studies. We compared, when possible, the results of on-the-fly checking
through learning with post-learning model-checking on extracted PAC models
of the RNN alone. The experiments were promising as they provided empirical
evidence that the on-the-fly approach typically performs much faster than post-
learning verification when the property is found to be probably approximately
correct.
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