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Abstract Español

El presente trabajo surge como una investigación motivada por la necesidad
de proteger la privacidad de los usuarios de sistemas en contextos de análisis es-
tad́ıstico, inteligencia artificial y publicación de datos. Para ello se ha llevado a
cabo un estudio del estado del arte y se han explorado técnicas de privatización
de datos basadas en Privacidad Diferencial.

Abstract

This work arises as an investigation motivated by the need of protecting sys-
tems users’ privacy in the context of statistical analysis, artificial intelligence and
data release. A study of the state of the art has been carried on and different
privatization techniques based on Differential Privacy have been explored.
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1 Introduction

1.1 Open Data

Today’s world demands great amount of data to solve a wide variety of problems.
Some of which are important or belong to hard areas of problem solving where
there could be potentially a large amount of restrictions, areas such as health,
social development, economics, politics, among others. For that reason, it exists an
implicit need for open data. By having organizations sharing openly specific data
we might stand a better chance to solve some of those hard problems. Moreover,
in the last couple of years there has been a recent push in the laws department for
open government data. On the other hand, there has also been laws regarding the
privacy of the individuals personal data within databases.

1.1.1 The value of the data

Along the existence of an organization, which could add up to many years, the or-
ganization itself gathers data from its own processes but also from its clients, users,
beneficiaries, among the wide spectrum of stakeholders which it may have. This
data may contain valuable information but it has to be extracted through different
techniques. Today’s computer systems allow this data to be stored and processed
more easily as computers storage capacities expands, processing power increases
and new data processing algorithms are invented. It is in the organization best
interest for their existence and their capacity for innovation to be able to extract
information and value from such data, as this allows to make better decisions for
the future or to solve problems that the organization might be facing at certain
moment of time. It is also remarkable, that the value of the data may signify
a competitive advantage over other organizations that are trying to solve similar
needs or that compete in the same market. For that reason, it exists a present
disbelief between organizations about sharing data. This means, organizations
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would not share their data with others, in fear of losing the chance of extracting
their value before anyone else so as to be the first to have a competitive advantage.
This disbelief, is partially true but not entirely true. Organizations should be able
to share data they do not consider relevant while preserving data they consider
valuable or might be valuable for them in the future. This is, in favour of allowing
others to solve problems they can not solve on their own or they are simply not
interested in solving. Luckily, there are new trending areas of research such as
Differential Privacy, Open Data and Fairness which aims to solve these problems.

1.1.2 The utopia of Open data

Ideally an organization would openly share all their data, but as mentioned pre-
viously this goes against organization best interests. Second best case scenario we
could aim for an organization releasing open data but filtering out what is relevant
to them from what is not. And the last scenario, and this is where we are currently
standing in terms of research, organizations should be able to provide control ac-
cess either to certain data or to certain features of the data to other organizations
while also preserving the desired value and the privacy of the individuals stored in
such data.

1.1.3 What problems Open data creates

Open data has big problems to solve, already mentioned in previous sections. The
first one is the undesirable leakage of value from the owner of the data, which
prevents organizations from sharing data to solve hard problems. The second one,
which can be seen as a specific case of the first one, it’s privacy leakage, this mean,
the data or a statistical analysis over such data also delivers sensible information
about a particular individuals. Ideally, the value extracted form the data should
be targeted or controlled, and secondly, the information released must be about
the entire population and not about the individuals.

1.1.4 The five ways to Access Control

One could list five distinct ways on how organizations and humans overall can
control how the data is accessed.

1. Access Denial: The most simple way of access control, it simply consists in
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denying access to the data which holds all the value to the owner organization
yet prevents any possible outsourced analysis of the data. This comes with
the problem that the owner organization might not be particularly concerned
about extracting value but other organizations may think otherwise.

2. Permission Agreement: This method does not really solve any of above issues,
simply takes the data owner and those interested in the data and binds
them into a behaviour agreement contract where restrictions, protocols and
consequences are stipulated. In other words, the ownership of the data is
shared through an extension.

3. Information Hiding: This method consists in hiding, denying or blocking
access to certain parts of the data, that is, removing certain features which
the organization considers valuable or where a possible privacy leakage may
occur if the data release is carried on. However, this sort of techniques such
as data anonymization, does not guarantee any privacy protection as they
are vulnerable to re-identification attacks[1].

4. Changing the truth: This is where the most promising methods stands. It
consists in basically lying or changing the truth of certain features in an
individual with other information that does not affect the results over the
population. In this area we find Differential Privacy (DP for short) as the
state of the art technique[1]. Yet used wrongly, on one side it can degrade
all value from the data and on the other side it can still leak privacy. How-
ever DP is the only technique, to our knowledge, to provide mathematical
guarantees on what it does.

5. Encrypted communication: This is a technique that uses remote execution to
compute where the data is stored, so as to avoid any data release. The data
does not have to leave the trusted owner organization. This allows secret
computations even in a foreign environment where one does not even have
control of. However, in some cases, the results have to be decrypted to be
valuable and in case of a statistical analysis or machine learning model this
means the technique is still vulnerable to privacy attacks.

1.2 Context

1.2.1 General Context

The access to open data plays a fundamental role in developing more transparent
and inclusive societies. In Uruguay, the initiative of carrying on public policies
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about open data is regulated by the Law of Access Right over Public Information
(Law Nº 18.381), which goal is to promote the availability of data produced or
obtained under the power or control of public institutions.

In the mean time, the availability of data is subject to comply the current
legislation of protection of private data. In case of Uruguay, this aspects are
contemplated under the Law of Protection of Personal Data and Habeas Data
Action (Law Nº18.331). In particular, this law defines the process of disassociation,
as every processing of personal data in a way that the obtained information can
not be linked back to a certain person.

Moreover, the publication of any organization, public or private in Uruguay,
could also be reached by the normative framework of GDPR (General Data Pro-
tection Regulation)[2] which defines a set of regulations of data protection that
applies to all organizations that operate in the European Union, independently
of where they are located. This in regards to personal data related to citizen or
residents of the European Union.

Furthermore, the access to data is not only motivated by the legislation of open
data, but also by the need to make data available to actors, public or private, who
holds the technical capacity to analyse them or use them as input to essential
research projects and scientific-technological innovation.

As mentioned previously, granting access is not only an obligation to public
institutions but also a need for any organization, due to that data is becoming
the most valuable asset [3, 4, 5]. In fact, the big volumes of data available, to-
gether with the increasing processing computation, have enabled the research and
development of algorithms of machine learning that learn from data with the goal
of building predictive models, which are key to the decision making processes [6].
However, despite this fact, that data constitute an evident asset in organizations,
they are faced against a bigger problem when they try to extract value from them,
the data is not easy to publish nor to transfer, as in many cases, they contain
personal private information that belongs to third parties [7].

Exists then, a clear tension between the ability to provide access to data and
maintaining privacy. Therefore, it is essential to provide mechanisms that al-
low protection of private data that is made available to any third party so as to
guarantee the compliance with the legislation in terms of privacy of confidential
information. And it is also important to point out, that the privatized data need
to hold any value or useful information to carry on successfully with the different
tasks or analysis being carried away[8].

This thesis is motivated by the need of finding privatizing tools for discrete
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sequential data, in particular security system logs, that might contain sensible
information of the users, so as they can be released with the goal of carrying on
cyber-security predictive experiments, specifically the training of neural networks
dedicated to the detection and prevention of attacks[9, 10, 11, 12].

1.2.2 Particular Context

This summarizes the particular context where this thesis takes place.

1. Data: The nature of the data is Hadoop filesystem logs and Apache Logs
saved from Mod Secuity Web Application Firewall (WAF). The first dataset
consist on a sequence of numbers where each number represents a line of
code with a logger line of code. There are logging sequences that are normal,
while there are also some sequences where the behaviour is not expected and
it could represent an attack or a failure of the system. The second dataset
consists in URLs with query parameters logged by Mod Security in an Apache
environment. Some of the queries represents normal user behaviour while
others represent an attempt to attack the system, such as SQL Injection or
password bruteforce attacks.

2. Restrictions: Uruguayan Laws (Law Nº18.331 and Law Nº 18.381)

3. The value or utility: Attack detection predictive models in logs

4. The problems:

(a) Privacy Leak: Reidentification attacks of the domains contained in the
logs and users’ sensible data.

(b) Mis-intended Use: leakage of other type of value not related to attack
detection.

1.3 Objective

The primary objective of this thesis is to study the different models of privacy
proposed by differential privacy as a way to define processes or deploy tools that
allow access to data for secure release of such data or any statistical analysis
carried out on it. These access mechanisms need to be compliant with stipulated
restrictions and regulation of the particular context.
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The secondary objective is to study, not only the privacy guarantees, but also
the utility of the data release after privatization, in particular, how useful the
privatized data is, to develop attack detection models on the nature of the data
itself.
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2 A general approach for securing
open data

The problem of open data analysis with privacy preserving guarantees has a long
history. As data about individuals can be stored and increases in detail, and as
technology enables ever more powerful development analysis tools of these data,
the need increases for a robust and mathematically rigorous definition of privacy.
Differential Privacy is the promise of such definition.

2.1 Roles in data governance

1. The Data Owner: This entity is the true owner of the data. The data is
based in it’s characteristics, such as attributes or behaviours. This entity
can be either a system, an individual, among others.

2. The Trusted Curator: An entity that is trusted by the Data Owner to store
and manipulate the data.

3. Third parties: This includes any stakeholder interested in the data stored by
the Trusted Curator but is not trusted by the Data Owner. This entity can
be any Data Analyst, Statistician, etc.

2.2 Without privacy

In a context without privacy the individual who is owner of the data, gives away
information to a Trusted Curator. Now, without privacy this last entity allows
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queries to their databases allowing privacy leaks. The queries can be done by
third parties with good or bad intentions. The privacy breach is not measurable
and in most cases it’s uncontrollable. The third parties has access to individual
data and could potentially run attacks such us re-identification attacks.

Figure 2.1: Context without privacy

The following tables depicts a simple example where an attacker with a couple
of queries can reveal hidden information of the individuals, in a system where
querying an individual is not allowed. By using range sum queries the attacker can
make partial conclusions up to the point of revealing the health of each individual
in the database.

Figure 2.2: Simple example of query attacks
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2.2.1 Why anonymization does not work

In the following example, a well known company gives away user ratings of movies
in order to lunch a competition to design a recommender system. To no reveal
users’ usernames nor the movies they watch, the company uses anonymization
techniques, such as replacing all usernames and movies by one way codenames. In
their solution only them can trace back the username and movies. However, this
turned to be false. An internet user recreated the same table using IMDB website
and matching rows to the original data release. With this technique the user was
able to traceback username and movie names, they preferences and even get more
information by search them in Google. The anonymization failed.

Figure 2.3: Users and Movies reconstruction

2.3 Differential Privacy

As Dwork defines in her work [1], Differential Privacy describes a promise made
by the data curator to a data owner, data subject or individual. The promise is
the following:

You will not be affected, adversely or otherwise, by allowing your data
to be used in any study or analysis, no matter what other studies, data
sets, or information sources are available.

Differential Privacy (DP) and its mechanisms try to address the problem of
learning nothing about individuals while learning useful and valuable information
about the population. Under DP, a database of logs might teach us that there has
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been an attack without compromising the privacy within the logs itself. Going a
step even further, a database might tell us which logs are attacks without reveal-
ing anything else about the logs. This depends on how one frames the privacy
preserving problem.

For interested readers, in [13] authors use intuitive illustrations and some math-
ematical formalism as an introduction to differential privacy for non technical prac-
titioners. Those who are tasked with making decisions with respect to differential
privacy. The document contains examples in which social scientists can understand
the guarantees provided by differential privacy with respect to the decisions they
make when managing data. This work also explains clearly what does differential
privacy protects and what it does not.

2.4 Formalizing differential privacy

In this section a formal mathematical definition of Differential Privacy is given.
The Differential Privacy definition and the prior definitions presented on this sec-
tions are taken from [1].

2.4.1 Probability Simplex

Given a discrete set B, the probability simplex over such set B is ∆(B):

∆(B) = {x ∈ R|B| : xi ≥ 0 for all i and

|B|∑
i=1

|xi| = 1}

2.4.2 Randomized Algorithm

A randomized algorithm M with domain A and discrete range B is associated
with a mapping M : A → ∆(B). On input a ∈ A, the algorithm M outputs
M(a) = b with probability (M(a))b for each b ∈ B. The probability is over the
random process of the algorithm M.
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2.4.3 Distance between databases

To explain the general idea of Differential Privacy, it is often convenient to repre-
sent databases by their histograms: x ∈ N|X |, in which each entry xi represents the
number of elements in the database x of type i ∈ X , where X is the universe of all
records of the databases x. Under this representation we can define a measurement
of distance between two databases x and y, the `1 distance.

The `1 norm of a database x is defined to be ||x||1:

||x||1 =

|X |∑
i=1

|xi|

The `1 distance then of two databases x and y is ||x− y||1

Where ||x||1 is a measure of the size of the database x while ||x − y||1 is how
many records differ between x and y.

Remark. In our work we use other representations of databases and different
distance metrics such as hamming distance. These will be introduced later as it is
required by the context.

2.4.4 Definition of Differential Privacy

A randomized algorithm M with domain N|X | is (ε, δ)-differentially private if for
all S ⊆ Range(M) and for all x, y ∈ N|X | such that ||x− y||1 ≤ 1:

Pr[M(x) ∈ S] ≤ exp(ε)Pr[M(y) ∈ S] + δ

where the probability space is over the random processes of the mechanismM. If
δ = 0, then M is ε-differentially private.

2.5 Properties of Differential Privacy

In the context of this thesis there are 2 important properties to remark.
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2.5.1 Post-Processing

Let M : N|X | → R be a randomized algorithm that is (ε, δ)-differentially private.
Let f : R→ R′ be an arbitrary randomized mapping. Then f ◦M : N|X | → R′ is
(ε, δ)-differentially private.

The proof can be found in [1].

Intuitively, the Post-Processing property means that after querying a database
for statistical analysis or for learning models, this property guarantees that no
matter what someone does with the result, they can not obtain new information
about the individuals. In other words, it is impossible to increase the privacy
leakage, no matter what tools or other information are available. Once the data is
privatized or accessed through a differentially private mechanism, it can no longer
leak more information than what the mechanism was originally designed to leak.
For instance, if a deep learning model is trained with DP-SGD[14], a mechanism
for training deep learning models (more on that later), the leakage only happens
when the model is trained. Once in production, the internals of the model cannot
be attacked or analyzed to obtain new information about the individuals in the
training dataset.

2.5.2 Composition theorem

Differential Privacy has the ’automatic’ strength of having a composition theorem,
in that the bounds obtained hold without any effort of the database curator nor
of the types of queries or mechanisms.

Let Mi : N|X | → Ri be an (εi, δi)-differentially private algorithm for i ∈ [k].
Then ifM[k] : N|X | →

∏k
i=1Ri is defined to beM[k](x) = (M1(x), ...,Mk(x)) then

M[k] is (
∑k

i=1 εi,
∑k

i=1 δi)-differentially private.

Intuitively, the Composition theorem actually means that if a database is con-
sulted multiple times using a mechanism or a different set of mechanisms then it
is guaranteed that the leakage is as big as the sum of the leakage of each mecha-
nisms. For instance, if a person is registered in two different databases with the
same information and a data analyst queries both databases with the same or with
different mechanisms, the leak is at worst case, the sum of each leakage. Moreover,
if the data analyst queries the same database multiple times, the leakage adds up
with every single trial. In practice, one can find and demonstrate lower bounds
of this general composition value, however this is a task that requires carefully
designed differential privacy mechanisms and mathematics to back them up. For

19



instance, taking the example of DP-SGD, each batch or lot used to train a neural
network leaks some ε privacy, after k many batches the leak adds up to kε. How-
ever, using moments accountant mathematics, one can find a lower bound than
kε.

2.6 Mechanisms

Differential Privacy does not define a particular mechanism for privacy. In con-
trary, it propose a formal definition that a mechanisms must satisfy in order to be
differentially private. In the next section the Laplacian Mechanism is presented,
one of the first mechanisms and one of the building blocks for more complex mech-
anisms.

2.6.1 Laplace Mechanism

Given any function f : N|X | → Rk, the Laplace mechanism is defined as:

ML(x, f(.), ε) = f(x) + (Y1, ..., Yk)

where Yi are i.i.d random variables from Lap(∆f
ε

), where ∆f is de `1− sensitivity
of the function f .

∆f = maxx,y∈N|X| ||f(x)− f(y)||1

and where Lap is the Laplacian Distribution centered at zero (µ = 0) with
scale b, with probability density function:

Lap(x|b) =
1

2b
exp(−|x|

b
)

The variance of this distribution is σ2 = 2b2. The Laplace distribution is a sym-
metric version of the exponential distribution.
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Figure 2.4: Laplacian distribution. Image taken from wikipedia.com

2.6.2 Exponential Mechanism

The exponential mechanism introduces a utility function u, which is used to
balance the trade-off between privacy and utility. The exponential mechanism
ME(x, u,R) selects and outputs an element r ∈ R with a probability propor-

tional to exp( εu(x,r)
2∆u

) where ∆u ≡ maxr∈Rmaxx,y:||x−y||1≤1.

2.7 Privacy Models

There are two main types of models of privacy proposed by differential privacy that
we can take into consideration when implementing our system privacy compliant
architecture. And we can include a variation of one of them as a third type of
model.

1. The Local Model

2. The Centralized Model

3. Synthetic Databases
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2.7.1 The Local Model

The model of privacy called the local model, also known as non-interactive or offline
model consists on creating a database with data already privatized. This means, a
randomized mechanism M is applied to the data recollected from the individuals
before storing it into the database by the Trusted Curator. The privatization and
it’s leakage takes place when recollecting the individual information and not when
querying the database. This model takes the advantage of the post processing
property of differential privacy, so as, the data scientists can ask as many queries
to the database as they desires without to worry about leakage composition. The
database is privatized only once. This model allows the database to be released
entirely under (ε, δ) - differentially private guarantees.

Figure 2.5: The Local Model

2.7.2 The Centralized Model

The model of privacy called centralized model, also known as interactive or online
model, consist of asking n queries to the database by the data scientists. The
database is owned and/or protected by a Trusted Curator. The query is a function
applied to the database. Then the result of the function is privatized with some
mechanism M , for instance some (ε, δ) - differentially private mechanism. This
model allows to ask queries adaptively, for example it allows to query the database
a second time based on the previous responses. However, each query done by the
data scientists to the database has to be considered as a composition of mechanisms
and the accumulated ε leakage has to be taken into account. Each query to the
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database has an upper bound leakage of ε while k queries has an upper bound of kε
leakage due to composition. Besides, when all the queries are known in advance,
a non-interactive approach should give a better answer than this method as it is
able to correlate the noise added knowing the structure of the queries[1].

Figure 2.6: The Centralized Model

2.7.3 Synthetic Databases

This is not actually a privacy model but it works as a model of private data
release. In this scenario the Trusted Curator transforms the database via a local
randomized mechanism M in order to create a new privatized database. In simple
words, is similar to applying the local model, querying the individuals of the
database and storing the privatized result of such identity query plus a randomized
mechanisms. In this case, the data scientists interacts with a privatized database
protected by the post processing property with no risk of composition leakage.
The privatization and it’s leakage takes place when the Trusted Curator creates
the new database.

23



Figure 2.7: Synthetic Database
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3 Privacy and learning

The following chapter presents a summary of publications that had used differential
privacy to either protect a learned model, model protection, or to generate fake
synthetic databases for data release. These works has been useful to understand
how DP works in practice.

3.1 Model Protection

When Deep Learning models are trained with a dataset they may memorize the
data even before reaching an overfitting state. This allows to attack the learnt
models and recover part of the data used[15]. This behaviour is unwanted in
terms of privacy for published models. For that reason, there is a field of study
that combines Deep Learning and Differential Privacy to protect such models. The
following works have been studied.

In [14] a new algorithmic technique for learning that introduces a differen-
tial privacy mechanism within Stochastic Gradient Descent algorithm (DP-SGD).
Moreover, it introduces a refined analysis of privacy costs based on Moments Ac-
countant. The experiments demonstrate that it is possible to train deep neural
networks with non-convex objectives in this way, under a modest privacy budget
and at a manageable cost in software complexity, training efficiency and model
quality.

In [16] they apply Differential Privacy to improve the utility of outlier detection,
even with new samples. They present a theoretical analysis on how Differential
Privacy helps with the detection and then conduct extensive experiments using
system logs such as Hadoop File Systems. In this work they use DP-SGD to train
the models.

In [17] it is claimed that a model may store some of its training data and
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a careful analysis may therefore reveal sensitive information. They propose a
generally applicable approach to providing strong privacy guarantees for training
data named PATE. The black-box fashion approach combines multiple models
trained with disjoint datasets. Because they rely directly on sensitive data, these
models are not published, although they are used as teachers for an student model.
The student learns to predict the output chosen by noisy voting among all of the
teachers. The student can not access the underlying data or parameters of the
teachers models. The student privacy properties hold even if an adversary can not
only query the student but also inspect its internal workings. This work claims to
archive state of the art privacy/utility trade offs on MNIST and SVHN thanks to
privacy analysis and semi-supervised learning.

In [18] authors take their previous work [17] and scale it to larger-scale learning
tasks and real world datasets. The work shows that PATE can scale to learning
tasks with larger numbers of classes and imbalanced data with errors. A new noisy
aggregation mechanisms for teacher ensembles is introduced which adds less noise
with tighter differential privacy guarantees. The teacher consensus is increased by
using more concentrated noise and when lacking consensus no answer is given to
the student.

Figure 3.1: PATE
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3.2 Synthetic Data Release

Another option that can be done with data is to release it publicly. However, this
goes against the objective of privacy. For that reason, there is a field of study to
create synthetic data to release instead of the original one. The following works
have been studied.

In [19] shows in depth analyses of Differential Private algorithms in terms of
accuracy and usability potential. They implement utility metrics on diferentially
private synthetic dataset and compare mechanism utility on different categories.

In [20], the goal is to anonymize the author of a text while preserving its
semantics by finding synonyms. For such purpose, they propose to augment the
semantic information in the text by training a reward function using reinforcement
learning and then applying the exponential mechanism to the output of a sequence-
to-sequence RNN. This approach pays an important price in terms of privacy
leakage because of the compositional theorem which entails that the overall loss in
privacy is kε, where k is the length of the text. They do not propose any metric
to measure the distortion between the original text and the synthetic one.

In [21] is claimed to be the first method to fulfills differential privacy and
so guarantee provable plausible deniability of documents’ authorship. They use
the most common representation of documents, a vector space model where each
document is a vector typically containing its term frequencies or related quantities.
They produce synthethic term frequency vector for the input documents that can
be used in replacement of the original vectors. This work claims not only to have
a low impact on its accuracy but also it strongly affects authorship attribution
techniques to levels that make authorship attribution become unfeasible.

In [22] authors propose a privacy-preserving sensing framework for accessing
time-series data in order to assure certain utility while protecting individuals’ pri-
vacy. The approach consists in a Replacement Autoencoder, an algorithm that
learn how to transform discriminative features of data that correspond to sensitive
inferences, into some features that have been more observed in non-sensitive infer-
ences. The replacement method not only eliminate the possibility of recognizing
sensitive inferences, it also eliminates the possibility of detecting the occurrence of
them. It is also evaluated the efficacy of the algorithm with an activity recognition
task using extensive experiments.

In [23] authors provide two contributions. First, they compare different datasets
under different techniques against different utility metrics. Second, they use deep
learning to generate differentially private synthetic datasets with higher data util-
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ity. The deep learning models can capture relationships among multiple features
and use these models to generate differentially private synthetic datasets. Ac-
cording to the authors this approach in conducted on multiple datasets showing a
robust approach.

The work [24] introduces a framework based on the advances of generative
adversarial networks (GANs) to model rich semantic data maintaining both the
original distribution of the features and the correlations between them. The output
of the framework is a deep network, a generator, able to create new data on
demand.

In [25] claims that one common issue in GANs is that the density of the learned
generative distribution can easily remember training samples. This becomes a ma-
jor concern when GANs are applied to private or sensitive data. Authors propose
a differential private GAN (DPGAN) model, in which they achieve differential
privacy in GANs by adding carefully designed noise to gradients during the learn-
ing phase in a similar fashion to DP-SGD. They demonstrate that their method
can generate high quality data points at a reasonable privacy levels, and authors
provide a rigorous proof for the privacy guarantee.

3.3 Utility

In [26] a privacy-utility trade off is presented for an arbitrary set of finite alphabet
source distribution. Privacy is quantified using differential privacy and utility is
quantified using expected Hamming distortion maximized of the set of distribu-
tions. The family of source distribution sets is categorized into three categories.
Last, authors claim Differentially private leakage is an upper bound on mutual
information leakage, the two criteria are compared analytically and numerically to
illustrate the effect of adopting a stronger privacy criterion.

In [27] they try to reduce the difference in utility between local differential
privacy and centralized differential privacy in the case of counting queries. They
propose a new local differential approach called the truncated geometric mech-
anism. They claim their approach obtains better results than other local dif-
ferential privacy methods known in the literature. They consider a particular
d-private mechanism based on the geometric noise distribution, they explore it’s
properties and they show that the proposed mechanism is better than the typical
k-Randomized-Responses (kRR)[1].
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4 Investigated Approaches

In this work two approaches were investigated. First approach, to generate a new
synthetic database, capable of maintaining high level of utility in terms of value
while preserving privacy of the individuals. Second approach, explore a way to
protect deep learning models while protecting the original data used to create
such models.

4.1 First approach

The idea behind the first approach is to maintain the sequence representation
and generate new sequences as a replacement for those in the original dataset.
For this particular approach each sequence is considerated as a database. RNN
based Generative models were trained in order to generate a sequences from a
probability distribution, that is, each token of the sequence is picked following the
learnt distribution. In that sense, a few ideas were tested.

4.1.1 Deeplog Hadoop File System

In all of the experiments bellow Deeplog dataset[28] was used, which consists in
many logged sequences of numbers. Each number can be mapped to a line of code
of a log in a Hadoop file system. A sequence represents a transaction with the
system. For control, a language model classifier made out of RNNs was trained
to detect abnormal sequences on the dataset. The control average accuracy was
around 0.97, for a balanced subset of 8000 sequences.
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Figure 4.1: Deeplog Normal Sequences Example

Figure 4.2: Deeplog Abnormal Sequences Example

For this work, in terms of privacy, each entry in the dataset (each sequence)
represents a database. The hamming distance is used then in the definition of
Differential Privacy. The goal is to protect each sequence while still be able to
detect whenever is normal or abnormal behaviour.

4.1.1.1 Idea 1 - Embedding and Exponential Mechanism

A simple RNN model with an embedding layer is trained to predict the class of
the sequence. Then the embedding layer is used together with the cosine similarity
to calculate the distance between symbols, then this works as the utility function
of the exponential mechanism. In practice we calculate a ∆u of 1.96 and the
exponential mechanism is instantiated. Then a synthetic database is generated
applying this mechanism for each symbol in the sequence individually and only
using the full original sequence just once. This last bit means we are using a local
model of (ε, 0) - differential privacy.
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Figure 4.3: Idea 1

One can observe in Fig. 4.3 that as ε increases accuracy slowly increases as
well, in the mean time, the hamming distance decreases substantially. This last
part means the sequences are very similar to the original sequences, however the
new ones still have the plausible deniability that differential privacy guarantees
with the respective ε. Overall, the accuracy remains quite stable but lower than
the control.

4.1.1.2 Idea 2 - Seq2Seq and Exponential Mechanism

An autoencoder Seq2Seq is trained to generate the same sequence considering a
sequence as a database, then the probability distribution learned is used as the
utility function of the exponential mechanism. In this case applies the composition
theorem because the utility function depends on the entire sequence. The network
receives the whole sequence, obtains a latent vector (LSTM context) and then
it generates fake sequences using the vector and an exponential mechanism at
the end of the network. The utility function of the exponential mechanism is
the probability function at the end of the network. This means for each symbol
requires access to the entire vector that represents the sequence. Which means
that this method is a centralized model and composition theorem applies. So the
final privacy budget spent is ε times the length of the sequence.
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Figure 4.4: Idea 2

Looking at the graph in Fig. 4.4 one could say that for ε = 100 the accuracy is
high enough and the hamming distance is still above 0.4, however this graph does
not contemplate the composition theorem as each sequence length is not easy to
represent in a comparable manner. In practice there are sequences up to length
20, which means the final privacy budget for some sequences could be up to 2000.

4.1.1.3 Idea 3 - Seq2Seq and noisy hidden state

An autoencoder Seq2Seq is trained to generate the same sequence. However, when
it is used to generate fake sequences in test phase, a laplacian noise vector with
the same shape as the hidden state of the latent vector of the network is added to
this latent vector, then the vector is normalized with norm 1, then the sequence is
generated by sampling from the probability vector at the end of the network. This
means there is no composition and we are facing a local model because the sequence
without privacy is only queried once. The autoencoder has two parts (encoder-
decoder), the encoder sees the entire sequence and outputs the latent vector, then
this one is privatized using laplacian mechanism resulting in a privatized latent
vector. The decoder takes the privatized vector and generate fake sequences. Due
to the postprocessing property the decoder or anything after it cannot leak more
privacy.
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Figure 4.5: Idea 3

In this case, in Fig. 4.5, it can be observed that the sequences generated are
more similar to the original ones as ε increases, the hamming distance starts high
and then drops. This is not good from the privacy perspective. It also can be
observed a constant behaviour on how accuracy stall independently of the ε around
0.50 or the flip of a coin.

4.1.1.4 Idea 4 - Seq2Seq and noisy output

In this case a laplacian noise vector is added to the probability output of the
Seq2Seq network. Which means in this case the composition theorem applies.
The probability output vector that represent the sequence is queried for every
output token of the privatized sequence.
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Figure 4.6: Idea 4

However if we observe, in Fig. 4.6 the results, this idea turns out to be a bad
privatizer, both hamming distance and classification utility decreases as ε increases.

4.1.1.5 Idea 5 - Seq2Seq and Classifier

After many trials and ideas the conclusion drawn was that it is required to preserve
as much as possible the features of the sequence that helps solve the utility problem.
Otherwise any uncontrolled noisy mechanism with respect to the utility problem
will end up in poor results or very high ε. So for this last idea a model composed
of a Seq2Seq followed by a Binary Classifier was tested. The idea here is that
the Classifier helps train the Seq2Seq so as it develops certain noise tolerance and
learn the important features for the utility/ classification problem. The model is
also trained adding noise to the latent vector of the Seq2Seq.
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Figure 4.7: Idea 5

As one can see in Fig. ??, this idea works, the Seq2Seq generator model not only
increases its accuracy as ε increases but also the distortion or hamming distance
increases. This means that the model learned to generate normal and abnormal
sequences that are very different to the original ones, yet the accuracy of the
classifier remains very high. In practice, looking at the output sequences one
can observe that they were generated using a small subset of the original tokens.
This means the network found the right features to generate normal sequences
and abnormal sequences using a subset of symbols. From the distortion point of
view this is a great result as comparing original sequences to the resultant ones,
the sequences are very different and hard to trace back to the originals, and from
privacy point of view we still have the guarantees of plausible deniability. As a
side note, the classifier used for training the Seq2Seq sequences was tested after
training and its resulted in poor performance, however for the language model
classifier used for utility purposes the results were the ones wanted as shown in
the graph.

4.2 Second approach: PATE

As previously mentioned, Private Aggregation of Teacher Ensembles (PATE) [17,
18], is a technique that enables the training of machine learning models of arbi-
trary architecture in a way that its privacy guarantees can be described through
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differential privacy. The technique proposes to train multiple teacher models on
sets of sensitive private data, and then use an ensemble of these teachers to guide
the training of a student model with public, unlabeled data. The student training
data is sent through each teacher model to obtain a label prediction, and a noisy
aggregation of predictions is used as the training sample label (Fig. 3.1).

The intuition behind PATE’s privacy guarantees is that if multiple distinct
teacher models agree on an input label, no private data of their training examples
was leaked since the conclusion was arrived as a consensus and no particular model
is revealing too much information. If, however, there’s a strong disagreement
among the teachers and the most probable class is likely to be defined by a single
model’s prediction, the random noise added by the aggregation mechanism will
play a bigger role in defining the output, therefore protecting the individual model
predictions.

The aggregation mechanisms employed can vary, although the general idea
often consists in counting how many teacher models predict each class as being
the most probable, adding noise to this count, and then picking the most probable
one. The aggregation mechanism employed in this work is the one proposed in [17]
which consists in adding noise sampled from a Laplace distribution to the teachers’
class prediction count. For a given student training sample x, given the label count
of teacher predictions Nc(x) for class c, the aggregation mechanism that outputs
the noisy prediction of the ensemble is defined as follows:

pred(x) = arg max
c

{
Nc(x) + Lap

(
1

γ

)}
(4.1)

4.2.1 Analysis of PATE privacy loss

PATE with the aggregation mechanism given in Eq. 4.1 provides (2γ, 0)-differential
privacy [17]. Therefore, a direct application of DP composition theorem results
in that T queries to the teacher ensemble yield (2Tγ, 0)-DP. However, the privacy
leakage could be reduced if we accept to reduce the confidence in the DP guaran-
tees, that is, to have δ > 0. The way of doing it is fixing the desired bound δ > 0
on the tail probability of the privacy loss.

To analyze PATE, it is convenient to revisit the formalization of DP given in
Sec. 2.4 by defining the privacy loss as a random variable. For a given mechanism
M, databases d, d′ ∈ D, and output o ∈ O, the privacy loss at o, denoted `(o), is:

`(o) = log
P [M(d) = o]

P [M(d′) = o]
(4.2)

36



Given ε, δ ∈ [0, 1], M is said to be (ε, δ)-differentially private if for all adjacent
databases d, d′ ∈ D it holds that:

Po∼M(d)[`(o) ≥ ε] ≤ δ (4.3)

To simplify the notation, we denote L the random variable distributed as M(d)
whose values are given by evaluating ` at outcomes sampled fromM(d), and write:

P [L ≥ ε] ≤ δ (4.4)

This definition is equivalent to the one given in Sec. 2.4.

Now, the analysis method consists in finding the smallest ε that satisfies
Eq. 4.4. To do this, the moment generating function method is applied to de-
rive the following bound on the tail probability:

P [L ≥ ε] ≤ exp(φL(λ)− λε) (4.5)

where φL(λ) is the logarithm of the moment generating function ML of L:

φL(λ) = logML(λ) = logE[exp(λL)] (4.6)

This means that P [L ≥ ε] is ensured to be smaller than any δ such that:

exp(φL(λ)− λε) ≤ δ (4.7)

Now, the above equation can be rewritten as follows:

1

λ

(
φL(λ)− log δ

)
≤ ε (4.8)

Hence, by fixing δ, it can be obtained the minimum bound of the privacy loss
which could be ensured with such δ:

ε∗ = min
λ

1

λ

(
φL(λ)− log δ

)
(4.9)

It follows from [17] that PATE with the aggregation mechanism defined in Eq. 4.1,
satisfies:

φL(λ) ≤ 2γ2λ(λ+ 1) (4.10)

By the composability theorem of [17], we have that the moment generating function
of the mechanism obtained by applying PATE T times is TφL(λ). Therefore, it
follows that after T queries, we can get a data independent privacy guarantee of
(ε∗ind, δ), where:

ε∗ind = min
λ

1

λ

(
2Tγ2λ(λ+ 1)− log δ

)
(4.11)
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The quantity ε∗ind is called the data independent epsilon. Fig. 4.8 gives an example
of the data independent epsilon for γ = 0.05, δ = 10−5 and T = 1000, computed
using Wolfram Alpha.

8/5/21, 12:04 PMminimize (1/l) ( 2000 (0.05)^2 l (l + 1) - log(10^(-5)) ), l from 1 to 3 - Wolfram|Alpha

Page 1 of 1https://www.wolframalpha.com/input/?i=minimize+%281%2Fl%29+…%28l+%2B+1%29+-+log%2810%5E%28-5%29%29+%29%2C+l+from+1+to+3
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Raster Graphics Vector Graphics Web Format Wolfram Formats
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PDF [grap… Download
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Figure 4.8: Graph of λ−1(2Tγ2λ(λ + 1) − log δ). Data independent epsilon is
ε∗ind ' 20.1743 at λ ' 1.51743.

Indeed, the epsilon bound on the privacy loss could be made smaller pro-
vided we bring into the picture the actual predictions delivered by the ensemble
of teachers. This bound is called the data dependent epsilon [17]. A tighter bound
on the moment generating function could be computed if we take into account
the fact that when quorum among teachers is strong, the majority outcome has
overwhelming likelihood, so the privacy loss is smaller when this outcome occurs.
The following theorem, proved in [17], provides a data-dependent bound on φL as
a function ψ of the most probable predicted class c∗ of the teacher ensemble:

φL(λ) ≤ ψL(λ;P [M(d) 6= c∗]) (4.12)

In order for this result to be applied, an upper bound of P [M(d) 6= c∗] is computed
in [17]. For the sake of readability, we omit the details here. Thanks to this bound
that depends on the teacher agreement, a tighter tail bound can be computed for
specific responses of the ensemble to a sequence of T queries of the student:

ε∗dep = min
λ

1

λ

(
ψL(λ)− log δ

)
(4.13)

4.2.2 Sensitive student data scenario

This thesis is concerned with the case where the student does not have access to
a public dataset but it has its own private data. In this scenario, the student
is not able or not willing to share its private data with the teacher ensemble or
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trusted curator (Trusted Curator A). For this case, this work proposes a framework
where the student relies in another curator, called Trusted Curator B. The role of
Trusted Curator B is to privatize student data by using a randomized mechanism,
e.g., Laplace Mechanism, granting the student differential privacy guarantees over
its data. Here, Trusted Curator A provides a centralized privacy model, which
protects data used to train teachers, while Trusted Curator B provides a local
privacy model, by granting DP guarantees for each individual data point in the
student organization sent to Trusted Curator A to be labelled by the teacher
ensemble.

Figure 4.9: PATE with protected student’s data.

4.2.3 Experimental results

This section describes the experimental setup and apply the approach presented
in the previous section to two case studies of different domains, security and
health [29]. Following the same strategy as the original PATE paper [17], teacher
models were trained and used to generate labels for the student training samples,
using an ensemble based on a Laplace aggregation mechanism with γ = 0.05. Ev-
ery teacher i ∈ [1, n] is presented with a labeled independent dataset di = (xi, yi),
which is used for training. The student is presented with an unlabeled independent
dataset x. Trusted Curator B privatizes student data with a Laplace mechanism
with distribution Lap(1/ρ). To analyze this setting different values of ρ are used.
In both case studies, database elements are vectors of real numbers having an
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l1-norm equal to 1. Thus, the distance ‖·‖ is l1-norm. Moreover, the fact that
vectors have a norm equal to 1 ensures that ‖·‖-sensitivity of the Laplace mecha-
nism applied by Trusted Curator B is 2, resulting in a (2ρ, 0)-DP mechanism. For
each value of ρ, ten student models were trained, each one on a different random
sample of student data points labelled by the teacher ensemble. Each random sam-
ple was privatized by Trusted Curator B with noise from a Laplace distribution
with scale ρ. Both student and teachers are assumed to have access to a labelled
validation dataset, which is used with the only purpose of evaluating performance
and privacy loss metrics in the context of this work. In a real world scenario such
validation data may not be available. However, it does not pose any drawback to
the applicability of the present approach.

4.2.3.1 Malicious Web Requests Detection

In order to classify web requests, a dataset of 651,602 labeled requests [30, 31]
was assembled from several public datasets [32, 33, 34]. To construct the feature
vector to train the networks, only the URI of each web request is analyzed. Each
URI is tokenized in uni-grams following a bag-of-words approach. For each URI,
the values of the uni-grams are computed using term frequency-inverse document
frequency (TF-IDF) [35]. Each URI is represented by an l1-normalized vector
composed of the 500 most frequent tokens across the entire dataset.

An ensemble of 250 teacher models was trained and used to generate labels for
the student training samples, using the Laplace aggregation mechanism. Every
teacher was trained with 930 datapoints and the validation dataset contained 500
samples. Given the unbalanced distribution of the training set where 95% of
samples are not malicious, a threshold of 0.5 to split the model’s output between
positive and negative samples might yield poor accuracy results. Therefore, the
receiver operating characteristic curve is calculated for a subset of samples, and
the threshold that maximizes the difference between the true positive rate and
false positive rate is picked as the best one. Every teacher used 800 samples for
calculating the best threshold for considering the classifier’s output as a positive
prediction. For the student, random samples of 1,000 data points were used for
training and 200 for calculating the optimal threshold. 5,000 data points were
used for validation.

A simple fully connected neural network architecture was used for both the
teacher and student models, with a single real-valued output (see Fig. 4.10).
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Figure 4.10: Neural network architecture used for teachers and student in Web
Request example.

The data dependent privacy loss of the teacher ensemble is computed for every
case as described above for δ = 10−5. The data independent privacy loss of the
teacher ensemble computed using Wolfram Alpha resulted in a value of 20.1743.

As presented in Figs. 4.12-4.11, the median of both TPR and TNR performance
metrics observed is similar for all values of ρ with relatively low dispersion in most
cases. This shows that the predictive capacity of a student which privatizes its data
is close to the one observed in student models trained with non-privatized data.
That is, no significant loss in predictive value was evidenced in the experiments
by privatizing student data.

On the other hand, Fig. 4.13 presents the data dependent privacy loss obtained
for the different values of ρ. The dashed line in red represents the data independent
privacy loss ε∗ind. As it can be seen, the data dependent privacy loss ε∗dep observed
in some cases turned out to be higher than the one of the experiment without
applying noise to student data. Actually, it happened to be even higher than the
data independent privacy loss ε∗ind in one case.

4.2.3.2 Cardiopathy Classification

The case study analyzed in this experiment consists in cardiopathy classification
based on electrocardiogram (ECG) data. The ECG dataset contains a number of
109,446 ECG beats [36] extracted from ECG signals from the MIT-BIH Arrithmia
Database [37]. The sampling frequency of each beat is 125Hz, and they can be
categorized in one of five classes.

For simplicity, a multi layer perceptron architecture was used for both for
teacher and student models, see Fig. 4.14. The number of teachers in the ensemble
for this example was 200. Every teacher was trained with 5,000 data points. The
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Figure 4.11: Validation TPR by student privacy parameter ρ in Web Requests
dataset.

Figure 4.12: Validation TNR by student privacy parameter ρ in Web Requests
dataset.
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Figure 4.13: Privacy loss by student privacy parameter ρ in Web Requests dataset.

Figure 4.14: Neural network architecture used for teachers and student in ECG
example.
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Figure 4.15: Validation accuracy by student privacy parameter ρ in ECG dataset.

validation dataset contained 500 samples. For the student, 900 data points were
used for training and 100 for validation. A confidence parameter δ = 10−6 was
used. The computed data independent privacy loss was ε∗ind = 20.2696.

In Fig. 4.15 the accuracy observed in the validation set for different ρ values
is plotted. As it can be seen, the median accuracy for all cases is not significantly
smaller to the one observed in the case of no noise, with a reduction of about 7-8%.
In particular, it becomes closer to the latter for larger values of ρ.

In Fig. 4.16 the data dependent privacy loss ε∗dep for different ρ values is visu-
alized. The dashed line in red represents the data independent privacy loss ε∗ind.
As it can be observed in Table 4.1, ε∗dep presents more variability when the student
does not privatize its data, with the worst case IQR for students with privatized
data is 0.32 for ρ = 0.1, while the no-noise example presents a very large IQR of
13.12. At the same time, the median ε∗dep for every ρ different to the no-noise ver-
sion is larger than three times the median of the no-noise case, providing further
empirical evidence of the phenomenon observed in the previous example.

4.2.3.3 Some comments about this approach

On one hand, the experiments showed that the introduction of noise in student
data yielded no important reductions in predictive model performance.
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Figure 4.16: Privacy loss by student privacy parameter ρ in ECG dataset.

ρ ε∗dep median ε∗dep IQR

0.1 20.36 0.32
0.3 20.41 0.00
0.5 20.41 0.032
0.7 20.41 0.00
0.9 20.41 0.00
1 20.41 0.00043
no noise 5.96 13.15

Table 4.1: Median and IQR of data dependent privacy loss for student privacy
parameter ρ

On the other, those analyses brought to light some issues with data dependent
privacy loss. First, it was observed to suffer from high variance. Second, it pre-
sented evidence of being quite sensible to noise in data. It even resulted to be
higher than the data independent privacy loss sometimes.

This phenomenon was not described prior to this work. It unveils a potential
weakness of PATE as noise could be used as a means for tampering with the actual
privacy loss.
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5 Tool: DP-GEM

5.1 General description

DP-GEM is a Python tool created to replicate the experiments carried on in this
thesis. The need of such tool is due to the complicated pipelines that brings trans-
forming one database to other database by trying different privatization mech-
anisms, with different parameters and furthermore, testing the results against a
control test for utility study.

The tool allows to define a series of modules that are executed in chain. The
output of a module can be used as input of the next module. Moreover, each
module can be run with many different parameters, named trials, which results
in many different outputs. For this reason, modules may have sub-modules and
those latter ones will be run as many times as many outputs given by the trials of
the main module. This level of nesting goes on as required.

DP-GEM is flexible enough to allow for the definition of the experiments in a
.json file, which helps with the replication requirement. This means, the modules
and sub-modules, it’s source codes and the parameters can be defined in a json
format, including the number of trials per module, the nesting and the outputs
logs and files.

The tool is also integrated with Wandb[38] for logging and saving many of
the intermediate and final results in such service. And finally DP-GEM can be
integrated with two Deep Learning framework Keras and PyTorch, as well as any
functionality provided by scikit-learn package.
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Figure 5.1: Structure of nested modules

5.2 Example

One example consists in three main modules.

1. Data preparation: In this module input files are taken merged, randomized
and split into train, test and validation. This module was also used to tweak
the data so as it works as an input for future modules in the pipeline. The
output of this module are different data files for train, test and validation.

2. Control test: This module worked as a control test without any privacy
mechanism. It takes the train, test and validation files as inputs and trains a
classifier with training data, finds a proper threshold with the validation data
and finally tests it against test data. The principal output of this module
are different metrics such as a confusion matrix, accuracy, etc.

3. Generator: This is a module with nested modules and different trials. In
creation phase it trains a generator neural network using train data. Then
for each trial, with different privatization parameters, it privatizes train,
test and validation datasets. Finally it runs different sub-modules for each
privatized output dataset. The sub-modules include a similar classifier or
the same as the control test and a similarity test module, which compares
the original data with the privatized one to measure distortion.
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Figure 5.2: Example of DP-GEM Use with DP 2 trials
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6 Conclusions

This work not only studied both fields of research, Deep Learning and Differential
Privacy but also the synergy between them. Two aspects, privacy and utility has
been studied with different techniques and case studies.

A dataset generator algorithm differential privacy compliant was successfully
created in order to release a synthethic dataset of logs sequences in replacement
of the original dataset, protecting its privacy and value. This generated dataset
contains the right information required for a classifier task of anomaly detection.
Moreover, an extension of PATE was successfully carried on and tested. Last but
not least, a framework for machine learning experiments was also created with
a high degree of freedom. It allowed to run the many different experiments for
training models, applying differential privacy mechanisms, generating data, carry
out classification tasks, similarity tests, among others.

For future work, the hypothesis that in order for an mechanism to return good
results, it needs to identify which features contribute to the desired utility problem
while identifying those which contribute to the privacy preserving problem and
finally which features contribute to both, it can be studied more in depth. In
that last case scenario a trade-off needs to be taken into consideration. Ideally
one would like to learn which features have mutual information with the utility
problem presented, agree on a trade-off for those and privatize the rest.
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N. Thoai, M. Takizawa, and E. J. Neuhold, Eds., vol. 10018, 2016, pp.
141–152. [Online]. Available: https://doi.org/10.1007/978-3-319-48057-2 9

[11] N. N. Thi, V. L. Cao, and N. Le-Khac, “One-class collective
anomaly detection based on lstm-rnns,” Trans. Large Scale Data
Knowl. Centered Syst., vol. 36, pp. 73–85, 2017. [Online]. Available:
https://doi.org/10.1007/978-3-662-56266-6 4

[12] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion
detection using recurrent neural networks,” IEEE Access, vol. 5, pp. 21 954–
21 961, 2017.

[13] A. Wood, M. Altman, A. Bembenek, M. Bun, M. Gaboardi, J. Honaker,
K. Nissim, D. R. OBrien, T. Steinke, and S. Vadhan, “Differential privacy:
A primer for a non-technical audience,” Vanderbilt Journal of Entertainment
& Technology Law, vol. 21, no. 1, pp. 209–275, 2018. [Online]. Avail-
able: http://www.jetlaw.org/journal-archives/volume-21/volume-21-issue-1/
differential-privacy-a-primer-for-a-non-technical-audience/

[14] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM, 2016, pp. 308–318.
[Online]. Available: https://doi.org/10.1145/2976749.2978318
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