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Abstract Español

El presente trabajo surge como una investigación vinculada a los proyectos de
cátedra de Inteligencia Artificial y Big Data, y tiene como objetivo realizar un
estudio de la técnica PATE: Private Aggregation of Teacher Ensembles [1].

Esta técnica permite el entrenamiento de modelos de aprendizaje automático
con ciertas garant́ıas de privatización dadas por privacidad diferencial [2]. Por otro
lado, el proyecto tiene como objetivo la construcción de una herramienta de soft-
ware extensible que implemente dicha técnica. Ésta herramienta permite entrenar
distintos tipos de modelos de redes neuronales, y soporta la utilización de distin-
tos mecanismos de agregación y de privatización relacionados a la técnica PATE.
Luego la misma se aplica para entrenar un detector de consultas web malignas en
base a un conjunto de datos sensibles, logrando no solo altos niveles de precisión,
sino que también garant́ıas robustas de privacidad.

Abstract

The following work is part of research work related to the Artificial Intelligence
and Big Data department, and its objective is to perform a study on the technique
PATE: Private Aggregation of Teacher Ensembles [1].

This technique allows for the training of machine learning models with strong
privacy guarantees provided by the differential privacy framework [2]. Further-
more, the project will consist of the development of an extensible software tool that
implements the PATE training technique, and allows for the training of arbitrary
neural network models with multiple aggregation and privatization mechanisms
relevant to the technique. A classifier that detects malicious web requests using
a dataset with sensitive information is then trained using the PATE framework,
achieving both high precision scores and strong privacy guarantees.
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1 Introduction

The recent growth of available data and computing power, combined with the
advancement of machine learning algorithms, led to vast improvements on the
performance of a multitude of tasks that can be framed as supervised machine
learning problems [3].

This opportunity does not come however without additional challenges, for a
substantial volume of training data is often required to get the models to perform
at a satisfactory level. This data is not only typically expensive to gather and pre-
process, but can sometimes contain sensitive information that should be protected
from third parties.

This imposes additional restrictions when publishing the data, regardless of
modifications that are applied to remove personally identifiable information. This
comes from the fact that multiple attack mechanisms have been described that are
capable of reidenentifying people from such datasets [4] [5] [6] [7]. Furthermore,
even trained models that perform inference on new unseen samples are susceptible
of attacks that attempt to extract information from the models’ training data. [8]

Differential privacy (DP) provides a robust framework that allows for the def-
inition of privacy guarantees with respect to individuals who participate on a
dataset that is queried for information. This tool allows for the specification of
upper bounds that describe the maximum amount of information revealed about
any particular individual who participates in a dataset that is being queried. By
formalizing privacy in such a way, systems can be built where it is clear what is
the tradeoff between the utility that is obtained from querying the data, and the
privacy leakage that is incurred by doing so.

PATE - Private Aggregation of Teacher Ensembles, is a technique that enables
the training of machine learning models of arbitrary architecture in a way that its
privacy guarantees can be described through differential privacy. The technique
proposes to train multiple teacher models on disjoint sets of sensitive private data,
and then use this teacher ensemble to guide the training of a student model with
public, unlabeled data. The student training data is sent through each teacher
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model to obtain a label prediction, and an aggregation of all teacher’s predictions
is used as the training sample label. The aggregation mechanisms employed can
vary, although the general idea often consists in counting how many teacher models
predict each class as being the most probable, adding noise to this count, and then
picking the most probable one.

The intuition behind PATE’s privacy guarantees is that if multiple distinct
teacher models agree on an input label, no private data of their training examples
was leaked since the conclusion was arrived as a consensus and no particular model
is revealing too much information. If, however, there’s a strong disagreement
among the teachers and the most probable class is likely to be defined by a single
model’s prediction, the random noise added by the aggregation mechanism will
play a bigger role in defining the output, therefore protecting the individual model
predictions.

Under the Uruguayan legislative data privacy environment, Law Nº 18.381:
“Right of access of public information” states the civilian’s right to access public
data gathered by governmental institutions. However, Law Nº 18.331: “Law of
protection of personal data” requires the anonymization of personally identifiable
information before the release of a dataset. This set of regulations brings new
challenges when building and releasing machine learning models that take advan-
tage of such sensible datasets, as the original data cannot leave the organization’s
premises for training models. Furthermore, once a model is built, measures need
to be taken to ensure no attack mechanism can be applied to extract knowledge
about the training samples, which the model may have memorized [9].

Such challenges motivate the following project, in which the claimed privacy
guarantees of the PATE technique will be assessed, and it will then be applied
to the problem of malicious web request detection. The goal of this work is to
apply such a technique in a scenario where governmental agencies have sensible
information that can provide value to the general public if machine learning models
are built upon them, but robust privacy guarantees with respect to citizens whose
data is used need to be set in place.

Once the PATE technique is validated, we propose an extension of the technique
that enables the privatization of the training data of the student. This helps
extend the applicability of PATE to scenarios in which privacy guarantees need
to be ensured with respect to the student’s training data, before being sent to the
aggregator.
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Outline

In Chapter 2 the necessary previous knowledge and a description of the PATE
training technique is presented. In Chapter 3 the mechanism by which the privacy
cost is computed in PATE is presented. In Chapter 4 the problem to which the
PATE technique will be applied is explained in depth, along the experimental
methodology followed, the proposed improvements to the PATE technique and
the obtained results. In Chapter 5 the software engineering efforts that supported
this research are described, and our conclusions and lessons learned are presented
in Chapter 6.

9



2 Differential Privacy

Obtaining useful information from a database without compromising the privacy
of the individuals who participate in the study can be described as a guarantee
made by a database curator to its participants. The guarantee is that an observer
can’t determine a single participant’s data by performing queries to the database,
no matter what external information is available to them.

To quantify the amount of information of any participant that is revealed
through such queries, a useful approach is to measure the maximum variation
of the query output that results from the removal any individual from the dataset.
Intuitively, the variation of the query output can be considered a source of infor-
mation that indicates certain properties of the removed participant. For example,
if the average height of people in a dataset increases after the removal of a single
individual, this can be used in combination with other data points to determine
the height of the removed individual.

Let M be a randomized algorithm that queries a database with domain N|X|.
This algorithm is (ε, δ)-differentially private if ∀ S ⊆ Range(M) and for all parallel
databases x, y ⊆ N|X| such that ||x− y|| ≤ 1:

P [M(x) ∈ S] ≤ eεP [M(y) ∈ S] + δ (2.1)

By formulating differential privacy as such, the data subject can be protected
against arbitrary risks no matter what additional information the attacker employs,
and no post-processing of the output can make the algorithm less private [2].

This definition of privacy has the added benefit of introducing quantitative
values ε and δ with which to measure privacy loss. It is also possible to determine
the privacy loss of a group of k subjects rather than that of a single individual by
defining databases x, y ⊆ N|X| such that ||x − y|| ≤ k, or compound the privacy
loss across multiple queries performed to the database thanks to the composition
theorem defined below.
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2.1 Composition Theorem

Often times, it is convenient to understand the privacy impact of performing a
series of mechanisms on a database, instead of just one. In particular under the
context of PATE, where a machine learning model is queried repeatedly, it is of
interest to understand the total privacy leak of the model after k queries.

The following composition theorem is a tool that allows for the computation
of a total privacy bound, given the (εi, δi) leak of individual mechanisms.

General Composition Theorem

Let Mi : N|X| → Range(Mi) be an (εi, δi)-diferentially private algorithm
for i ∈ [k]. If M[k] : N|X| →

∏k
i=1Range(Mi) is defined to be M[k](x) =

(M1(x), ...,Mk(x)), then M[k] is (
∑k

i=1 εi,
∑k

i=1 δi)-diferentially private.

What this theorem tells is that the composition of two differentially private
algorithms A and B is itself a differentially private algorithm C, and that by
knowing the privacy leak of A and B, the one of C can be computed. This will be
of value when performing N identical queries on a database, given that knowing
the individual privacy leak of one of them would allow for the computation of the
overall privacy leak.
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2.2 DP-SGD

Differential privacy provides a robust framework with which to measure the pri-
vacy guarantees provided by an algorithm that queries a database. In order to
utilize such tools under the context of machine learning algorithms, there are mul-
tiple approaches that allow for the training of models with differential privacy
guarantees. One of them is DP-SGD [10], a method that proposes a modification
to the stochastic gradient descent algorithm so that models have provable privacy
guarantees, expressed in terms of differential privacy.

Bear in mind that the traditional mini-batch stochastic gradient descent algo-
rithm can be described as follows:

Algorithm 1: Mini-batch Stochastic Gradient Descent

Input : Learning rate α, model parameters θ, number of iterations m,
loss function L(θ(x), y)

Output: Model parameters θ

1 Initialize θ randomly.;
2 for i = 1 to m do
3 Sample a minibatch of training samples (x, y) ∈ S ;
4 θ := θ − α∇θL(θ(x), y)

To ensure that stochastic gradient descent is a differentially private algorithm,
two points need to be addressed [10]:

1. The sensitivity of each gradient should be bounded, to limit the impact each
individual training point has on the gradient computation.

2. The behaviour of the algorithm needs to be random, to obfuscate whether a
particular sample was included in the training set.

Clipping gradients computed on each training sample allows for limiting the
impact each training point has on the model parameters. This guarantees that each
gradient has a known maximum Euclidean norm. Afterwards, sampling random
noise from a given distribution and adding it to the clipped gradients addresses
the second point.
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The resulting training algorithm with the modifications described above is as
follows [10]:

Algorithm 2: Mini-batch DP-Stochastic Gradient Descent

Input : Learning rate α, model parameters θ, number of iterations m,
loss function L(θ(x), y)

Output: Model parameters θ

1 Initialize θ randomly.;
2 for i = 1 to m do
3 Sample a minibatch of training samples (x, y) ∈ S ;
4 gradient = ∇θL(θ(x), y) ;
5 gradient = clip(gradient) ;
6 gradient = noise+ gradient ;
7 θ := θ − α ∗ gradient ;

Suitability for this work’s problem

On the setting described where malicious web requests need to be detected, data
is distributed across different organizations. Since it is desirable that models are
trained in a distributed manner, where each stakeholder has their own data, the
approach described below on Section 2.3 is better suited than DP-SGD.

PATE also has the benefit of offering a privacy loss that’s independent of the
number of training epochs, whereas the privacy loss scales linearly with DP-SGD
as each new minibatch step queries the training data and contributes to the overall
privacy leak as described by the general composition theorem [2.1].
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2.3 Private Aggregation of Teacher En-
sembles (PATE)

In [1], Papernot et al. introduce a technique to train supervised machine learning
models of arbitrary architecture in a differentially private manner, by employing an
ensemble of teacher models that provide labels to a student model. The mechanism
through which these teachers transfer knowledge to the student is constrained in
such a way that the privacy loss incurred during student training can be computed
and bounded. This student model can then be used to do inference on new data,
without causing additional privacy loss thanks to the post-processing property of
differentially private algorithms.

Figure 2.1: PATE training algorithm

Each teacher is trained on a disjoint subset of the training data and then
used to generate class predictions of the student training data. These teacher
predictions are then aggregated according to an aggregation mechanism, and the
result becomes the label used for training the student model.

Whereas DP-SGD requires modifications to the training algorithm and is less
suited under scenarios where data is distributed, the aggregation mechanism of
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PATE makes more assumptions about the machine learning task to perform. This
is due to the fact that an aggregation strategy needs to be devised that not only
summarizes the teacher predictions effectively, but allows for the accounting of
privacy loss incurred during student training.

To illustrate these two algorithm design requirements, consider the machine
learning problem of classification, where a single class is expected to be returned
by the algorithm. In order to implement an aggregation mechanism for PATE on
such a problem, a way to average the class predictions of all teacher models needs
to be devised, as well as a method for computing the privacy loss that is incurred
during this averaging. The laplacian aggregation mechanism is an example of such
algorithm; in [2.3.1] and in [3] we present how these two points are addressed.

2.3.1 Laplacian Aggregation Mechanism

The aggregation mechanism employed in this work consists of adding noise sampled
from a Laplacian distribution to the teachers’ class prediction count. For a given
student training sample x, given the label count of teacher predictions nj for each
possible class j, one can define the aggregation mechanism as follows:

f(x) = arg max
j

{
nj(x) + Lap(

1

γ
)

}

Where Lap(
1

γ
) is a real number sampled from a Laplacian distribution with

location 0 and scale
1

γ
. The parameter γ influences the amount of noise added to

the query, and therefore the privacy guarantee that can be provided.

To illustrate this aggregation mechanism, consider a binary classification prob-
lem where 10 teachers are used to label student samples. The 10 predictions are
then counted resulting in a vote count of 8 positive votes and 2 negative votes.
Each one of these vote counts is then added random noise (real numbers A and
B) which will be sampled from a Laplacian distribution, and the most voted class
after the noise addition — in this case still the positive class, will be used as the
student target label.
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Figure 2.2: Diagram of an aggregation mechanism of the PATE algorithm

By keeping track of the aggregated labels and each teacher prediction, the pri-
vacy loss incurred during the generation of these synthetic labels can be computed
as explained in chapter 3.
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2.4 Distributed Learning

The proposed solution for malicious web request detection might be deployed in
a distributed network, should these research efforts show promising results. If
this is the case, a related area of research known as distributed learning might be
relevant, as it enables the use of multiple devices to perform the training of large
neural networks.

As the training data required for novel applications increases in orders of mag-
nitude, so do the I/O and compute requirements of the systems used to train
models. Given that demand for processing data has increased at a faster pace
than the growth in computing power, combined with the fact that data is often
found in a distributed fashion or is too big to store on a single device, the use of
distributed systems for training such models has become commonplace [11].

Distributed learning encompasses the collection of techniques that allow to
distribute the workload required for the training of models across multiple devices,
called worker nodes.

Although every distributed training algorithm has unique properties that make
the communication patterns used between multiple nodes different, there are two
architecture patterns that describe most distributed systems:

• Data parallelism: the data is split into different nodes, and the same training
algorithm is applied on each node to a subset of the data. The same model
is available to all nodes, which is either synchronized across all nodes or
centralized. This strategy works for all machine learning algorithms.

• Model parallelism: the model is split into different nodes, and the data is
propagated through them sequentially. Whether this technique can be ap-
plied depends on the model architecture - some models don’t have a natural
way in which they can be split. An example of applying model parallelism
to a neural network consists of putting groups of layers on different devices:
in the forward pass, a node passes the activation of the last layer to the next
node; on the backward pass the gradients are sent to the previous nodes.

In this work, a data parallelism approach was taken to train distributedly the
teacher ensemble.
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3 Analyzing the privacy loss in
PATE

Differential privacy provides a strong standard against which to measure the pri-
vacy loss incurred during training of the student model. This framework allows the
specification of privacy guarantees that a query that analyzes a private database
can offer; in the context of machine learning, the query could be considered doing
inference with a trained model on new, unseen data.

The model has acquired knowledge from the dataset with sensible information,
and each time it is queried a certain amount of privacy loss is incurred. Given that
the privacy loss is compounded across all queries done according to the composition
mechanisms described in [2], it would be desirable to have a way in which to bound
the total amount of privacy loss (ε, δ) incurred during the training of the model, so
that it can then be used for inference an arbitrary amount of times, with guarantees
that the total privacy loss will be bounded by (ε, δ).

Indeed, this is what PATE proposes to do when training the student model by
querying the teacher ensemble: as knowledge is transferred from the ensemble to
the student, the privacy loss incurred is tracked. This chapter will describe the
way in which this bound on the privacy loss can be computed.

LetM be a randomized algorithm with domain D and range R, d, d′ ∈ D, and
o ∈ R. We define a random variable c such that:

c(o) , log
P [M(d) = o]

P [M(d′) = o]
(3.1)

with o ∼M(d).

Now, in order to study the privacy loss of PATE, it is convenient to rephrase
the definition of differential privacy given in Eq. 2.1 into an equivalent formulation
as follows. A randomized algorithm M is (ε, δ)-differentially private if for any
adjacent databases d, d′ ∈ D and output o ∈ R:

Po∼M(d)[c(o) > ε] ≤ δ (3.2)
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The above formulation enables studying the privacy loss of the PATE mecha-
nism by resorting to a series of properties from probability theory in order to derive
the tail bound of random variable c. For such, we need to recall a few definitions
and theorems.

Moment of a random variable

The n-th moment of a random variable X is E[Xn]. In particular, the first
moment is the mean, µX = E(X). The n-th central moment of a random variable
X is E[(X−E[X])n]. The variance is the second central moment E[(X−E[X])2].

Moment generating function

An alternative specification of a random variable probability distribution is its
moment generating function, which is defined as MX(λ) = E[eλX ] for all λ ∈ R
where it is finite, which includes at least λ = 0.

MX(λ) can be used to compute the n-th moment of X: it is the n-th derivative
of MX(λ) evaluated at 0.

Chernoff-Crámer bound

Let X be a centered random variable such that MX(λ) < +∞ on λ ∈ (−λ0, λ0)
for some λ0 > 0. Then, for any β > 0:

P [X ≥ β] ≤ e−ψ
∗
X(β)

where ψ∗X(β) = sup
λ∈R+

(λβ − ψX(λ)) and ψX(λ) = logMX(λ). This inequality is

usually expressed as

P [X ≥ β] ≤ eψX(λ)−λβ (3.3)

Now, in order to analyze the privacy loss of PATE we proceed as follows. Let’s
start by defining:

αM(λ) , max
d,d′

logEo∼M(d)[e
λc(o)] (3.4)

Therefore, for the random variable c defined in Eq. 3.1, it holds:

ψc(λ) ≤ αM(λ) (3.5)
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Taking β to be ε in Eq. 3.3, it follows:

Po∼M(d)[c(o) ≥ ε] ≤ eαM(λ)−λε (3.6)

Thus, a mechanismM would be (ε, δ)-differentially private for every ε, δ satisfying:

eαM(λ)−λε ≤ δ

With a little rewriting, we have:

ε ≥ 1

λ

(
αM(λ)− log δ

)
Hence, for a given δ, we can obtain the minimum bound of the privacy loss which
could be ensured with such δ:

ε = min
λ

1

λ

(
αM(λ)− log δ

)
(3.7)

Provided αM(λ) can be computed or bounded, Eq. 3.7 gives a means for bounding
the privacy loss of a mechanism with a given confidence. We apply it in the
following sections to analyze the privacy loss of PATE with a Laplacian aggregation
mechanism.

3.1 Data independent privacy analysis

Consider adjacent databases d and d′ where label counts nj differ by at most 1 in
each coordinate. Let M be the mechanism that reports arg maxj{nj + Lap( 1

γ
)}.

Then, M satisfies (2γ, 0)-differential privacy. It can be shown that, for any λ [1]:

αM(λ) ≤ 2γ2λ(λ+ 1) (3.8)

For an aggregation mechanism with noise Lap( 1
γ
) which is (2γ, 0)-differentially

private, this inequality can be used together with the previous properties to bound

the privacy loss over T queries to the teacher ensemble to (4Tγ2 + 2γ
√

2T ln 1
δ
, δ)-

differential privacy [1].

3.2 Data dependent privacy analysis

The bound on the privacy loss obtained above could be made smaller provided we
bring into the picture the actual predictions delivered by the ensemble of teachers.
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Indeed, a smaller αM could be computed if we take into account the fact that
when quorum among teachers is strong, the majority outcome has overwhelming
likelihood, so the privacy cost is smaller when this outcome occurs. The following
theorem, proved in [1], provides a data-dependent bound on αM:

Theorem: Let M be (2γ, 0)-differentially private and q ≥ P [M(d) 6= o∗]
where o∗ is the most probable outcome as determined by the teacher ensemble
predictions. Let λ, γ ≥ 0 and q < e2γ−1

e4γ−1 . Then,

αM(λ) ≤ log

(
(1− q)

(
1− q

1− e2γq

)λ
+ qe2γλ

)
(3.9)

In order to upper bound q for our aggregation mechanism, the following Lemma
is also proved in [1].

Lemma: Let n be label score vector produced by the teacher ensemble, for a
database d with no∗ ≥ no for all o. Then:

P [M(d) 6= o∗] ≤
∑
o 6=o∗

2 + γ(no∗ − no)
4eγ(no∗−no)

Thanks to this bound on q that depends on the teacher agreement, αM can be
bounded for a specific response of the ensemble to a query of the student. This
allows computing a more accurate (data-dependent) bound on the actual privacy
loss incurred by PATE for a given set of queries of the student.
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4 Experimental results

After validating the experimental results achieved in [1] by replicating the experi-
ments done with the MNIST[12] and SVHN[13] datasets and achieving comparable
results, the PATE framework was applied to the problem of malicious web request
detection. On this chapter, the results of that work will be presented, along with
proposed improvements on the technique to ensure the privacy of the training data
of the student model.

4.1 Experimental Setup

In order to classify web requests, a dataset of 651.602 labeled requests was as-
sembled. To construct the features, the URI of a web request is tokenized and a
bag-of-words approach is used to compute the uni-grams present in each request.
The term frequency-inverse document frequency (TF-IDF) of the 500 most fre-
quent tokens across the entire dataset is then computed for each sample. These
tokens include terms such as “javascript”, “php”, “sfish”, “?”, “login”, among
others.

TF-IDF: The term frequency-inverse document frequency is a statistical mea-
sure that represents how important a term is to a document, with respect to the
dataset in which that document is found. In this work, a term is a token and a
document represents a single web request sample.

The relative importance of a term depends not only on the frequency with
which it appears in the document, but also on the inverse of the frequency with
which the term appears on the entire dataset. This approach helps to reduce the
importance of frequent terms that don’t add much information, such as ’the’ or ’a’
in the context of the English language. For a particular term t found on document
d in the dataset D, the TF-IDF[14] is defined as follows:

TF − IDF (t, d,D) = TF (t, d) · IDF (t,D) (4.1)
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TF (t) =
Number of times term t appears in a document

Total number of terms in the document
(4.2)

IDF (t) =
Total number of documents

Number of documents with term t in it
(4.3)

Once the dataset is constructed using the strategy described above, it is split
as follows:

• 233518 samples for the training and evaluation of the teacher models.

• 800 samples per teacher for calculating the optimum threshold for considering
the classifier’s output as a positive prediction. This point will be explained
further below.

• Between 500 and 1000 samples for the training of the student model, varying
per experiment.

• 5000 samples for the validation step of the student model.

• 200 samples for calculating the optimal threshold of the student model

• Remainder samples for test set.

Following the same strategy as the original paper [1], ensembles of 100 and 250
teacher models were trained and used to generate labels for the student training
samples, using the laplacian aggregation mechanism.

Given the unbalanced distribution of the training set - 95% of samples are
not malicious, a threshold of 0.5 that would split the model’s output between
positive and negative samples would yield sub-optimal results. Therefore, the
receiver operating characteristic curve is calculated for a subset of samples, and
the threshold that maximizes the difference between the true positive rate and
false positive rate is picked as the optimum one.

Receiver operating characteristic curve: The ROC curve[15] plots the
true positive rate with respect to the true negative rate at different classification
thresholds, and is a tool that allows to measure the performance of a classifier
at these different thresholds. Consider that a classifier outputs the probability
of a sample having a positive class as 0.6. A standard threshold of 0.5 would
determine that such sample has a positive class, whereas a higher threshold of 0.8
would indicate that the same sample has a negative class.
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True Positives = Positive cases correctly classified

True Negatives = Negative cases correctly classified

TPR =
True Positives

# Positive Cases
TNR =

True Negatives

# Negative Cases

Increasing the threshold results in more items being classified as negative, there-
fore increasing both the true negatives and the false negatives. By calculating the
ROC curve, it is possible to pick a threshold that maximizes the difference between
the true positive rate and the false positive rate, which is the metric of interest in
this work.

A simple fully connected neural network architecture was used for both the
teacher and student models, with a single real-valued output:

Figure 4.1: Neural network architecture
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4.2 Results

On all experiments, an aggregation mechanism was applied where noise sampled
from a laplacian distribution with γ = 0.05 was applied to the label counts of all
teacher predictions. The data-dependent ε recorded was obtained along δ = 10−5.

# of Teachers # of student samples TPR TNR ε

100 1000 81.2% 94.5% 5.32
250 1000 84.2% 93.5% 0.39

Table 4.1: Privacy cost and precision metrics obtained

An increase in the number of teacher models used allows for higher levels of
privacy guarantees. One should note, however, the context in which this system
would be deployed: a government’s intranet which has multiple departments and
organizations, each with sensible data on which a separate model could be trained.
Under this distributed setting, it would be reasonable to expect that, depending on
the volume of data per organization, one or a couple of models per organization
could be trained. The feasibility of training 250 or more teacher models will
depend in large part on the volume of web requests collected and labeled within
each organization.

4.2.1 Privatization of student data

Under the traditional PATE architecture, the student sends its samples to the
teacher ensemble for the labels to be generated. Under the distributed setting
that’s proposed in this work, the student might belong to a third party organization
which might not necessarily trust the system that hosts the teacher ensemble and
aggregation mechanism.

It is reasonable to assume that the student itself might expect certain privacy
guarantees for the data it is sharing with the teacher ensemble, and for that purpose
this work proposes the addition of random noise to the feature representation of the
student data, before its sent to the ensemble. Recall that the feature representation
chosen for this problem is a bag of words, which doesn’t directly reveal what the
sequence of tokens actually is, as that sequence is broken. However, the set of bag
of words representations of the entire dataset can be interpreted as a probability
distribution of the frequency of occurence of each token. By sampling from this
probability distribution, likely requests could be reconstructed, and privacy lost.

25



Figure 4.2: Visualization of the privatization process applied to the student data

Figure 4.2.1 illustrates how a noise vector sampled from a Laplacian distribu-
tion with scale ε and mean 0 is added to the feature representation of each request
before being sent to the Aggregator. This follows the definition of a Laplacian
Mechanism, where given a function f : N|X| → Rk, a Laplacian Mechanism is:

ML(x, f(·), ε) = f(x) + (Y1, ..., Yk)

In our case, f would be the identity function, and as proved in [2], this mech-
anism preserves ε-differential privacy. Once the Aggregator returns a label, the
original feature representation can be used along it to train the student.

Figure 4.3: Visualization of the PATE training algorithm with the proposed im-
provement for privatizing the student data
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For a given student ε, ten student models were trained by sending the samples
to the same teacher ensemble ten times, each with noise sampled from a Laplacian
distribution with scale ε, and then trained as described by the PATE algorithm.
The privacy cost with respect to the teacher’s training data is computed as de-
scribed in Chapter 3 for δ = 0.05. The following table details the achieved teacher
and student ε, and the true positive and negative rates obtained by the classifiers.

# of Teachers Student ε Teacher ε TPR TNR

100 0.001 9.18 0.82 0.95
100 0.01 10.56 0.83 0.94
100 0.1 13.24 0.76 0.97
100 0.5 23.51 0.84 0.94
100 1 23.51 0.82 0.96
100 5 23.51 0.85 0.93
100 10 23.51 0.82 0.95
100 50 8.18 0.82 0.94
100 100 7.06 0.84 0.94
100 no noise 5.32 0.81 0.94
250 0.001 0.52 0.85 0.95
250 0.01 0.58 0.80 0.95
250 0.1 1.00 0.87 0.93
250 0.5 6.30 0.86 0.93
250 1 23.51 0.84 0.94
250 5 23.51 0.84 0.93
250 10 7.20 0.91 0.85
250 50 0.47 0.84 0.92
250 100 0.40 0.81 0.94
250 no noise 0.40 0.84 0.94

Table 4.2: Relationship between student ε, teacher ε, and true positive and neg-
ative rates achieved for different teacher ensemble sizes and levels of noise added
to student data.
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Figure 4.4: Relationship between the student and teacher ε.

An interesting phenomenon observed is the relationship between the noise ap-
plied to the student data, and privacy leaked by the teacher’s dataset, measured as
data-dependent privacy loss: as the noise applied to the student’s data increases,
so does the privacy leak of the teacher ensemble. This can be attributed to the
fact that as the data sent to the ensemble becomes noisier, it becomes harder
for the teachers to predict the correct label, therefore the consensus among them
decreases, which results in a higher data-dependent ε.

For teacher ensembles of 250 models and student ε of 0.1, the student model
achieves true positive and negative rates above 87%, with a small privacy leak. This
validates the hypothesis that robust privacy guarantees can be ensured for such a
problem, provided the data can be partitioned in a sufficiently large ensemble of
teacher models.

28



5 Software engineering efforts
conducted

Several strategies were utilized to conduct the series of experiments required in a
maintainable manner, that allows for code reuse and to manage the complexity of
the result tracking of the experiments.

5.1 Modelling of the solution

Although there are a couple of open source implementations of PATE, it was de-
cided to implement the framework from scratch so as to facilitate the extensibility
of the tool. To do so, the problem was modelled as detailed in the UML diagram
5.1, where both teacher and student models inherit from the same class that’s
responsible for the performance of the training of the model.

Since the network architecture might change from problem to problem, that
responsibility is delegated to the abstract class Network, which allows for multiple
architectures to be used, such as convolutional neural networks for computer vision
problems, and a fully connected neural network for the problem of malicious web
request detection.

In order to perform the aggregation of the teacher models predictions, an ab-
stract class Aggregator is implemented by LaplaceAggregator to perform the Lapla-
cian Aggregation Mechanism proposed in [1], and GaussianAggregator for the Gaus-
sian Aggregation Mechanism proposed in [16]. Dataset provides utility functions
to perform the data splits between teachers’ and students’ training, validation and
test sets, besides the preprocessing and data loading.
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Figure 5.1: UML diagram of the solution

Given that the neural networks chosen proved to be capable of achieving high
levels of precision, it was decided to fix the model architecture in order to explore
how other parameters, such as the added noise, affected the model performance.

The solution was developed in Python, using the Pytorch machine learning
library [17]. There are three scripts, train_teachers.py, aggregate_labels.py and
train_student.py, that describe the full interaction between the abstractions to per-
form the complete training of teacher and student models. This modular approach
allows for the experimentation of multiple aggregation strategies once the teacher
models are trained, and for multiple different students to be trained once the ag-
gregated labels are computed. For the sake of completeness, the entire behaviour
of these three scripts is detailed on the sequence diagram 5.2

30



Figure 5.2: Sequence diagram that describes the interaction of the different ab-
stractions

31



5.2 Experiment management

Throughout the entire experimentation period, more than 2500 experiments were
conducted, and the metrics of the resulting models logged. In order to manage
the complexity of this task, and enable the quick comparison of different experi-
ments, an automatic logging and visualization tool was integrated with the solu-
tion: Weights and Biases [18].

By logging the experiment metadata, training and evaluation metrics and up-
loading them to a server, the tool allows for the sorting, filtering, tagging, com-
parison and visualization of multiple experiments simultaneously.

Figure 5.3: Interface of the tool Weights & Biases, which allows to compare metrics
across experiments
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5.3 Multi-GPU training

Training large deep neural networks on big datasets often supposes challenges with
respect to the computational resources needed in order to train within reasonable
time constraints. Even though our proposed architecture proposed in [4.1] has only
322.000 trainable parameters, training 250 of these models for the teacher ensemble
does represent a significant challenge, when iterating on various experiments.

The training of these models was performed on Universidad ORT’s CECOFI
cluster, on 4 NVIDIA GeForce RTX 2080 GPUs and taking advantage of a data
splitting strategy across multiple GPUs known as DataParallel. Given n GPU
nodes, the algorithm works as follows:

Algorithm 3: DataParallel algorithm for multi-GPU training [19]

1 Duplicate model onto the available GPUs;
2 Split the batch into n subsets, and move each to a different GPU;
3 Perform the forward pass in a distributed manner;
4 Compute losses, aggregate them on main GPU, and send the loss back to

each node;
5 Compute gradients on each node;
6 Sum up the gradiends on the main GPU, update the model, and send

copies back to other GPUs for the next iteration;

33



6 Conclussions and lessons
learned

In this work the PATE framework was studied, and its claimed efficacy was tested
by training differentially private models on reference datasets. Once the results
claimed on [1] were validated, the technique was applied to the problem of malicious
web requests detection, achieving both high levels of privacy and precision at the
classification task.

The problem presented a series of interesting challenges, from the engineer-
ing aspects of managing the training of large ensemble of models, to the design
choices needed to be taken to achieve promising results for the particular problem
addressed.

A key design consideration that the solution needed to address was the exten-
sibility of the tool developed, so that if promising results were achieved for this
particular problem, it would be easy to retrain new models with different architec-
tures, for related problems on new datasets. The aggregation mechanism should
be replaceable, and the training might happen in a distributed fashion. These re-
quirements motivated our desire to develop the solution in a modular fashion, with
an emphasis on facilitating the tracking of all the experiments conducted along the
way. I consider that this focus on implementing good engineering practices along
a machine learning project helped me grow as a software engineer.

When iterating on the chosen model so as to achieve the best possible perfor-
mance, a couple of challenges were identified. Firstly, the dataset was unbalanced
with respect to the labels, which made our model more sensible to negative classes
than positive ones. By plotting the ROC curve and choosing different thresholds
that spit our model probability’s output between a positive and negative pre-
diction, a better balance between true positive rates and true negative rates was
achieved. A hyperparameter random search was used to find optimal model hyper-
parameters, and early stopping applied to avoid overfitting the training datasets.

Along the development of the project, two opportunities arised to present our
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work: on a technical meeting organized by Tryolabs, a machine learning consulting
company, and a privacy and data anonymization workshop organized by ICT4V.
The focus on the first talk was to share knowledge on Differential Privacy and how
the PATE framework can help achieve it, whereas on the second one our results
applying this technique on the problem of malicuous web requests detection were
also presented. Besides giving visibility to our work and this field of study, these
events also helped me to develop my communication and presentation skills, for
which I’m grateful to have participated on them.

35

https://tryolabs.com/
https://ict4v.org/es/workshop-2020


7 Bibliographic references

[1] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar, “Semi-
supervised knowledge transfer for deep learning from private training data,”
arXiv preprint arXiv:1610.05755, 2016.

[2] C. Dwork, A. Roth et al., “The algorithmic foundations of differential pri-
vacy.” Foundations and Trends in Theoretical Computer Science, vol. 9, no.
3-4, pp. 211–407, 2014.

[3] A. Ng, Machine Learning Yearning. USA: Kobo, 2017.

[4] A. Harmanci and M. Gerstein, “Quantification of private information leakage
from phenotype-genotype data: linking attacks,” Nature methods, vol. 13,
no. 3, pp. 251–256, 2016.

[5] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse
datasets,” in 2008 IEEE Symposium on Security and Privacy (sp 2008).
IEEE, 2008, pp. 111–125.

[6] L. Sweeney, A. Abu, and J. Winn, “Identifying participants in the personal
genome project by name (a re-identification experiment),” arXiv preprint
arXiv:1304.7605, 2013.

[7] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, “Unique
in the crowd: The privacy bounds of human mobility,” Scientific reports,
vol. 3, no. 1, pp. 1–5, 2013.

[8] T. R. Fredrikson, Somesh Jha, “Model inversion attacks that exploit confi-
dence information and basic countermeasures,” 10 2015.
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