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dizaje. Pero, más espećıficamente, debo agradecer a Stephan Merz, quién respondió a la
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Resumen

Limitaciones f́ısicas en el diseño de procesadores han hecho que la industria informática

desde 2005 pasara de mejorar la velocidad de un solo procesador a aumentar el número de

unidades de proceso. Pero el diseño de software que explote la potencia de procesamiento

paralelo de forma correcta y efectiva es una tarea desafiante que requiere un alto grado de

experiencia. En 2017, Pérez y Yovine propusieron una herramienta basada en patrones de

diseño para facilitar el desarrollo de software paralelo. En particular, la herramienta está

basada en un patrón de programación paralela, agnóstico de la plataforma, denominado

PCR, que describe las computaciones realizadas en forma concurrente por Productores,

Consumidores y Reductores que se comunican entre si. Este combina en un único patrón

componible varios conceptos como operaciones colectivas, programación basada en flujos,

iteración no acotada y recursividad.

En esta tesis, formalizamos la semántica del patrón PCR en términos de TLA+. De

esta manera, podemos aprovechar las herramientas asociadas a TLA+ para demostrar

propiedades de diseños de PCR de alto nivel, tales como su corrección funcional y refi-

namientos entre diferentes diseños de PCR. TLA+ es un lenguaje de especificación formal

para sistemas concurrentes que se está utilizando en lugares como Intel, Amazon y Mi-

crosoft. Contribuimos aśı al estado del arte en los refinamientos de programas paralelos

a partir de modelos abstractos, especialmente utilizando una caracterización alternativa

del patrón PCR general y el framework TLA+.

Una presentación de trabajo en progreso para esta tesis fue parte del TLA+ Commu-

nity Event que se llevó a cabo (virtualmente) en octubre de 2020 como satélite de la

Conferencia DISC 2020.

Todo el trabajo realizado en esta tesis se puede encontrar en: https://github.com/josedusol/

PCR.
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Abstract

Physical limitations in processor design have made computer industry since 2005 shift

from improving the speed of a single processor to increasing the number of processing

core units. But the design of software to exploit parallel processing power in a correct and

cost-effective way is a challenging task requiring a high degree of expertise. In 2017, Pérez

and Yovine proposed a pattern-based formally grounded tool that eases writing parallel

code. In particular, the tool is based on a platform-agnostic parallel programming pattern

called PCR, which describes computations performed concurrently by communicating

Producers, Consumers and Reducers. It combines in a single and composable pattern

several concepts like collective operations, stream programming, unbounded iteration and

recursion.

In this thesis, we formalize the semantics of the PCR pattern in terms of TLA+. In

this way, we can leverage TLA+ related tools to prove properties about high level PCR

designs such as their functional correctness and refinements between different PCR de-

signs. TLA+ is a formal specification language for concurrent systems that is being used

at places such as Intel, Amazon and Microsoft. We thus contribute to the state of the

art in formal refinement of parallel programs from abstract models, especially starting off

from an alternative characterization of the general PCR pattern, and utilizing the TLA+

framework.

A presentation of the work in progress for this thesis was part of the TLA+ Community

Event that was held (virtually) in October 2020 as a satellite of the DISC 2020 Conference.

All the work done in this thesis can be found at: https://github.com/josedusol/PCR.

The research that gives rise to the results presented in this publication received funds from

the National Research and Innovation Agency under the code POS NAC 2018 1 152201.
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Chapter 1

Introduction

The numbers of transistors incorporated in a chip will approximately double

every two years.

Gordon Moore (1975)

The industry of general purpose electronic computers has made great advances in the past

half century. As a testimony, we often hear that “we now have more computing power in

our pocket than the computer aboard Apollo 11”, the Apollo Guidance Computer (AGC),

which landed man on the moon 50 years ago. Indeed, today’s smartphones have roughly

one million times the memory and one hundred thousand times the processing power of

the AGC. And this is available at the modest cost of a few hundred dollars.

But advances don’t always come easy. Figure 1.1 reflects quantitatively the period 1975-

2010 in the evolution of microprocessors with respect to the number of transistors, number

of cores, clock frequency, power consumption and serial performance. In particular, we

can observe that there is an inflection point around year 2005 correlating a slowdown on

frequency increase with the rise of core count on processors. This is accompanied by a

proportional slowdown for serial computing performance and power consumption. As a

notable example, in early 2003 Intel had announced the Tejas and Jayhawk micropro-

cessors to be released around 2004-2005. These were the code names for what would be

the successors of the latest Pentium 4 with the Prescott core (indicated in the figure).

However, Intel abruptly canceled development on May of 2004, announcing they will move

away from single core chips in favor of chips with two cores per die, without giving further

technical explanation. That announcement, coming from a big player like Intel, is con-

sidered the end of the frequency scaling era. But, what happened to suddenly motivate
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this change and how are the trends on the graph related?.

Figure 1.1: Evolution of transistor/cores count, clock frequencies, power consumption
and performance in the processor industry from 1975 to 2010. Note the logarithmic scale.
(source: [1]).

Historically, advances in semiconductor fabrication allowed to reduce the size (i.e. the gate

lenth) of transistors of integrated circuits. For example, the first commercially produced

microprocessor, the Intel 4004 (1971), had a size of 10µm, whereas size is predicted to

shrunk to 4 nm on 2022 according to the International Technology Roadmap for Semi-

conductors. Clearly, transistor size reduction allows to package more transistors on the

same chip area. A prediction made in 1965 by Gordon Moore, co-founder of Intel, stated

that the number of transistors on integrated circuits will double every year. In 1975,

when proved correct, he revised his prediction to double roughly every two years, what

now is popularly known as Moore’s Law. It can be appreciated as the red line in figure

1.1. Performance gains are usually attributed to Moore’s Law, which is understandable

because on smaller transistors electrons need to travel less distance and one expects the

transistors to switch at higher speeds. However, that attribution is not quite accurate,

as we can observe in figure 1.1 how transistor count grows steady throughout the pe-

riod whereas processor performance slowed down around 2005. Robert Dennard noted in

1974 that MOS transistors had very convenient scaling properties [5]. To put it simply:

voltage and current is proportional to transistor size, thus as transistors shrunk, also did
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necessary voltage and current. The scaling properties given on the cited paper, known

as Dennard scaling rule, motivated manufacturers to increase clock frequency from one

generation to the next, gaining serial performance without significantly increasing overall

circuit power consumption until the year 2004, when the rule broke down. It is known

that semiconductors require a certain threshold voltage to function, so eventually voltage

could not be decreased any further. Also, Dennard ignored the leakage current, a quantum

phenomenon where current leaks through transistors even when they are turned off. This

is another source of power dissipation in microprocessors that constitutes static power,

whereas the power considered originally by Dennard is instead dynamic power which is

actually the power used to repeatedly switch the transistors. Manufacturers found that,

for sizes below 65 nm, there is an exponential growth of leakage current, so at this scale

static power begins to dominate power consumption, hence representing a new challenge

to ordinary microprocessor design [6].1 Associated with power consumption is heat dis-

sipation, which becomes an important economic factor due to the need of implementing

appropriate cooling solutions. In the post Dennard scaling era, the term “Power Wall”

was coined to refer to the current inability of scaling down designs without exceeding

practical affordable levels of power consumption. The situation is exacerbated on mobile

platforms like smartphones. In contrast, while Dennard scaling was already considered

dead after 2004, various technological advances were devised to keep Moore’s Law still

alive. An example is the high-k metal gate technology used by Intel for 45 nm and 32 nm

fabrication processes circa 2010 [7]. However, it is generally accepted that this miniatur-

ization trend cannot go on forever, and Moore’s Law is currently slowing down.2 What

can be concluded from all this, is that Moore’s prediction does not always translated into

performance gains and that it was specifically Dennard scaling breakdown what prompted

a greater focus on multicore processors from 2005 onwards.

1Overall power consumption is modeled by equation P = αC V 2 f + V Ileak where the first term is
the dynamic power lost from transistor switching and the second term is the static power lost due to
leakage current. When dynamic power is the dominant source of power consumption, which is the case
above 65 nm, the equation can be conveniently approximated by the first term, i.e. P ≈ αC V 2 f .

2Although, it is certainly possibly to still add transistors in the third dimension, this are called 3D
silicon Circuits.
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1.1 Motivation

The reasonable move for the (desktop) computer industry was to embrace parallelism

through multicore processors. Before this, the increases in clock rates allowed to imple-

ment optimizations at the processor level such as instruction-level parallelism, out-of-order

execution or Hyper Threading, so that single-threaded programs executed faster on newer

processors with no modification needed from the programmer. But now, programmers

are faced with the task to exploit explicit parallelism. Research in auto parallelizing

compilers tried to alleviate this.3 A compiler can try to extract the required parallelism

from a program by applying loop transformations, but this only can be done to a very

limited extent. Also, the parallel version of a sequential algorithm can be a very different

algorithm, as we will see later.

This paradigm shift puts software engineering in front of the challenging task of providing

appropriate tools for effectively building software that correctly and efficiently exploits

parallel processing power. Besides the well known pitfalls of concurrent programming,

such as deadlocks, livelocks and data races, which are the cause of numerous bugs, devel-

oping software for multicore hardware demands taking care of different execution models,

be aware of certain hardware characteristics and integrating legacy code which cannot

always be easily or simply rewritten from scratch. This complexity makes engineering

correct and efficient parallel software to require a high degree of expertise.

In [8], Pérez and Yovine argued that a high-level platform agnostic approach based on

design patterns (a.k.a. algorithmic skeletons) would help to develop correct and efficient

parallel software in a cost-effective and productive way. However, they also noted that

most existent approaches to pattern based design lack formal semantics, which under-

mines the correctness aspect. To that end, they proposed the PCR parallel programming

pattern, for which they gave a semantics based on the FXML formalism [9] and showed

how it could be implemented in the more concrete execution model CnC [10]. They were

able to support through empirical evidence that it was possible to generate performant

3Actually, research in this area precedes the multicore era from at least three decades.
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parallel code based on the mentioned approach. Regarding correctness, they first noted

that PCRs behaved as functions in the FXML semantics and then they proved the CnC

implementation preserves the functional behaviour of PCRs. So, they concentrated in

proving the transformations made by a prototype tool are correct, but they were not

concerned with proving the correctness of the high level PCR itself.

In this thesis, we seek to provide a formal framework to

• Express high level PCR designs and prove their functional correctness in the sense

that their parallel computation computes a given mathematical function.

• Be able to formally relate different PCR designs. In particular, that a PCR with

more parallelism implements another PCR with less parallelism, i.e. the former is

a refinement of the latter.

For practical reasons, we wish to use off the shelf tools for mechanical verification of

the mentioned properties. In this sense, it is especially desired to have some form of

automated verification available.

1.2 Structure of this thesis

The present document is structured in six chapters, including the present one. The other

chapters are as follows:

• In chapter 2, we introduce some of the fundamentals of parallel algorithm design

by way of the pattern-based approach. This will include, in particular, an informal

introduction to the PCR pattern which will be our main concern thereafter.

• In chapter 3, we present an abstract model for the PCR pattern which will serve

as a rigorous conceptual basis to analyze PCRs. Various concrete PCR examples

will be presented and discussed. One of the main motivations here is that if PCRs

are intended to behave as functions, then we want to know exactly which are those

functions, thus having a mathematical reference for the correctness of the PCR.
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• In chapter 4, with the goal of formalization in the horizon, we present a historical

and theoretical introduction to the TLA+ formal specification language. We will

emphasize how the formalism allows to describe the dynamic and static aspects of

the system being described. The available tools for TLA+ will be also discussed.

• In chapter 5, we put the theory and tools of chapter 4 to practice in formalizing the

abstract models proposed in chapter 3, this includes both their operational concur-

rent semantics and the functions associated to them. Within the TLA+ framework,

mechanical verification will assists us to prove that the operational semantics is

correct with respect to the expected mathematical functions.

• In chapter 6, we present some general conclusions of our work.
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Chapter 2

Parallel algorithms fundamentals

Likewise, when a long series of identical computations is to be performed,

such as those required for the formation of numerical tables, the machine

can be brought into play so as to give several results at the same time, which

will greatly abridge the whole amount of the processes.

General L. F. Manabrea (1842)

In the introduction we observed how around 2005 the limitations related to the physics

of processor design have made hardware industry shift from improving the speed of a

single processor to increasing the number of processing core units. As a result, in the past

decade programmers were required to turn their attention to parallelism. But we want to

start noting that parallelism itself is not something new. According to Snyder [11], the

epigraph in this chapter where General Manabrea refers to a design option for Babbage’s

Analytical Engine, is the earliest known reference to parallelism in computer design. He

also conjectures that Manabrea understood what he calls the Fundamental law of Paralell

Computation:

A parallel solution utilizing p processors can improve the best sequential so-

lution by at most a factor of p.

which follows from the observation that a speedup greater than a factor of p would

imply the existence of a better sequential solution. He then goes to note how this upper

limit implies that parallel computation offers only a modest potential benefit on common

problems of scientific interest that are typically superlinear (e.g. in the range O(n2) to

O(n4)), and what is even more concerning, to achieve that “modest” benefit is not easy

in practice. Yet, parallel computation is considered one of the most promising ways to
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improve computer performance.

Parallelism was already “hot” decades before 2005, but in the area of high performance

computing. And a lot of that knowledge has been transferred to the more ample general

purpose computing. In fact, the benefits of parallelism was controversial in its inception.

The controversy started with an observation of Gene Amdhal [12]:

“For over a decade prophets have voiced the contention that the organization

of a single computer has reached its limits and that truly significant advances

can be made only by interconnection of a multiplicity of computers in such

a manner as to permit cooperative solution. ... A fairly obvious conclusion

which can be drawn at this point is that the effort expended on achieving high

parallel processing rates is wasted unless it is accompanied by achievements

in sequential processing rates of very nearly the same magnitude.”

His argument was later condensed in what is called Amdhal’s Law, which states that as

every task can be splitted in one part that can be parallelized and another part that is

inherently serial, then the theoretical speedup (S) is always limited by the part of the task

that cannot benefit from the parallel improvement. That is:1

S (p) ≤ 1

σ + 1−σ
p

where p is the number of processing units and σ is the serial fraction of the total work.

So, if we have infinite processing units, the theoretical speedup is limited by the inverse

of the serial fraction:

S (∞) ≤ lim
p→∞

S (p) =
1

σ

For roughly two decades, Amdhal’s Law was unquestioned being the only well known

criterion to understand parallel systems performance, until 1988 when Gustafson et al

published their own results questioning Amdhal’s assumptions [14]. They noted that

Amdhal presupposed a fixed size problem, but if we let the problem size to grow and with

this the the serial fraction diminishes, then speedup grows indefinitely. So, from their

point of view, Amdhal is pessimistic. They argue:

1According to our research, what is possibly the first mathematical formulation of the law can be
found in [13].
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“One does not take a fixed-sized problem and run it on various numbers of

processors except when doing academic research; in practice, the problem size

scales with the number of processors. ... speedup should be measured by

scaling the problem to the number of processors, not by fixing problem size.”

Then, what is known as Gustafson’s Law, is formulated as:

S (p) ≤ σ + p · (1− σ) = p + σ · (1− p)

For infinite processing units, we have:

S (∞) ≤ lim
p→∞

S (p) = ∞

What Gustafson et al are interested to measure is more appropriately called scaleup/-

sizeup, instead of speedup. So, is important to consider here that Amdhal focused on

how faster we can solve a problem with the same size, whereas Gustafson et al focused

on how bigger is the problem we can solve in the same time. The former is called strong

scalability and the latter is called weak scalability. Both are valid points of view.

In this thesis, we will sometimes made use of the Work-Span Model, as is introduced in

textbook [2], to give a theoretical measure of speedup. This is defined as

S =
T1

T∞
where

• T1 is work : the total time that a serialization of the algorithm require.

• T∞ is span: the total time a parallel algorithm would take on an ideal machine with

an infinite number of processing units. This can be thought as the longest path of

serial computation, a.k.a. the critical path.

In particular, we will express work and span in terms of asymptotic complexities.2 Speedup

in this form is usually interpreted as the degree of parallelism, and one is typically inter-

ested in maximizing it. There are useful results that allow in practice to estimate the

speedup for a particular number of processing units, under some reasonable assumptions,

from T1 and T∞, but in this thesis we will always assume the idealized view. Also, we

are not concerned with low level performance optimization.

2More specifically, big Theta notation Θ(f (N )) denotes the set of all functions g(N ) such that there
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2.1 Parallel Design patterns

In general, patterns provide a common vocabulary to solve problems and allows reuse of

best practices. In this section we carry out a brief overview for some of the most common

parallel design patters —in particular those at the foundation of the PCR pattern, which

will be introduced in section 2.2. Primary sources for this material are textbooks [2] and

[15].

2.1.1 Map

The map pattern applies a function to each element of a collection of elements. It is

assumed that the function used in a map does not have side effects (i.e. it is a so called

pure function) which allows all instances of the map to be executed in any order. This

independence offers maximum concurrency.

In imperative languages, a map is usually expressed as a loop (for or similar) where all

iterations are independent (illustrated by the left hand side of Listing 2.1). In functional

languages, it is more directly expressed as the familiar higher order function map (illus-

trated by the right hand side of Listing 2.1). Some other common names of map are:

mapcar, lapply, transform, for-each. On parallel programming platforms, such as Cilk [16]

and others, the map pattern is often supported in the form of a special parallel for

construct.

1 for i = 1 to n do
2 yi := f (xi)

1 map f [x1, x2, . . . , xn ] = [f (x1), f (x2), . . . , f (xn)]

Listing 2.1: Map over collection x1, x2, ..., xn with function f , expressed in imperative style
(left) and functional/declarative style (right) pseudocode.

The ordinary for loop or the map function are expected to have a serial implementation

(illustrated by the left hand side of Figure 2.1)3. For n elements, assuming the applied

exist positive constants c1, c2, and N0 with c1 · f (N ) ≤ g(N ) ≤ c2 · f (N ) for N ≥ N0.
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function f takes Θ(1) time on any element, the serial map takes Θ(n) time. In sharp

contrast, the parallel implementation (illustrated by the right hand side of Figure 2.1)

takes just Θ(1) time, given enough processing units. Thus, speedup is Θ(n)
Θ(1)

= Θ(n) which

is theoretically optimal.

Figure 2.1: Serial and parallel implementations of the map pattern on 8 elements (source
[2]).

The map pattern is commonly used to solve embarrassingly parallel problems: those

problems that can be easily decomposed into independent subtasks requiring no commu-

nication/synchronization between the subtasks (except possibly at the end). Indeed, the

optimal speedup mentioned before confirms this. Although map is a simple pattern, it is

found at the foundation of many important applications.

This pattern can be combined with other parallel design patterns. As an important

example, map combined with reduction (see 2.1.2) gives the map-reduce pattern, which

became very popular with Google’s implementation circa 2004 [18] and has since then

constituted a key ingredient for efficiently processing enormous quantities of data. Also,

other important design patterns arise as natural generalizations or extensions of map,

such as gather, scatter, and stencil.

3It should be noted that even a not auto-parallellizing but decent compiler like GCC will try to take
advantage of instruction-level parallelism (ILP) [17] to let the CPU operate on multiple elements at a
time. But we are not concerned with that kind of parallelism.
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2.1.2 Reduce

In the reduce pattern, a combiner function f (x , y) = x ⊗ y is used to combine a collection

of elements to create a summary value. It is typically assumed that pairs of elements can

be combined in any order, which allows for a variety of implementations.

In imperative languages, it is usually expressed as a loop (a for or similar) where every

iteration accumulates a new result combining the previous result and the current element

(illustrated by the left hand side of Listing 2.2). In functional languages, it is more directly

expressed as the familiar higher order function fold (illustrated by the right hand side of

Listing 2.2). Some other common names are: reduce, accumulate, aggregate.

1 r := r0
2 for i = 1 to n do
3 r := r ⊗ xi

1 fold ⊗ r0 [x1, x2, . . . , xn ] = ((r0 ⊗ x1)⊗ x2)⊗ ...⊗ xn

Listing 2.2: Reduction (from left to right) over collection x1, x2, ..., xn with operation ⊗
and initial value r0, expressed in imperative style (left) and functional/declarative style
(right) pseudocode.

A reduction can be performed from left to right (as it is the case in Listing 2.2), from right

to left, or in any other possible order of the elements. But the result is not necessarily

the same —that depends on the combiner operation. Besides, the initial value can be

omitted for reducing over non-empty collections.

The following algebraic properties of the combiner operation are desirable:

1. Associativity: (x ⊗ y)⊗ z = x ⊗ (y ⊗ z )

It allows to use any order of pairwise combinations as long as adjacent elements are

intermediate sequences, that is, any grouping of the elements.

Examples: addition and multiplication over integers, logical disjunction and con-

junction, addition and multiplication over matrices, list concatenation.

2. Commutativity: x ⊗ y = y ⊗ x
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It allows to combine any rearrangement of the elements.

Examples: all the previous associative examples except matrix multiplication and

list concatenation.

3. Identity: id⊗ ⊗ x = x ⊗ id⊗ = x

Existence of an identity element id⊗ is often useful to make the reduction of an

empty collection meaningful.

Examples: 0 and 1 are (integer) addition identity and multiplication identity, re-

spectively. False and True are logical disjunction identity and conjunction identity,

respectively.

Next, we review the relevance of these properties in more depth.

2.1.2.1 Associativity

Strictly speaking, only associativity is required for parallelization of reduce. Consider the

reduction of the 8-element collection x0, x1, ..., x7 and let r be the resulting value. Then

observe that just by taking advantage of associativity we have:

r = x0 ⊗ x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7

= (((((((x0 ⊗ x1)⊗ x2)⊗ x3)⊗ x4)⊗ x5)⊗ x6)⊗ x7) (2.1)

= (((x0 ⊗ x1)⊗ (x2 ⊗ x3))⊗ ((x4 ⊗ x5)⊗ (x6 ⊗ x7))) (2.2)

Grouping 2.1 corresponds to a serial reduction from left to right (illustrated by the left

hand side of Figure 2.2), while grouping 2.2 corresponds to a parallel binary tree reduction

(illustrated by the right hand side of Figure 2.2). The serial version obviously requires 7

steps of computation to reduce the 8 elements. For the parallel version, note that four

processing units can be used first to compute partial values r1 = x0 ⊗ x1, r2 = x2 ⊗ x3,

r3 = x4 ⊗ x5 and r4 = x6 ⊗ x7. Then, two processing units can be used to compute partial

values r5 = r1 ⊗ r2 and r6 = r3 ⊗ r4. Finally, one processing unit can be used to compute

the final result r = r7 = r5 ⊗ r6. Thus, four processing units can be used to compute the

result in just log2 8 = 3 steps instead of the 7 steps required for the serial version.
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In general, for n elements and assuming the combiner operation takes constant time, serial

reduction takes Θ(n) time and parallel reduction takes Θ(log2 n) time. Thus, speedup is
Θ(n)

Θ(log2 n)
which is very good. Interestingly, note that both implementations perform the

same amount of work. In our example, the serial version performs 7 operations, and the

parallel version also 7 operations overall (although some of them in parallel).

Figure 2.2: Serial and parallel implementations of the reduce pattern on 8 elements (source
[2]).

However, it should be noted that parallel reduction requires Θ(n) space for the interme-

diate partial values, while serial reduction requires just Θ(1) space. For this reason, in

practice, parallel reduction is not always preferable.

2.1.2.2 Commutativity

As we saw previously, associativity allows to work on any grouping and this suffices for

parallel reduction. But then, what about commutativity? Any grouping does not mean

any ordering, for which commutativity is required as it is this property that allows to

work on any rearrangement of the elements, thus giving more freedom for implementing

reduction. For example, to vectorize reduction on a processor with two-way SIMD [19] in-

structions a reordering could be needed, this technique enables the processor to inherently

exploit the locality of data leading to a potential performance impact4.

4As of 2016 most commodity CPUs implement architectures that feature SIMD instructions for vector
processing on multiple (vectorized) data sets. In case of Intel x86’s, these are the MMX, SSE and AVX
instructions.
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In fact, most justifications on why commutativity is useful are concerned with low level

platform details as in the aforementioned example about vectorization. For a more higher

level view, consider the reduction x0 ⊗ x1 ⊗ x2 ⊗ x3 ⊗ x4. By associativity, it is possible

for two processing units to compute partial values r1 = x0 ⊗ x1 and r2 = x2 ⊗ x3 in

parallel, but if r1 finishes before r2 it would be desirable to compute the partial value

r3 = r1⊗ x4 instead of waiting for r2. If we proceed in this way, the final result is actually

the regrouping and rearrangement ((x0 ⊗ x1) ⊗ x4) ⊗ (x2 ⊗ x3), which would possibly be

incorrect if ⊗ is not commutative.

So, some optimization techniques take advantage of commutativity and, clearly, users

would like parallel platforms (compilers, frameworks, libraries, API’s, etc.) to pro-

duce/implement highly optimized code. As a consequence, it is common for implementers

of parallel platforms to actually assume commutativity on the combiner operation. For

example, Listing 2.3 shows the scalar/dot product of two compatible vectors v and u

in OpenMP [20], an API tailored for shared memory multiprocessing applications. This

computation involves a sum reduction.

1 #pragma omp parallel for reduction(+: sum)
2 for (size t i = 0; i < N; i++)
3 sum += v[i]*u[i];

Listing 2.3: Scalar/dot product in OpenMP (C++).

The reduction clause in OpenMP assumes the operation is associative and also commu-

tative, which in this case is obvious for the pre-defined operation +. Clearly, there are

operations known to be not commutative (e.g. matrix multiplication), but most impor-

tantly, for custom user-defined operations is not always obvious if commutativity holds

or not. Also, the user cannot expect the compiler to issue a warning if it is not, as the

reducer commutativity problem5 in general should be undecidable due to Rice’s theorem

(although for specific cases this negative claim could be overcome [21]). So, in this context,

the user should be cautious because for a non-commutative operation the final result is

not guaranteed to be deterministic and this is rarely what the user expects. This is a per-

vasive issue; research in [22], with the suggestive title of Nondeterminism in MapReduce

Considered Harmful?, conducted an empirical study to determine how common are non-
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commutative reducers in real-world Map-Reduce programs, if non-commutative reducers

are always harmful, and even if they should be marked as bugs.

In contrast, the OpenMPI library [23], an implementation of the Message Passing Inter-

face (MPI) for distributed computing applications, allows the user to define a custom

combiner operation (assumed at least associative) with a flag to explicitly indicate if it is

commutative or not [24]. If it is set as False, then order of operands is fixed in a specific

order, but is still possible for the library to take advantage of the associativity of the

operation.

2.1.2.3 Identity

As briefly commented earlier, the identity element id⊗ for a combiner operation ⊗ is often

useful to make the reduction of an empty collection meaningful, which also facilitates

dealing with boundary conditions in algorithms.

It is often convenient to interpret the identity value also as the initial value of the reduc-

tion, which is the result if the collection is empty. For example, in the stream aggregate

operators of Java SDK 8, documentation for the Stream.reduce method states: “The

identity element is both the initial value of the reduction and the default result if there are

no elements in the stream” [25]. However, it is conceivable to have a different implemen-

tation that accepts an arbitrary value, possible different to the identity, to be returned

whenever the collection is empty, which is otherwise not used at all in the reduction.

Moreover, when the intention is to work only on non-empty collections there is clearly no

need for identity.

Also, it should be noted that an identity element does not always exist. For example,

consider the binary operation

max(x , y) =

y , x ≤ y

x , x > y

5The commutativity problem of reducers asks if the output of a reducer is independent of the order of
its inputs. This problem, in the context of the Map-Reduce model, is addressed in [21].
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It is associative and even commutative over Z. Now, for a fixed size representation of

integers, say 32-bit two’s complement, the representation range is −(232−1) to 232−1 − 1,

so the identity should be −(232−1) as clearly for any integer x in this range we have:

max(−(232−1), x ) = max(x ,−(232−1)) = x

But over arbitrary large integers, there is no identity, for suppose there is an e ∈ Z so that

max(x , e) = x for any x ∈ Z, then max(e − 1, e) = e contradicting our assumption. It

just happens that there is no integer element which is smaller than each possible integer.

In this cases, with a little care, the domain of interest can be augmented with a fictitious

identity. In the case of Z, we can add a special element −∞ and require

max(−∞, x ) = max(x ,−∞) = x

to hold for any x ∈ Z∪{−∞}. An analogous situation occurs for the operation min(x , y)

and special element∞. In fact, this technique is always applicable, even when an identity

already exists in the domain of interest.

2.2 A primer on the PCR Pattern: Producer, Con-

sumer and Reducer

Stepping on map and reduce patterns, Pérez and Yovine [8] (also [26]), propose a platform-

agnostic parallel programming pattern, called PCR, which describes computations per-

formed concurrently by communicating Producers, Consumers and Reducers, each one

being either a basic function (business logic) or a nested PCR.

We present in this section an informal explanation of the PCR pattern and illustrate it

with a first example. Then, chapter 3 will be devoted to provide a more rigorous basis for

the pattern, which in turn will be later formalized in the TLA+ specification language.
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2.2.1 High level overview

The PCR pattern aims at expressing computations consisting of a producer consuming

input data items and generating, for each one of them, possibly many outputs which are

consumed by several consumers working in parallel. Their outputs are finally aggregated

into a single result by a reducer. The goal of the pattern is to emphasize the independence

between the different computations in order to expose all parallelization opportunities.

Figure 2.3: Pictorial view of the PCR pattern.

Figure 2.3 depicts the general form of a PCR. Arrows represent data connections in a

PCR. Full ones model the external input source and the output channel to the external

environment. The external input is available to any inner component. Dashed arrows

denote internal data channels. Data cycles between internal components are not allowed:

the network is itself a directed acyclic graph (DAG) of which any topological sorting has

the producer and the reducer as as the first and the last items, respectively.

PCRs are to be understood as functions, something we will further study in the next

chapter on a more rigorous basis.

2.2.1.1 Data flow

Information flow inside a PCR is as follows:

1. For each input data item, the producer component generates a set of output values,
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each one being immediately available for reading.

2. Consumer components read values from the outer scope and from the private data

channels to perform their computations.

3. At the end, a reducer component combines values from one or more data sources

coming from the producer and one or more consumers, generating a single output

item for every external input item processed by the producer.

Reads in data channels are non destructive; the same value can be read by any consumer

and by the reducer.

2.2.1.2 Concurrency

Producer, consumers, and reducer work in parallel subject to the existing data depen-

dencies: all input items must be available for a producer, consumer or reducer instance

in order to perform its calculation. Each producer, consumer and reducer can poten-

tially spawn as many parallel execution instances as necessary for any specific workload.

Both the nature of an execution instance (local and/or remote thread or process) and the

scheduling policy are assumed to be defined by each PCR underlying implementation.

2.2.1.3 Relation with other patterns

PCRs combine several parallel programming concepts.

• Both the PCR as a whole and each internal consumer as a unit can be regarded as

a parallel map operation transforming the input stream.

• Putting several consumers in sequence conforms a parallel pipeline with each con-

sumer as a worker.

• Depending on which implementation is chosen and on the nature of the computation,

the reducer could perform a parallel reduce operation.
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• The sequence of first the producer output triggering the spawning of consumer in-

stances, and then the aggregation of consumers’ outputs by the reducer can be

regarded as an instance of the Fork/Join model, having the reducer as the synchro-

nization point.

• PCRs combine collective operations into a single composable high-level pattern. The

distribution of the producer output to instances of the same consumer is a scatter

operation; availability of the same produced item to all consumers is analogous to

a broadcast ; the combination of all inputs by the reducer is a gather operation.

• The reducer could finish its computation before all its input items are processed or

even before the producer or the consumer instances finish their work, enabling for

so called eureka computations.

2.2.2 Example: counting the first prime Fibonacci numbers

Let us consider the problem of counting the prime numbers among the first N Fibonacci

numbers. Figure 2.4 illustrates pictorially how two PCRs may cooperate in a composi-

tional fashion to resolve this problem.

Figure 2.4: PCR solution for counting Fibonacci primes.

Following the structure given in the figure, the PCR solution is intended to work as

follows:

1. At the outer PCR, the producer fibs generates the sequence F1, F2, . . . , FN of
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Fibonacci numbers.

2. For each Fi , an independent instance of consumer isPrime can check, in parallel,

its primality generating a boolean result isPrime(Fi). This constitutes what Pérez

calls a nesting opportunity, in which another inner PCR may paralellize the sub-task

of primality testing as follows:

2.1. The producer divs generates all possible divisors dj of Fi .

2.2. For each dj , an independent instance of consumer notDiv can check, in parallel,

the (non-)divisibility of Fi by dj generating a boolean result bj . This is an

example of a consumer reading the producer output and the PCR input as

well.

2.3. The reducer and computes the result isPrime(Fi) as the conjunction of all

the consumer outputs bj .

3. The reducer count counts the number of consumer outputs isPrime(Fi) which are

true.

This solution admits parallel execution at several levels. Many instances of isPrime

could be executed simultaneously as allowed by the available processing units and the

Fi production rate. Besides, each instance may be computed by an inner PCR with its

own parallel capabilities. Since the count and and reduce operations are associative (and

commutative), they can also be parallelized.

Taking this example further, the consumer notDiv can also be considered as a nesting

opportunity where another PCR may check divisibility in parallel, although performance-

wise this would possibly only make sense for very large numbers.
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Chapter 3

Abstract model for the PCR pattern

My hypothesis is that we can solve the software crisis in parallel computing,

but only if we work from the algorithm down to the hardware — not the

traditional hardware first mentality.

Tim Mattson

Syntax and semantics for the PCR pattern were given by Pérez and Yovine in [8] using

FXML, a theoretical formal language that uses partial orders for interpreting parallel

computations [9]. Now, FXML does not at the moment possess any associated tools for

mechanical verification that can be applied to check e.g. refinements of parallel schemata.

Starting from this chapter, we wish to build up from a simpler conceptual foundation

and then formalize the PCR pattern using a well established formal tool with support

for mechanical verification, namely TLA+. To this end, we introduce an alternative

abstract model for PCR computations, as well as an associated syntax. This model

should accomplish the following:

• Be faithful to the informal description of the PCR pattern.

• Serve as a rigorous basis (albeit still informal) to talk about PCRs.

• Be simple enough to abstract from details like platform architecture, interleaving vs

no-interleaving, task scheduling, or reducer implementation strategies.

The model will be introduced following a case by case basis in the form of general schemes

serving as algorithmic skeletons. The main focus in this chapter is to conduct a study

on the functional behaviour (i.e. the “What”) of PCRs. More precisely, PCRs will

be identified with certain functions which will serve as a correctness criterion. Later, in
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chapter 5, the model shall be formalized in the formal specification language TLA+, which

will yield a kind of operational semantics for the parallel behaviour of PCRs (i.e. their

“How”). There, within the TLA+ framework, it will be formally proven that the “How”

matches the “What” as a correctness (and refinement) property.

3.1 The basic PCR

In our model, the PCR computation is assumed to be governed by an iteration space, a

(possibly input dependent) set of indices (natural numbers) on which the internal com-

ponents (the producer, consumers and reducer) should act. More precisely, the iteration

space indexes the data produced and consumed by the components of the PCR. Let us

for the sake of exemplification, consider again the PCR depicted in the precedent chapter.

Its input is a number N , and the number of primes among the first N Fibonacci numbers

is to be returned. Then we use as iteration space the numbers between 1 and N .

The result of each internal component operation at every index is written (assigned) to

an associated output variable. More specifically, output variables for the producer and

consumers describe the full history of assignments over the iteration space, modeling the

internal data channels of the PCR pattern. We thus think of these variables as streams of

values mathematically represented by partial functions N→ T , abbr.
#«

T , for some range

type T . If v is a stream variable, we denote the i -th element by super-script notation v i

and wrt(v i) denotes the condition that v i has been written. Writing to a stream variable

may happen in any order. The stream-like nature of variables can be leveraged into a

syntactic mechanism which allows stream operations look-ahead/look-behind to be used

on variables by indexing. For example, to compute the i -th Fibonacci number it is useful

(performance-wise) to have access to the previous computed values at i − 1 and i − 2.

The syntactic matters are discussed in the next sections.

In what follows, we present a general scheme for the basic PCR, where the behaviour of

each internal component is assumed to be given by a basic function, i.e. user provided

functions implemented in some host language.
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Definition 3.1 (Basic PCR scheme). Let A be a basic PCR with k consumers. The

computation of A over input x consists in the following operations (assignments) for each

i ∈ Ix :

Producer : pi := fp(x , p, i)

Consumer 1 : ci
1 := fc1(x , p, i)

Consumer 2 : ci
2 := fc2(x , p, c1, i)

...
...

Consumer k : ci
k := fck (x , p, c1, c2, . . . , ck−1, i)

Reducer : r := r ⊗ fr(x , p, c1, . . . , ck , i)

where:

• Ix ⊆ N is an index set representing the iteration space. In general, it depends on

input x and has the form:

Ix = {i ∈ lBnd(x )..uBnd(x ) : prop(i)}

where lBnd and uBnd denote its lower bound and the upper bound respectively,

and prop is a truth condition acting as filter.

• p, c1, ..., ck−1 and ck are variables representing the histories of values computed by

producer and consumers. These are the output of producer and consumers.

• fp , fc1 , ..., fck and fr are basic functions associated with producer, consumers and

reducer.

• ⊗ is a binary combiner operation. r is a variable representing the (partial) combined

value, the output of the reducer. The initial value is given by r0(x ), and sometimes

we refer to it as r0.

Except when explicitly stated otherwise, we assume the following:

1. Ix is finite.

2. The combiner ⊗ is an associative and commutative operation.

3. ⊗ has an identity element, namely id⊗, so that r0(x ) = id⊗ and this is also the

default value in case the iteration space is empty (i.e. Ix = ∅).
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Remark 3.1.

1. All assignments, basic functions and reduce operations are assumed to be atomic.

2. Producer and consumers are considered optional, which can be seen as though they

are completely absent or as they are trivial identity functions just passing the values.

The presence of the reducer is mandatory.

3. Notice that, unlike the other components output variables, r is a scalar, i.e. not a

stream variable, and the reduction order with respect to Ix is unspecified.

4. Basic function fr is used as a last (generally simple) transformation prior to the

combiner work done at the reducer. It is not essential, in the sense that it could be

separated to a previous consumer as follows:

ci
k+1 := fr(x , p, c1, c2, . . . , ck , i)

r := r ⊗ ci
k+1

In general, every basic function may consume values from previous output variables, which

naturally induces a (strict) partial order representing data dependencies between PCR

operations. It is convenient to visualize this order as a dependence graph (more precisely

a DAG) with input x as source and reducer output variable r as sink, as generically

illustrated in figure 3.1. These graphs will be useful tools to reason about PCRs. Here

we think of input x as a fixed constant but later, when discussing composition between

PCRs, it will be more generally treated as another stream-like variable. Note that the

bottom arrows flowing into the sink, in fact, do not represent data dependencies, as fr is

just a transformation made as part of the reducer operation. In upcoming dependence

graphs, we will omit fr if convenient.

By definition 3.1, a basic PCR with k consumers should perform a total of (k + 2) · | Ix |
operations. Intuitively speaking, independent operations can effectively be performed

in parallel (assuming enough processing units), unlike dependent operations that are

normally considered to be performed in series. We denote by red(i) the condition that

the reduce operation has been performed for the value of i in question.
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Figure 3.1: Dependence graph for a basic PCR where m = min(Ix ) and n = max (Ix ).

Definition 3.2 (Basic PCR Termination). A basic PCR A terminates at input x if red(i)

holds for all i ∈ Ix (i.e. a total of | Ix | reductions have been made). We shall write endA

for this condition.

From the given definitions, it should be clear that the PCR A’s output is the value of r

when endA holds.

3.1.1 Basic syntax: produce, consume and reduce

It will be convenient to describe PCRs, especially the concrete ones, in a more user-

friendly style by means of pseudocode1. There are three principal primitives: produce,

consume and reduce, presented in table 3.1, in direct correspondence with the PCR

operations according to our model. This closely follows the PCR specification language

presented by Pérez and Yovine in [8] but with the small addendum of explicit syntax for

the specification of the iteration space. In particular, we allow here a lower bound and a
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filter predicate for defining the iteration space. Another primitive called iterate shall

be presented later in section 3.4 as an extension of the PCR model.

Type Syntax

Basic function fun f (x1, x2, . . . , xn)

Iteration space
lbnd A = λ x . e // default : 0
ubnd A = λ x . e // default : ∞
prop A = λ i . e // default : True

where A is the PCR’s name and
lbnd, ubnd, prop are the lower
bound, upper bound and filter
functions respectively. Some de-
fault values are assumed in case
of absence of the corresponding
declaration.

Producer p = produce fp x p
where fp is a basic function, and
x is the PCR’s input variable

Consumer ce = consume fce x p c1 . . . ce−1

where fce is a basic function (1 ≤
e ≤ k), x is the PCR’s input
variable, p is the producer’s out-
put variable, and c1, ..., ce−1 are
the previous consumers’ output
variables.

Reducer r = reduce ⊗ (r0 x) (fr x p c1 . . . ck−1)

where ⊗ is the combiner opera-
tion (with initial value r0) and
fr is a basic function on PCR in-
put and producer/consumer out-
puts.

Table 3.1: Basic PCR syntax.

Listing 3.1 presents the basic PCR scheme of definition 3.1 but in syntactic form according

to table 3.1.

1 fun fp(x,p,i) = ...
2 fun fc1

(x,p,i) = ...
3 fun fc2(x,p,c1,i) = ...
4

...
5 fun fck(x,p,c1,c2,...,ck−1,i) = ...
6 fun fr(x,p,c1,...,ck,i) = ...
7 fun r0(x) = ...
8
9 lbnd A = λ x . ...

10 ubnd A = λ x . ...
11 prop A = λ i . ...
12
13 PCR A(x)

1In this thesis, we do not bother with a precise BNF definition because it is a very simple syntax
directly representing the abstract model, and we are not assuming any particular host language where
the basic functions are implemented.
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14 par
15 p = produce fp x p
16 c1 = consume fc1

x p
17 c2 = consume fc2

x p c1
18

...
19 ck = consume fck x p c1 c2 ... ck−1
20 r = reduce ⊗ (r0 x) (fr x p c1 ... ck)

Listing 3.1: Basic PCR scheme in syntactic form.

In PCR syntax, for any producer/consumer stream variable v, v[0] refers to the value

at the current iteration index i (i.e. v i) and this can be more conveniently written just

as v 2. Look behind/ahead syntax is presented in the next section. Nevertheless, basic

functions have optional access to index parameter i if they need to act upon its value. In

this chapter we hope to use intuitively clear programming constructions when presenting

basic functions as code, having more preference for a functional/declarative style. For

most of our discussions we will not dwell on the host language’s syntax/semantic specifics.

The combiner operation can be regarded as a non-binary basic function but with restricted

form in the following manner:

1 fun op(r,x,p,c1,...,ck,i) = r ⊗ fr(x,p,c1,...,ck,i)
2

...
3 r = reduce op (r0 x) x p c1 ... ck

In the present work we only consider finite iteration spaces, so we always require at least

the upper bound specification.

Example 3.1.1. IsPrime1 is a basic PCR with a single consumer. For an input number

N , IsPrime1 returns a boolean value indicating if N is a prime number. It works as

follows:

1. The producer divs generates all the possible divisors of the input number N .3 It is

a fact that for any composite number N some of its divisors different from 1 must

be less or equal than
√

N . So, it is enough to test divisibility in the range 2..b
√

N c,
since if we had a divisor greater than

√
N it would have a smaller one that we would

2Whenever needed, syntax v[0] can be used to make it clear we are specifically referring to the value
v i , as opposed to the complete history of values v .
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have already verified.

2. Each instance i of the notDiv consumer checks, in parallel, the divisibility of N by

pi , resulting in the output of indexed boolean values ci .

3. The reducer and computes the conjunction of those outputs.

Figure 3.2: Pictorial view of PCR IsPrime1.

1 fun divs(i) = i
2 fun notDiv(N,p) = not (N % p == 0)
3
4 lbnd IsPrime1 = 2
5 ubnd IsPrime1 = λN . b

√
Nc

6
7 PCR IsPrime1(N)
8 par
9 p = produce divs

10 c = consume notDiv N p
11 r = reduce and (N > 1) c

Listing 3.2: PCR IsPrime1 code.

N

p3 p
√

Np2

c3 c
√

Nc2

r

pi

ci

. . .

. . .

. . .

. . .

Figure 3.3: Generic dependence graph for PCR IsPrime1.

For PCR IsPrime1, we take the liberty of returning something different from the com-

biner’s identity (i.e. True) when the iteration space is empty. Notice that, when b
√

N c < 2

we have r = N > 1 = False vacuously. This happens for N ≤ 1, and makes sense for

3In fact, producer divs is trivial here, it’s just the identity function on the iteration space. In practice,
there would be no reason to write the producer in these cases.
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this PCR because numbers 0 and 1 are trivially not prime. This decision may seem a bit

awkward, but helps to keep this particular introductory example simpler.

3.1.2 Data dependency syntax

We introduce explicit description of data dependency by means of the dep keyword. In

general, for variables v1, v2 and indices i , j :

dep v1(i) → v2(j )

means the value of v2 at j (i.e. v j
2) depends on the value of v1 at i (i.e. v i

1).

Definition 3.3 (Linear/Non-Linear PCR). A PCR A is linear if its components obey

only dependencies of the form (i , i), that is:4

dep p(i) → c1(i)

dep ce−1(i) → ce(i), for each e ∈ 2..k

dep ck(i) → r(i).

In presence of any other form of data dependency, A is non-linear.

We will not write linear dependencies and always assume them implicit. For example,

our previous PCR IsPrime1 (3.1.1) is linear, which is evident from looking at its depen-

dence graph. Linear PCRs can be thought as representatives of embarrassing parallelism,

because they evidence that little effort is needed to separate the workload.

Other forms of data dependency (i.e. non-linear) relate to more restricted forms of

parallelism where the workload cannot be separated in a completely independent way.

Table 3.2 presents some simple forms of data dependencies. There, v1 and v2 are PCR

variables, and we assume that v1 appears before v2 if v1 6= v2,

We said before that v[0] (or more simply v) refers to v i . In the presence of non-linear

dependencies it is generally necessary to look behind/ahead on these variables. To read

4We use linear for a lack of better name, and acknowledge that it is a very overloaded term.
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Type Syntax Meaning

Linear dep v1(i)→ v2(i) where v1 6= v2
Value at v2 depends on value of
v1.

Past
dep v1(i − k)→ v2(i) where k > 0

Value at v2 depends on some
past value of v1.

dep v1(..i)→ v2(i)
Value at v2 depends on all past
values of v1.

Future
dep v1(i + k)→ v2(i) where v1 6= v2, k > 0

Value at v2 depends on some fu-
ture value of v1.

dep v1(i ..)→ v2(i) where v1 6= v2
Value at v2 depends on all fu-
ture values of v1.

Table 3.2: Data dependency syntax.

some previous value of v at k (i.e. v i−k) the syntax is v[-k], and to read some posterior

value of v at k (i.e. v i+k) the syntax is v[+k].

Remark 3.2.

1. No value can depend on present or future values of the same variable, as this situ-

ation may introduce deadlock. That is why the v1 6= v2 restriction in some rows of

table 3.2.

2. Dependencies falling outside iteration space are ignored. For example, if Ix = 1..N

then dep v1(i − 1)→ v2(i) has no effect when i = 1 and similarly dep v1(i + 1)→
v2(i) has no effect when i = N since v1(i − 1) and v1(i + 1) would be undefined in

their respective cases.

3. Notice that dependencies on the same consumer (e.g. dep c(i − 1)→ c(i)) do not

have any functional effect, as by definition the function associated to any consumer

can only refer to previous consumers and/or the producer but not to itself. In other

words, instances of the same consumer are independent, by definition.

4. Although the reducer variable is not treated as a stream, reductions occur along

the indexes of the iteration space as with any producer or consumer operation. So,

dependencies between reductions can be given a meaningful purpose, for example

to fix reduction order. This use is considered later in section 3.2.1.
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Example 3.1.2. FibPrimes1 is a basic PCR with a single consumer and a producer that

looks behind on previous values to compute. For an input number N , FibPrimes1 returns

the number of primes among the first N Fibonacci numbers. It works as follows:

1. The producer fib generates the sequence F1, F2, ..., FN of Fibonacci numbers.

2. Each instance i ∈ 1..N of the isPrime consumer checks, in parallel, the primality

of Fi , resulting in the output of indexed boolean values ci .5

3. The reducer count counts the number of those outputs which are true.

Figure 3.4: Pictorial view of PCR FibPrimes1.

1 fun fibs(p,i) = if i <= 2 then 1 else p[−1] + p[−2]
2 fun isPrime(p) = p > 1 and not (some (λm. divides(m,p)) [2..p−1])
3 fun count(r,c) = r + if c then 1 else 0
4
5 dep p(i−1) → p(i)
6 dep p(i−2) → p(i)
7
8 lbnd FibPrimes1 = 1
9 ubnd FibPrimes1 = λN .N

10
11 PCR FibPrimes1(N)
12 par
13 p = produce fibs p
14 c = consume isPrime p
15 r = reduce count 0 c

Listing 3.3: PCR FibPrimes1 code.6

Notice when N < 1, vacuously: r = 0, the identity of +.

Example 3.1.3. RedBlack is a basic PCR with two consumers which presents various

non-linear dependencies. This implements an stencil pattern, which is like a map in

which each output depends on a “neighborhood” of inputs.

5Here, isPrime is a basic function, not a PCR. Later we will discuss PCR nesting.
6Alternatively, the reducer may be written as: reduce + 0 (λc. if c then 1 else 0)
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fr (c, 1) . . .fr (c, i − 2) fr (c, i − 1) fr (c, i) fr (c,N )

. . .

. . .

. . .

Figure 3.5: Generic dependence graph for PCR FibPrimes1.

Stencils are used in iterative methods for many applications such as image or signal

processing and solving linear systems. In particular, a typical solver for the the method of

Finite Differences (used to approximate partial differential equations) iteratively performs

stencil computations which, in general terms, consists of a weighted accumulation of the

contribution of neighbor points over a a discrete grid. To paralellize the work at each

iteration, the red-black ordering treats the grid as a checkerboard with red and black

points. Then, each iteration of the algorithm is split into a red step and a black step such

that they compute the red and black points respectively.

Figure 3.6: Pictorial view of PCR RedBlack.

In our example, the RedBlack PCR represents an iteration step over a grid, represented

in turn by a matrix, using a 5-point stencil which, for coordinates x and y , are (x , y),

(x − 1, y), (x + 1, y), (x , y − 1) and (x , y + 1). This is an example of a 2D stencil; however

elements are accessed following a linear indexing scheme. Let M be a N ×N matrix. The
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vectorization of M , say V , is based on following index relations:

V [k ] = M [b(k − 1)/N c+ 1][((k − 1)%N ) + 1] , 1 ≤ k ≤ N 2

M [i ][j ] = V [(i − 1)N + j ] , 1 ≤ i , j ≤ N

1 fun isRed(i,j) = (i+j)%2 == 0
2 fun isBlack(i,j) = (i+j)%2 != 0
3 fun onBorder(N,i,j) = i == 1 or i == N or j == 1 or j == N
4 fun point(N,M,k) = M[b(k−1)/Nc+1][((k−1)%N)+1]
5 fun red(N,p,k) = let i = b(k−1)/Nc+1
6 j = ((k−1)%N)+1
7 in if isRed(i,j) and not onBorder(N,i,j)
8 then (p+p[−1]+p[+1]+p[−N]+p[+N])/5
9 else p

10 fun black(N,c1,k) = let i = b(k−1)/Nc+1
11 j = ((k−1)%N)+1
12 in if isBlack(i,j) and not onBorder(N,i,j)
13 then (c1+c1[−1]+c1[+1]+c1[−N]+c1[+N])/5
14 else c1
15 fun update(r,N,c2,k) = add(r, L(N,c2,k))
16 fun zero(N) = ... // NxN zero matrix

17 fun L(N,c2,k) = ... // NxN single entry matrix with c2 at (i ,j)

18 fun add(m1,m2) = ... // matrix addition

19
20 dep p(k−1) → c1(k); dep c1(k−1) → c2(k)
21 dep p(k+1) → c1(k); dep c1(k+1) → c2(k)
22 dep p(k−N) → c1(k); dep c1(k−N) → c2(k)
23 dep p(k+N) → c1(k); dep c1(k+N) → c2(k)
24
25 lbnd RedBlack = 1
26 ubnd RedBlack = λN M .N*N
27
28 PCR RedBlack(N,M) // M is a matrix of size NxN

29 par
30 p = produce point N M
31 c1 = consume red N p
32 c2 = consume black N c1
33 r = reduce update (zero N) N c2

Listing 3.4: PCR RedBlack code.

It could be argued that the reducer operation, which is conformed by matrix operations

add and L, is computationally expensive and defeats the potential benefits of parallelism.

Indeed, just add requires N 2 additions. However, the intended effect of the reducer here

is just to update positions in the resulting matrix, and an efficient implementation for this

should be conceivable. But we are not going to extend ourselves on this any further.
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Figure 3.7: Generic dependence graph for PCR RedBlack. Non-linear dependency only
shown for ck

1 and ck+1
2 . Last transformation L not shown.

3.2 What does a PCR compute?

In this section we investigate what a PCR computes. We are interested in functional

behaviour and shall look for an explicit form comprising the basic functions that constitute

the PCR.

First, let us make a general observation. All PCR operations, except reductions, are

assignments of the form

v i := fv(x , u1, u2, . . . , uk , i) (3.1)

where x ∈ T , v ∈ #«

Tv , uj ∈
#«

T j for 1 ≤ j ≤ k , i ∈ N, fv : T × #«

T 1 × · · · ×
#«

T k × N → Tv ,

and T1, . . . ,Tk ,Tv are the (range) types of the intervening variables.

So, variables v and uj ’s are streams while f is a function on streams (as well as on input

x and index i). Intuitively, we think of the left hand side of 3.1 (i.e. v i) as an operational

aspect of the PCR computation, as with every operation at some assignment i the stream

v evolves taking values from fv evaluated at i . On the other hand, the right hand side (i.e.

fv) can be regarded as a more purely functional aspect of the PCR computation provided

the required dependencies over the uj ’s streams are met. Moreover, it will be handy to
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treat it also as a stream. For this, we define
#«

f v : T × #«

T 1 × · · · ×
#«

T k →
#«

T v (essentially a

curried version of fv) as:

#«

f v(x , u1, u2, . . . , uk) = i ∈ N 7→ fv(x , u1, u2, . . . , uk , i) (3.2)

so that v i =
#«

f v

i
(x , u1, u2, . . . , uk) holds for any written assignment i , and we do similarly

for the uj ’s associated functions. This will allow us to express the effect of PCR operations

as a functional stream composition originated from basic functions in a point-free style:

#«

f v(x ,
#«

f u1 ,
#«

f u2 , . . . ,
#«

f uk
) (3.3)

Next, we apply this observation and further discuss related matters carrying out a revision

of our previous examples.

Example 3.2.1 (Example 3.1.1 revisited). Consider PCR IsPrime1. Define the stream

versions of the basic functions divs and notDiv :

#     «

divs = i ∈ N 7→ divs(i)
#            «

notDiv(N , p) = i ∈ N 7→ notDiv(N , p, i)

Let N = 19. Then we have pi =
#     «

divs
i

and ci =
#            «

notDiv
i
(19, p) for each i ∈ 2..19. The

concrete dependence graph is shown in figure 3.8.

Remark 3.3. In this concrete example and others to come, when expanding the stream

definitions we will express the basic functions as only acting on the relevant parame-

ters according to the function definition and its associated dependencies. For example,
#            «

notDiv
i
(19,

#     «

divs) expands to notDiv(19, divs(i)) because notDiv at i only depends on divs

at the same i , and also i is not directly used in notDiv ’s definition. This little piece of

informality will help us keeping some parts of the presentation simpler and more readable.

Let us now write ∧ for the combiner and. Following the graph, the result should be:

r =
4∧

i=2

#            «

notDiv
i
(19,

#     «

divs)

= True ∧ notDiv(19, divs(2)) ∧ notDiv(19, divs(3)) ∧ notDiv(19, divs(4))

= True ∧ notDiv(19, 2) ∧ notDiv(19, 3) ∧ notDiv(19, 4)

= True ∧ True ∧ True ∧ True

= True
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Figure 3.8: Dependence graph for PCR IsPrime1 when N = 19.

as expected, because 19 is indeed a prime number. So, we could write IsPrime1(19) =

True.

Recall we decided to not to use the combiner identity when N ≤ 1.7 So, in general, we

have a piecewise function for N ∈ N:

IsPrime1(N ) =


False ,N ≤ 1

b
√

N c∧
i=2

#            «

notDiv
i
(N ,

#     «

divs) , otherwise
(3.4)

Or perhaps more conveniently, using McCarthy conditional form:

IsPrime1(N ) =
(
N ≤ 1 → False,

b
√

N c∧
i=2

#            «

notDiv
i
(N ,

#     «

divs)
)

(3.5)

= N > 1 ∧
b
√

N c∧
i=2

#            «

notDiv
i
(N ,

#     «

divs)

Example 3.2.2 (Example 3.1.2 revisited). Consider PCR FibPrimes1. The producer

basic function fibs is defined as:

fibs(p, i) = if i ≤ 2 then 1 else pi−1 + pi−2

Unlike the previous example, the producer depends on pi−1 and pi−2 to compute the i -th

value, which is safe due to the presence of appropriate dependencies. Here, we propose to

7Later we will show an alternative PCR solution without this input domain separation and with
additional optimization.
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understand fibs as either:

1. The recurrence

fibs(i) =

1 , i ≤ 2

fibs(i − 1) + fibs(i − 2)

or

2. The closed form of the recurrence (in this particular case known as Binet’s formula):

fibs(i) =
1√
5

(ϕi − (−ϕ)−i) where ϕ is golden ratio.

In the latter case we abstract away the non-linear and self-referential dependencies im-

posed on the producer. Of course, closed forms are not always known or may not even

exist, so the second option is not always viable. It should be noted that the computation

of recurrences is often seen as an absolutely sequential endeavour, because the dependence

on previous values. For this reason, we normally say this is a sequential producer. 8

Remark 3.4. In general, for any producer function fp possibly depending on values of

the form pi−k for some k > 0, we define gp equal to fp except replacing every occurrence

of the form pi−k by the recursive call gp(x , i − k). The difference between fp and gp

is essentially that the former is a memoized version of the latter. For the moment, we

assume they are equivalent. For the purpose of deductive formal verification, rewriting

the producer function as a pure recurrence seems more convenient, because eventually the

new function will need to be proved equivalent to the original function and this task could

be arbitrarily hard for closed forms. Nevertheless, for automated verification methods like

model checking, both options can work fine although the closed form is likely to perform

better.

Now, define the stream versions of the basic functions fibs and isPrime, as well for the

8However, it is known from decades ago that there are fast parallel algorithms for a general class of
recurrences [27].
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transformation before reduction: 9

#   «

fibs = i ∈ N 7→ fibs(i)
#               «

isPrime(p) = i ∈ N 7→ isPrime(p, i)

[c] = i ∈ N 7→ [ci ]

Let N = 7, then we have pi =
#   «

fibs
i

and ci =
#               «

isPrime
i
(p) for each i ∈ 1..7. The concrete

dependence graph is shown in figure 3.9.

N = 7
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fibs
7

p1 =
#    «

fibs
1

c7 =
#               «

isPrime
7
(p)c1 =

#               «

isPrime
1
(p)

r

p2 =
#    «

fibs
2

c2 =
#               «

isPrime
2
(p)

. . .

. . .

[c]1 . . .[c]2 [c]7

Figure 3.9: Dependence graph for PCR FibPrimes1 when N = 7.

Following the graph, the result should be:

r =
7∑

i=1

[
#               «

isPrime(
#    «

fibs)
]i

= 0 + [isPrime(fibs(1))] + [isPrime(fibs(2))] + [isPrime(fibs(3))] + [isPrime(fibs(4))]

+ [isPrime(fibs(5))] + [isPrime(fibs(6))] + [isPrime(fibs(7))]

= 0 + [isPrime(1)] + [isPrime(1)] + [isPrime(2)] + [isPrime(3)]

+ [isPrime(5)] + [isPrime(8)] + [isPrime(13)]

= 0 + [False] + [False] + [True] + [True] + [True] + [False] + [True]

= 0 + 0 + 1 + 1 + 1 + 0 + 1

= 4

as expected. So, we may put FibPrimes1(7) = 4.

9We use Iverson’s bracket notation ([P ] where P is a predicate) for the characteristic function which
appears as the last transformation before reduction.
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In general, for any N ∈ N:

FibPrimes1(N ) =
N∑

i=1

[
#               «

isPrime(
−→
fibs)

]i

(3.6)

Example 3.2.3 (Example 3.1.3 revisited). Consider PCR RedBlack. The producer does

not depend on past values as in PCR FibPrimes1, but neither is trivial as in PCR IsPrime1.

Unlike those two previous examples, consumer functions red , black : N× #«R × N → R do

have non-linear dependencies.

Define the stream versions of the basic functions point , red , and black , as well for the

transformation L before reduction:

#        «
point(N ,M ) = k ∈ N 7→ point(N ,M , k)

#   «

red(N , p) = k ∈ N 7→ red(N , p, k)
#        «

black(N , c1) = k ∈ N 7→ black(N , c1, k)
#«

L(N , c2) = k ∈ N 7→ L(N , c2, k)

Let N = 4 and

M =

0 0 0 0
0 3 9 0
0 5 6 0
0 0 0 0


where M is represented as [[0, 0, 0, 0], [0, 3, 9, 0], [0, 5, 6, 0], [0, 0, 0, 0]]. It is easy to see that

matrix M in vectorized form is just the flattened version:

[0, 0, 0, 0, 0, 3, 9, 0, 0, 5, 6, 0, 0, 0, 0, 0]

Then, we have pk =
#        «
point

k
(4,M ), ck

1 =
#   «

red
k
(4, p) and ck

2 =
#        «

black
k
(4, c1) for each

i ∈ 1..16. Concrete dependence graph for this input is shown in figure 3.10.

Let’s write ⊕ for matrix addition, 04 for the zero 4 × 4 matrix and Lij (x ) for the single

element matrix with value x at position (i , j ) where i = b(k − 1)/N c + 1 and j =

((k − 1)%N ) + 1 (i.e. Lij (x ) = L(N , x , k)). Following the graph, the result should be: 10

10Anticipating that boundary terms result in trivial zero 4×4 matrices, we hide this 12 terms in ellipsis.
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Figure 3.10: Dependence graph for PCR BlackRed when N = 4 and M = [[0, 0, 0, 0],
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1 , c7

2 and c10
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Last transformation L not shown.

r =

16⊕
k=1

#«

L
k
(4,

#        «

black(4,
#   «

red(4,
#        «
point(4,M ))))

= 04 ⊕ · · · ⊕ L2,2(black(4,
#   «

red
6
(4, p)))

⊕ L2,3(black(4,
#   «

red
3
(4, p),

#   «

red
6
(4, p),

#   «

red
7
(4, p),

#   «

red
8
(4, p),

#   «

red
11

(4, p)))

⊕ · · · ⊕ L3,2(black(4,
#   «

red
6
(4, p),

#   «

red
9
(4, p),

#   «

red
10

(4, p),
#   «

red
11

(4, p),
#   «

red
14

(4, p)))

⊕ L3,3(black(4,
#   «

red
11

(4, p)))⊕ . . .
= 04 ⊕ · · · ⊕ L2,2(black(4, red(4, p2, p5, p6, p7, p10)))

⊕ L2,3(black(4, p3, red(4, p2, p5, p6, p7, p10), p7, p8, red(4, p7, p10, p11, p12, p15)))

⊕ · · · ⊕ L3,2(black(4, red(4, p2, p5, p6, p7, p10), p9, p10, red(4, p7, p10, p11, p12, p15), p14))

⊕ L3,3(black(4, red(4, p7, p10, p11, p12, p15)))⊕ . . .
= 04 ⊕ · · · ⊕ L2,2(black(4, 3.4))⊕ L2,3(black(4, 0, 3.4, 9, 0, 4))

⊕ · · · ⊕ L3,2(black(4, 3.4, 0, 5, 4, 0))⊕ L3,3(black(4, 4))⊕ . . .
= 04 ⊕ · · · ⊕ L2,2(3.4)︸ ︷︷ ︸

c6
2

⊕L2,3(3.3)︸ ︷︷ ︸
c7
2

⊕ · · · ⊕ L3,2(2.5)︸ ︷︷ ︸
c10
2

⊕L3,3(4)︸ ︷︷ ︸
c11
2

⊕ . . .

= [[0, 0, 0, 0], [0, 3.4, 3.3, 0], [0, 2.5, 4, 0], [0, 0, 0, 0]]
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In general, for any N ∈ N and M ∈M(R)N×N :

RedBlack(N ,M ) =
N 2⊕
k=1

#«

L
k
(N ,

#        «

black(N ,
#   «

red(N ,
#        «
point(N ,M )))) (3.7)

In what follows, we generalize what we did on previous examples for arbitrary basic PCRs.

Proposition 3.1. Let A be a basic PCR with input parameter of type T and whose

reducer variable is of type D . Then, for all x ∈ T , the output of A at x , to be written

A(x ), is determined if A terminates at input x , and it holds : A(x ) =
⊗

i ∈ Ix

#«

f A
i

for some

function
#«

f A ∈
#«

D .

Proof. Let A consist of k consumers and the following basic functions

fp : T × #«

Tp × N→ Tp

fch : T × #«

T p ×
#«

T c1 × · · · ×
#«

T ch−1
× N→ Tch for each h ∈ 1..k

fr : T × #«

T p ×
#«

T c1 × · · · ×
#«

T ck × N→ D .

Recall gp : T × N → Tp is equivalent to fp but dropping the stream parameter (remark

3.4). Now, define the stream versions of the basic functions gp , fc1 , ..., fck and fr :

#«g p(x ) = i ∈ N 7→ gp(x , i)
#«

f ch (x , p, c1, . . . , ch−1) = i ∈ N 7→ fch (x , p, c1, . . . , ch−1, i) for each h ∈ 1..k
#«

f r(x , p, c1, . . . , ck) = i ∈ N 7→ fr(x , p, c1, . . . , ck , i).

The combiner ⊗ is an associative and commutative operation over domain D with identity

id⊗, i.e. in algebraic terms, the structure (D , id⊗,⊗) is an abelian monoid. Let m =

min(Ix ), n = max (Ix ), and
#«

f A ∈
#«

D so that

#«

f A =
#«

f r(x ,
#«

g p ,
#«

f c1 , . . . ,
#«

f ck ).

Then, the output of A at input x is given by combiner’s work on all indices of the iteration

space Ix in any order, starting from identity value

r = id⊗ ⊗
#«

f A
m ⊗ #«

f A
m ′ ⊗ · · · ⊗ #«

f A
n
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which we will write as

A(x ) =
⊗
i ∈ Ix

#«

f A
i

(3.8)

In particular, for a single consumer PCR A, equation 3.8 expands to:

A(x ) =
⊗
i ∈ Ix

#«

f r

i(
x ,

#«

g p(x ),
#«

f c(x ,
#«

g p(x ))
)

(3.9)

Equations 3.5, 3.6 and 3.7 derived in previous examples are special cases of 3.8, and more

specifically 3.5 and 3.6 are special cases of 3.9 as they have only one consumer. Further

clarification is needed for 3.5, as this assertion strictly holds only for input N > 1, because

when N ≤ 1 we have r = False which is not the combiner’s identity.

3.2.1 Non-commutativity

As we discussed earlier in section 2.1.2.2, there are reasons why it is convenient for re-

duction to assume a commutative combiner operation. By default, we adhere to that

view in our PCR model. However, there are non-commutative useful and fairly common

operations and is generally not safe to treat them as they where commutative since a non-

deterministic result is likely to be obtained, thus leading to a non-functional behaviour.

Next, we illustrate by a simple example how to accommodate a non-commutative reduc-

tion in the PCR model by imposing a fixed order with respect to the iteration space

through non-linear dependences. The same idea will be used again in more interesting

examples later.

Example 3.2.4. Binary operation ++ (concatenation) over lists11 is associative and it

has an identity element (denoted [ ]) but is not commutative.

PCR ListId (see listing 3.5) should behave as the identity function on lists. For this to

hold, reduction order is fixed (in particular, from left to right) by using the following

11We assume 1-indexed finite lists.
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dependency over reducer output variable

dep r(i − 1) → r(i)

So, for the list [a1, a2, . . . , an ] of length n, reduction has the form

r = (([ ] ++ [a1]) ++ [a2]) ++ · · · ++ [an ]

Of course, for this kind of use case one could envision a specific PCR reducer syntax

(e.g. reduceLeft) with the intended semantics or as syntactic sugar for the previous

dependency. But we are fine without that.

What would happen in this example without a fixed order?. There would be n! possible

output lists, that is, any permutation of the original input list (assuming no repeated

elements).

1 fun elem(L,i) = [L[i]]
2
3 dep r(i−1) → r(i)
4
5 lbnd ListId = 1
6 ubnd ListId = λL .len(L)
7
8 PCR ListId(L)
9 r = reduce (++) [] (elem L)

Listing 3.5: PCR ListId code.

3.3 Composition

The form of composition we are interested here is nesting. PCRs can be composed by

hierarchical nesting, which allows reusing components and controlling the desired grain

of parallelism. It can also be helpful in making more manageable the task of correctness

verification by either automatic or semi-automatic methods.

In [8], Pérez and Yovine considered PCR nesting at the consumer component, but for

the present work we also explored nesting at the other components. In general, the
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composition can be made at three different places: (1) the producer, (2) any of the

consumers or (3) the reducer. However, in what follows we will discuss only cases (2)

and (3) because (1) is not much different from (2) and we don’t have yet an interesting

enough use case to illustrate it. For each case, an appropriate PCR scheme will be given

and discussed. Besides, a PCR scheme for the parallel divide and conquer strategy will

be presented as a form of recursive composition at the consumer place. 12

As we showed previously, a basic PCR behaves as a function of the form given by equation

3.8, thus we intuitively expect nested PCRs to behave as a composition of functions. The

definition of termination given before extends naturally to composed PCRs.

3.3.1 Composition through consumer

We prefer to start with a motivating example involving two of our previous PCRs to

introduce the basic ideas and then generalize. This is the same example we presented

before, but informally, in section 2.2.2.

3.3.1.1 Example: Putting FibPrimes1 and IsPrime1 together

Consider PCR FibPrimes1. Instead of using the isPrime basic function at the consumer

we can use our PCR IsPrime1 to the same effect but taking advantage of parallel primality

testing.13 This idea is implemented in a new PCR FibPrimes2 illustrated by figures 3.11,

3.12 and listing 3.6.

1 PCR FibPrimes2(N) PCR IsPrime1(F)
2 par par
3 p = produce fibs p d = produce divs
4 c = consume IsPrime1 p b = consume notDiv F d
5 r = reduce count 0 c a = reduce and (F > 1) b

Listing 3.6: PCR FibPrimes2 code, which includes PCR IsPrime1.

At the surface, by looking at listing 3.6, it seems like FibPrimes2 works pretty much the

12In [26], divide and conquer was introduced as a PCR extension.
13Here we are assuming that the basic function and the PCR are functionally equivalent.
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Figure 3.11: Pictorial view of PCR FibPrimes2.

same as FibPrimes1, and indeed that is the intention. Also, IsPrime1 is exactly the same

as introduced before (modulo a renaming of variables). However, under the hood there

are important differences.

Let N be any input for FibPrimes2. For each assignment i ∈ 1..N there is the i -ith

instance of IsPrime1, so there are in general N instances (and N inputs/outputs) of Is-

Prime1. Consequently, the producer and consumer variables of the inner PCR IsPrime1

are doubly indexed, i.e. by the outer scope assignment i ∈ 1..N (the father instance)

and the inner scope assignment j ∈ 2..b
√

F ic where F i is the i -th Fibonacci number.

We therefore denote by d i ,j the j -th produced divisor at instance i of IsPrime1 and do

similarly for the boolean variable b, as can be appreciated in figure 3.12. Comparing

with FibPrimes1 (see figure 3.5) where the consumer is a basic function, we have that

each dependence pi → ci is now expanded to the DAG of the i -ith instance of PCR Is-

Prime1. The present situation suggests that, in general, PCR indices should be sequences

of assignments that grow on nesting. This approach will be developed in the next section.

Now, what does the PCR FibPrimes2 compute?. We perform an analysis analogous to

the one in example 3.2.2 for FibPrimes1. There is a stream version of PCR IsPrime1 just

like for any basic function:

#                  «

IsPrime1(p) = i ∈ N 7→ IsPrime1(p, i)

where IsPrime1 is defined according to equation 3.5 and with explicit father index pa-

64



N

pNp1
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r

pi−1

ci−1

. . .

. . .

pi

ci
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fr (c, 1) . . .fr (c, i − 1) fr (c, i) fr (c, i + 1) fr (c,N )

. . .

. . .

. . .

F 1

d1,2
d1,
√

F1

b1,2
b1,
√

F1

a1

. . .

. . .

F i

d i ,2
d i ,
√

F i

bi ,2
bi ,
√

F i

a i

. . .

. . .

F N

dN ,2 dN ,
√

FN

bN ,2 bN ,
√

FN

aN

. . .

. . .

...
...

...
...

...
...

Figure 3.12: Generic dependence graph for PCR FibPrimes2.

rameter:

IsPrime1(p, i) = pi > 1 ∧

⌊√
pi
⌋∧

j =2

#            «

notDiv
j
(pi ,

#     «

divs)

Let N = 7. The corresponding concrete dependence graph is shown in figure 3.13. Fol-
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lowing the graph, the result should be:

r =
7∑

i=1

[
#                   «

IsPrime1(
#    «

fibs)
]i

= 0 + [fibs(1) > 1] + [notDiv(fibs(2), divs(2))] + [notDiv(fibs(3), divs(2))]

+ [notDiv(fibs(4), divs(2))] + [notDiv(fibs(5), divs(2))] + [notDiv(fibs(6), divs(2))]

+ [notDiv(fibs(7), divs(2)) ∧ notDiv(fibs(7), divs(3))]

= 0 + [1 > 1] + [notDiv(1, 2)] + [notDiv(2, 2)]

+ [notDiv(3, 2)] + [notDiv(5, 2)] + [notDiv(8, 2)]

+ [notDiv(13, 2) ∧ notDiv(13, 3)]

= 0 + [False] + [False] + [True] + [True] + [True] + [False] + [True]

= 0 + 0 + 1 + 1 + 1 + 0 + 1

= 4

as expected. So, we have FibPrimes2(7) = 4.

In general, for any N ∈ N:

FibPrimes2(N ) =
N∑

i=1

i ∈ N 7→ #   «

fibs
i
> 1 ∧

⌊√
#   «
fibs

i
⌋∧

j =2

#            «

notDiv
j
(

#   «

fibs
i
,

#     «

divs)


i

(3.10)

3.3.1.2 General scheme

In general, indices are sequences of natural numbers. Let I be the index of a particular

execution of a PCR. Any child PCR inherits the index of the father and extends its

dimension by writing to its producer variable, say p, the (I , i)-th value pI ,i , for every

assignment i according to its iteration space. This multidimensional indexing allows for

the concurrent execution of any two instances I 6= J of the child PCR, each one generating

its own set of p values, namely pI ,i and pJ ,j . The root index of execution is taken to be

the empty sequence. 14

14More formally, we should write pI◦〈i〉 where ◦ concatenates sequence I with singleton 〈i〉. But the
formal treatment will come later.
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N = 7

p7 =
#    «

fibs
7

p1 =
#    «

fibs
1

c7 = a7c1 = a1

r

p2 =
#    «

fibs
2

c2 = a2

[c]1 [c]7

F 7 = p7

d7,2 =
#     «

divs
2

d7,3 =
#     «

divs
3

a7

F 1 = p1 F 2 = p2

[c]2

d2,2 =
#     «

divs
2

b2,2 =
#             «

notDiv
2 (

F 2, d2
)

a2a1 = False

b7,3 =
#             «

notDiv
3 (

F 7, d7
)

b7,2 =
#             «

notDiv
2 (

F 7, d7
)

. . .

. . .

. . .

Figure 3.13: Dependence graph for PCR FibPrimes2 when N = 7.

Next, we introduce the scheme for PCR composition through consumer. Elements of

distinct PCRs will be identified by sub-script notation.

Definition 3.4 (Consumer composition scheme). Let A and B be PCRs with k1 and

k2 consumers respectively. The computation of A composed with B through consumer

e ∈ 1..k1, on input x1, consists in the following operations for each i ∈ Ix1 and j ∈ Jx i
2
:

PCR A:

pi
1 := fp1(x1, p1, i)

ci
1,1 := fc1,1(x1, p1, i)

ci
1,2 := fc1,2(x1, p1, c1,1, i)

...
ci

1,e := r i
2 if endBi

...
ci

1,k1
:= fc1,k1

(x1, p1, c1,1, . . . , c1,k1−1, i)

r1 := r1 ⊗ fr1(x1, p1, c1,1, . . . , c1,k1 , i)

PCR B:

x i
2 := (x1, p1, c1,1, . . . , c1,e−1, i)

pi ,j
2 := fp2(x i

2 , p
i
2, j )

ci ,j
2,1 := fc2,1(x i

2 , p
i
2, j )

ci ,j
2,2 := fc2,2(x i

2 , p
i
2, c

i
2,1, j )

...

ci ,j
2,k2

:= fc2,k2
(x i

2 , p
i
2, c

i
2,1, . . . , c

i
2,k2−1, j )

r i
2 := r i

2 ⊕ fr2(x i
2 , p

i
2, c

i
2,1, . . . , c

i
2,k2
, j )

where:
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• Ix1 = {i ∈ lBnd1(x1)..uBnd1(x1) : prop1(i)}
Jx i

2
= {j ∈ lBnd2(x i

2)..uBnd2(x i
2) : prop2(j )} for any i ∈ Ix1

• p1, c1,1, ..., c1,k1 , r1 are the variables of PCR A, and

fp1 , fc1,1 , ..., fc1,k1
, fr1 are the basic functions associated to these variables.

• p2, c2,1, ..., c2,k2 , r2 are the variables of PCR B, and

fp2 , fc2,1 , ..., fc2,k2
, fr2 are the basic functions associated to these variables.

• ⊗ and ⊕ are the combiner operations of PCR A and B respectively.

Remark 3.5.

1. There is not a basic function fc1,e in PCR A. The value of c1,e at each assignment

i comes from the output of the i -th instance of PCR B (i.e. Bi), which is the final

value of r i
2.

2. B is assumed to be a basic PCR, whose input is written by A in variable x2. In

general, any x i
2 is a tuple of the form (x1, p1, c1,1, . . . , c1,e−1, i). This means B have

access to father’s input, all father’s variables till c1,e−1 and outer assignment i .

So, any basic function of B (including the lower/upper bound functions) can look

behind/ahead on the father stream variables subject to appropriate dependencies.

3. The present scheme is assuming that the PCR A is the root of the composition

hierarchy, so its index is the empty sequence. However, more generally, if A is not

at the root then it could be indexed at any index I , in which case the scheme can be

accommodated prepending all super-scripts with I (e.g. x I
1 , pI ,i

1 , x I ,i
2 , pI ,i ,j

2 , etc.).

1 // basic functions fp1 , fc1,1 , ... , fc1,k1
, fr1 , r1,0 for A

2 // lbnd , ubnd and prop for A
3
4 PCR A(x1)
5 par
6 p1 = produce fp1

x1 p1

7 c1,1 = consume fc1,1
x1 p1

8 c1,2 = consume fc1,2
x1 p1 c1,1

9
...

10 c1,e = consume B x1 p1 c1,1 ... c1,e−1 // PCR B call

11
...

12 c1,k1 = consume fc1,k1
x1 p1 c1,1 c1,2 ... c1,k1−1
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13 r1 = reduce ⊗ (r1,0 x1) (fr1
x1 p1 c1,1 ... c1,k1

)
14
15 // basic functions fp2

, fc2,1
, ... , fc2,k2

, fr2
, r2,0 for B

16 // lbnd , ubnd and prop for B
17
18 PCR B(x2)
19 par
20 p2 = produce fp2

x2 p2

21 c2,1 = consume fc2,1
x2 p2

22 c2,2 = consume fc2,2 x2 p2 c2,1
23

...
24 c2,k2

= consume fc2,k2
x2 p2 c2,1 c2,2 ... c2,k2−1

25 r2 = reduce ⊕ (r2,0 x2) (fr2
x2 p2 c2,1 ... c2,k2

)

Listing 3.7: Consumer composition scheme in syntactic form. In general, B(x2) expands

to B(x1, p1, c1,1, . . . , c1,e−1, i).

Now, just as we did previously for basic PCRs, we establish the composition scheme

behaviour as a function.

Proposition 3.2. Let A and B be PCRs with k1 and k2 consumers respectively, so that

A with input parameter type T and reducer variable of type D1 is composed with B
through consumer e ∈ 1..k1. Then, for all x1 ∈ T , the output of A at x1, to be written

A(x1), is determined if A terminates at input x1 and it holds: A(x1) =
⊗

i ∈ Ix1

#«

f A
i

for

some function
#«

f A ∈
#«

D1.

Proof. Let x1 ∈ T . In general, we have that B is a basic PCR with input type (abbr. T2)

T × #«

T p1 ×
#«

T c1,1 × · · · ×
#«

T c1,e−1 × N

According to proposition 3.1, for any x i
2 ∈ T2 where i ∈ Ix1 :

B(x i
2) =

⊕
j ∈ J

xi2

#«

f B
j

for some
#«

f B ∈
#«

D2

Now, proceed exactly like in proposition 3.1 except that in this case the stream function

for consumer e ∈ 1..k1 of A is defined as:

#«

f c1,e (x1, p1, c1,1, . . . , c1,e−1) = i ∈ N 7→ B(x i
2)
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where x i
2 = (x1, p1, c1,1, . . . , c1,e−1, i) and then obtain

A(x1) =
⊗

i ∈ Ix1

#«

f A
i

(3.11)

where
#«

f A =
#«

f r1(x1,
#«

g p1 ,
#«

f c1,1 , . . . ,
#«

f c1,e , . . . ,
#«

f c1,k1
).

In particular, for two single consumer PCRs A and B, equation 3.11 expands to:

A(x1) =
⊗

i ∈ Ix1

#«

f r1

i (
x1,

#«

g p1(x1), i ∈ N 7→
⊕

j ∈ J
xi2

#«

f r2

j (
x i

2 ,
#«

g p2(x i
2),

#«

f c2(x i
2 ,

#«

g p2(x i
2))
))

(3.12)

where x i
2 = (x1,

#«g p1(x1), i).

Coming back to our previous example FibPrimes2, equation 3.10 is almost a special case

of 3.12.15 Also, we have that

FibPrimes2(N ) = FibPrimes1(N ) for any N ∈ N

holds if

IsPrime1(Fi) = isPrime(Fi) for all Fibonacci numbers Fi with i ∈ 1..N .

In other words, if in the PCR FibPrimes1 we replace the basic function isPrime with

the PCR IsPrime1 and both behave the same under the relevant inputs generated by

FibPrimes1’s producer, we obtain a new PCR which is functionally equivalent to FibPrimes1.

And, of course, the same observation holds for any pair of PCRs conforming to definition

3.4.

3.3.2 Divide and Conquer

Property 3.1 shows that a basic PCR behaves like a function. This allows calling a PCR

from any basic function in a blocking way, where the caller holds until the call returns. Of

course, even if the caller is blocked, the parallelism inside the callee is preserved. Calling

a PCR as a function enables recursive parallelism. A prominent use case is divide and

conquer, which in turn is an special case of the Fork/Join pattern.

15The qualification “almost” is because, as was noted earlier, PCR IsPrime1 conforms to proposition
3.1 strictly for input N > 1, so there is a small deviation.
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Divide and conquer is an algorithmic technique consisting in partitioning a complex in-

stance of a problem into several smaller subproblems, solving each one independently, and

combining their solutions in order to calculate the final result. Each subproblem can be

solved directly if it is simple enough. Otherwise divide and conquer can be recursively

applied. In general the following functions are used:

• div: partitions a problem into subproblems.

• isBase: checks whether a problem is a base case.

• base: computes the solution for a base case.

• conquer: describes how to combine solutions.

A PCR scheme for this technique is presented in listing 3.8. The producer partitions the

original problem into subproblems using the iterDiv function. Consumers process each

subproblem, either using base or recursively calling PCR DC, depending on the result of

isBase. The reducer uses conquer to combine all the subproblems solutions. Here, r0 is

expected to compute the empty subproblem.

1 fun div(x) = ...
2 fun isBase(x,p,i) = ...
3 fun base(x,p,i) = ...
4 fun fr(x,p,c,i) = ...
5 fun r0(x) = ...
6
7 fun iterDiv(x,i) = div(x)[i]
8 fun subproblem(x,p,i) = if isBase(x,p,i)
9 then base(x,p,i)

10 else DC(p) // recursive PCR DC call

11 fun conquer(r,x,p,c,i) = r ⊗ fr(x,p,c,i)
12
13 lbnd DC = λ x . 1
14 ubnd DC = λ x . len(div(x))
15
16 PCR DC(x)
17 par
18 p = produce iterDiv x
19 c = consume subproblem x p
20 r = reduce conquer (r0 x) x p c

Listing 3.8: Divide and conquer scheme in syntactic form.

Now, we state without proof:
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Proposition 3.3. Let DC be a divide and conquer PCR with input parameter of type T

and reducer variable of type D . Then, for all x ∈ T :

DC(x ) =

len(div(x))⊗
i=1

#«

f r

i
(x ,

#   «

div(x ),
#                       «

subproblem(x ,
#   «

div(x ))) (3.13)

where

#   «

div(x ) = i ∈ N 7→ div(x )[i ]
#                        «

subproblem(x , p) = i ∈ N 7→
(
isBase(x , p, i) → base(x , p, i), DC(pi)

)
#«

f r (x , p, c) = i ∈ N 7→ fr (x , p, c, i)

Remark 3.6.

1. The nature of the recursive problem decomposition process of divide and conquer

is captured in proposition 3.3 using conditional notation mimicking the subproblem

definition.

2. PCR DC composes with itself through the consumer depending on the result of

isBase. However, the child PCR does not have access to the father’s stream variables

as in the ordinary composition scheme presented before —only the value pi is passed

in the call.

3. As we have iterDiv(x , i) = div(x )[i ] by definition, it is more convenient to work

directly with div .

4. In this scheme, the producer component has no dependencies on itself, so all its

assignments can be executed in parallel like the consumer.

In what follows, we discuss some concrete applications of the divide and conquer PCR

scheme.

Example 3.3.1. MergeSort1 is a divide and conquer PCR implementing the very well

known Merge Sort algorithm16 for efficiently sorting lists. Indeed, this is usually con-

sidered the prototypical divide and conquer problem, so we introduce it now as the first

example of this kind in listing 3.9 and figure 3.14. It works as follows:

16Firstly discovered by hungarian mathematician John von Neumann circa 1945.
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1. The producer generates two halves, say L1 and L2, of the input list L.

2. Instances of the consumer work, in parallel, on each sub-list Li . If len(Li) ≤ 1 then

Li is trivially sorted and is ready to be reduced (deemed a base case), otherwise the

procedure starts again on input Li .

3. The reducer merges the sorted halves of the input list.

1 fun div(L) = let m = blen(L)÷2c
2 in [L[1..m], L[m+1..len(L)]]
3 fun isBase(p) = len(p) <= 1
4 fun base(p) = p
5 fun ](x,y) = case x == [] → y
6 y == [] → x
7 x[1] <= y[1] → x[1] ++ ](tail(x),y)
8 x[1] > y[1] → y[1] ++ ](x,tail(y))
9 PCR MergeSort1(L)

10 par
11 p = produce iterDiv L
12 c = consume subproblem L p
13 r = reduce ] [] c

Listing 3.9: PCR MergeSort1 code. ] is the binary merge operation on lists.

L

p1

L1

r

p1,1

L1,1

p1,2

L1,2

...
...

r1,1

c1,1

r1,2

c1,2

r1

c1

p2

L2

p2,1

L2,1

p2,2

L2,2

...
...

r2,1

c2,1

r2,2

c2,2

r2

c2

Figure 3.14: Generic dependence graph for PCR MergeSort1.
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Let L = [5, 4, 3, 2, 1]. Following the graph, the result should be

r =

2⊎
i=1

#                        «

subproblem
i
(

#   «

div([5, 4, 3, 2, 1]))

= [ ] ]
2⊎

i=1

#                        «

subproblem
i
(

#   «

div([5, 4])) ]
2⊎

i=1

#                        «

subproblem
i
(

#   «

div([3, 2, 1]))

= [ ] ] r1 ] r2

= [1, 2, 3, 4, 5]

where:

r1 = [ ] ]
2⊎

i=1

#                        «

subproblem
i
(

#   «

div([5])) ]
2⊎

i=1

#                        «

subproblem
i
(

#   «

div([4]))

= [ ] ] base(div([4])[1]) ] base(div([5])[2])

= [4, 5]

r2 = [ ] ]
2⊎

i=1

#                        «

subproblem
i
(

#   «

div([3])) ]
2⊎

i=1

#                        «

subproblem
i
(

#   «

div([2, 1]))

= [ ] ] base(div([3])[1]) ] r2,2

= [1, 2, 3]

r2,2 = [ ] ]
2⊎

i=1

#                        «

subproblem
i
(

#   «

div([2])) ]
2⊎

i=1

#                        «

subproblem
i
(

#   «

div([1]))

= [ ] ] base(div([2])[1]) ] base(div([1])[2])

= [1, 2]

MergeSort1 has a very regular behaviour, for any non base case input there are exactly

two subproblems produced. In general, for any list L:

MergeSort1(L) =
2⊎

i=1

#                       «

subproblem
i
(

#   «

div(L)) (3.14)

=
2⊎

i=1

(
isBase(

#   «

div(L), i) → base(
#   «

div(L), i),

MergeSort1(
#   «

div
i
(L))

)

Example 3.3.2. NQueensDC is a divide and conquer PCR which resolves the N -Queens

problem. This is the problem of placing N chess queens on an N ×N chessboard so that

no two queens attack each other as depicted in figure 3.15, which is to say no two queens
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share the same row, column, or diagonal.

A brute force approach may be computationally prohibitive. For a standard 8× 8 chess-

board, the number of ways we can choose positions for 8 (identical) queens from 64 squares

amounts to (
64

8

)
=

64!

!8 · !(64− 8)
= 4426165368

which is huge considering there are only 92 possible solutions.17 For this kind of problem,

an useful technique is to do a systematic search, normally called backtracking, where

one incrementally builds candidates to the solution/s and discards partial candidates

(backtracks) as soon as it is determined (by some heuristic rule) they cannot possibly be

valid solutions, therefore reducing the number of possibilities. On a idealized machine,

the backtracking could be done all in parallel, but this is not the case in practice where

there are finite resources.

1 2 3 4 5 6 7 8

[3, 6, 8, 1, 4, 7, 5, 2]

Figure 3.15: One possible solution for a chessboard of size 8× 8: (Left) graphical repre-
sentation, (Right) linear representation as a list.

A chessboard configuration of size N × N is linearly represented as a list C of length N

where index k ∈ 1..N indicates the row and value C [k ] indicates the column of a queen

position (see figure 3.15). Value 0 is reserved to denote an empty row. The condition

for validly placing a queen at row i and column j on configuration C might be formally

17A formula for the exact number of solutions, or even for its asymptotic behaviour, is still unknown.
[28]
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stated as:

C [i ] = 0 Not in same row

∧ ∀ k ∈ 1..N : C [k ] 6= j Not in same column

∧ ∀ k ∈ 1..N : C [k ] 6= 0 ⇒ |C [k ]− j | 6= |k − i | Not in same diagonal

Our PCR solution is illustrated in listing 3.10. It is a divide and conquer approach where

not viable candidates are marked as (empty) base cases in order to search no further

on those paths. For example, consider configuration [0, 2, 0, 1] where first and third row

are empty, is possible to place a queen in the third row but is not possible for the first

row, thus the configuration can be discarded. Initially, input is assumed to be the zero

configuration [01, . . . , 0N ]. It works as follows:

1. The producer generates from input configuration C new candidate configurations,

say Ci , for each row of C where is possible to place a queen in the first valid column.

2. Instances of the consumer work, in parallel, on each candidate configuration Ci . If

Ci is complete (all the rows have a queen) or it is not possible to add more queens

in the empty rows without conflict then Ci is considered a base case, otherwise the

procedure starts again on input Ci .

3. The reducer joins the sets of solutions found.

1 fun validPos(C,i,j) = ...
2 fun addQInRow(C,i) = ...
3 fun canAddQInRow(C,i) = ...
4 fun canAddQueens(C) = ...
5
6 fun complete(C) = all (λj. j != 0) C
7 fun div(C) = [addQInRow(C,i) | 1 <= i <= len(C), canAddQInRow(C,i)]
8 fun isBase(p) = complete(p) or not canAddQueens(p)
9 fun base(p) = if complete(p) then {p} else {}

10
11 PCR NQueensDC(C)
12 par
13 p = produce iterDiv C
14 c = consume subproblem C p
15 r = reduce ∪ {} c

Listing 3.10: PCR NQueensDC code.
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In general, for any zero configuration C :

NQueensDC (C ) =

len(div(C ))⋃
i=1

#                       «

subproblem
i
(

#   «

div(C )) (3.15)

=

len(div(C ))⋃
i=1

(
isBase(

#   «

div(C ), i) → base(
#   «

div(C ), i),

NQueensDC (
#   «

div
i
(C ))

)

3.3.3 Composition through reducer

In this section we introduce the scheme for PCR composition through reducer. This form

of composition is somewhat more restrictive than in the consumer case considered before,

because here the inner PCR adopts the role of the combiner for the reducer operation of

the outer PCR.

Definition 3.5 (Reducer composition scheme). Let A and B be PCRs with k1 and k2

consumers respectively. The computation of A composed with B through reducer, on

input x1, consists in the following operations for each i ∈ Ix1 and j ∈ Jx i
2
:

PCR A:

pi
1 := fp1(x1, p1, i)

ci
1,1 := fc1,1(x1, p1, i)

ci
1,2 := fc1,2(x1, p1, c1,1, i)

...

ci
1,k1

:= fc1,k1
(x1, p1, c1,1, . . . , c1,k1−1, i)

r1 := r i
2 if endBi

PCR B:

x i
2 :=

(
r1, fr1(x1, p1, c1,1, . . . , c1,k1 , i)

)
if ¬∃ k ∈ Ix1 : i 6= k ∧ wrt(x k

2 ) ∧ ¬red(k)

pi ,j
2 := fp2(x i

2 , p
i
2, j )

ci ,j
2,1 := fc2,1(x i

2 , p
i
2, j )

ci ,j
2,2 := fc2,2(x i

2 , p
i
2, c

i
2,1, j )

...

ci ,j
2,k2

:= fc2,k2
(x i

2 , p
i
2, c

i
2,1, . . . , c

i
2,k2−1, j )

r i
2 := r i

2 ⊕ fr2(x i
2 , p

i
2, c

i
2,1, . . . , c

i
2,k2

, j )

where:

• Ix1 = {i ∈ lBnd1(x1)..uBnd1(x1) : prop1(i)}
Jx i

2
= {j ∈ lBnd2(x i

2)..uBnd2(x i
2) : prop2(j )} for any i ∈ Ix1
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• p1, c1,1, ..., c1,k1 , r1 are the variables of PCR A, and

fp1 , fc1,1 , ..., fc1,k1
, fr1 are the basic functions associated to these variables.

• p2, c2,1, ..., c2,k2 , r2 are the variables of PCR B, and

fp2 , fc2,1 , ..., fc2,k2
, fr2 are the basic functions associated to these variables.

• ⊕ is the combiner operation of PCR B and x⊗y = B(x , y) is the combiner operation

of PCR A.

Remark 3.7.

1. The combiner operation of A is the nested PCR B acting on binary inputs. The

value of r1 at reduction i comes from the output of the i -th instance of PCR B (i.e.

Bi) which is the final value of r i
2.

2. B is assumed to be a basic PCR, whose input is written by A in variable x2. In

general, any x i
2 is a pair of the form

(
r1, fr1(x1, p1, c1,1, . . . , c1,k1 , i)

)
, thus B is treated

as a binary operation so that x ⊗ y = B(x , y).

3. The algebraic properties of combiner ⊗ depend on the constituting elements of B.

This is considered in proposition 3.4.

Note that reduction in A is not an atomic operation, because combiner ⊗ (acting on

partial value r1) is implemented by the nested PCR B itself. For this reason, to avoid race

conditions on r1, it is enough to write B inputs on variable x2 when there is not another

written input for which B has not terminated. This condition, which works like a lock

mechanism, is more formally stated as follows:

¬∃ k ∈ Ix1 : i 6= k ∧ wrt(x k
2 ) ∧ ¬red(k) (3.16)

It should be noted that because this lock is very coarse-grained, the reducer is restricted to

operate necessarily in serial mode, as there could not be different instances of B working

in parallel. However, if the father A is a divide and conquer PCR, the different spawned

instances of A would have their own local reducers, which implies that reducers would be

necessarily serial only at the local level.
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1 // basic functions fp1 , fc1,1 , ... , fc1,k1
, fr1 , r1,0 for A

2 // lbnd , ubnd and prop for A
3
4 PCR A(x1)
5 par
6 p1 = produce fp1 x1 p1

7 c1,1 = consume fc1,1 x1 p1

8 c1,2 = consume fc1,2
x1 p1 c1,1

9
...

10 c1,k1
= consume fc1,k1

x p1 c1,1 c1,2 ... c1,k1−1
11 r1 = reduce B (r1,0 x1) (fr1 x1 p1 c1,1 ... c1,k1) // PCR B call

12
13 // basic functions fp2

, fc2,1
, ... , fc2,k2

, fr2
, r2,0 for B

14 // lbnd , ubnd and prop for B
15
16 PCR B(x2)
17 par
18 p2 = produce fp2

x2 p2

19 c2,1 = consume fc2,1
x2 p2

20 c2,2 = consume fc2,2
x2 p2 c2,1

21
...

22 c2,k2 = consume fc2,k2
x2 p2 c2,1 c2,2 ... c2,k2−1

23 r2 = reduce ⊕ (r2,0 x2) (fr2
x2 p2 c2,1 ... c2,k2

)

Listing 3.11: Reducer composition scheme in syntactic form. B(x2) expands to B(x , y)

where x , y ∈ D .

Proposition 3.4. Let A and B be PCRs with k1 and k2 consumers, respectively, so that

A with input parameter of type T and reducer variable of type D is composed with B
through reducer. Then, for all x1 ∈ T , the output of A at input x1, to be written A(x1),

is determined if A terminates at input x1, and it holds: A(x1) =
⊗

i ∈ Ix1

#«

f A
i

for some

function
#«

f A ∈
#«

D .

Proof. Let x1 ∈ T . In general, we have that B is a basic PCR with input type D × D .

It is also the case that B output type must be D . According to proposition 3.1, for any

x i
2 ∈ D × D where i ∈ Ix1 :

B(x i
2) =

⊕
j ∈ J

xi2

#«

f B
j

for some
#«

f B ∈
#«

D

Recall that x ⊗ y = B(x , y). Now, is (D ,⊗) an abelian monoid? It does not need

to. For example, take
#«

f B(x , y) = y , then even assuming J(x ,y) = J(y,x) we would have

x ⊗ y 6= y ⊗ x for different x and y .
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To ensure associativity and commutativity of ⊗ it is sufficient to assume a constant

iteration space J (i.e. one that does not depend on the input) and the following properties

for
#«

f B:

#«

f B(
#«

f B(x , y), z ) =
#«

f B(x ,
#«

f B(y , z )) (3.17)
#«

f B(x , y) =
#«

f B(y , x ) (3.18)
#«

f B(x ⊕ y , z ) =
#«

f B(x , z )⊕ #«

f B(y , z ) (3.19)

So, we have for any x , y , z ∈ D :

x ⊗ y =
⊕
j ∈ J

#«

f B
j
(x , y)

(3.18)
=

⊕
j ∈ J

#«

f B
j
(y , x ) = y ⊗ x

and

(x ⊗ y)⊗ z =
⊕
j ∈ J

#«

f B
j (⊕

k ∈ J

#«

f B
k
(x , y), z

)
=
⊕
j ∈ J

⊕
k ∈ J

#«

f B
j ( #«

f B
k
(x , y), z

)
by 3.19

=
⊕
j ∈ J

⊕
k ∈ J

#«

f B
j (

x ,
#«

f B
k
(y , z )

)
by 3.17

=
⊕
j ∈ J

#«

f B
j (

x ,
⊕
k ∈ J

#«

f B
k
(y , z )

)
by 3.18 and 3.19

= x ⊗ (y ⊗ z )

For the identity of ⊗, we just assume is the same identity of ⊕.

Now, proceed exactly like in proposition 3.1 to obtain

A(x1) =
⊗

i ∈ Ix1

#«

f A
i

(3.20)

where
#«

f A =
#«

f r1(x1,
#«

g p1 ,
#«

f c1,1 , . . . ,
#«

f c1,k1
).

In particular, for two single consumer PCRs A and B, equation 3.20 expands to:

A(x1) =
⊗

i ∈ Ix1

#«

f r1

i (
x1,

#«

g p1(x1),
#«

f c1(x1,
#«

g p1(x1))
)

(3.21)

where x ⊗ y = B(x , y) =
⊕
j ∈ J

#«

f r2

j (
x , y ,

#«

g p2(x , y),
#«

f c2(x , y ,
#«

g p2(x , y))
)
.
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3.3.3.1 Example: MergeSort with parallel Merge

In general, the most straightforward way to parallelize divide-and-conquer based algo-

rithms is to run the recursive calls in parallel. Indeed, we previously presented MergeSort1

(example 3.3.1), a divide and conquer PCR implementation of the merge sort algorithm

which operates in the aforementioned fashion. But, how good is MergeSort1 compared

to its serial counterpart?. For an input list of size n, the total work to be done at any

instance of MergeSort1 is dominated by the time spent on two subproblems (of roughly

same size, i.e. n/2) plus the time for two merge operations (linear on n) 18. This is

expressed as the recurrence

MS11(n) = 2 ·MS11(n
2
) + 2 ·Θ(n) = Θ(n · log(n))

Since the two subproblems are (logically) solved in parallel, the span should be

MS1∞(n) = MS1∞(n
2
) + 2 ·Θ(n) = Θ(n)

Therefore, speedup is

MS11(n)

MS1∞(n)
=

Θ(n · log(n))

Θ(n)
= Θ(log(n)) (3.22)

which is a slow growing improvement. Can we do better?. In a divide and conquer algo-

rithm, either the divide or conquer step can sometimes become a bottleneck if performed

serially. For MergeSort1, the divide step is trivial while the conquer step is a merge oper-

ation between two lists. The strategy for merge is traditionally taught as an (imperative

or recursive) Θ(n) algorithm, essentially the one employed in MergeSort1, moreover, it

doesn’t easily lends to parallelism (one could say it is inherently sequential). Contrary to

common practice, this is one of that cases in which it is better to design a new parallel

algorithm from scratch instead of trying to parallelize an existing serial one.

As an alternative we introduce PCR Merge, a divide and conquer PCR solution for the

merge problem, adapted from [2] and [29]. Here we assume the serial merge function

and the PCR are functionally equivalent. The key idea in this approach is to generate

18Actually, one of these two merges (reductions) is always trivially [ ] ] r for some list r , having a
constant cost. Thus we could countabilize a single merge operation like in the ordinary known Merge
Sort algorithm, but this doesn’t affect asymptotic behaviour.
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independent sub-merge problems to be solved and then joined. It works as follows:

1. The producer generates two sub-merge pairs, say (L1,1,L1,2) and (L2,1,L2,2), of the

input lists L1 and L2 according to the following strategy. Without loss of generality,

assume that list L1 is at least as long as sequence L2, then:

(a) Split L1 into two sub-lists L1,1 and L1,2 of approximately equal length.

(b) Let e be the first key of L1,2. Use binary search on L2 to find the point where

e could be inserted into L2.

(c) Split L2 at that point into two sub-lists L2,1 and L2,2.

2. Instances of the consumer work, in parallel, on each sub-merge pair (Li ,1,Li ,2). If

len(Li ,1) ≤ 1 and len(Li ,2) ≤ 1 then produce a base case merging Li ,1 with Li ,2,

otherwise the procedure starts again on input pair Li ,1 and Li ,2.

3. The reducer concatenates the resulting parts of the sub-merges.

Listing 3.12 presents PCR MergeSort2, an adaptation of MergeSort1 that composes with

PCR Merge through the reducer. This is a divide-and-conquer PCR nested in another

divide-and-conquer PCR. Both PCRs always generate two sub-problems, and both share

same identity element for their combiner operations. A small but important detail is that

PCR Merge uses a fixed order reducer (recall section 3.2.1) because its combiner ++ is not

commutative, which is interesting considering that this PCR computes a commutative

binary operation.

1 fun div1(L) = let m = blen(L)÷2c
2 in [L[1..m], L[m+1..len(L)]]
3 fun isBase1(p) = len(p) <= 1
4 fun base1(p) = p
5
6 PCR MergeSort2(L)
7 par
8 p1 = produce iterDiv1 L
9 c1 = consume subproblem1 L p1

10 r1 = reduce Merge [] c1
11
12 fun binarySearch(L,e) = ...
13 fun div2(L1,L2) = [(L11,L21), (L12,L22)] // ensure len ( L1 ) >= len ( L2 )

14 where m = blen(L)÷2c
15 L11 = L1[1..m]
16 L12 = L1[m+1..len(L1)]
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17 k = binarySearch(L2, L12[1])
18 L21 = L2[1..k]
19 L22 = L2[k+1..len(L2)]
20 fun isBase2(p) = len(p[1]) <= 1 and len(p[2]) <= 1
21 fun base2(p) = ](p[1],p[2]) // trivial merge

22
23 dep r2(i−1) → r2(i)
24
25 PCR Merge(L1,L2)
26 par
27 p2 = produce iterDiv2 L1 L2
28 c2 = consume subproblem2 L1 L2 p2
29 r2 = reduce (++) [] c2

Listing 3.12: PCR MergeSort2 code.

But, how better is MergeSort2?. The change is that MergeSort2 uses a parallel merge, so

we need to analyze this new PCR component first. The details are a bit more involved in

comparison to what we did for MergeSort1 previously and we refer the reader to details

(mutatis mutandis) in [29]. A crucial assumption we make here is that combiner ++ works

in constant time19, so the binary search (plus the work on sub-problems) dominates the

total work at any instance of PCR Merge. Let n be the total length of both input lists,

the work and span for parallel merge are given by:

M1(n) = M1(α · n) + M1((1− α) · n) + Θ(log(n)) = Θ(n) , 1
4
≤ α ≤ 3

4
(3.23)

M∞(n) ≤ M∞(3
4
n) + Θ(log(n)) = Θ(log2(n)) (3.24)

For the span, note that in the worst case, half of L1 must be merged with all of L2, that

is at most 3
4
n elements.

Now we analyze MergeSort2. The work of inner PCR Merge is asymptotically the same

as the ordinary serial merge, thus total work is the same as in MergeSort1:

MS21(n) = MS11(n) = Θ(n · log(n))

19One possibility to satisfy this tight assumption is to have a mutable list data structure with constant-
time access to the tip of the tail. As a downside, this might be a cache-unfriendly option.
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But the span gets a benefit:

MS2∞(n) = MS2∞(n
2
) + 2 ·M∞(n)

= MS2∞(n
2
) + 2 ·Θ(log2(n))

= Θ(log3(n))

Therefore, speedup now is

MS21(n)

MS2∞(n)
=

Θ(n · log(n))

Θ(log3(n))
= Θ

(
n

log2(n)

)
(3.25)

which is a bigger improvement than 3.22. Empirical assessment of this analysis should

account for parallel scheduling overhead, memory bandwdith and cache behaviour.

3.3.3.2 The indexing mechanism revisited

In the divide and conquer PCR scheme we presented, recursion is modeled by repeated

composition through the consumer with itself. It is evident that each recursive call does

not create or use different variables for each new instance20 —there is only one set of

variables for the PCR. Even so, there is no ambiguity on their content among the different

recursive instances. This is because of how indexing works, as the index of each new

recursive instance grows along the recursion depth, allowing to clearly distinguishing each

instance.

However, a DC scheme nested inside another DC scheme, like our previous PCR Merge-

Sort2, poses a problem for indexing as we have been handling it so far. In this setting,

recursion of the inner DC (Merge) may happen multiple times at different depths of the

outer DC recursion, allowing for different recursions of the inner DC to use the same

sequences of indices, thus incurring in ambiguity.21

To cope with the aforementioned situation, it is enough for the inner PCR indexing to

also keep track of the depth of the outer recursion where the inner recursion takes place.

A simple way to do this is to index the inner PCR by pairs of sequences I ; J where I is

20Surely, this would be the case in a concrete implementation of the PCR pattern.
21In fact, we detected this issue after formalizing in TLA+ and doing model checking on large enough

inputs.
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the father index (serving as a depth mark) and J is the proper index of the inner PCR

which will grow along with his recursion as normal. This also generalizes in the obvious

way using tuples of sequences. The approach can be appreciated in figure 3.16.

Figure 3.16: Generic dependence graph for PCR MergeSort2: (Left) outer PCR, (Right)
inner PCR Merge. Each 3 in the outer PCR expands to the right DAG instantiated
with an appropriate pair denoted by I ; i where I is the father index and i is the current
assignment at outer scope.22

3.4 PCR extension: iterate

In this section we consider an extension to the basic PCR elements described initially in

table 3.1. The iterate construct, presented in table 3.3, is regarded as a special kind

of consumer which provides a topology that is appropriate for parallel algorithms where a

22Actually, as there are always two merge operations because the first of them trivially combines with
the identity, each 3 expand to exactly two DAGs of PCR Merge arranged in sequence. The first DAG
will be shallow, because recursion is not needed to combine with the identity, is just a base case.
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manager PCR iterates a function (a basic function or another PCR), say f , starting from

some initial value v0

v0
1−−−→ f (v0)

2−−−→ f (f (v0))
3−−−→ f (f (f (v0)))

4−−−→ · · ·

until some convergence condition is met. Each iteration depends on the result of the pre-

vious one, thus a new iteration can’t start until the whole previous iteration has finished.

A common use case is given by any of the various iterative methods known to solve linear

systems for engineering applications. For example, a PCR could use iterate on the

PCR RedBlack (example 3.1.3) for an appropriate convergence condition.

Type Syntax

Iterative consumer ce = iterate cnd fce (v0 x ) x p c1 . . . ce−1
where fce is some iterable func-
tion with initial value v0 and ter-
mination condition cnd .

Table 3.3: PCR syntax extension for the iterate construct.

In each iteration, it is possible for the condition function cnd to look behind to decide on

previous values. But like produce, it is restricted to look-behind operations, as look-

ahead would generate a deadlock. The initial value of iteration is given by v0(x ), and

sometimes we refer to it as v0.

It should be noted that iterate was originally introduced in [8] with the intention to

be used as a standalone PCR primitive (in other words, a standalone special consumer).

In the present work, we allow iterate to be used in place of any consumer alongside

other components in a PCR, then the standalone version can be obtained as a special

case. Next, we present an abstract model for a PCR with an iterative consumer.

Definition 3.6 (Iterative PCR scheme). Let A be a PCR with k consumers and iterable

function fce in consumer e ∈ 1..k . The computation of A on input x consists in the

following operations for each i ∈ Ix and j ∈ N+:
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PCR A:

pi := fp(x , p, i)

ci
1 := fc1(x , p, i)

ci
2 := fc2(x , p, c1, i)

...

ci
e := s i ,j if cnd(s i , j )

...

ci
k := fck (x , p, c1, . . . , ck−1, i)

r := r ⊗ fr (x , p1, c1, . . . , ck , i)

If fce is a basic function:

s i ,1 := v0(x )

s i ,j := fce (s i ,j−1, x , p, i) if j > 1 ∧ ¬cnd(s i , j − 1)

If fce is the function computed by some PCR B with input

x2 and output r2:

s i ,1 := v0(x )

x i ,j
2 := (s i ,j−1, x , p, i) if j > 1 ∧ ¬cnd(s i , j − 1)

s i ,j := r i ,j
2 if j > 1 ∧ endBi,j

where:

• Ix = {i ∈ lBnd(x )..uBnd(x ) : prop(i)}

• p, c1, ..., ck , r are the variables of PCR A, and fp , fc1 , ..., fck , fr (except fce ) are the

basic functions associated to these variables.

• s is an auxiliary variable tracking the history of iteration values for each assignment,

i.e. a stream for each assignment.

• cnd is a convergence condition on stream s i and the current iterator index j (not

to be confused with the iteration space index assignment i).

• ⊗ is the combiner operation of PCR A.

1 // basic functions fp , fc1
, ... , fck , fr , r0 for A

2 // lbnd , ubnd and prop for A
3
4 fun v0(x) = ...
5 fun cnd(s,j) = ...
6
7 PCR A(x)
8 par
9 p = produce fp x p

10 c1 = consume fc1
x p

11 c2 = consume fc2
x p c1

12
...

13 ce = iterate cnd fce (v0 x) x p c1 ... ce−1 // iteration over fce
14

...
15 ck = consume fck x p c1 c2 ... ck−1
16 r = reduce ⊗ (r0 x) (fr x p c1 ... ck)
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Listing 3.13: Iterative PCR scheme in syntactic form.

Remark 3.8.

1. An iterative consumer introduces its own iteration space, because for each PCR

assignment i there is an iterator indexed by j ∈ N+ evolving incrementally and

independently from the other assignments. Consequently, s is a multidimensional

indexed stream variable.

2. The iterable function fce is used to iterate over its first argument, starting from v0,

but it also has access to input x , previous output variables and current assignment

i if it needs them in any iteration.

3. In case fce is another PCR, say B:

(a) Remark (1) applies similarly for variables in B.

(b) The type of first input parameter of B and his output type should coincide

with that of initial value v0.

(c) This situation might be seen as a composition through consumer occurring, for

each father PCR assignment, an arbitrary number of times.

Now, we re-state proposition 3.1 but considering our new addition.

Proposition 3.5. LetA be a PCR with k consumers and iterable function fce in consumer

e ∈ 1..k . Assume input parameter of type T , reducer variable of type D and v0 ∈ Z .

Then, for all x ∈ T , if A terminates at input x then the output of A at x , to be written

A(x ), is determined and it holds: A(x ) =
⊗

i ∈ Ix

#«

f A
i

for some function
#«

f A ∈
#«

D .

Proof. First, note that the only difference between this and proposition 3.1 for a basic

PCR is that we now allow an iterable function fce for consumer ce . This can be a basic

function or another PCR but as we already saw on proposition 3.2 both cases can be

treated seamlessly. In general, fce is a function of type

Z × T × #«

T p ×
#«

T c1 × · · · ×
#«

T ce−1 × N→ Z
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For simplicity, let’s fix all but the first parameter and write fce : Z → Z .

The iteration over fce : Z → Z can be expressed as the following recursive definition:

iter(s) =

s , cnd(s , len(s))

iter(s ◦ 〈fce (last(s))〉) , otherwise

so that for any initial value v0 it unfolds into the sequence

iter(〈v0〉) = 〈v0, fce (v0), fce (fce (v0)), fce (fce (v0)), fce (fce (fce (v0))), . . . 〉

of arbitrary length depending on condition cnd , which we assume to hold at some point.

This sequence is an explicit representation of the stream s , from the second step and

onwards is safe for cnd to look behind on previous values. The final result should be the

last value in the sequence, i.e. last(iter(〈v0〉)).

Now, proceed exactly like in proposition 3.1 except that in this case the stream function

for consumer e ∈ 1..k is defined as:

#«

f ce (x , p, c1, . . . , ce−1) = i ∈ N 7→ last(iter(〈v0〉, x , p, c1, . . . , ce−1, i))

and then obtain

A(x ) =
⊗
i ∈ Ix

#«

f A
i

(3.26)

where
#«

f A =
#«

f r(x ,
#«

g p ,
#«

f c1 , . . . ,
#«

f ce , . . . ,
#«

f ck ).

In particular, for a single consumer PCR A, equation 3.26 expands to:

A(x ) =
⊗
i ∈ Ix

#«

f r

i(
x ,

#«

g p(x ), i ∈ N 7→ last(iter(〈v0〉, x ,
#«

g p(x ), i))
)

(3.27)

Let us now consider a standalone version for the iterate construct that we will put to

use in upcoming example 3.4.1. Suppose we just want to iterate some PCR B starting

from initial value v0 ∈ Z so that the intended result should be the final value computed by

B. This means B behaves as a function of type Z → Z . Computation can be started from

a PCR A defined on a singleton iteration space I = {0} without producer and consumers

other than a iterative consumer over B, but recall we still need a final reducer (remark

3.1). The right projection operation (i.e. a ⊗ b = b) will do fine here in the reducer, and
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the choice for initial reduction value r0 ∈ Z is irrelevant because the output of A is given

by

r = r0 ⊗
#«

f ce

0
(x ) =

#«

f ce

0
(x ) = last(iter(〈v0〉))

so we give up the usual algebraic properties expected for the combiner as they are not

important for A.23 This approach is illustrated in listing 3.14 where the left side can be

seen as syntactic sugar for the right side. Of course, if v0 is known to be a fixed constant

then there is no need for input parameter x in A.

1 fun v0(x) = ...
2 fun cnd(s,j) = ...
3
4 PCR A(x)
5 c = iterate cnd B (v0 x)
6
7 PCR B(x2)
8 ...

1 fun v0(x) = ...
2 fun cnd(s,j) = ...
3 fun ⊗(r,c) = c
4
5 ubnd A = λ x . 0
6
7 PCR A(x)
8 par
9 c = iterate cnd B (v0 x)

10 r = reduce ⊗ (r0 x) c
11
12 PCR B(x2)
13 ...

Listing 3.14: The standalone iterative PCR (left) is implemented as the complete PCR
on the right.

Example 3.4.1. We saw previously in example 3.3.2 a divide and conquer PCR solution

for the N -Queens problem. Now, we present in listing 3.15 and figure 3.17 an alternative

solution employing the iterate construct. Nevertheless the overall idea is pretty much

the same. 24

Our main PCR NQueensIT is a standalone iterative PCR that is assumed to receive as

input a zero configuration [01, . . . , 0N ] and iterates the subsidiary PCR NQueensITstep

starting from singleton set { [01, . . . , 0N ] }. At any iteration, NQueensITstep works as

follows:

23In fact, right projection is associative over any domain.
24As a minor difference, they differ for N = 0. The DC solution returns the empty set, whereas the

iterative solution returns the singleton set with the zero configuration.
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1. The elem producer enumerates an input set CS of configurations, distributing each

configuration to a corresponding consumer.

2. Instances of the extend consumer work, in parallel, on each candidate configuration

pi . If pi is complete (all the rows have a queen) then the result is just {pi}, otherwise

it generates a set containing further possible candidate configurations (for which it

relies on essentially the same div function from the divide and conquer version,

except that here we use a set instead of a list).

3. The reducer joins the sets of candidates generated at the consumers.

Iteration of NQueensITstep finishes when the fix point condition s j = s j−1 (for j > 1) is

reached, which means there are no more solutions.

1 fun cnd(s,j) = j > 1 and s == s[−1]
2
3 PCR NQueensIT(C)
4 c1 = iterate cnd NQueensITstep {C}
5
6 fun validPos(C,i,j) = ...
7 fun addQInRow(C,i) = ...
8 fun canAddQInRow(C,i) = ...
9 fun complete(C) = all (λj. j != 0) C

10
11 fun elem(CS,i) = enum(CS)[i]
12 fun div(p) = {addQInRow(p,i) | 1 <= i <= len(p), canAddQInRow(p,i)}
13 fun extend(p) = if complete(p) then {p} else div(p)
14
15 lbnd NQueensITstep = λCS. 1
16 ubnd NQueensITstep = λCS. #(CS)
17
18 PCR NQueensITstep(CS)
19 par
20 p = produce elem CS
21 c2 = consume extend p
22 r = reduce ∪ {} c2

Listing 3.15: PCR NQueensIT code. # is the set cardinality operator, and enum is a

(deterministic) enumeration of a set into a list.
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Figure 3.17: Generic dependence graph for PCR NQueensIT: (Left) outer PCR, (Right)
inner PCR NQueensITStep. Each 3 in the outer PCR expand to the right DAG instan-
tiated with an appropriate index i , j where i is the current assignment at outer scope and
j is the current iteration at i . As the iteration space of NQueensIT is the singleton set
{0}, we have i = 0 always.
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Chapter 4

The TLA+ specification language

Thinking doesn’t guarantee that we won’t make mistakes. But not thinking

guarantees that we will.

Leslie Lamport

In this chapter we provide a historical and theoretical background for Lamport’s TLA+

specification language. This is the formal tool that we will use to specify and reason about

the PCR pattern in the next chapter. Our presentation is mostly based on the textbook

Specifying Systems [30] and also [31, 32, 33].

TLA+ is a formal specification language that can be analyzed into two fragments: (1)

The Temporal Logic of Actions (TLA) [34], a variant of Pnueli’s original temporal logic

[35] that makes it practical to write a specification as a single formula, and (2) a first

order theory based on Zermelo–Fraenkel set theory with the axiom of Choice (ZFC) which

Lamport likes to call ZFM [36], and which is the “+” in TLA+. So, to put it simply: TLA+

= TLA + ZFM. In the framework of TLA+, computation is understood as the discrete

evolution of state described by a temporal logic formula, where the state is formed by

logical structures described with ZFM. Consequently, in our discussion we will distinguish

between two aspects of TLA+ that we call the dynamics and the statics.

TLA+ possesses various relatively mature tools. In particular, it supports automated ver-

ification (on finite models) by model checking with the TLC tool [37] and semi-automated

verification by theorem proving using the TLAPS tool [38].1 Although most of this tools

are standalone and can be used more or less comfortably from the command line, there

1A more recent model checking alternative is the APALACHE model checker which is based on
symbolic techniques instead of the classic explicit enumeration of states. [39]
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is also an IDE [40] available that is very well integrated with the tools and it is generally

considered as the preferred way to work with TLA+. Good tool support is a very desirable

feature for a formal language (specially for industrial use) so we will also dig a bit on the

workings of the aforementioned tools.

4.1 Specification and verification of computer sys-

tems: from Turing to Lamport

One of the biggest challenges in computer science and software engineering is to devise

appropriate techniques to reduce the number of errors2 in computer and/or software based

systems. This is becoming increasingly important as these systems become omnipresent

in our lives. The earliest reference we have in the literature for this kind of activity goes

back (once again!) to the work of Charles Babbage in the 1800s who wrote about the

“Verification of the Formulae Placed on the [Operation] Cards” of his analytical engine

[41]. Now, the analytical engine is not considered a “computer” in the modern sense of the

word, so let us move forward. It is commonly agreed that modern computation starts with

the work of Alan Turing on the Halting Problem circa 1936, so we will start chronologically

from there till Lamport’s work on TLA+, which will be subsequently developed in the rest

of the chapter. As a disclaimer, we do not pretend to give a complete review of the field

here. Rather, our focus is on what are generally known as state systems, concurrency

phenomena and their related methods. Even so it is impossible to do justice to every

contribution, and it should therefore be expected that a lot of important work will result

largely omitted. This section in particular is inspired by [41] which is instead focused on

sequential and imperative programs.

2More colloquially known as “bugs” for some funny historical reason. In 1947, an error in the Mark
II (an electromechanical computer) was traced to a moth trapped in a relay, and that is considered the
first recorded instance of an actual bug.
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4.1.1 Turing: the birth of computing

In 1928, mathematicians David Hilbert and Wilhelm Ackermann posed the Entschei-

dungsproblem (German for “decision problem”) as a challenge [42]. The problem asks

for a general decision procedure (nowadays we say an “algorithm” or a “program”) that

determines whether a formula in a first-order logic is universally valid. To settle the

problem, first a sensible notion of what an algorithm is had to be formally defined. In

1936, the seminal work of Alan Turing [43] introduced the idea of a Turing machine,

a simple hypothetical machine capable of executing arbitrarily complex procedures and

whose expressive power is still today unsurpassed. With this notion of algorithm, he then

addressed the halting problem: the existence of a general procedure to decide whether an

arbitrary algorithm runs forever or eventually halts, on given input. Turing proved such

a procedure couldn’t exists, so the halting problem turned out to be undecidable and this

also proved, via a reduction argument, the Entscheidungsproblem is undecidable, thus

giving a negative answer to Hilbert. 3 4

There is another implication here that concerns us more directly: a general verification

method for algorithms cannot exist because for any such method there would be certain

propositions about the algorithm that the method cannot prove or refute. Impossibility

results are a very important part of our fundamental knowledge: they do have a negative

significance but they are not a dead end —instead they serve as the starting point to

further explore what is realistically achievable in practice. This means that different

verification methods have to make trade-offs on their goals and for this reason they are

normally targeted for particular kind of systems or properties. We accept as a fundamental

consequence of the undecidability that the more general these methods try to be, the less

3Working independently and roughly at the same time, Alonzo Church arrived at the same result
based on his λ-calculus which turned out to be equivalent to Turing machines as a model of computation
[44].

4As late as 1930, Hilbert believed that there would be no such thing as an unsolvable problem. Together
with Godel’s incompleteness theorems in 1931, the undecidability was another big hit to the so called
Hilbert’s formalist programme: an attempt to provide a secure foundations for mathematics in response
to the foundational crisis of mathematics in the early 20th century. In fact, the incompleteness and
undecidability results are closely related, for example, the first incompleteness theorem (either Godel’s or
Rosser’s stronger version) can be proved from the halting problem without messing with Godel numbers
[45].
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automatic they will be, thus requiring more effort and expertise. Intuitively speaking,

all verification methods lie on a spectrum of the effort they require and the confidence

they provide. Typically, a fairly vague distinction is made between lightweight methods

and heavyweight methods, in the sense that lightweight tends to the the low end of the

spectrum and heavyweight tends to the upper end.

Turing himself published work on algorithmic correctness in 1949, suggesting an assertive

method where the correctness of the whole follows from the correctness of assertions on

the parts, and he represented graphically this idea using boxed flow diagrams.5 A similar

idea was elaborated almost two decades later by Floyd who was unaware of Turing’s work.

4.1.2 Floyd and Hoare: Axiomatic semantics

Floyd introduces in his 1967 landmark paper [3] the first systematic methodology for im-

perative program verification based on inductive assertions, although his main motivation

was the idea that the semantics of a programming language may be defined independently

of processors of the language, much in the style of McCarthy’s earlier work on recursive

functions.

Floyd’s method is based on annotating a flow chart (a directed graph of commands that

constitutes the algorithm) with assertions (propositions expressed in a logical language)

which relate values of variables in the algorithm. As a simple example, figure 4.1 shows the

flowchart for an algorithm that computes the sum of the series a1, a2, . . . , an and stores it

in variable S . The assertion at the entry point (see node START) is called the precondition,

and the assertion at the exit point is called the postcondition (see node HALT). The basic

notion of correctness is that whenever the initial values of the program variables satisfy

the precondition, the final values on completion will satisfy the postcondition.6

In general, verification in this method works roughly as follows. Annotate each command

5In fact, this is preceded by work of Goldstine and von Neumann in 1947 [46].
6Floyd did not used this pre/post terminology, it was introduced later by Hoare.
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Figure 4.1: Flowchart of an algorithm that computes S =
∑n

j =1 aj , taken directly from
Floyd’s original paper [3]. We write N+ instead of J + for the set of positive integers.

ci with a proposition Pi such that any pair of successive annotations are inductive: the

execution of ci in a state satisfying Pi guarantees at completion Pi+1. Then, by tran-

sitivity, correctness follows. In particular, for the algorithm in figure 4.1 the main goal

is to prove that on input n ∈ N+ the program guarantees at completion S =
∑n

j =1 aj .

Floyd recognized his inductive method as the basis for proofs of relations between input

and output, but there is nothing guaranteeing the exit will ever be reached —instead

termination is simply assumed. For this reason, this form of correctness would later be

more precisely known as partial correctness. Nevertheless, in the same paper he also con-

sidered termination proofs by the method of well founded sets. Partial correctness plus

termination is known as total correctness.

Subsequent work by Hoare in 1969, heavily influenced by Floyd’s, introduced an axiomatic

approach for inferring and proving properties of sequential algorithms based on triples

instead of flowcharts. Hoare triples are annotated segments of programs (more formally,

theorems) of the form {P}Q{R} where Q is a piece of program and P and R are logical
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propositions respectively known as the pre-condition and post-condition 7. For example,

the triple

{x = r + y × (1 + q)} q := 1 + q {x = r + y × q}

can be read as stating that if the assignment statement q := 1+q is executed in any state

where the values are such that x = r +y×(1+q) then, assuming execution terminates, the

state after the execution of the assignment will be such that its values make the assertion

x = r + y × q true. The sum example of figure 4.1 can be expressed as the the following

triple:

{n ∈ N+ }
i := 1

S := 0

while i ≤ n do
S := S + ai

i := i + 1

{S =
∑n

j =1 aj }

Hoare provided several axioms and rules to reason about programs. For example, the

following iteration rule (D3) is used to prove the correctness of a loop segment:

{P ∧ B} S {P}
D3
{P} while B do S {¬B ∧ P}

In D3, the formula P is called the loop invariant : a property of the loop that is true

before (and after) each iteration. Intuitively speaking, it captures the “essence” of the

loop, and it accomplishes the same role as the induction hypothesis in inductive proofs.

Note that termination is not proved by this rule, i.e. this is a partial correctness rule.

Hoare triples are considered an improvement in mathematical notation for proofs of pro-

gram properties. Triples are also more compositional than flowcharts. Mostly, the work

of Hoare is a clearer exposition of Floyd’s ideas. Indeed, Hoare’s logic is usually called by

the name Floyd-Hoare logic. Now, we point to what we consider the two main drawbacks

of this early developments:

1. Doing proofs in this framework is a task that requires human ingenuity, usually

7Original notation was P{Q}R, but {P}Q{R} gained more use with time.
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resulting in long very detailed proofs. For this reason, the scalability of the approach

for industrial software was questioned. Subsequent developments aimed to mitigate

this difficulty. Maybe as the most prominent example Dijkstra proposed the idea

of program derivation which means to “develop proof and program hand in hand”

[47]. For this, he introduced a reformulation of the Floyd-Hoare logic that allowed a

great deal of automation in proof development. As it turns out, the loop invariant

is (in general) the only part that needs to be provided by the user and that cannot

be automatically deduced.

2. The classical point of view is that an algorithm computes a (partial) function. Now,

it was observed that a lot of software does not seem to fit into such paradigm in

a natural way, for example an OS does not need to terminate (rather, termination

would be abnormal). The concurrency phenomena, which in general encompasses

parallel computing and distributed and/or reactive systems, was lacking semantics

and appropriate methods to reason about errors like deadlocks, livelocks, etc. that

commonly plague concurrent systems. To cope with this, some of the subsequent

developments tried to adapt the Floyd-Hoare logic (e.g. the Owiki-Gries method

[48]) while still working within the realm of classical logic. But most notoriously

others introduced new formalisms like process algebras (e.g. CSP [49]) and temporal

logics (our next section).

4.1.3 Pnueli: Computer Science meets Temporal Logic

Classical logic is appropriate to reason about mathematical truth. When a theorem is

considered proved its truth is established, and we do not expect that to change later

unless an error in the proof is found. For example, the truth of the statement 2 + 2 = 4

does not change with time. Consider the following statements about rain events: A =

“It’s raining” and B = “It’s going to rain tomorrow”. They are indistinguishable as

propositions for classical logic, however B explicitly refers to the future. Philosopher

Arthur Prior developed Tense Logic (nowadays known as temporal logic) as a linguistic

tool to study the use of modality and intentionality in natural languages [50]. Temporal
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logic is actually an umbrella term, in particular it can be regarded as a kind of modal logic

intended to reason about expressions with tense, that is, expressions with qualifications

of time (e.g. statement B). Prior was interested in philosophical problems concerning

determinism and free-will, which can be traced back to the problem of Future Contingents

that is exemplified by Aristotle in his treatise De interpretatione as follows: let P = “There

will be a sea battle tomorrow”. By the principle of bivalence then either P is true or P is

false. If P is predicted to be true (the other case is analogous) then P was true today and

also at any time in the past, which means it is true by necessity leaving no room for chance

(i.e. future is already determined, and this is unlikely to be compatible with the usual

notion of free-will). Some authors adhere to the view that this kind of statements cannot

be assigned a well-defined truth value, thus making the classical principle of bivalence

fail.

In researching the problem of systems verification, computer scientist Amir Pnueli came

across the work of Prior and he realized that this kind of non-classical logic was a perfect

fit for computer science where the objects under study are systems that evolve in (discrete)

time and the truth of whose properties may vary with time. His findings first appeared

in a landmark 1977 paper: The temporal logic of programs [35]. Pnueli summarized his

work as an unifying framework that allows verification of both sequential and concurrent

programs. In this framework, any kind of program is represented as a dynamic discrete

system defined by a structure (S ,R, s0) where S is the (possibly infinite) set of system

states, R is a transition relation between the states and its possible successors, and s0 is

the initial state. Then, an execution σ of the system (a.k.a. trace or run) is a (possibly

infinite) sequence of states

σ = s0 , s1, s2, . . .

such that (si , si+1) ∈ R for any i ≥ 0.8 To represent a sequential program, the state is

further structured as a pair (π, u) where π is the control component indicating current

processor location (typically identified by labels l0, l1, etc.) for the program and u is

the data component with processor’s state (i.e. the memory). To represent a concurrent

8This approach bears a strong connection to the work of Keller on labeled transition systems (1976)
and the Kripke structures used by Kripke (1960s) to give semantics to modal logic.
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program the same idea is extended: state is (π1, ..., πn ; u) where each πi is the control for

processor i , and u is the state shared among all processors. So, the framework admits n

programs to be concurrently run by n processors. At each step of the whole system, one

processor is selected, say i , and the statement at the location pointed to by πi is executed

atomically.

Pnueli reduced the notion of correctness to two main notions: 9

1. Invariance: a property holding continuously throughout the execution of a pro-

gram. This covers the already mentioned concept of partial correctness of sequential

programs but also concepts like mutual exclusion and deadlock freedom for concur-

rent programs.

2. Eventuality: a dependence in time in the behaviour of a program. This covers

the already mentioned concept of total correctness of sequential programs but also

more general concepts like responsiveness for reactive systems.

To put these notions more formally, first define the set X of reachable states of a system

(S ,R, s0) as

X = {s : R∗(s0, s)} ⊆ S

where R∗ is the transitive closure of R. Let α be a predicate on states. Then α is

an invariant property of the system if α(s) holds for all s ∈ X . In particular, partial

correctness can be stated as the invariant property:

π = lend ⇒ (P ⇒ R)

where lend is the label for program exit point, P is the pre-condition and R is the post-

condition. Eventualities are expressed in terms of the temporal operator ; (leads to)10

that involves two time variables and is defined as follows:

α ; β = ∀ i : ∃ j ≥ i : α(si) ⇒ β(sj )

In particular, total correctness (which only makes sense for programs that are supposed

9These notions were introduced a bit earlier by Lamport as Safety and Liveness respectively.
10Pnueli’s original symbol to denote this operator is not easy to reproduce here, so we prefer to use

symbol ; which is used in TLA+ for the same purpose.
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to halt) can be stated as the eventuality:

(π = l0 ∧ P) ; (π = lend ∧ R)

where l0 is the label for program entry point.

Pnueli shows how to prove invariance and eventuality properties applying already known

proof methods from other authors. More interestingly, he presents a set of axioms and

rules to develop deductive proofs. However, the deductive approach for temporal reasoning

was better elaborated in his subsequent work [51] where he introduces a full fledged logic

called Linear Temporal Logic (LTL) in which the formulas of the logic are interpreted

over sequences of states. LTL possesses the following primitive temporal operators11

• 2α (always): α is always true in the future.

• 3α (eventually): α is eventually true in the future.

• eα (next): α is true in the next instant.

Then, the binary eventuality operator ; commented earlier can be defined in terms of

the primitive unary operators as

α ; β = 2(α ⇒ 3β)

Some authors introduced other binary operators in the logic. For example, α U β (until)

means that α has to hold at least until β becomes true. It is known that U cannot be

expressed in terms of the unary operators like we did for ;.12

The point of view stressed by Pnueli was that Temporal Logic is an approach to both

semantics and verification that provides a formalism for proving temporal properties of

systems (of any kind) based on their temporal semantics. However, he admitted the

same first drawback we pointed earlier for the Floyd-Hoare approach: proofs may require

much effort. In this regard, he hoped that systematic experience could facilitate the task.

11Actually, this is not the original symbolism, but it is the most common nowadays. Most of this
symbols where adopted first in modal logic.

12Hans Kamp was the first to introduce the binary operators U (until) and S (since), and proved a
remarkable result concerning their expressive power: every temporal operator on a class of continuous,
strict linear orderings that is definable in first-order logic is expressible in terms of U and S. [52]
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The introduction of LTL triggered a lot of research into possible variants of this logic,

connections with automata theory and connections with predicate first-order (and second-

order) theories. Indeed, today we have a big zoo of temporal logics (as well for other kind

of logics). Instead of thinking there is a single one true logic to be discovered, a pluralist

point of view is much accepted either by philosophical or pragmatic reasons.

After LTL, special mention is deserved for Computational Tree Logic (CTL). In 1981,

Clarke and Emerson [53] (also independently [54]) introduced CTL as an alternative tem-

poral logic where time forms a branching structure (trees) instead of a linear structure

(sequences) like in LTL. This logic adds new temporal operators that allow to quantify

over the possible future paths of execution, something not possible in LTL.13 But more

importantly, in the same work they proposed the verification method of model-checking :

both the system and its properties are formulated in some logic, then to check that the

system satisfies the desired properties means, in terms of formal logic, to check whether a

structure (representing the system) satisfies a formula (representing the desired property).

This general concept applies to many kinds of logic, and allows for an automated verifica-

tion method of properties over (typically finite) systems. It does not need the same kind

of effort and expertise required for deductive proofs —however matters of decidability

and complexity can be a limiting factor for their effective applicability. Also, it should be

noted that this method is usually applied over an abstraction of the system and not an

implementation of the system itself (harder but possible) leaving a formal gap between

the real system and what is actually verified.14

4.1.4 Lamport: the search for a practical formalism

Leslie Lamport is best known by his pioneering work in concurrent and distributed sys-

tems.15 But perhaps less known is all his work on methods and formalisms for rigorously

13As it turns out, LTL and CTL are not comparable, i.e. neither is more expressive than the other.
The combination of LTL and CTL capabilities is called CTL*.

14Interestingly, if we compare this situation with the classic engineering branches, the “gap” is also
there. Any system of equations can only describe an abstraction of the physical object, not the object
itself. Software can also be an abstract mathematical object in the mind of the designer, but its ultimate
execution is a physical phenomena outside the realm of formal logic.

15And, of course, the LATEX document preparation system
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establishing the correctness of algorithms. His most important contribution in this regard

is TLA and the later TLA+.

Initially, Lamport found the temporal logic introduced by Pnueli appealing because it

was appropriate to express both the notions of safety and liveness and, in principle, it

allows a concurrent system to be described by a single formula.16 But later he became

disillusioned with its practicality when he saw his colleagues:

“...spending days trying to specify a simple FIFO queue — arguing over

whether the properties they listed were sufficient. I realized that, despite

its aesthetic appeal, writing a specification as a conjunction of temporal prop-

erties just didn’t work in practice.”

Lamport became convinced that the only practical way to specify non-trivial systems is

to describe them as a kind of abstract state machines. This led him to the invention

of TLA in the late 80s, a mathematical foundation for describing concurrent systems

that adopts some operators of ordinary temporal logic but relies mostly on the concept

of action: a function over a pair of states (i.e. a transition). A TLA formula is used

to describe the possible executions of the system as a state machine. Some of the most

salient characteristics of TLA are the following:

1. TLA is designed to restrict the need for temporal reasoning to a bare minimum.

Lamport argues that temporal formulas tend to be harder to understand than for-

mulas of ordinary first-order logic, and temporal logic reasoning is more complicated

than ordinary mathematical reasoning.17 Consequently, in practice the 95% of a

TLA specification usually consists of ordinary non-temporal mathematics.

2. Unlike other frameworks like the Floyd-Hoare logic where the system and its proper-

ties are written in a different language, TLA is an universal mathematical notation

in which both the system and its claimed properties are formulas in the same logic.

Consequently, system S satisfies property P if and only if S ⇒ P is a valid formula

16In other specification languages, for example Z, there is no single formula or object that mathemati-
cally constitutes the specification.

17For example, the deduction theorem of classical logic fails in temporal logic. The proof rule α ` 2α
is valid, but α ⇒ 2α is not a theorem. For this and other reasons, Lamport claims temporal logic is
“evil”, although he consider it a “necessary evil”.
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of the logic. Moreover, system S2 is a refinement of system S1 if and only if S2 ⇒ S1

is a valid formula of the logic.

3. The e (next) and U (until) temporal operators that are commonly seen in ordinary

temporal logic are absent in TLA. The former is incompatible with stuttering invari-

ance (a characteristic to be discussed in the next section) and the later can be, at

least in principle, defined but it is discouraged as temporal reasoning is deliberately

restricted.

However, TLA is not by itself a full specification language, since it does not e.g. fix the

interpretation of elementary function and predicate symbols such as + and ∈ . Lamport

needed an underlying language to describe the data manipulated by TLA and he wanted

it to be as simple as possible. For him, this meant that such language should be based on

ordinary mathematics and be as far away as possible of a programming language. During

a visit to Oxford in 1991, he explored the possibility of adding TLA to the Z specification

language [55], the result would have been called TLZ but it never saw the light of day.

He writes about it:

“Tony Hoare was at Oxford, and concurrency at Oxford meant CSP. The Z

community was interested only in combining Z with CSP — which is about

as natural as combining predicate logic with C++.”

Later, around 1993, he completed a full formalism called TLA+ that is based on a vari-

ant of Zermelo-Fraenkel set theory with choice (ZFC) for describing the data. ZFC is

widely accepted by mathematicians as the basis for formalizing mathematical theories.

Other formal languages like Z, (Event-)B [56] and Mizar [57] are also based on some ax-

iomatization of set theory18; however, these languages impose a typing discipline on set

theory, whereas TLA+ is untyped following common mathematical practice. As a conse-

quence, type correctness needs to be asserted (and proved) as an invariant, i.e. like any

other invariant property, and is not a syntactic requirement. This is possibly the most

controversial design choice. Lamport argued that imposing a decidable type system on

a specification language leads to unacceptable restrictions of the expressiveness of that

18Not necessarily the well known and more standard ZFC. For example, Mizar is based on
Tarski–Grothendieck set theory, a non conservative extension of ZFC. In fact, Mizar had in 2007 the
largest library of formalized mathematics. [58]
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language. In a joint paper with Larry Paulson titled Should your specification language

be typed? [59] they discuss the advantages/disadvantages of typed/typeless formalisms.

They write:

“Some computer scientists are so used to thinking in terms of types that they

find untyped set theory completely unnatural... They feel that we should not

be allowed to write a nonsensical formula like 2 ∩ N... There are mathemati-

cians and computer scientists who find untyped set theory to be completely

natural. To them, not being allowed to write 2 ∩ N is a confusion of syntax

with semantics—like trying to redefine the grammar of English so that ‘Rocks

are carnivores’ is not a well-formed sentence.”

It is out of scope to give our own opinion on this subject, but one thing is certain, there

is not other formal language in existence that resembles better the feeling of the ordinary

pen-and-paper (set theoretic based) mathematics that most people is used to. And this

is in part for being untyped.

TLA+ was not originally designed with any form of mechanical verification in mind. This

is because “the fundamental goal of TLA+ is not to provide tools for finding bugs, it’s

to teach people a better way to think about systems”, but also because TLA+ is a very

expressive language. However, to Lamport’s surprise, a model checker, called TLC, was

developed in 1999 [37]. Later, a theorem prover, called TLAPS, started development in

2008 [38].19 We think that cases of industrial success of TLA+ like the one reported by

Amazon engineers in [60] would not have been possible without mechanical tool support,

even if they themselves acknowledge that specification by itself is helpful.

4.2 TLA+ dynamics: Temporal Logic of Actions

In this section we make emphasis in the dynamic part of TLA+, that is, the temporal

logic that is used to describe and reason about the evolution of the state. We believe it is

instructive to describe first what is actually called “raw” TLA (rTLA), a simplified version

19It should be noted that these tools are not without limitation. None of them supports TLA+ fully,
however it can be argued that for most practical purposes it is not really necessary.
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of TLA, and then motivate by example the introduction of TLA as a syntactic restriction

of rTLA that is needed to enforce the important notion of stuttering invariance. On the

process, we will discuss the concepts of refinement, hiding and composition, among other

things.

4.2.1 Basic concepts

Computer systems differ from the systems traditionally studied by scientists because we

can pretend that its state changes in discrete steps. In this sense, computation is a

discrete dynamical process, but this is an abstraction. As a model for such abstractions,

Lamport defines an abstract system to be “a collection of behaviors, each representing a

possible execution of the system, where a behavior is a sequence of states and a state is an

assignment of values to variables”. Events are transitions between consecutive states in a

behavior (a.k.a. steps), and behaviours are assumed to be infinite no matter what kind

of system we are considering. This view is called the standard model, and it is reminiscent

of Pnueli’s framework.

Transitions are described by action formulas in TLA, but “action” is not a primitive no-

tion, it is rather just a name for formulas referring to the current and next state. In general,

TLA formulas are interpreted over behaviours, so the semantics of a formula is the col-

lection of behaviours satisfying it. Systems, algorithms, programs, their environment and

their properties, are all mathematically represented as collections of behaviors described

by appropriate formulas in the same logic. TLA does not presuppose any underlying

execution/concurrent/communication model such as shared-variable or message-passing,

synchronous or asynchronous, interleaving or non interleaving, etc. It is the designer’s

responsibility to represent the system at the appropriate level of abstraction. This may

seem too liberal to be of practical use, but there are some standardized ways to define

TLA specifications that facilitate its use.

Properties of systems are classified into two classes that were first introduced by Lamport

in 1977 [61]. They are:
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• Safety: a property specifying what must never happen, or more colloquially, “some-

thing bad will never happen”. For example, the statement “x is always less than

10”, in symbols 2(x < 10), asserts a safety property that is violated if x ≥ 10 holds

in some state of a behaviour. Note that the violation can be observed in a finite

prefix of the behaviour, that is, the evidence of the violation can be found after a

finite amount of states.

• Liveness: a property specifying what must eventually happen, or more colloquially,

“something good will eventually happen”. For example, the statement “x will even-

tually be at least equal to 10”, in symbols 3(x ≥ 10), asserts a liveness property

that is violated if x ≥ 10 never occurs in the future. Note that, unlike the safety

case, the violation can’t be observed on a finite prefix of the behaviour, because at

any time the “good” event might still occur later (i.e. no finite counterexample).

The concepts of safety and liveness where formalized by Alpern and Schneider in 1987 [62].

They characterize the universe of behaviors as a topological space where safety properties

are closed sets and liveness properties are dense sets. As every set in a topological space

is equal to the intersection of a closed set and a dense set, it follows that any property

(or any system) is an intersection of a safety property and a liveness property. This

theoretical result is embodied in the canonical form for state machine specifications we

will see later.

Currently, there is ongoing research on properties of systems that are not just collections

of behaviours as the classic safety and liveness. The so called hyperproperties generalize

ordinary properties by expressing relations among multiple executions of a system, and

allow to express security policies, such as secure information flow [63].

4.2.2 Syntax and semantics of formulas

TLA formulas are built from two kind of variables:

• Rigid variables, i.e. those whose values are fixed throughout a behaviour. How-

ever, they may not be the same across different behaviours. We will refer to these
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more simply as constants. They are declared with the CONSTANT/S keyword.

• Flexible variables, i.e. those whose values are not fixed throughout a behaviour.

They constitute the state. We will refer to these more simply as variables. They are

declared with the VARIABLE/S keyword.

The syntax of TLA formulas is defined as a linear hierarchy of three levels:20

1. State formulas: standard terms and formulas of first-order logic. For example:

x 2 + y − 3 is a state function and ∃ x : x ∈ u ∧ x ∈ v is a state predicate. Seman-

tically, they are interpreted over individual states.

2. Transition formulas (actions): first-order terms and formulas that may contain

both normal (unprimed) variables (e.g. v) and primed variables (e.g. v ′). For

example: v ′ = v + 1 and u ′ ∈ v are actions.21 Semantically, they are interpreted

over pairs (si , si+1) of consecutive states, with unprimed variables being interpreted

in the current state si and primed variables in the next state si+1.

3. Temporal formulas: they are built from state and transition formulas by applying

operators of temporal logic (2, 3, ;). Semantically, they are interpreted over

behaviours.

Given any state formula e, the transition formula e ′ is obtained by replacing all (free)

occurrences of variables by their primed counterparts. For example (∃ x : x ∈ u ∧ x ∈ v)′

is ∃ x : x ∈ u ′ ∧ x ∈ v ′ assuming u and v are variables. Semantically, e ′ denotes the

value of e at the second state of the pair of states at which e is evaluated. The action

UNCHANGED e is shorthand for e ′ = e, which means the value of the variables in e

don’t change. For example, to assert variables v1, . . . , vn are unchanged we can write

UNCHANGED 〈v1, . . . , vn〉 as a shorthand for 〈v ′1, . . . , v ′n〉 = 〈v1, . . . , vn〉 which is useful if

we have many variables. Note that tuple notation in TLA uses angular brackets.

Formulas at all three levels are closed under the propositional operators (¬, ∧, ∨, ⇒, ≡)

and first order quantifiers (∀, ∃) of classical logic with their usual semantics. For example,

20Four levels if we also distinguish the state formulas into those which only uses constants (level 0) and
those which also use variables (level 1). Some presentations adopt that view.

21The LTL equivalent to TLA action u ′ ∈ v would be ∃ x : x ∈ v ∧ d(u = x ).
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if α is a formula and v is a variable then ∃ t : α⇒ 32(v = t) is a legal formula. However,

different levels can’t be arbitrarily mixed, for example A⇒ F , where A is an action and

F is a temporal formula, is not legal.

The operators 2 and 3 are the familiar always and eventually operators of LTL. Let α

be a formula, then

• 2α is true in a behaviour σ iff α is true of every prefix of σ, or more formally,

σ � 2α iff σn � α for all n ∈ N

• 3α is true in a behaviour σ iff α holds for some prefix of σ, or more formally

σ � 3α iff σn � α for some n ∈ N

The following are some well known temporal identities:

Duality: 2α ≡ ¬3¬α 3α ≡ ¬2¬α
Distributivity 1: 2(α ∧ β) ≡ 2α ∧2β 3(α ∨ β) ≡ 3α ∨3β

Distributivity 2: 32(α ∧ β) ≡ 32α ∧32β 23(α ∨ β) ≡ 23α ∨23β

The binary operator α ; β (α leads to β) is a shorthand for 2(α ⇒ 3 β). Other useful

syntax constructs will be introduced on the go.

4.2.3 Systems as state machines

First, we suggest how a system, say S , might be defined as a state machine. Let Init be

a state formula that describes the possibly initial states of S , and Next an action that

describes how state might change at any step of S . Then, the (specification of) system S

is defined as follows

Spec , Init ∧ 2Next (4.1)

where TLA symbol , denotes is defined as. Definitions are the main building block in

TLA (and TLA+). Next, we introduce two concrete specifications based on this model

that will be used as running examples. We will quickly see that there is a problem.
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Example 4.2.1 (Hour clock). Let’s consider an hour clock system (HC ). If we let variable

h represent the hour, the possible values should be integers between 1 and 12. The clock

is not intended to stop (i.e. terminate).

A possible definition for HC following the form of 4.1 is

variable h

HCini
∆
= h ∈ 1 . . 12

HCnxt
∆
= h ′ = if h 6= 12 then h + 1 else 1

HC
∆
= HCini ∧2HCnxt

The TLA expression IF p THEN e1 ELSE e2 is just a shorthand for (p ⇒ e1) ∧ (¬p ⇒ e1).

The initial formula HCini allows starting from any hour value, which is an example of

input non-determinism.22 The action HCnxt controls the evolution of h at each step, h

is updated incrementally unless h = 12 in which case it goes back again to h = 1.23

From the semantics point of view, JHC K denotes the collection of all behaviours σ such

that σ � HC . They may be represented as:

h = 1 → h = 2 → h = 3 → · · · → h = 1 → · · ·
h = 2 → h = 3 → h = 4 → · · · → h = 2 → · · ·

...
h = 12 → h = 1 → h = 2 → · · · → h = 12 → · · ·

Or to be more succinct, let h0 be the initial value of h:

h = h0 → h = (h0 + 1)%12 → h = (h0 + 2)%12 → · · · → h = h0 → · · ·

If the clock is behaving properly, then its display should be an integer from 1 through 12.

So, h should be an integer from 1 through 12 in every state of any behavior satisfying the

clock’s specification. The following implication asserts type correctness of HC :

HC ⇒ 2(h ∈ 1..12)

22For a model checker based on explicit enumeration (like TLC), this means to enumerate the state
space starting from twelve different roots.

23Of course, another way to define action HCnxt is to take advantage of modular arithmetic: HCnxt ,
h ′ = (h + 1) % 12
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Example 4.2.2 (Hour-minute clock). Based on our previous example, let us now consider

an hour-minute clock system (HMC ). We use a variable h just like in HC , but also a

variable m to represent minutes whose possible values should be integers between 0 and

60. A possible definition for HMC following the form of 4.1 is

variables h, m

HMCini
∆
= HCini ∧m ∈ 0 . . 59

Min
∆
= m ′ = if m 6= 59 then m + 1 else 0

Hour
∆
= (m = 59 ∧ HCnxt) ∨ (m < 59 ∧ h ′ = h)

HMCnxt
∆
= Min ∧ Hour

HMC
∆
= HMCini ∧2HMCnxt

The initial formula HMCini conjoints the initial condition of system clock HC with the

possibility of any initial minute value. The action HMCnxt controls the evolution of h and

m at each step with two sub-actions Hour and Min respectively. m is updated similarly

to h in system clock HC , and h is updated if m = 59, otherwise it remains unchanged.

The following implication assert type correctness of HMC :

HMC ⇒ 2(h ∈ 1..12 ∧ m ∈ 0..59)

Intuitively speaking, an hour-minute clock is a special case of an hour clock, because if we

hide the minute in the hour-minute clock then it behaves just like the more simple hour

clock. In TLA terms, HMC should also be a specification for HC in the sense that any

behaviour of HMC is also a behaviour of HC . This is the notion of refinement between

specifications, i.e. we can say HMC is a refinement (or implementation) of HC , and

conversely, that HC is an abstraction of HMC . Refinement allows to carry out system

development as a process running through several levels of detail forming a chain where

each new refinement preserves the properties of previous specifications. In principle, one

could start with a very abstract specification of the system and then add enough detail

to obtain an executable specification (i.e. a program), although it is very hard to reach

that point in practice.
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Semantically, that HMC is a refinement of HC means JHMC K ⊆ JHC K, or alternatively

if σ � HMC then σ � HC for all σ

which is the same as the validity of an implication formula in the logic

� HMC ⇒ HC (4.2)

But there is a problem. Our intuition does not match the formalism here, because it is

easy to see that 4.2 does not hold: in any behaviour of HC , the value of h changes at

every step, but in the behaviours of HMC the value of h changes only every 59 steps.

TLA embraces the notion of stuttering invariance which fixes this problem and makes

refinement (and composition) possible.

4.2.3.1 Enforcing stuttering invariance

First, we introduce some technicalities. For any behaviour σ, its stutter free form,

denoted \σ, is obtained by replacing any finite sub-sequence of consecutively repeat-

ing states with just a single instance of the state (e.g. \(a, b, b, b, c, d , d , . . . , d , . . . ) =

a, b, c, d , d , . . . , d , . . . ). For any pair of behaviours σ and τ , they are stuttering equivalent,

denoted σ ' τ , iff \σ = \τ . If Σ is a collection of behaviours, its closure is defined by

Σ' = {σ′ : σ ' σ′}. So, if Σ = Σ', we say Σ is closed under stuttering.

Now, we revise the syntax of (raw) TLA presented earlier. A formula α is stuttering

invariant if its semantics is closed under stuttering, that is JαK = JαK'. Let us consider

a formula that describes a monotonically increasing value:

F , x = 1 ∧ 2(x ′ = x + 1) (4.3)

The formula F is not stuttering invariant because it distinguishes (for example) the fol-

lowing behaviours

σ1 : x = 1 → x = 2 → h = 3 → · · ·
σ2 : x = 1 → x = 1 → x = 2 → h = 3 → · · ·
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as σ1 ∈ JF K but σ2 /∈ JF K, however σ1 ' σ2. In order to not distinguish them, the formula

should instead be

G , x = 1 ∧ �(x ′ = x + 1 ∨ x ′ = x ) (4.4)

as σ1, σ2 ∈ JF K, and G is stuttering invariant.

TLA is designed to be stutter insensitive. It should be noted that state formulas are

no threat to this aim, because they are interpreted over individual states, thus they are

trivially stutter invariant. However, state transitions (i.e. actions) have the potential to

be stutter sensitive as our previous example 4.3 shows. In TLA, the e (next) operator

of ordinary temporal logic is absent because is incompatible with stuttering invariance.

Instead the simpler postfix ′ operator is available at the action level to refer to the value

of variables at the next state. In order to enforce all the formulas to be stutter invariant,

TLA generalizes what we did in 4.4 introducing the following special abbreviations as

part of the syntax. Let A be an action formula and f a state formula:

[A]f , A ∨ (f ′ = f ) (4.5)

〈A〉f , A ∧ (f ′ 6= f ) (4.6)

Then, with this notation, TLA restricts the formation of temporal formulas in the follow-

ing way:

• When 2 is immediately followed by an action A, the action must be of the form

[A]f .

• When 3 is immediately followed by an action A, the action must be of the form

〈A〉f .

Consequently, our previous formulas HC , HMC and F are not legal TLA formulas. Also,

although G is stuttering invariant it will be rejected by the parser, the action must be

rewritten as [x ′ = x + 1]x for G to be accepted.

TLA is a proper subset of rTLA, and this restriction is enough to ensure any formula is

stutter invariant. Formally, a fundamental theorem asserts that TLA is not expressive

enough to distinguish between stuttering equivalent behaviours.
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Theorem 4.1 (Stuttering invariance). Assume α is a TLA formula and that σ, τ are

behaviours such that σ ' τ . Then JαK = JαK'

Proof. See [32].

From now on, we will work with proper TLA (and not rTLA). Accordingly, our clock

systems HC and HMC should be:

HC , HCini ∧ 2[HCnxt ]h

HMC , HMCini ∧ 2[HMCnxt ]〈h,m〉

Recall that earlier we where interested in proving the following about HMC and HC

� HMC ⇒ HC

Now we can argue (informally) why this holds. In any behaviour of HMC , there are

sub-sequences of steps where h ′ = h and m ′ 6= m. These behaviours are admitted by HC

because HC does not know about m (i.e. m is irrelevant for HC ) and allows h to stutter

when only m is updated by HMC (see figure 4.2). Therefore, HMC is a refinement of

HC .

Figure 4.2: Illustration of the passage of time between hour one and hour two in both
HC and HMC . This is an example of a contractive refinement, multiple steps in the low
level spec are mapped to a single step of the high level spec. Only the last low level step
correspond with an observable high level change.
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4.2.3.2 Considering fairness

As a consequence of enforcing stuttering invariance, the following class of behaviours is

now possible for HC :

h = h0 → h = h0 → h = h0 → · · ·

That is, suppose h = h0 for some h0 ∈ 1..12 in the initial state, then action [HCnxt ]h

admits variable h to stutter indefinitely, maybe forever. Recall that (by definition)

[HCnxt ]h = (HCnxt ∨ h ′ = h), i.e. there is nothing guaranteeing HCnxt to hold. A

similar situation occurs for system HMC .

Formulas like HC and HMC specify unfair state machines, which allow infinite stuttering.

Behaviors exhibiting infinite stuttering can be interpreted as that the system is stuck or

is not progressing, which is commonly known as a deadlock. In particular, for the clock

example, the clock was not intended to stop at any moment, but an infinite stuttering

says otherwise. We say this is a situation of bad termination (intended termination is

discussed in 4.2.7). To exclude this kind of undesirable behavior, fairness conditions

should be added as part of the system specification.

The notion of fairness is not exclusive to TLA, it is ubiquitous in the theory of concurrency,

being used as a criterion for a reasonable execution. In fact, fairness and liveness are

related notions: fairness properties are a special case of liveness properties, however, they

are not properties to be verified, rather conditions assumed to be enforced (e.g. in the

scheduler) which in turn can be used to prove other liveness properties (e.g. termination).

Informally, a fairness condition asserts that some action, say A, occurs eventually provided

it is sufficiently often enabled. The most common interpretations of what sufficiently often

means leads to the following notions of fairness (with respect to A):

• Weak fairness (WF): A occurs eventually if it is permanently enabled after some

point.

• Strong fairness (SF): A occurs eventually if it is infinitely often enabled after

some point.
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Strong fairness is (as its name implies) stronger than weak fairness because an action

can be infinitely often enabled without being permanently enabled. To identify adequate

fairness conditions for a system is often a non-trivial task.

Now, we will see how fairness conditions are formalized in TLA. If A is an action,

ENABLED A is a state formula stating there exists some next state that satisfies A. For-

mally, it may be defined as follows:

ENABLED A , ∃ v ′1, . . . , v
′
n : A (4.7)

where v ′1, . . . , v
′
n are all the free primed variables in A. For example, let A , x > 0 ∧ x ′ =

x −1, action A can be read as “if x > 0 in the current state, then x is decremented by one

in the next state”. So A specifies a next state only if x > 0, thus ENABLED A ≡ x > 0.

The two notions of fairness are formalized as follows for actions of the form 〈A〉f :

WFf (A) , 2(2ENABLED 〈A〉f ⇒ 3〈A〉f ) (4.8)

≡ 32ENABLED 〈A〉f ⇒ 23〈A〉f

SFf (A) , 2(23ENABLED 〈A〉f ⇒ 3〈A〉f ) (4.9)

≡ 23ENABLED 〈A〉f ⇒ 23〈A〉f

Since 32α implies 23α for any formula α, SFf (A) implies WFf (A) for any action A.

4.2.3.3 The canonical form

We are now ready to state the canonical (or standard) form to define the specification of

a system as a (fair) state machine:

Spec , Init ∧ 2[Next ]vs ∧ F (4.10)

where

• State formula Init specifies the possible initial states.

• Action formula Next specifies the next-state relation, typically is a disjunction of

sub-actions that describe atomic transitions of the system or of its environment.
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• vs is the tuple of all variables used in the specification.

• F is typically a conjunction of fairness conditions (either WF or SF) on (some of)

the sub-actions of Next .

Note that Spec is the conjunction of a safety formula (i.e. Init ∧2[Next ]vs) and a liveness

formula (i.e. F ), thus following the topological characterization given by Alpern and

Schneider. In practice, TLA specifications are written in the canonical form. Of course,

one is not forced to do so, but this form represents a well-behaved subset of TLA formulas

and, in principle, any system can be described as a single formula in this form. Also, as

a matter of tool support, the model checker TLC only accepts formulas in this form,

although, on the other hand, the theorem prover TLAPS is not restricted to it.

One may also want to use arbitrary liveness properties (e.g. formulas of the form 3α) in

place of F , but this can lead to subtle issues. The “safety” component Init∧2[Next ]vs only

specifies a safety property and cannot imply a liveness property as it can stutter forever,

but an arbitrary liveness formula can imply a safety property, in which case it can restrict

the expected behaviour specified by the safety component in surprising ways. In general, is

undesirable to have a liveness property that interferes with the safety component, although

there may be exceptions. Specifications without this issue are called machine closed, and

the canonical form 4.10 is guaranteed to be machine closed. A thorough treatment of this

topic can be seen in [30, Chap. 8].

Coming back to our running example, a reasonable fairness condition for system HC

is to assert weak fairness on the HCnxt action, thus the clock is always guaranteed to

eventually “tick” without getting stuck forever, and we can do similarly for system HMC .

So, we can define the fair versions of HC and HMC according to form 4.10 as follows:

FairHC , HCini ∧ 2[HCnxt ]h ∧ WFh(HCnxt)

FairHMC , HMCini ∧ 2[HMCnxt ]〈h,m〉 ∧ WF〈h,m〉(HCnxt)
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4.2.4 Refinement

We already introduced the notion of refinement with the clock example and discussed

how stuttering invariance plays an important role thereof. In general, a low level spec

R may introduce more detail in a high level spec S , where “more detail“ is represented

by new variables. Newly introduced actions in R that only modify these new variables

correspond to stuttering steps at the level of S and, by stuttering invariance, cannot

invalidate S (exactly what happens in the clock example). However, actions that modify

the variables also present in S must do so in ways that are allowed by (the next-state

relation of) S , which is more complex and may require the concept of hiding discussed in

next section. Roughly speaking, S must be able to “simulate” every R action.

We say R is a refinement of S if and only if any behaviour of R is also a behaviour of S ,

that is, the implication R ⇒ S is valid. Assuming both specifications are in the canonical

form 4.10, this implication can be decomposed in the following sub-goals

i. R satisfies the initial conditions of S .

InitR ⇒ InitS

ii. Any step of R is “simulated” by a step of S .

[NextR]vsR ⇒ [NextS ]vsS

iii. R preserves the fairness conditions of S .

2[NextR]vsR ∧ F R ⇒ F S

The implication can be mechanically verified in (at least) two ways: (1) By semantics

means (i.e. � R ⇒ S ) using the TLC model checker. This is only for finite models, but

is easier. (2) By deductive means (i.e. ` R ⇒ S ) using the TLAPS theorem prover.

This is more general, but needs more work.

For the deductive approach, sub-goals may be strengthened with invariant properties of

R. Usually, at least a type invariant is needed to make the proof go through. For example,
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for the clock refinement discussed earlier, formally we need to know that h is always a

number in the range 1..12 and not an arbitrary value of the universe, otherwise we cannot

reason about h in the proof. Note that sub-goals i. and ii. do not involve temporal logic

reasoning, thus, if fairness is ignored, the proof just needs the tools of classical logic.

4.2.5 Hiding of internal state

The canonical form 4.10 of specifications is useful for describing a system as a state

machine, but it does not distinguish between variables that are visible at the interface

and those that represent the internal state of the machine. For example, suppose we have

the specification of a FIFO queue, say FIFOSpec, with variables 〈in, out , q〉 where q is a

buffer of messages [30, Chap. 4]. Variables in and out are external variables, but q is an

internal variable, and we may want to expose only an interface of the spec (not FIFOSpec

itself) with q hidden. In TLA, this is done with the existential temporal quantifier ∃∃∃ (not

to be confused with ∃) i.e. we may define the interface of the spec as

FIFOSpecI , ∃∃∃ q : FIFOSpec

The meaning and use of ∃∃∃ is analogous to those of ∃. Consider the ordinary mathematical

expression x × y + b = 0. Its truth depends on free vars x and y , but the abstraction

∃ x : x×y +b = 0 only depends on y . In a similar way, we can say the temporal expression

∃∃∃ q : FIFOSpec only depends on its free variables reflecting the external visible behaviour

(i.e. in and out).

In general, the formula ∃∃∃ x : α asserts that there exists some sequence of values, one in each

state of the behavior, that can be assigned to the variable x that will make formula α true.

Semantically, the definition of ∃∃∃ is more complex than that of ∃, however, deductively it

follows the same rules:

(∃∃∃ i) α[v := t ] ⇒ ∃∃∃ v : α
α ⇒ β

(∃∃∃ e) v not free in β
(∃∃∃ v : α) ⇒ β

where v is a (flexible) variable and t is a state function. And we also have (∃∃∃ x : α) ≡ α

if x not free in α.24 Hiding the internals of the specification feels like the “correct” way

24The universal dual ∀∀∀ is sometimes reported in the TLA literature, but as far as we know is it not
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to do it, and this naturally leads to a more general canonical form:

Spec , ∃∃∃ v1, . . . , vn : Init ∧ 2[Next ]vs ∧ F (4.11)

where v1, . . . , vn are the internal variables of the specification.

But the concept of hiding and the use of ∃∃∃ is not just about aesthetics, is also related

to refinement in an important way. Suppose we have a different specification of a FIFO,

say FIFOSpec2, that does not use a buffer q , and we want to prove it is a refinement

of FIFOSpec. Surely, we would not be able to prove the implication FIFOSpec2 ⇒
FIFOSpec because they may differ in how they store messages internally (i.e. different

data structures), but we can prove FIFOSpec2 ⇒ ∃∃∃ q : FIFOSpec where the internal

representation q is hidden. This would be a more complex kind of refinement than the

one in the clock example.

At this moment, none of the TLA related tools supports ∃∃∃. From the point of view of

model checking, the complexity involved is believed to be too high (co-NP-complete in

the number of states) to be worth while. From the point of view of theorem proving the

complexity is not a problem, TLAPS will provably have support some day, but it is not

a priority to implement it because, in fact, it is seldom necessary in practice. The kind

of refinement that requires hiding can be proved by finding an appropriate substitution

over variables (called a refinement mapping) without manipulating ∃∃∃ directly.25

4.2.5.1 Refinement mappings and their (non)existence

Let Spec1 be a specification with internal variables v1, . . . , vn (abbrev. ~v) and external

variables x1, . . . , xm (abbrev. ~x ), and Spec2 a specification with internal variables u1, . . . , uk

(abbrev. ~u) and the same external variables that Spec1. As we noted previously, to

compare different specifications we may need to hide the internal variables to abstract

away from the internal implementation details. We can attempt to do this by working

with ∃∃∃~v : Spec1 and ∃∃∃~u : Spec2 instead of Spec1 and Spec2.

very useful.
25According to Lamport, ∃∃∃ is like the stone in the (TLA+) soup, “one eats everything but the stone”.

It was originally important for TLA, but the introduction of TLA+ made it less relevant.
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We may want to prove they are equivalent, that is:

(∃∃∃~v : Spec1) ≡ (∃∃∃~u : Spec2) (4.12)

which amounts to proving two implications (i.e. two refinements)

(∃∃∃~v : Spec1) ⇒ (∃∃∃~u : Spec2) (4.13)

(∃∃∃~u : Spec2) ⇒ (∃∃∃~v : Spec1) (4.14)

Let us consider the first direction, as the other is analogous. We have that 4.13 is equiv-

alent to

Spec1 ⇒ (∃∃∃~u : Spec2) (4.15)

provided variables v1, . . . , vn do not occur free in Spec2. The proviso holds because we are

assuming the only shared variables are x1, . . . , xm .

Now, to prove 4.15 it suffices to show that for any behaviour σ satisfying Spec1 there is at

each state an assignment of variables ~u such that the resulting behaviour satisfies Spec2.

We do this syntactically. For each ui we find an appropriate expression ūi in terms of

variables ~x and ~v such that substituting each ūi for ui we can prove

Spec1 ⇒ Spec2[u1 := ū1, . . . , uk := ūk ] (4.16)

The substitution is called a refinement mapping. If 4.16 holds, we say Spec1 refines Spec2

under the given refinement mapping. Consequently, in practice we don’t need to deal

with ∃∃∃, but we need to find an appropriate refinement mapping. This partly explains why

there is no support for ∃∃∃ yet. Considering again the two reciprocal goals 4.13 and 4.14,

the refinement mapping does not need to be the same for both.

Note that in formula 4.16 we are just using informal substitution notation [ := ] like

is customary in logic treatments. But this is not part of TLA syntax, so this is not a

legal formula. In fact, TLA does not include a syntax for substitution. However, TLA+

introduces syntax for modules and module instantiation which semantically behaves as a

substitution but at the module level. Then, in practice, specifications are organized in

modules, and from one module one can instantiate other module substituting the module’s

declared symbols. So, assume Spec1 and Spec2 are in modules M 1 and M 2 respectively,
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then we can instantiate M 2 from M 1 to prove the assertion 4.16 that in TLA+ syntax

looks as follows:

M 2 , INSTANCE M 2 WITH u1 ← ū1, . . . , uk ← ūk

THEOREM Spec1 ⇒ M 2!Spec2

where THEOREM is TLA+ syntax for the deduction symbol ` (turnstyle), The theorem

can be proved using TLAPS. Alternatively, the refinement can be verified by the model

checker TLC (assuming specifications in the canonical form and finite bounds on the data

types), after all is just an implication. A more detailed discussion of module syntax and

the proof language is carried out in section 4.3. We talk about TLC in section 4.4.

The (non)existence of refinement mappings

Unfortunately, refinement mappings do not always exist. This is a more subtle issue,

but hopefully we can illustrate the situation with our clock example. First, recall that

we intuitively suggested that the hour-minute clock HMC is a special case of the hour

clock HC . Then, thanks to stuttering invariance, we argued the implication HMC ⇒ HC

holds, confirming the intuition. There was no mention of a “refinement mapping”, which

is because it was not necessary to hide anything about variable h as this evolves with the

same values in both systems (but at different paces). Alternatively it can be said that

there is a trivial identity mapping implicitly involved (obviously HC = HC [h := h]).

Now, the reader may wonder about the converse question, that is, could HC be a special

case of HMC ?. Intuitively, yes, i.e. we claim that if we hide the minute in HMC the

specifications must, in fact, be equivalent. But we cannot prove HC ⇒ ∃∃∃m : HMC , i.e.

in this case stuttering alone is not enough. For, to begin with, HC does not control a

minute variable like HMC and it runs “faster” than HMC . Intuitively speaking, when we

proved HMC ⇒ HC , we proved something “slower” implements something “faster”, the

slow behaviours of HMC are no problem for HC because the later can wait to increment

h doing 59 (or more) stuttering steps. But for the converse, we are trying to prove that

something “faster” implements something “slower”. There is no function mapping each

state of HC (which changes only once an hour) to multiple states of HMC representing

the same hour (at least 60 states for each hour), so there is no refinement mapping possible
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to prove HC ⇒∃∃∃m : HMC .

However, there is a solution. We can add to HC an auxiliary variable s to obtain a

new specification, say HC s , so that before each step where h changes it adds 59 steps

where only s changes. Variable s is called an stuttering variable because it makes the

internal variable h to stutter, it is just an artifice with the purpose of “slowing” the

internal behaviour but having no effect on external visible behaviour. The expected

relation between the original HC and the new HC s should be HC ≡ (∃∃∃ s : HC s). Then

we can prove (∃∃∃ s : HC s) ⇒ (∃∃∃m : HMC ) under a suitable refinement mapping and

finally conclude HC ⇒ (∃∃∃m : HMC ) as wanted. This technique is easily generalized for

arbitrary specifications where we need to prove something “faster” implements something

“slower”.

But how to be sure that HC ≡ (∃∃∃ s : HC s) holds?, or more in general, how to be sure

that adding “auxiliary variables” to a specification is a sound approach?. In [64], Abadi

and Lamport provide what they call a “completeness” result. They exhibit a general

classification of cases where a refinement mapping do not exist, and for each case they

show that adding certain auxiliary variables and assuming some reasonable conditions

there is a refinement mapping to prove refinement. Three kinds of auxiliary variables are

proposed: history, prophecy and stuttering. For each case, there are some conditions to

be checked that guarantee the correctness of the approach.

4.2.6 Composition

Let Spec1 and Spec2 be the specifications of two systems that are intended to work in

parallel. The formula Spec1 ∧ Spec2 represents the parallel composition of both systems.

Semantically, the composition is the intersection of their behaviours. Transitions that

only modify the variables from one specification are trivially allowed as stuttering steps

for the other and vice versa, but shared variables synchronize transitions between the

specifications. In particular, if both specifications don’t share variables then they are

completely independent. So, stuttering invariance is also important for composition.
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Assuming both specifications have the canonical form 4.10, their conjunction Spec1 ∧ Spec2

is not in the canonical form. We mentioned earlier that TLC will only accept canonical

formulas. However, the conjunction can be transformed to canonical form using laws of

classical logic and the following TLA equivalence for any action formulas A and B :

2[A]vs ∧ 2[B ]us ≡ 2
[
[A]vs ∧ [B ]us

]
〈vs,us〉 (4.17)

Example 4.2.3 (Composition of two clocks). Consider the following two hour clock

systems on variables x and y respectively:

HC 1 , x ∈ 1..12 ∧ 2[Tick(x )]x

HC 2 , y ∈ 1..12 ∧ 2[Tick(y)]y

where Tick is the parameterized next-state action defined as

Tick(h) , h ′ = IF h 6= 12 THEN h + 1 ELSE 1

Their conjoint operation is described by

TwoClocks , HC 1 ∧ HC 2

≡ ∧ x ∈ 1..12 ∧ y ∈ 1..12 by 4.17

∧ 2
[
∨ Tick(x ) ∧ Tick(y)

∨ Tick(x ) ∧ (y ′ = y)

∨ Tick(y) ∧ (x ′ = x )
]
〈x ,y〉

The next state action of TwoClocks is a disjuntion of three possibilities: (1) both clocks

ticks simultaneously, (2) the first clock ticks but the second does nothing and (3) the

second clock ticks but the first does nothing.

If we wanted to work according to an interleaving semantics, where each step represents

an operation of only one component, the first possibility should be removed. This can be

enforced with an additional condition on the composition asserting that always either x

or y must be unchanged:
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TwoClocks , HC 1 ∧ HC 2 ∧ 2[x ′ = x ∨ y ′ = y ]〈x ,y〉

≡ ∧ x ∈ 1..12 ∧ y ∈ 1..12 by 4.17

∧ 2
[
∨ Tick(x ) ∧ (y ′ = y)

∨ Tick(y) ∧ (x ′ = x )
]
〈x ,y〉

A generalization for an arbitrary number of clocks is possible [30, Chap. 10].

4.2.7 Handling termination

As Lamport explains in [34] (emphasis ours):

“The observation that a single behavior can represent an execution of two or

more noninteracting programs [e.g. the TwoClocks example] explains why we

represent terminating as well as nonterminating executions by infinite behav-

iors. Termination of a program means that it has stopped; it does not mean

that the entire universe has come to a halt.”

Formally, (good) termination is an intended deadlock where all the variables stop chang-

ing. Usually, an special action is used to detect termination, as we illustrate in the next

example.

Example 4.2.4 (A terminating hour clock). The following hour clock HCD ticks for a

day (i.e. two cycles of twelve hours) and then stops. An auxiliary counter variable c is

used to track the passage of time.

variables c, h

HCDini
∆
= c = 0 ∧ h ∈ 1 . . 12

HCDnxt
∆
= ∧ c < 24

∧ h ′ = if h 6= 12 then h + 1 else 1

∧ c ′ = c + 1

Done
∆
= c = 24 ∧ unchanged 〈c, h〉

HCD
∆
= HCDini ∧2[HCDnxt ∨ Done]〈c, h〉 ∧WF〈c, h〉(HCDnxt)

When action Done occurs, HCD deadlocks indicating (good) termination. Note that
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HCD is fair on the HCDnxt action, otherwise it would be possible to get deadlocked at

any moment and that would be undesirable. The following implication asserts termination

of HCD :

HCD ⇒ 3(c = 24)

4.2.8 The rules of TLA

A set of axioms and rules for TLA is provided by Lamport in [34]. Those rules, alongside

ordinary first-order logic reasoning, form a relatively complete proof system for reasoning

about systems in TLA. Other useful verification rules can be derived from those. In

what follows we present some derived rules to deal with common safety properties. Their

names are for our own reference and may differ with other presentations. Rules for liveness

properties will not be discussed.

The most basic kind of safety property is invariance, which asserts that some state formula

I is always true in every behavior satisfying the specification. If we prove the implication

Spec ⇒ 2I

we say I is an invariant of Spec. Invariants characterize the set of reachable states of the

system. Simple examples are the type correctness assertions given for the clock systems

HC (example 4.2.1) and HMC (example 4.2.2). Other more interesting example is partial

correctness, which in general may be expressed in the form end ⇒ R, where end is some

state predicate indicating termination and R is the desired post-condition, so that the

implication to prove is

Spec ⇒ 2(end ⇒ R)

To prove total correctness, we also need to prove end eventually holds

Spec ⇒ 3end

but this is instead a liveness property, which needs appropriate fairness conditions in the
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specification in order to be proved. An example of this was given for the clock HCD

(example 4.2.4), where end would be c = 24. Fairness conditions are irrelevant for

invariance, so they are omitted in the rules for invariance discussed below. There are

also other kinds of invariance properties that can be considered like action invariants (i.e.

a transition formula should always be true in any behaviour) or prefix invariants (e.g.

asserting something must be true at most once in any behaviour) but those will not be

discussed.

Rules for invariants

The basic rule for proving invariants is

Init ⇒ I I ∧ [Next ]vs ⇒ I ′
INV1

Init ∧2[Next ]vs ⇒ 2I

It express an induction principle: in order to prove I is true in all states of a behavior,

it suffices to prove (1) the initial formula Init is true in the initial state, and (2) if I is

true in any state of the behavior, then it is true in the next state of the behavior. A state

formula I satisfying the hypothesis of this rule is an inductive invariant. It is clear form

the hypothesis that the proof does not need temporal logic, it is classical reasoning over

state formulas and actions. The same goes for the following rules.

Now, not all invariants are inductive, they may not satisfy hypothesis I ∧ [Next ]vs ⇒ I ′.

To prove an invariant property that is not inductive, say P , one needs first to find an

inductive invariant I such that I ⇒ P holds. So if I is true for all states in a behavior

then P is true for all states in that behavior, hence Spec ⇒ 2I implies Spec ⇒ 2P .26

This is embodied in the following rule

Init ⇒ I I ∧ [Next ]vs ⇒ I ′ I ⇒ P
INV2

Init ∧2[Next ]vs ⇒ 2P

It should be noted that to find an inductive invariant requires creativity, just like the loop

invariant in the Hoare rules. The model checker can be helpful here to gain confidence, as

it is much easier to prove something when we have confidence on it’s truth. Almost always

26Formally, the justification is based on temporal rule α⇒ β ` 2α⇒ 2β.
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an inductive invariant asserts type correctness of the variables, thus one approach is to

start with an inductive invariant I0 asserting something very basic like type correctness

and then successively conjoin other conditions I1, I2, ..., etc. (preserving inductiveness)

to obtain Ik = I0 ∧ I1 ∧ ... ∧ Ik−1 such that Ik ⇒ P holds. Of course, this is easier said

than done.

In general, we can use invariants we have already proved to prove others. The first of

them needs to be proved with the first rule INV1. As a generalization of this rule let us

use the invariance of I to help proving the invariance of P :

Init ∧2[Next ]vs ⇒ 2I Init ∧ I ⇒ P I ∧ I ′ ∧ P ∧ [Next ]vs ⇒ P ′
INV3

Init ∧2[Next ]vs ⇒ 2P

If I is also an inductive invariant, the formula I ′ is not needed as it follows from I ∧Next .

A rule for refinement

We discussed in section 4.2.4 how to prove that a low-level specification R refines a high-

level specification S . Leaving fairness conditions aside, the refinement of the safety part

can be justified by the following rule where I is an invariant of R strong enough to prove

that R can be “simulated” by S at any step:

InitR ∧2[NextR]vsR ⇒ 2I InitR ∧ I ⇒ InitS I ∧ I ′ ∧ [NextR]vsR ⇒ [NextS ]vsS
REF

InitR ∧2[NextR]vsR ⇒ InitS ∧2[NextS ]vsS

4.3 TLA+ statics: ordinary mathematics

In the previous section we presented some basic examples of specifications manipulating

very simple data. However, in practice one usually needs to work with more complex data

types. In this section we make emphasis in the static part of TLA+ (the “+”), which

allows to define arbitrarily complex data structures, organize specifications into modules

and also provides a proof language to carry out formal proofs with TLAPS.

In fact, there are two versions of TLA+: the original TLA+ (released around 2000) and
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TLA+ version 2 (released around 2006) [65]. By TLA+ we assume the latest version.

4.3.1 Modules

In section 4.2.5.1 we briefly mentioned modules and the module instantiation mechanism

as the only form of substitution available in TLA+, which in particular allows to carry

out refinement proofs. A module serves as a (possibly parameterized) name space for

the definitions inside. Modules can be extended and instantiated. Module instantiation

is required to provide a substitution for the module’s declared symbols (variables and

constants). In general, to work with the tools TLC and TLAPS the specifications need

to be organized into modules.

Figure 4.3 presents our earlier clock examples HC and HMC in their respective modules.

Let us make some general observations:

• Modules can be extended using keyword EXTENDS. For example, both modules HC

and HMC need to talk about natural numbers, so they extend the standard TLA+

module Naturals .

• Each module declares the variables and constants that are relevant to its operation.

In the case of HC and HMC , there are no constants involved.

• It is customary to use the same “Spec/Init/Next” naming nomenclature for the

specification formulas in all modules because we can differentiate the main formulas

by the notation HC !Spec and HMC !Spec, and similarly for the other sub-formulas.

• Both modules HC and HMC define a type invariant formula and asserts a cor-

responding theorem using the THEOREM keyword. Theorems can be conveniently

named. The proof language is discussed in section 4.3.4.

• Module HMC instantiates module HC using the INSTANCE keyword. The identity

substitution h ← h provided is redundant because it is assumed by default, but we

are being explicit here. A refinement theorem is asserted referencing the specification

of HC as HC !Spec.
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Figure 4.3: Complete TLA+ specifications for the clocks HC and HMC .

If we also want to prove the converse refinement, i.e. that HC refines HMC , we need to

create another module to apply the technique of auxiliary variables discussed in section

4.2.5.1 and then instantiate HMC appropriately. But we will not do it here.

4.3.2 Zermelo-Fraenkel set theory with choice

As we noted earlier, TLA does not fix the interpretation of elementary function and pred-

icate symbols. But TLA+ instantiates TLA with a specific first order language based

on first-order predicate logic with equality, namely a variant of the Zermelo-Fraenkel set

theory with choice axiom (ZFC) which Lamport calls ZFM and considers as a “straight-

forward formalization of everyday mathematics” [66], thus fixing a standard set-theoretic

interpretation in which every TLA+ value is a set.

The choose operator

One important difference with the usual presentation of ZFC is the inclusion of Hilbert’s

ε operator, named CHOOSE in TLA+ syntax, which can be used to formalize common

claims like “pick an arbitrary x such that property P holds” that are usually found in
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algorithm descriptions or proofs.27 The expression CHOOSE x : P(x ) denotes an arbitrary

value x that satisfies P(x ) if one exists, otherwise it denotes an arbitrary value of the set

universe. In particular, to pick an arbitrary element from a set we may write an operation

like:

Any(S ) , CHOOSE x : x ∈ S

Parameterized definitions such as Any are called operators. Even if S is empty, we have

that Any(S ) denotes some fixed but arbitrary value. Thus, TLA+ avoids undefinedness

by the way of underspecification.

The CHOOSE operator is governed by the following laws:28

(∃ x : P(x )) ≡ P(CHOOSE x : P(x )) (4.18)

(∀ x : (P(x ) ≡ Q(x ))) ⇒ (CHOOSE x : P(x )) = (CHOOSE x : Q(x )) (4.19)

The first law shows how the quantifier ∃ (and therefore ∀) can be expressed in terms of

CHOOSE, the second law (typically named extensionality) asserts that the operator assigns

the same witness (although unknown) to equivalent formulae P and Q . In the context of

the temporal logic behind TLA+, the choice is always the same (i.e. deterministic) inside

each behaviour —and we do not know (or care) which is— but it is possibly different

across different behaviours.29

The bounded version of the quantifiers, namely ∃ x ∈ S : P and ∀ x ∈ S : P , are short-

hand’s for ∃ x : x ∈ S ∧ P and ∀ x : x ∈ S ⇒ P respectively. Also, the bounded choice

CHOOSE x ∈ S : P is a shorthand for CHOOSE x : (x ∈ S ) ∧ P . These shorthands extend

to multiple variables (e.g. ∃ x , y ∈ S : P) as well in a similar manner.

All the TLA+ constructs, except ∈ (membership), = (equality) and the propositional

27Historically, Hilbert introduced the ε operator in his ε-calculus, a reformulation of first-order predicate
logic. The ε operator allows to eliminate quantifiers and the ι-terms (formed by the ι-rule) introduced
by Russell to formally represent definite descriptions (e.g. the expression “the positive square root of
4” uniquely denotes 2 without using a name). The ε-terms have a more liberal interpretation than the
ι-terms, they denote instead indefinite descriptions allowing to choose nondeterministically an unnamed
individual satisfying the property.

28In the ε-calculus, the axiom P(y) ⇒ P(ε x .P(x )) is postulated, from which the first law can be
derived as a theorem.

29Some newbies get confused thinking that the choice is a “random” element, which is not the case.
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connectives, can be defined in terms of CHOOSE. For example, the following are some of

the basic set-theoretic constructs [32]:30

Enumeration: {e1, . . . , en} , CHOOSE S : ∀ x : (x ∈ S ≡ x = e1 ∨ · · · ∨ x = en)

Union: UNION S , CHOOSE M : ∀ x : (x ∈ M ≡ ∃T ∈ S : x ∈ T )

Binary union: S ∪ T , UNION {S ,T}
Powerset: SUBSET S , CHOOSE M : ∀ x : (x ∈ M ≡ x ⊆ S )

Comprehension 1: {x ∈ S : P} , CHOOSE M : ∀ x : (x ∈ M ≡ x ∈ S ∧ P)

Comprehension 2: {t : x ∈ S} , CHOOSE M : ∀ y : (y ∈ M ≡ ∃ x ∈ S : y = t)

The comprehension 1 construct can be thought as a set filter, for example {x ∈ 0..4 :

x % 2 = 0} = {0, 2, 4}. The comprehension 2 construct can be thought as a set map31,

for example {x ∗ x : x ∈ 0..4} = {0, 1, 4, 9, 16}.

In general, for values defined in terms of CHOOSE the existence of some set satisfying the

characteristic predicate should be proven. For example, consider a definition like:

c , CHOOSE x ∈ S : P(x )

Then, in order to prove a property Q(c), we need to prove:

∃ x ∈ S : P(x )

∀ x ∈ S : P(x )⇒ Q(x )

Standard sets and set equality

In TLA+ all values are encoded as some set, so the number 2 is a set although we don’t

know what its elements are. An important built-in constant is the set of boolean values:

BOOLEAN , { FALSE, TRUE }

There is no distinction between the elements of BOOLEAN and the logical truth values.

This identification is convenient as for any predicate P we have P ≡ (P = TRUE). How

boolean operators are interpreted and the subtleties involved are discussed at length in

[30, Chap. 16]. Another built-in constant is STRING , which stands for the set of all

30The constructs UNION S and SUBSET S formalizes the more ordinary notation
⋃

i∈S Si and 2S (or
P(S )) respectively.

31Although, of course, repeated elements may collapse due to set idempotence.
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finite character strings (e.g. “hello” ∈ STRING).

The usual sets of numbers Nat (N), Int (Z), Real (R) and operators on them (e.g.

(+), (∗), (−), (÷), (/), etc.) are defined in the three standard modules Naturals , Integers

and Reals respectively. They satisfy the expected inclusion hierarchy Nat ⊂ Int ⊂ Real .

There is no specific module for the rationals. Operator (÷) denotes integer division

whereas (/) denotes ordinary division. Currently, there is no mechanical tool supporting

the Reals module. The convenient and special syntax a..b defines an integer interval set

a..b , {n ∈ Int : a ≤ n ∧ n ≤ b}

Because TLA+ is an untyped language, an expression like 1 = “one” that may be rejected

in a strongly typed formalism is syntactically legal. The value of the equality 1 = “one”

is unknown to us because the encoding of integers and strings are opaque, however the

formula 1 = “one” ∈ BOOLEAN is true. So, the value of 1 = “one” its not undefined

but we cannot determine it.32 Similarly, we don’t know if the set {1, “one”} has two

elements or just one element, but we have that {1, “one”} ⊆ Nat ∪ STRING . It should

be noted that the model checker will refuse to check equality between elements that are

incomparable and by extension forbids sets with incomparable elements.

Other example of a legal, but nonsensical, expression is 1/0. The answer for what is the

value of 1/0? is simply that we don’t know and we don’t care, and the same goes for

1 ∈ 2.33

Defining something undefined

For some use cases, it may be useful to explicitly distinguish something as undefined.

A common idiom in TLA+ specifications is to define a constant symbol to denote some

special value outside the domain of interest (i.e. a bottom, undefined or null value). For

example, to work with possibly undefined natural numbers, we may define:

⊥ , CHOOSE x : x /∈ Nat

The laws of set theory ensure that no set can contain all values (i.e. there is no universal

32In a dynamically typed programming language it would be determinedly false.
33In some prover assistants based on dependent type theory, e.g. Lean and Coq, we have 1/0 = 0.
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set), hence there exists an element (here named ⊥) that is not in Nat , and we can be

sure that the set {1,⊥} has two elements. This technique can also be useful to define

partial functions augmenting the range with an special value, because functions in TLA+

are total as we explain in the next section.

4.3.3 Functions and operators

Another departure from the usual presentation of ZFC is that in TLA+ functions are not

defined as sets of pairs but as primitives with certain properties. They are also values

in the set universe, but with opaque encoding, like numbers or strings. Functions are

understood in the mathematical sense (sans specific set encoding). They are always total

and must not be confused with computations.

Any function, say f , has a domain denoted by DOMAIN f . Then, [A→ B ] denotes the set

of all functions f such that DOMAIN f = A and f [x ] ∈ B for all x ∈ A (note that function

application uses square brackets).34 Two functions f and g are equal (in the extensional

sense) if the following conditions hold:

DOMAIN f = DOMAIN g (4.20)

∀ x ∈ DOMAIN f : f [x ] = g [x ] (4.21)

A function can be explicitly described by the notation [x ∈ S 7→ e], which is reminiscent

of the informal mapping notation (i.e. x 7→ e) and the λ-calculus abstraction notation

(i.e. λx . e). For example, [n ∈ Nat 7→ 2 ∗ x ] is the doubling function, and we can also

give it a name:

double , [n ∈ Nat 7→ 2 ∗ x ]

Fortunately, TLA+ allows us to do the same in a more convenient style:

double[n ∈ Nat ] , 2 ∗ x

But we could also define this doubling function as the following operator, which is just a

34Function application may be defined by the operator Apply(f , x ) , CHOOSE y : 〈x , y〉 ∈ f , so that
f (x ) would be the expected abbreviation for Apply(f , x ). However, TLA+ chooses f [x ] to distinguish
function application from operator application.
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parameterized definition:

Double(x ) , 2 ∗ x

Both, the operator Double and the function double are, at least intuitively, the same

doubling function 2 ∗ x , i.e. we expect double[x ] = Double(x ) for all x ∈ Nat . But they

are different kind of objects. Functions and operators differ in some important ways:

• A function like double is by itself a complete expression denoting a value, but

an operator like Double is not. For example, it makes perfect sense to write

double ∈ [Nat → Nat ] (i.e. the type of the function) or double[2] ∈ Nat , and both

are indeed true. But, while Double(2) ∈ Nat is also legal and true, the expression

Double ∈ ... is not even syntactically correct, i.e. it is meaningless just like writing

+ > 0.

• Unlike operators, function must have a domain, which is a set. Then, a fundamental

limitation is that the domain can’t be any arbitrary collection, as there are collec-

tions “too large to be a set”. These collections, called proper classes, do not exist

inside the set universe. For example, the Cardinality( ) operator on finite sets can’t

be defined as a function.

These differences suggest that one may need to choose between a function or an operator

depending on what is more appropriate for the problem at hand.

Multiple parameters and higher order

Functions may have multiple parameters. For example, we may define the function that

adds two numbers as either:

add , [m ∈ Nat , n ∈ Nat 7→ m + n] (4.22)

add [m ∈ Nat , n ∈ Nat ] , m + n

Here, multiple parameters are actually represented as tuples 〈m, n〉 ∈ Nat ×Nat so that

add ∈ Nat × Nat → Nat and, for instance, add [1, 3] = 4. This means the previous
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definitions are syntactic sugar for

add , [〈m, n〉 ∈ Nat × Nat 7→ m + n] (4.23)

add [〈m, n〉 ∈ Nat × Nat ] , m + n

In general, for sets A and B , their Cartesian product is A×B = {〈a, b〉 : a ∈ A, b ∈ B}.
For a third set C , their product is A × B × C = {〈a, b, c〉 : a ∈ A, b ∈ B , c ∈ C}, and

so on.35 Tuples are, in fact, sequences and these in turn are functions. We talk a bit of

sequences later.

Alternatively, we may dispense the tuples and represent the same adding function in

curried form:

add2 , [m ∈ Nat 7→ [n ∈ Nat 7→ m + n]] (4.24)

add2[m ∈ Nat ] , [n ∈ Nat 7→ m + n]

so that add2 ∈ [Nat → [Nat → Nat ]] and add2[1][3] = add [1, 3] = 4.

Operators can receive other operators as arguments, for example:36

Twice(op( ), x ) , op(op(x )) (4.25)

so that Twice(Double(1)) = 4. The argument operator can be specified anonymously

using the LAMBDA operator notation as Twice(LAMBDA x : 2 ∗ x , 1) = 4.37

Recursive definitions

TLA+ allows to define recursive functions. For example, the following function is the

factorial of a non-negative integer n:

fact [n ∈ Nat ] , IF n = 0 THEN 1 ELSE n ∗ fact [n − 1] (4.26)

Actually, this is just syntactic sugar for a fixed-point definition in terms of the choice

35Note that the Cartesian product is not associative, we have A×B ×C 6= (A×B)×C 6= A× (B ×C )
because 〈a, b, c〉 6= 〈〈a, b〉, c〉 6= 〈a, 〈b, c〉〉.

36It is a deliberate decision that they can be at most second order.
37The LAMBDA notation is not a function in the λ-calculus sense, it’s an operator. The notation for

actual functions in TLA+ is closer to the λ-calculus notion of function than the LAMBDA notation.
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operator:

fact , CHOOSE f : f = [n ∈ Nat 7→ IF n = 0 THEN 1 ELSE n ∗ f [n − 1]] (4.27)

Then, to deduce that fact is a function of domain Nat we must prove that there exists

a function f that equals the given definition, otherwise, from the standpoint of theorem

proving, we can’t use fact . The standard TLAPS library provides some basic theorems to

prove that recursive definitions like this are well defined. Not all recursive definitions define

functions, if there is no function matching the definition then it defines some unknown

value. For example, consider f [n ∈ Nat ] , 1 + f [n].

It is also possible to define recursive operators (since the second version of TLA+). The

factorial example as an operator is:

RECURSIVE fact( ) (4.28)

fact(n) , IF n = 0 THEN 1 ELSE n ∗ fact(n − 1)

The first line makes evident that this is not an an ordinary definition. The semantics of

recursive operators was given by Lamport and George Gonthier in [67]. However, recursive

operators are not allowed to be higher order, and it should be noted that the theorem

prover TLAPS does not handle recursive operators yet.

To define higher order recursive functions, that can also be handled by the current me-

chanical tools, a combination of operator and recursive function definition can be used.

We will see how to do it for our use case in chapter 5.

The EXCEPT construct

In order to “change” the value at some point of a function there is a special notation. If

f is a function, then [f EXCEPT ![e1] 7→ e2] is another function f̂ that is the same as f

except with f̂ [e1] = e2. Formally, this is just:

[f EXCEPT ![e1] 7→ e2] , [x ∈ DOMAIN f 7→ IF x = e1 THEN e2 ELSE f [x ]] (4.29)

So, for example, we can represent the null vector (array or list) [0, 0, 0] of length 3 as

the function v1 , [x ∈ 1..3 7→ 0]. Then we can increment its last position as v2 ,

[v1 EXCEPT ![3] 7→ v1[3] + 1]. So, v2 is the same as v1 except with v2[3] = v1[3] + 1 =
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0 + 1 = 1. Also, we can use the symbol @ to refer to the previous value, so instead of

v1[3] + 1 we can more conveniently write @ + 1.

Extending the previous example, we can represent the null matrix (array of arrays or

list of lists) [[0, 0, 0], [0, 0, 0], [0, 0, 0]] of size 3 × 3 as the function (of functions) m1 ,

[x ∈ 1..3 7→ [y ∈ 1..3 7→ 0]]. Then we can increment its last position in the diagonal as

m2 , [m1 EXCEPT ![3][3] 7→ @ + 1] where @ stands for m1[3][3].

Sequences and Records

Some of the most common data structures are sequences and records. They are just

special cases of functions but with a bit of special syntax support. The EXCEPT construct

applies to them just as to any function.

In particular, finite sequences are just functions defined on some prefix of Nat\{0}, i.e.

they are indexed from 1. As they are functions, indexes are accessed by square brackets.

The standard module Sequences provides a bunch of common operators to handle finite

sequences like ◦ (binary concatenation), Len( ), Append( , ), etc. The set of all finite

sequences over some set S , called Seq(S ), is defined as:

Seq(S ) , UNION { [1..n 7→ S ] : n ∈ Nat }

We already saw that we can write tuples using angular brackets, e.g. the triple t ,

〈“a”, “b”, “c”〉 such that t ∈ STRING × STRING × STRING . In TLA+, tuples are just

sequences, the tuple notation used for t is syntactic sugar for:

[i ∈ 1..3 7→ CASE i = 1→ “a”

� i = 2→ “b”

� i = 3→ “c”]

where the CASE syntax is a generalization of IF-THEN-ELSE (the squares are the case

separators). So, t is also a sequence of strings with length 3, i.e. t ∈ Seq(STRING) and

Len(t) = 3. Quantifiers can be used on tuples/sequences, e.g. we can write ∃ 〈a, b〉 ∈ Nat×
Nat : a = b instead of the more cumbersome ∃ p ∈ Nat × Nat : p[1] = p[2].

Records are convenient structures to store different kinds of data. For example, suppose
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we wanted to associate object names with coordinates in 3D, the record r , [name 7→
“A”, coord 7→ 〈0, 0, 0〉] may represent that an object named A is at the origin. This

notation is syntactic sugar for:

[i ∈ {“name”, “coord”} 7→ CASE i = “name”→ “A”

� i = “coord”→ 〈0, 0, 0〉]

Also, [name : STRING , coord : Int × Int × Int ] denotes the set of all records with the

fields name and coord where the former is a string and the later is a triple of integers.

So, we have that r ∈ [name : STRING , coord : Int × Int × Int ].

4.3.4 The proof language and theorem proving with TLAPS

TLA+ includes a declarative and hierarchical proof language designed primarily to produce

proofs that are easily readable and maintainable by the users. TLAPS (TLA Proof

System) is a proof system for checking TLA+ proofs [38]. In what follows, we carry

out an overview of how these work together.

Declaring theorems

Consider the famous Goldbach conjecture. We can assert it is a theorem (i.e. ` Goldbach)

and left it unproven as follows:

THEOREM Goldbach ,

∀n ∈ Nat : n > 2 ∧ Even(n) ⇒ ∃ p, q ∈ Nat : IsPrime(p) ∧ IsPrime(q) ∧ n = p + q

OMITTED

Here, Goldbach is a name for the asserted formula. We do not know how to prove it (and

apparently, nobody does), so we use the OMITTED clause to indicate we are deliberately

asserting its validity without providing a proof. We are not really forced to use the

OMITTED clause but it may be more informative. Or instead, we may assert that it is
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provable from the Peano axioms:

THEOREM Goldbach ,

∀n ∈ Nat : n > 2 ∧ Even(n) ⇒ ∃ p, q ∈ Nat : IsPrime(p) ∧ IsPrime(q) ∧ n = p + q

PROOF BY PeanoAxioms

Although, even assuming it is a theorem provable from Peano axioms and that these

axioms can be captured in the formula PeanoAxioms 38, it is unlikely that a mechanical

tool could check it without further user assistance. We will talk about proofs in a mo-

ment. The keywords LEMMA, PROPOSITION and COROLLARY are convenient synonyms of

THEOREM.

In TLA+, a theorem can assert either a formula, like the previous Goldbach example, or a

sequent of the form ASSUME / PROVE. For example, the universal generalization rule can

be expressed as follows: 39

THEOREM ForallGen , ASSUME NEW P( ), NEW S ,

ASSUME NEW x ∈ S

PROVE P(x )

PROVE ∀ x ∈ S : P(x )

PROOF OBVIOUS

The clause OBVIOUS means this follows directly from the known facts (built-in axioms or

inference rules) and available definitions. In practice, interesting facts are unlikely to be

directly proved in this way. The keyword NEW introduces a new constant symbol (is a

shorthand for NEW CONSTANT) which stands for any constant formula. There are other

keywords for different levels of formulas. The following express a standard temporal logic

rule:40

THEOREM BoxDistrOverAnd , ASSUME TEMPORAL F , TEMPORAL G ,

PROVE 2(F ∧G) ≡ 2F ∧ 2G

PROOF OBVIOUS

Because TLA+ is a first order language, we cannot express these sequents as formulas.

38In fact, as TLA+ is a first-order language, the Peano axioms can’t be finitely expressed in a formula.
39Informally: if ` P(x ) choosing a new x ∈ S then ` ∀ x ∈ S : P(x ).
40Informally: ` 2(F ∧G) ≡ 2F ∧ 2G .
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Sequents allow to write more general second-order theorems.

Declaring general assumptions

We can also assert general assumptions at the module level. This is common practice,

although care must be taken as it could introduce inconsistency in the logic. For example,

to work with a constant symbol S that is supposed to be a finite set we can write:

CONSTANT S

ASSUME Finiteness , IsFiniteSet(S )

The keywords ASSUMPTION and AXIOM are convenient synonyms of ASSUME at the module

level. But there is some minor difference, ASSUME and ASSUMPTION will be by default

model checked when running TLC, whereas AXIOM will be ignored. This can be useful if

for some reason we do not want some assumption to be model checked (e.g. it may be

hard or impossible to model check). It should be noted that this kind of assertion works

only for formulas. To assert a second-order assumption it would be necessary to write a

sequent and left it unproven treating it like an axiom.

If there are assumptions and theorems present in the module, the theorems assume by

default the assumptions as axioms. In general, suppose module M has declared ASSUME A

and THEOREM T . We may want to instantiate M from other module (possibly with

substitutions) like in

M , INSTANCE M WITH u1 ← ū1, . . . , uk ← ūk

Then we can access the imported theorem T with M !T . But M !T is now in fact the

sequent

ASSUME A

PROVE T

where A and T denote that there may be substituted symbols in the original statements

A and T , so that the theorem T depends on the assumption A. To conclude T (i.e. to

be able to use it) we need first to prove (or assume again) A.
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Writing proofs checked by TLAPS

A theorem may be followed by a proof, and proofs are written in an assertional and hierar-

chical style. A proof is either (1) a terminal proof (justified with BY or left unproved with

OMMIT) or (2) a sequence of steps, some of which may also have proofs (i.e. sub-proofs),

thus forming a tree-like structure. Every step is labeled in the format 〈depth〉 name where

depth is the depth in the tree and name is an optional label (number or letter) to identify

the step. Usually, steps are labeled so that can be referenced below in the BY clauses.

Every sequence of proof steps must end with a QED step. The following illustrates how

the proof of a theorem may look like:

theorem . . .

〈1〉1. . . .

〈2〉1. . . . obvious

〈2〉2. . . . by . . .

〈2〉 qed by . . .

〈1〉2. . . .

〈2〉1. . . . omitted Comment: Maybe some day :)

〈2〉2. . . . by . . .

〈3〉A. . . . by . . .

〈3〉B. . . . by . . .

〈3〉 qed by . . .

〈2〉 qed by . . .

〈1〉 qed by . . .

The proof language is prover agnostic. A proof step is checkable if there is some backend

verifier that accepts it. The high level architecture of the theorem prover TLAPS is

depicted in figure 4.4. The main component is the proof manager which interprets the

proof language. At any point in the proof there is a current obligation that is to be

proved. The obligation contains a context of known facts and definitions, and a goal. To

check that the goal is effectively entailed by the context, the default behaviour of the

proof manager is to send the obligations to three backend solvers in order:

1. A baseline SMT solver. By default is Z3 [68], but can be changed to CVC4 [69]. It

can be explicitly invoked with the clause BY SMT or more specifically with BY Z 3.

2. Zenon: a tableaux-based prover for first-order logic [70]. It can be explicitly invoked

with the clause BY Zenon.
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3. Isabelle/TLA+: encodes the core of TLA+ and instantiates some of the main semi-

automatic proof methods of Isabelle. By default is invoked with tactic auto. It can

be explicitly invoked with the clause BY Isa or more specifically with BY IsaM (“tactic”)

to change the tactic.41

Figure 4.4: General architecture of TLAPS. (source: [4]).

In general, the SMT solver is faster than Zenon which in turns is faster than Isabelle/TLA+.

Goals involving schematic variables require second-order unification and this can only be

done by Isabelle/TLA+ (e.g. when using induction rules).42 If none of the three backends

solvers find a proof, TLAPS reports a failure on the obligation. The trusted component

of TLAPS is Isabelle/TLA+, the idea is that the other backend provers should output

a proof trace that can be certified with respect to Isabelle/TLA+. This certification

mechanism is currently implemented only for Zenon.

We provide a concrete and simple example that cannot be proved in just one step. Let

a, b, c ∈ Nat . If a a divides b and a divides c then a divides any linear combination of b

and c, i.e. (b ∗ x ) + (c ∗ y) for any x , y ∈ Nat .43 First, let us define m divides n, denoted

by m | n, as:

m | n , ∃ k ∈ Nat : n = m ∗ k (4.30)

41We have found that sometimes IsaM (“blast”) is needed to make the proof go through. The blast
tactic, unlike auto, omits rewriting which can be counterproductive in some cases.

42Automation of higher-order steps is poor, typically requiring the user to break down proofs into
smaller steps. Some recent research addresses this shortcoming with the introduction of a superposition-
based automatic theorem prover [71].

43In fact, it is a theorem on the integers.
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Informally, the proof is as follows. We have a | b and a | c. To prove the conclusion it

suffices to prove a | (b ∗ x ) + (c ∗ y) assuming x and y are arbitrary natural numbers. By

the definition of divides, we have that there exists k1 and k2 such that b = a ∗ k1 and

c = a ∗ k2. Now, we observe that:

(b ∗ x ) + (c ∗ y) = (a ∗ k1 ∗ x ) + (a ∗ k2 ∗ y) = a ∗ (k1 ∗ x + k2 ∗ y) (4.31)

So, we found there is a k = k1 ∗ x + k2 ∗ y such that (b ∗ x ) + (c ∗ y) = a ∗ k . Therefore

a divides the (arbitrary) linear combination QED.

The formalized version of the theorem and the proof are as follows:

theorem DividesLinearCombination
∆
=

assume new a ∈ Nat , new b ∈ Nat , new c ∈ Nat ,

a | b, a | c
prove ∀ x , y ∈ Nat : a | ((b ∗ x ) + (c ∗ y))

〈1〉 suffices assume new x ∈ Nat , new y ∈ Nat

prove a | ((b ∗ x ) + (c ∗ y)) obvious predicate logic

〈1〉 pick k1 ∈ Nat : b = a ∗ k1 by def |
〈1〉 pick k2 ∈ Nat : c = a ∗ k2 by def |
〈1〉1. (b ∗ x ) + (c ∗ y) = ((a ∗ k1) ∗ x ) + ((a ∗ k2) ∗ y) obvious b = a * k1, c = a * k2

〈1〉2. @ = a ∗ (k1 ∗ x + k2 ∗ y) obvious arithmetic

〈1〉3. ∃ k ∈ Nat : (b ∗ x ) + (c ∗ y) = a ∗ k by 〈1〉1, 〈1〉2
〈1〉 qed by 〈1〉3 def |

The formal proof makes the steps more explicit, as expected. The first step is obviously

justified by universal generalization (i.e. predicate logic). The PICK keyword, for exis-

tential instantiation, allows to use existential assumptions of the form ∃ x : P(x ) picking

a fresh z for which P(z ) is assumed, here it is used to pick some constants named k1

and k2. The equational reasoning 4.31 is formally represented by lines 〈1〉1 and 〈1〉2.

There are some basic laws of arithmetic involved in this equalities, but fortunately they

are automatically inferred by the backend solvers when justified by OBVIOUS. This allows

to reduce the burden of proof to the higher level aspects that need human ingenuity. The

penultimate step 〈1〉3 introduces an existencial abstraction, then the last step match 〈1〉3
with the goal using the definition of divides.44

44Note that definitions need to be expanded when they are required using the DEF clause, they are not
globally visible by default as this could be counterproductive for the backend solvers, especially when
there are too many definitions. Besides, the last two steps can be collapsed into one, but we usually
prefer to be more explicit.
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There is also another backend prover, called LS4, for temporal logic. This must be invoked

explicitly with clause BY PTL (Propositional Temporal Logic) when needed. Figure 4.5

presents the rules of TLA we discussed earlier as theorems in the proof language. All of

them require the temporal prover to check the main goal follows from the assumptions

because there is some temporal logic involved. However, as we already noted before, the

sub-goals in these rules do not need temporal logic.

theorem INV 1
∆
= Init ∧ [Next ]vs ⇒ 2I

〈1〉1. Init ⇒ I
〈1〉2. I ∧ [Next ]vs ⇒ I ′

〈1〉 qed
by 〈1〉1, 〈1〉2, PTL

theorem INV 2
∆
= Init ∧ [Next ]vs ⇒ 2P

〈1〉1. Init ⇒ I
〈1〉2. I ∧ [Next ]vs ⇒ I ′

〈1〉3. I ⇒ P
〈1〉 qed
by 〈1〉1, 〈1〉2, 〈1〉3, PTL

theorem INV 3
∆
= Init ∧ [Next ]vs ⇒ 2P

〈1〉1. Init ∧ [Next ]vs ⇒ 2I
〈1〉2. Init ∧ I ⇒ P
〈1〉3. I ∧ I ′ ∧ P ∧ [Next ]vs ⇒ P ′

〈1〉 qed
by 〈1〉1, 〈1〉2, 〈1〉3, PTL

theorem REF
∆
= R !Spec ⇒ S !Spec

〈1〉1. R !Init ∧ [R !Next ]R !vs ⇒ 2I
〈1〉2. R !Init ∧ I ⇒ S !Init
〈1〉3. I ∧ I ′ ∧ [R !Next ]R !vs ⇒ [S !Next ]S !vs
〈1〉 qed
by 〈1〉1, 〈1〉2, 〈1〉3, PTL

Figure 4.5: The rules INV1, INV2, INV3 and REF embodied as theorems in the proof
language.

The following is the formal proof of the type correctness invariant asserted for the clock

system HMC (module in figure 4.3). It can be proved by rule INV1, so it is in particular

an inductive invariant (as is normally the case for type correctness). The proof is trivial,

in fact the step 〈1〉2 could be proved in just one line, but here we prefer to make explicit

the two cases, namely 〈2〉A and 〈2〉B , involved in the proof: either the clock ticks or it

stutters.
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theorem Thm TypeInv
∆
= Spec ⇒ 2TypeInv

〈1〉1. Init ⇒ TypeInv

by def Init , TypeInv

〈1〉2. TypeInv ∧ [Next ]〈h,m〉 ⇒ TypeInv ′

〈2〉 suffices assume TypeInv , [Next ]〈h,m〉
prove TypeInv ′

obvious

〈2〉A. case Next The clock ticks

by 〈2〉A def TypeInv , Next , Min, Hour

〈2〉B. case unchanged 〈h, m〉 The clock stutters

by 〈2〉B def TypeInv

〈2〉 qed
by 〈2〉A, 〈2〉B def Next

〈1〉 qed
by 〈1〉1, 〈1〉2, PTL def Spec

Because much of the proof structure can be considered boilerplate, the Toolbox IDE

provides a graphical UI that allows the user to automatically generate part of the proof

structure.

Current limitations of TLAPS

TLAPS does not yet fully support TLA+. Some of the current limitations are:

• Recursive operator definitions are not supported.

• There is no support for real numbers (the standard Reals module).

• The ENABLED operator is not supported. This means is not possible to do liveness

proofs, as fairness conditions (WF and SF) are defined in terms of this operator.

• Many temporal operators (e.g. ∃∃∃) are not supported.

In the process of writing this thesis, a postdoctoral fellow is working in the implementation

of the ENABLED operator. There are already some publications about this new feature

and liveness proofs [72].
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4.4 Model checking with TLC

TLC is a model checker for specifications written in TLA+. More precisely, it accepts a

subclass of TLA+ specifications that should include most reasonable descriptions of real

system designs [37]. It allows to check safety properties and also some simple forms of

liveness properties. When it finds a violation, it reports an error trace where it is possible

to explore the values of expressions at each step of the trace. TLC can be used in at least

three different ways:

1. Model checking: tries to find the graph of all reachable states using breadth-first

search (or optionally a depth-first search).

2. Simulation: checks an unending series of behaviors, each of which it constructs

by starting from a randomly choosen initial state and repeatedly making a random

choice of a possible next state.

3. No behaviour: this is used to evaluate constant expressions in a way somewhat

akin to a REPL console. For example, if one writes {x ∈ 0..4 : x % 2 = 0} the result

should be {0, 2, 4}.

The specification to be checked must be written in the canonical form 4.10 already dis-

cussed. Additionally, all the present data types must be bounded, which means that

the verification is over a finite-state model of the specification. For example, a formula

like x ∈ Nat can’t be checked as Nat is obviously an infinite set, instead one should

write x ∈ 0..N for some appropriate upper bound N . This also implies TLC does not

accept formulas with general quantification like ∀ x : P , it only accept bounded ones like

∀ x ∈ S : P where S is a bounded set. Fortunately, the Toolbox IDE allows the user

to write the general specification (e.g. containing x ∈ Nat) and to separately manage

finite models of the specification where the symbol Nat can be overridden with a finite set

(e.g. 1..N for some N ). This enables a clear separation between the general specification

and its finite checkable models, so that theorem proving can be applied on the general

specification if a general verification is desired.
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TLC is developed in Java (like most TLA+ tools) and it relies on its own implementation

of the TLA+ standard modules to evaluate specifications. For example, the Naturals

module defines the natural numbers as usual by the Peano axioms, but it is not possible

for TLC to use the Peano representation of numbers as it would be terribly slow. Besides,

TLC allows the user to provide his own Java implementation to override defined operators,

which is convenient and can be justified for performance reasons.

TLC works with an explicit representation of states, not a symbolic one like BDD. This

decision was partly to avoid additional restrictions on the class of specifications that it

could handle. TLC does not (yet) implement partial order reduction techniques. However,

it may take advantage of symmetry sets to speedup model checking as explained in [73].

Currently, TLC may be run locally making use of multiple processors in a single computer,

or may be run in distributed making use of multiple computers. We are not aware of any

research related to GPU capability exploitation.

There is another model checker currently under development (still below v1.0), called

APALACHE, which is based on symbolic techniques as it translates TLA+ (also bounded)

specifications into the logic supported by SMT solvers such as Microsoft Z3 [39]. Reported

experiments shows it can outperform TLC for some use cases. We have not tested this

alternative yet.
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Chapter 5

Specification of the PCR pattern in

TLA+

Most engineers are looking for tools that can find bugs automatically without

requiring any thought. Such tools are useful, but good systems are not built

by removing the bugs from poorly designed ones.

Leslie Lamport

In this chapter we present a formalization of the abstract PCR models and the functions

they compute (chapter 3) in TLA+ (chapter 4). There are mainly two themes that need

to be discussed:

1. The functional point of view (aka What?)

PCR behaviour was previously identified with certain functions under some algebraic

assumptions. To deal with this formally, we organize the required mathematical

concepts, properties and proofs across a collection of TLA+ modules. To this end,

only the classical mathematical fragment of the TLA+ formalism (i.e. only the “+”)

is used, no temporal logic is required.

2. The operational point of view (aka How?)

A formal concurrent semantics for PCRs is given in terms of temporal TLA+ formu-

las. To this end, we carry out a straightforward translation of the PCR operations

as actions in the TLA+ sense so that a PCR execution can be seen as a (fair) labeled

transition system.

Then, for the sake of verification, both points of view will be connected by the notion of
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(partial) correctness, i.e. the concurrent semantics (2) should compute the appropriate

function (1). More precisely, the notions of (partial) correctness and termination will be

formally expressed as special cases of safety and liveness properties, respectively, under the

temporal logic framework provided by TLA+. Additionally, specifications of different PCR

models will be connected by the notion of refinement under appropriate substitutions. We

will have the opportunity to use TLC and TLAPS to perform mechanical verification of

these developments.

Most of our discussion will still be “abstract” in the sense that our PCR specifications

are parameterized with symbols for the basic functions and other concrete elements that

should be provided by the user under normal circumstances. In this way, an entire class

of concrete PCRs (models in the formal logic sense) can be represented with a single spec-

ification (a theory), so that instantiating the specification parameters gives a particular

concrete PCR.

5.1 A note about notation

In this chapter we will be working with the formal specification language TLA+, which

comes with some nice pretty printing capabilities implemented by the TLATeX tool which

translates plain ASCII input into LATEX. As usual, snippets of TLA+ specs (and also

complete specs in Appendix) will be presented in pretty printed style. By default, there is

very limited support for two dimensional notation. For example x^y is parsed as a binary

operation and printed as x y as expected. However this is already taken as exponentiation

in the standard modules. There is no general support for subscript notation, x y is parsed

just a name and printed literally, i.e. it does not represent a binary operation on x and

y . Consequently, things like the usual Euler style notation
∑n

i=m f (i) (and their variants)

can only be defined and printed in linear form (e.g. sum(m, n, f ( ))).

When presenting fragments of the PCR specification we will mostly use standard TLA+

notation. But when explaining concepts and specially when presenting the properties

and proofs of the specification we will be more liberal and still be using some of the
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informal notation from chapter 3. For example, our notation v I ,i will be formalized as a

curried function denoted by v [I ][i ] in TLA+ but we prefer to use the former when possible.

Anyway, we will try our best to be consistent in the use of notation and favour clarity of

exposition over particular formalism details.

5.2 Initial assumptions

Before actually starting to discuss the specification, we want to fix hereinafter some ground

assumptions about PCRs and their execution. These assumptions are made mostly in the

interest of simplicity but some of them are also due to limitations on the tooling support

that will be briefly mentioned.

5.2.1 Interleaving

We will assume an interleaving execution semantics, which is the most common ap-

proach adopted to model concurrency. This means that parallelism is reduced to the

non-deterministic choice among their possible sequentializations. We briefly mentioned

interleaving in the TwoClocks example 4.2.3 when discussing composition in TLA+. In

that example there where two components involved. In general, interleaving of n compo-

nents may be enforced using the following condition over component’s variables:

Interleave(vs1, . . . , vsn) ,
∧
i 6=j

2[vs ′i = vsi ∨ vs ′j = vsj ]〈vsi ,vsj 〉 (5.1)

Interleaving specifications are considered a reasonable abstraction, adequate for most

practical purposes. Also, without interleaving, we have not been able to find a way for

the model checker TLC to scale appropriately. It is a known shortcoming, and has to

do with the way TLC enumerates the next states when computing reachable states. In

contrast, this is not an issue for TLAPS. 1

Ironically, interleaving is one of the reasons for the state explosion problem. Today, some

1It is true that TLA+ has a linear-trace based semantics, however, as we already explained in previous
chapter, at the language level TLA+ does not commit to any specific execution semantics. The disjunction
of two actions A1 ∨A2 naturally encompasses the possibility of simultaneity.
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techniques exist to circumvent the problem at least for safety properties. These have

originated in research on truly-concurrent semantics (e.g. Mazurkiewicz theory of traces

used in [74]) where (very roughly) if two actions are independent (this must be known

somehow) then they don’t need to be interleaved which may help to reduce the verification

effort.2 Partial order reduction is one of these techniques, but is not implemented by TLC

as was already noted in section 4.4.

5.2.2 Constant initial reduction value

We maintain our assumptions about the initial reducer value, but now it will be a constant

value, that is, there will be no basic function r0 to compute it. This means that our

previous PCR examples IsPrime1 and RedBlack can’t be faithfully formalized, but we

have in Appendix D another version of IsPrime1 called IsPrime2 to fill its place. In the

case of RedBlack , it is out of reach because none of the tools have support for the Reals

module yet.

This decision makes the formalization simpler because in this way the initial reducer value

for any PCR is already known ahead of time, so there is no need to formalize exactly how

or when it is actually computed. However, the real reason behind this decision is an error

we found in TLAPS when handling parameterized module instantiation with a first order

symbol, a feature we would need in order to allow an input dependent initial value. In

contrast, TLC had no problem with it.

5.2.3 Simplified schemes

According to the definitions given in chapter 3 we allowed the basic functions to read

from all the previous variables. A simplification we make now is to read only from the

immediately preceding variable. For example, consider the scheme given for the basic

2As a simple example, consider a system of n independent components. In interleaving semantics there
are n! possible executions, whereas in truly-concurrency semantics there is only one parallel execution.
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PCR (definition 3.1), now it reduces to

pi := fp(x , p, i)

ci
1 := fc1(x , p, i)

ci
2 := fc2(x , c1, i)

...
ci

k := fck (x , ck−1, i)

r := r ⊗ fr(x , ck , i)

There is no loss of expressiveness, as each basic function could forward the previous

values together with its output if it was necessary. Besides, we will work only with single

consumer PCRs, so the previous scheme further reduces to

pi := fp(x , p, i)

ci := fc(x , p, i)

r := r ⊗ fr(x , c, i)

Again, there is no loss of expressiveness, as we can express the computation of multiple

consumers with a single one. For example, if there are two consumers c1 and c2 such that

ci
1 = fc1(x , p, i) and ci

2 = fc2(x , c1, i) for any i ∈ Ix , we can express their effect with a

single consumer c such that

ci = fc(x , p, i) =
(
fc1(x , p, i), fc2(x ,

# «

fc1(x , p), i)
)

i.e. so that the consumer returns a pair with the original two consumer output values

making it possible for the reducer to access the output values of c1 and c2 at any i , namely

as ci [1] and ci [2] respectively.

5.2.4 Relativize the execution hierarchy to I0

For the sake of uniformity in our specifications, we prefer not to assume that the main PCR

being specified is located at the root of the execution hierarchy. Recall that, in general,

indexes are sequences of natural numbers, formally objects of the form I ◦ 〈i〉 ∈ Seq(Nat)

(which we informally write as I , i) where I is the index of the instance (also the index

of the father’s instance) and i is the current assignment at the inner scope. So, the
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point of view we adopt is that the main PCR being specified operates starting from some

base index I0 ∈ Seq(Nat), which may be the empty index 〈〉 (in which case it could be

considered as the root of execution) but otherwise it would mean is located deeper in

the execution hierarchy, thus reflecting a bit more general setting. Consequently, the

execution hierarchy of what is being specified is relativized to I0, and the high level

dependence graph may be depicted as follows:

x I0

r I0

I0, i

I0, i , j
...

The output values of the internal components in 3 are indexed by sequences of the form

I0, i for the first level, I0, i , j for the second level (if there is composition inside), and so on.

This point of view may be interpreted as that there might be in the system environment

other parallel instances of the same PCR operating from different father instances (i.e.

6= I0). In general, this is true. However, we are not interested in those other instances,

as their behaviours are independent from whatever happens starting from I0 and all of

them come from the same PCR being specified. For simplicity, in our specifications we

assume there is a single instance, with index I0, from which the main PCR operates. All

the properties we care about the main PCR will be stated with respect to I0.
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5.3 Formalizing the mathematics underlying the func-

tional point of view

Recall proposition 3.1 states the result of a basic PCR A on some input x as given by the

following expression

A(x ) =
⊗
i ∈ Ix

#«

f A
i

= id⊗ ⊗
#«

f A
m ⊗ #«

f A
m ′ ⊗ · · · ⊗ #«

f A
n

(5.2)

for some function
#«

f A : N → D (built from the PCR basic functions) and assuming

(D , id⊗,⊗) is an abelian monoid. The commutativity requirement can be dropped if a

fixed reduction order is imposed.

It is evident that equation 5.2 constitutes an informal definition, albeit acceptable by

ordinary mathematical standards. But, this time we need a suitable formal definition in

the TLA+ language that should also be manageable by the TLA+ tools. To this end,

we formalize the extension of a binary operation ⊗ to finite (not necessarily consecutive)

intervals of N, assuming certain algebraic properties. We call this generalization the big

operation and denote it by
⊗

.3 Currently, the standard library of mathematics offered

by TLAPS is not very large, at least not compared with other more mature and general

purpose proof tools like e.g. Isabelle/HOL. However, there is (more than) enough support

to develop the theory we need. In fact, the Community Repository [75], which is a fairly

recent initiative to gather contributions from the TLA+ community, includes some fold-

like operators which could fit our needs —but without associated theorems and proofs.

This is easily explained because those are relatively new contributions and the community

is far more concerned with model checking techniques than with theorem proving.

Our formalization is completely independent of the PCR concept (although we do not

claim it to constitute a general purpose library) and is organized in several modules

that can be found in PCR/BaseModules (GitHub). Some of the most important are

3Also known as the generalization or iterated binary operation. There is nothing special about symbols
⊗ and

⊗
, we may use the pair ⊕ and

⊕
as well. However, it should be noted that ⊕ is already taken

for the multiset (bag) union operation in the standard TLA+ modules, which is not a language primitive
but still requires care in order to avoid conflict.
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Module Name Description

AbstractAlgebra Definitions from elementary abstract algebra.

MonoidBigOp The big operator assuming a monoid structure.

MonoidBigOpThms
Theorems for MonoidBigOp. Proofs are in a separate module
at GitHub.

AbelianMonoidBigOp The big operator assuming an abelian monoid structure.

AbelianMonoidBigOpThms
Theorems for AbelianMonoidBigOp. Proofs are in a separate
module at GitHub.

Table 5.1: Modules of the TLA+ specification for algebraic concepts and their theorems.

summarized in table 5.1 and can also be found at Appendix A. Induction principles over

intervals of N are heavily used as the main proof method in those modules:

Theorem 5.1 (IntervalNatInduction). Let m, n ∈ N and P a predicate:

i. Simple induction:

P(m) ∀ i ∈ (m + 1)..n : P(i − 1)⇒ P(i)

∀ i ∈ m..n : P(i)

ii. General induction:

∀ i ∈ m..n : (∀j ∈ m..(i − 1) : P(j ))⇒ P(i)

∀ i ∈ m..n : P(i)

Proof. These are analogous to the very well known induction principles over N in their

simple and general form, but here specifically stated for intervals of the form m..n ⊆ N.

We first prove i., then use it to prove ii.:

i. Define Q(i) = i ∈ m..n ⇒ P(i). Then it suffices to prove ∀ i ∈ N : Q(i). Apply

NatInduction from the standard library invoking the Isabelle solver.

ii. Define Q(k) = ∀ i ∈ m..(k − 1) ⇒ P(i). Then it suffices to prove Q(m) and

∀ k ∈ (m + 1)..n : Q(k − 1)⇒ Q(k). Apply i. invoking the Isabelle solver.
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In what follows we discuss in more detail some bits of the modules in table 5.1.

5.3.1 Abstract algebra

Module AbstractAlgebra defines some general algebraic structures as a hierarchy of con-

cepts. A magma structure (D ,⊗) consists of a set equipped D with a single binary

operation ⊗ : D × D → D that must be closed by definition. No other properties are

imposed.

Magma(D , ⊗ )
∆
= ∀ x , y ∈ D : x ⊗ y ∈ D

A semigroup structure (D ,⊗) is a magma where the operation ⊗ : D × D → D satisfies

the associativity law.

SemiGroup(D , ⊗ )
∆
= ∧ Magma(D , ⊗ )

∧ ∀ x , y , z ∈ D : (x ⊗ y)⊗ z = x ⊗ (y ⊗ z )

A monoid structure (D , c,⊗) is a semigroup having an identity element c.

Monoid(D , c, ⊗ )
∆
= ∧ SemiGroup(D , ⊗ )

∧ ∃ e ∈ D : ∀ x ∈ D : ∧ e = c

∧ x ⊗ e = x

∧ e ⊗ x = x

A well known fact of the identity element in a monoid is its uniqueness : if we have two

elements c1 and c2 such that Monoid(D , c1,⊗) and Monoid(D , c2,⊗) holds then c1 = c2.

TLAPS can prove this fact through the Z3 solver directly from the Monoid definition

without further assistance. 4

An abelian (or commutative) monoid structure (D , c,⊗) is a monoid where the operation

⊗ : D × D → D satisfies the commutativity law.

AbelianMonoid(D , c, ⊗ )
∆
= ∧ Monoid(D , c, ⊗ )

∧ ∀ x , y ∈ D : x ⊗ y = y ⊗ x

4Interestingly, the other alternative SMT CVC4 can’t do the same.
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5.3.2 Operation on monoid structure

Let (D , Id ,⊗) be a monoid and {x}i∈I a family in D with finite index I = m..n for

integers m ≤ n. First, we consider a sensible definition for the extended operation

xm ⊗ xm+1 ⊗ xm+2 ⊗ · · · ⊗ xn

Let us write the indexed family more formally as a function f : I → D , so that f (i) = xi

for i ∈ I . Following a fairly standard approach, the extended operation ⊗ from m to n

can be inductively defined and denoted by

n⊗
i=m

f (i) =


f (m) , n = m
n−1⊗
i=m

f (i) ⊗ f (i) , n > m
(5.3)

which we call the big operator and corresponds to a left reduction

(· · · (xm ⊗ xm+1) ⊗ xm+2) ⊗ · · · ⊗ xn)

In fact what we have can serve more generally for semigroup structures. But we have not

finished yet, and most importantly we are not formal enough yet. Next, we will see how

to formalize 5.3 in TLA+ and how to deal with some missing details.

Module MonoidBigOp extends AsbtractAlgebra and is parameterized by three symbols for

which a monoid structure is assumed:

constants D , Id , ⊗

axiom Algebra
∆
= Monoid(D , Id , ⊗ )

Symbol Id was noted id⊗ in chapter 3. To formalize 5.3, we define a recursive function

recDef local to the higher order operator bigOp, which is parameterized by the interval

bounds and the indexing function (recall the discussion about recursive definitions in

4.3.3):
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bigOp(m, n, f ( ))
∆
= let recDef [i ∈ m . . n]

∆
=

if i = m then f (m)

else recDef [i − 1]⊗ f (i)

in recDef

The job of recDef is to traverse the interval m..n using a standard recursive scheme that

we can readily prove to be well defined using results from the standard TLAPS library.

Note that the bigOp operator is by definition the function recDef of type m..n → D .

Now we have the big operator expressed as a function (in the set theoretic sense), but

what we really want is the resulting value of the operation over all m..n, which means

evaluating bigOp at n (i.e. bigOp(m, n, f ( ))[n]). Besides, if we allow m > n to be

possible then m..n = ∅ and bigOp is undefined, so in this case we adopt the monoid

identity as the result. Following this ideas, we define a relative of bigOp named BigOp:

BigOp(m, n, f ( ))
∆
= if m ≤ n

then bigOp(m, n, f )[n]

else Id

Note that bigOp ∈ m..n → D but BigOp ∈ D . We denote BigOp informally by
n⊗

i=m

f (i).

We have previously only considered consecutive index sets of the form m..n. More general

index sets can be represented by {i ∈ m..n : P(i)} for some predicate P (the original m..n

interval can be recovered using a tautological predicate). We can cope with this if we “skip

the holes” returning the monoid identity. For this we define a new big operator BigOpP

in terms of BigOp:

BigOpP(m, n, P( ), f ( ))
∆
= BigOp(m, n, lambda i : if P(i) then f (i) else Id)

As BigOpP is in fact just a straightforward abbreviation in terms of BigOp, almost all

the results related to BigOp will have as immediate corollaries an analogous result for

BigOpP . We denote BigOpP informally by
⊗

{i ∈m..n : P(i)}
f (i).
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5.3.2.1 Theorems

Module MonoidBigOpThms extends MonoidBigOp and gathers a bunch of useful theorems

concerning the big operators. Any other module that needs to use these theorems is

required to prove (or just assume again) the postulated monoid laws. The proofs of the

theorems are in another module MonoidBigOpThms proofs at GitHub. Here we present

some of the results that will be referenced later with fairly rough proof sketches.

Theorem 5.2 (FunctionEq). Let f , g : m..n → D such that f (i) = g(i) for all i ∈ m..n.

Then:
n⊗

i=m

f (i) =
n⊗

i=m

g(i)

Proof. If m > n the result is trivial, otherwise apply IntervalNatInduction.

Corollary 5.1 (FunctionEqP). Let P : m..n → Bool and f , g : I → D where I =

{i ∈ m..n : P(i)}. If f (i) = g(i) for all i ∈ I then:⊗
{i ∈m..n : P(i)}

f (i) =
⊗

{i ∈m..n : P(i)}
g(i)

Proof. Direct by FunctionEq .

Corollary 5.2 (PredicateEq). Let P ,Q : m..n → Bool and f : I → D where I =

{i ∈ m..n : P(i) ∧Q(i)}. If P(i) ≡ Q(i) for all i ∈ m..n then:⊗
{i ∈m..n : P(i)}

f (i) =
⊗

{i ∈m..n : Q(i)}
f (i)

Proof. Direct by FunctionEq .

Corollary 5.3 (FalsePredicate). Let P : m..n → Bool and f : I → D where I =

{i ∈ m..n : P(i)}. If ¬P(i) for all i ∈ m..n then:⊗
{i ∈m..n : P(i)}

f (i) = id⊗
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Proof. Proceed as follows:⊗
{i ∈m..n : P(i)}

f (i) =
n⊗

i=m

(
P(i)→ f (i), id⊗

)
=

n⊗
i=m

id⊗ = id⊗

Corollary 5.4 (TruePredicate). Let P : m..n → Bool and f : I → D where I =

{i ∈ m..n : P(i)}. If P(i) for all i ∈ m..n then:⊗
{i ∈m..n : P(i)}

f (i) =
n⊗

i=m

f (i)

Proof. Proceed as follows:⊗
{i ∈m..n : P(i)}

f (i) =
n⊗

i=m

(
P(i)→ f (i), id⊗

)
=

n⊗
i=m

f (i)

Theorem 5.3 (SplitUp). Let f : m..n → D and k ∈ m..n where m ≤ n. Then we can

split the operation at index k :

n⊗
i=m

f (i) =
k⊗

i=m

f (i) ⊗
n⊗

i=k+1

f (i)

Proof. If k = n the result is trivial, otherwise (i.e. k ∈ m..(n−1)) apply IntervalNatInduction.

Corollary 5.5 (SplitUpP). Let P : m..n → Bool , f : I → D and k ∈ m..n where

I = {i ∈ m..n : P(i)} and m ≤ n. Then we can split the operation at index k :⊗
{i ∈m..n : P(i)}

f (i) =
⊗

{i ∈m..k : P(i)}
f (i) ⊗

⊗
{i ∈k+1..n : P(i)}

f (i)

Proof. Direct by SplitUp.

Theorem 5.4 (SplitDown). Let f : m..n → D and k ∈ m..n where m ≤ n. Then we

can split the operation at index k − 1:

n⊗
i=m

f (i) =
k−1⊗
i=m

f (i) ⊗
n⊗

i=k

f (i)
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Proof. If k = m the result is trivial, otherwise (i.e. k ∈ (m + 1)..n) apply SplitUp.

Theorem 5.5 (SplitLast). Let f : m..n → D and m ≤ n. Then we can extract the last

term:
n⊗

i=m

f (i) =
n−1⊗
i=m

f (i) ⊗ f (n)

Proof. Proceed as follows:

n⊗
i=m

f (i) =
n−1⊗
i=m

f (i) ⊗
n⊗

i=n

f (i) =
n−1⊗
i=m

f (i) ⊗ f (i)

Corollary 5.6 (SplitLastP). Let P : m..n → Bool and f : I → D where I = {i ∈ m..n :

P(i)} and m ≤ n. Then we can extract the last term:⊗
{i ∈m..n : P(i)}

f (i) =
⊗

{i ∈m..n−1 : P(i)}
f (i) ⊗

(
P(n)→ f (n), id⊗

)

Proof. Direct by SplitLast .

5.3.3 Operation on abelian monoid structure

The presence of commutativity for ⊗ : D × D → D enables a more flexible algebraic

manipulation as any rearrangement of the elements under consideration is now allowed,

i.e. order does not matter. Now, what is an appropriate way to formalize the fact that

order does not matter?.

Perhaps a more “traditional” approach would be to note that for any finite set I there is

a bijection χ : 1..n → I where n is the cardinal of I , so we may define the big operator

in terms of our previous definition 5.3 like⊗
i ∈ I

f (i) =
n⊗

i=1

f (χ(i))

Because of commutativity, we can choose an arbitrary bijection and therefore not commit

ourselves to any specific order. Considering that TLA+ possesses a choose operator, an
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approach like this seems like a good fit.

Another approach is to define the big operator as the unique homomorphism from the

free abelian monoid (which is in bijection with the multisets). More precisely, let I ∗ be

the free abelian monoid generated from I . Given any function f : I → D there is an

unique function
⊗

f : I ∗ → D satisfying the equations⊗
f *+ = id⊗⊗

f *i+ = f (i)⊗
f (x ] y) =

⊗
f x ⊗ ⊗f y

where *+ is the empty multiset (identity of multiset union), *i+ is the singleton multiset,

] is multiset union and x , y ∈ I ∗. This approach was introduced by Richard Bird in the

context of constructive functional programming as a central method to define functions

in the Bird-Mertens formalism [76].

However, we adopt a simpler and less general approach. As order does not matter, we

argue that we can commit to any order as long as our reasoning does not depend on the

specific choice. With this in mind, module AbelianMonoidBigOp extends MonoidBigOp

to reuse the same definition as before but now demanding commutativity:

AXIOM Commutativity , ∀ x , y ∈ D : x ⊗ y = y ⊗ x

5.3.3.1 Theorems

Module AbelianMonoidBigOpThms extends AbelianMonoidBigOp and the theorems in

MonoidBigOpThms with more theorems concerning the big operators. Any other module

that needs to use these theorems is required to prove (or just assume again) the postulated

monoid laws and commutativity. The proofs of the new theorems are in another module

AbelianMonoidBigOpThms proofs at GitHub. Here we present some of the results that

will be referenced later with fairly rough proof sketches.
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Theorem 5.6 (SplitRandom). Let f : m..n → D and j ∈ m..n where m ≤ n. Then we

can extract the j -th term:
n⊗

i=m

f (i) =
⊗

{i ∈m..n : i 6=j}
f (i) ⊗ f (j )

Proof. Proceed as follows:

n⊗
i=m

f (i) =

j⊗
i=m

f (i) ⊗
n⊗

i=j+1

f (i) by SplitUp

=

j⊗
i=m

f (i) ⊗
⊗

{i ∈ j+1..n : i 6=j}
f (i) j /∈ (j + 1)..n

=

(
j−1⊗
i=m

f (i) ⊗ f (j )

)
⊗

⊗
{i ∈ j+1..n : i 6=j}

f (i) by SplitLast

=

 ⊗
{i ∈m..j−1 : i 6=j}

f (i) ⊗ f (j )

 ⊗ ⊗
{i ∈ j+1..n : i 6=j}

f (i) j /∈ m..(j − 1)

=

 ⊗
{i ∈m..j−1 : i 6=j}

f (i) ⊗
⊗

{i ∈ j+1..n : i 6=j}
f (i)

⊗ f (j )
by Associativity

& Commutativity

=

 ⊗
{i ∈m..j−1 : i 6=j}

f (i) ⊗ id⊗

⊗ ⊗
{i ∈ j+1..n : i 6=j}

f (i)

⊗ f (j ) by Identity

=

 ⊗
{i ∈m..j−1 : i 6=j}

f (i) ⊗
(
j 6= j → f (j ), id⊗

)⊗ ⊗
{i ∈ j+1..n : i 6=j}

f (i)

⊗ f (j ) obviously j = j

=

 ⊗
{i ∈m..j : i 6=j}

f (i) ⊗
⊗

{i ∈ j+1..n : i 6=j}
f (i)

 ⊗ f (j ) by SplitLastP

=
⊗

{i ∈m..n : i 6=j}
f (i) ⊗ f (j ) by SplitUpP

Corollary 5.7 (SplitRandomP). Let P : m..n → Bool , f : I → D and j ∈ m..n where

I = {i ∈ m..n : P(i)}, m ≤ n and P(j ). Then we can extract the j -th term:⊗
{i ∈m..n : P(i)}

f (i) =
⊗

{i ∈m..n : P(i)∧ i 6=j}
f (i) ⊗ f (j )

Proof. Direct by SplitRandom.

165

thm:SplitUp
thm:SplitLast
thm:SplitLastP
thm:SplitUpP
thm:SplitRandom


5.4 Formalizing the abstract PCR models

In this section we present the formalization in TLA+ of the abstract PCR models in-

troduced in chapter 3. Table 5.2 summarizes all the TLA+ modules representing the

abstract PCR models. They can be found at PCR/AbstractModels (GitHub) and also in

Appendix B. Each module includes the corresponding functional and operational speci-

fication. We distinguish the use of an ordinary reducer vs a left reducer by formalizing

them in separate modules because the corresponding algebraic assumptions are not the

same. For example, module PCR A formalizes an ordinary basic PCR and assumes an

abelian monoid, but PCR ArLeft formalizes a basic PCR with left reducer and assumes

a monoid. However, we can prove that PCR ArLeft is a refinement of PCR A.

Module Name Description Concrete example

PCR A Basic PCR. See def. 3.1.
FibPrimes1, Is-
Prime2

PCR ArLeft
Basic PCR with left reducer assuming a con-
secutive iteration space.

ListId

PCR A1step Basic PCR as a one step computation.

PCR A c B
PCR composed through consumer with basic
PCR. See def. 3.4.

FibPrimes2

PCR A r B
PCR composed through reducer with basic
PCR. See def. 3.5.

PCR DC Divide-and-conquer PCR. See section 3.3.2.
MergeSort1,
NQueensDC

PCR DCrLeft Divide-and-conquer PCR with left reducer. Merge

PCR DC r DCrLeft
Divide-and-conquer PCR composed through
reducer with other divide-and-conquer PCR
with left reducer.

MergeSort2

PCR A it
PCR with iterative consumer over a basic
function. See def. 3.6.

PCR A it B
PCR with iterative consumer over a basic
PCR. See def. 3.6.

NQueensIT

Table 5.2: Modules of the TLA+ specification for the abstract PCR models.
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All modules are (logically) partitioned in different sections for better clarity. The order

of this sections is not completely arbitrary, as the TLA+ parser works in a single pass. In

general, the sections are:

• Constants and variables: symbol parameters are declared for each PCR. This in-

cludes symbols for the PCR variables, auxiliary variables, basic functions, iteration

space, and more.

• General definitions: some basic definitions for operators that are not specific to any

PCR. They could possibly be extracted to another module but they are very few so

we don’t bother.

• PCR definitions and assumptions: the definitions and assumptions needed to char-

acterize each PCR. This includes definitions for the iteration space, dependencies,

and more. Some assumptions are declared for the basic functions and others.

• The functional specification: each PCR characterized as a function of streams.

• The operational specification: a temporal formula in the canonical form specifying

the conjoint behaviours of the PCRs.

• Properties: the properties, safety or liveness, satisfied for each PCR. This may also

include refinement concerning other PCR module.

In what follows, we discuss each module in more detail, starting with the basic PCR

which will serve as a baseline to explain the fundamental aspects of our approach. Most

of the other modules can be considered extensions or variations of the basic PCR, and

consequently shall not be discussed at the same length. Nevertheless, we will make sure

to stress the more relevant differences when appropriate. The properties section of the

specification shall be presented later in section 5.5 when discussing verification.

5.4.1 Basic PCR

The main reference for this formalization is the definition of a basic PCR given in 3.1.

Next we review each section of the corresponding specification.

167



5.4.1.1 Variables and constants

The constant symbols used in the specification to characterize the PCR elements are the

following:

• I0: the base index of the execution hierarchy (recall assumption 5.2.4).

• pre( ) : a precondition predicate useful for some specifications where the input is

expected to have some very specific characteristic.

• T , Tp, Tc, D : the range types for, respectively, the PCR input variable, the

producer variable, the consumer variable and the reducer variable (i.e. the PCR

output variable).

These where noted as T , Tp , Tc and D in chapter 3.

• id and Op( , ) : the initial reducer value and the binary combiner operation. id is

expected to be the identity of the combiner.

These where noted as id⊗ and ⊗ in chapter 3.

• lBnd( ), uBnd( ) and prop( ) : operators representing the basic functions deter-

mining the iteration space.

• fp( , , ), fc( , , ), fr( , , ) and gp( , ) : operators representing the basic func-

tions for, respectively, the producer, the consumer, the reducer and the simplified

producer (recall remark 3.4).

These where noted as fp , fc, fr and gp in chapter 3.

• Dep pp, Dep pc and Dep cr : pairs of look behind/ahead sets of the form

〈{b1, b2, . . . }, {a1, a2, . . . }〉

representing the non-linear dependencies between: the producer with itself, the

consumer with respect to producer and the reducer with respect to consumer.

The expected types of the constant symbols are postulated axiomatically in section PCR

definitions and assumptions of the specification.
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The state of a basic PCR is represented by the following five (actually six) variables.

Their expected types are not assumed, they are asserted as a type correctness invariant

in section Properties of the specification, but we also briefly mention them here as it is

useful to know them in advance.

• X 5 : The input of the PCR. Is a (partial) function from indexes to input type T :

X ∈ [Seq(Nat)→ T ∪ {Undef }]

It is well defined only on index I0 (recall assumption 5.2.4) with the initial value

of in (see next item). The symbol Undef is used to define partial functions, it is

defined in section General definitions of the specification.

• in : An artificial variable used to let TLC check the specification on a specified range

of input values in one go. Its value is used to define X at I0, we have in ∈ T . This

variable is maintained constant in each behaviour, and is not needed for TLAPS.6

• p : The output variable of the producer. It is a function mapping indexes to partial

functions from Nat to producer type Tp.

p ∈ [Seq(Nat)→ [Nat → Tp ∪ {Undef }]]

• c : The output variable of the consumer. It is a function mapping indexes to partial

functions from Nat to consumer type Tc.

c ∈ [Seq(Nat)→ [Nat → Tc ∪ {Undef }]]

• r : The output variable of the reducer (i.e. the output of the PCR). It is a function

from indexes to output type D :

r ∈ [Seq(Nat)→ D ]

5A minor nitpick: we use X in capitals because if we declare x in TLA+ then the parser would not
let us use it again as a parameter name, which would be a bit restrictive considering x is a very common
name. In general, in TLA+ there is no way to distinguish “global” variable names and “local” variable
names (except when instantiating between different modules). However, x could be used bounded to a
quantifier with no problem.

6We tried to dispense with this artifice whose only purpose is to make model checking more convenient.
However, the alternatives weren’t much better. Anyways, for most purposes it can be safely ignored like
if was not present.
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• rs : An auxiliary variable to track the reductions done at any moment. It is a

function mapping indexes to functions from Nat to BOOLEAN :

rs ∈ [Seq(Nat)→ [Nat → BOOLEAN ]]

The variables p, c, r and rs represent the internal behaviour of the PCR, whereas the

variables X and r represent the external visible behaviour. Other PCR may want to write

on input X or to read from output r . For convenience, the internal variables are curried

functions separating the index component I ∈ Seq(Nat) from the assignment component

i ∈ Nat .

Notice that in TLA+ notation all these variables (except in) are accessed with (multiple)

square brackets as they are functions (of functions). For internal variables we have, for

example, that p[I ] denotes the producer stream at index I whereas p[I ][i ] denotes the

value of the i -th assignment of the producer stream at index I . Sometimes we will write

them in super-index notation like was customary in chapter 3, e.g. pI and pI ,i respectively.

For external variables we have, for example, that X [I ◦ 〈i〉] denotes the input at index

I ◦ 〈i〉 where I is the index of the father PCR and i is the assignment on the scope of the

father PCR. Sometimes we may write this informally either as X I ,i or X I◦〈i〉 depending

on the situation, but in general the distinction should not be a concern.

5.4.1.2 General definitions

The meaning of being “undefined” is defined as something outside PCR main variables

range types:

Undef , CHOOSE x : x /∈ UNION {T , Tp, Tc, D}

Notice this definition involves an unbounded CHOOSE, but TLC does not accept un-

bounded quantifiers. Finite models for TLC must override the symbol with a model

value: an unspecified value that TLC considers to be unequal to any other value.

Testing for “undefinedness” is done with the wrt predicate:

wrt(v) , v 6= Undef
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For example, we may test with wrt(pI ,i) if on instance indexed by I the producer assign-

ment at i has already been written. A generalized version is useful to test for multiple

assignments:

wrts(v , S ) , ∀ k ∈ S : wrt(v [k ])

For example, we may test with wrts(pI , S ) if on instance indexed by I every producer

assignment in set S has already been written. If S is the iteration space and the test result

true, it means there is no producer assignment left to run, i.e. the producer terminated.

We are also interested in comparing written values from different sources:

eqs(v1, v2, S ) , ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

For example, we say two streams v1 and v2 (they can be variables or functions) are equal

with respect (or relative) to S if eqs(v1, v2, S ) holds true.

5.4.1.3 PCR definitions and assumptions

The specification uses the following aliases for indexes (Index ), assignments (Assig) and

streams (St( )):

Index , Seq(Nat)

Assig , Nat

St(R) , [Assig → R ∪ {Undef }]

The aliases Index and Assig are used instead of their meanings so that we can override

this symbols with appropriate bounded sets when doing model checking. Of course, we

can also override Nat globally, but that is undesirable as normally there are different

uses of Nat across the specification with different upper bounds. For theorem proving,

these names are just expanded and forgotten. Let R be any type, St(R) abbreviates the

type of a stream function with range R, what we noted as
#«

R in chapter 3. For example,

with this definitions the types of p, p[I ] and p[I ][i ] are written in the specification as

[Index → St(Tp)], St(Tp) and Tp respectively.

Well defined indexes representing a PCR execution (either ongoing or terminated) are
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identified as those indexes for which the input has been written:

WDIndex , { I ∈ Index : wrt(X [I ]) }

The iteration space of the PCR is defined exactly like in the informal presentation:7

It(x ) , { i ∈ lBnd(x )..uBnd(x ) : prop(i) }

The predicates red and end indicating reduction of an assignment and termination re-

spectively, for an instance indexed by I , are defined as:

red(I , i) , rs [I ][i ]

end(I ) , ∀ i ∈ It(X [I ]) : red(I , i)

The set of all dependencies with respect to some assignment i and a pair d of look

behind/ahead sets for input x is defined as:8

deps(x , d , i) , { i − k : k ∈ { k ∈ d [1] : i − k ≥ lBnd(x ) ∧ prop(i − k) } }
∪ { i }
∪ { i + k : k ∈ { k ∈ d [2] : i + k ≤ uBnd(x ) ∧ prop(i + k) } }

For example, suppose Dep pc = 〈{1}, {1}〉, then at any assignment i of the instance

indexed by I , deps(X I ,Dep pc, i) is the set of all dependencies the consumer has with

respect to the producer so that

{i} ⊆ deps(X I ,Dep pc, i) ⊆ {i − 1, i , i + 1}

This set always includes at least i itself.

Now we present the postulated assumptions about the symbol parameters in the speci-

fication. Assumption H Type asserts the type assumptions for symbols concerning the

base index, the iteration space and non-linear dependence pairs.

7We prefer in this chapter to use It instead of I to avoid confusion with indexes I ∈ Seq(Nat).
8Actually, deps could be considered a general definition if it where parameterized by the iteration

space elements, e.g. deps(lBnd( ), uBnd( ), prop( ), x , d , i).
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axiom H Type
∆
=

∧ I 0 ∈ Index

∧ ∀ x ∈ T : lBnd(x ) ∈ Nat

∧ ∀ x ∈ T : uBnd(x ) ∈ Nat

∧ ∀ i ∈ Nat : prop(i) ∈ boolean

∧ ∀ x ∈ T : pre(x ) ∈ boolean

∧ Dep pp ∈ (subset (Nat \ {0}))× (subset {})
∧ Dep pc ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
∧ Dep cr ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

Notice that Dep pp, which represents non-linear dependencies of the producer with itself,

can’t have look ahead values (recall remark 3.2(1)).

Assumption H BFunType asserts that, in general, the basic functions associated to the

PCR components are expected to be partial functions.

axiom H BFunType
∆
=

∀ x ∈ T , i ∈ Assig :

∧ gp(x , i) ∈ Tp ∪ {Undef }
∧ ∀ vp ∈ St(Tp) : fp(x , vp, i) ∈ Tp ∪ {Undef }
∧ ∀ vp ∈ St(Tp) : fc(x , vp, i) ∈ Tc ∪ {Undef }
∧ ∀ vc ∈ St(Tc) : fr(x , vc, i) ∈ D ∪ {Undef }

Assumption H BFunWD asserts that the basic functions associated to the PCR compo-

nents are well defined at least inside the iteration space when all their dependencies are

meet (i.e. written).

axiom H BFunWD
∆
=

∀ x ∈ T : ∀ i ∈ It(x ) :

∧ gp(x , i) ∈ Tp

∧ ∀ vp ∈ St(Tp) : wrts(vp, deps(x , Dep pp, i) \ {i}) ⇒ fp(x , vp, i) ∈ Tp

∧ ∀ vp ∈ St(Tp) : wrts(vp, deps(x , Dep pc, i)) ⇒ fc(x , vp, i) ∈ Tc

∧ ∀ vc ∈ St(Tc) : wrts(vc, deps(x , Dep cr , i)) ⇒ fr(x , vc, i) ∈ D

Notice that for the producer function fp, assignment i is discarded from the dependence

set in the assumption, as to compute the i -th value it can’t depended on itself at i .
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We call the following axioms the relevance axioms.9 Their job is to assert that the basic

functions associated to the PCR components are insensitive with respect to what they do

not depend on. For example, if vp1 and vp2 are producer streams equal with respect to

the set of dependencies the consumer has on the producer (see the eqs definition), then

fc(x , vp1, i) = fc(x , vp2, i) for any input x and assignment i . These axioms are used in

deductive proofs of equalities by substitution of equals for equals.

axiom H fpRelevance
∆
=

∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :

eqs(vp1, vp2, deps(x , Dep pp, i) \ {i}) ⇒ fp(x , vp1, i) = fp(x , vp2, i)

axiom H fcRelevance
∆
=

∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :

eqs(vp1, vp2, deps(x , Dep pc, i)) ⇒ fc(x , vp1, i) = fc(x , vp2, i)

axiom H frRelevance
∆
=

∀ x ∈ T : ∀ i ∈ It(x ), vc1 ∈ St(Tc), vc2 ∈ St(Tc) :

eqs(vc1, vc2, deps(x , Dep cr , i)) ⇒ fr(x , vc1, i) = fr(x , vc2, i)

Assumption H ProdEqInv is stated as a LEMMA left unproved because it is actually an

invariant assumption concerning a temporal variable (i.e. not a constant formula). It

asserts the functional equivalence of the producer functions fp and gp (recall remark 3.4).

lemma H ProdEqInv
∆
=

∀ x ∈ T : ∀ i ∈ It(x ) : wrt(p[I 0][i ]) ⇒ fp(x , p[I 0], i) = gp(x , i)

Now, it should be added that all these assumptions (except H BFunType) could be proved

as theorems when dealing with concrete PCRs. Most of them can also be re-stated as

invariants of the specification relative to base index I0 and model checked at least for small

bounds. For example, we did prove them for PCR FibPrimes1.10 Regarding H BFunType,

there is no way to tell what happens in a function outside the relevant iteration space,

and the point is that we do not want to know. However, we do need the information of

partiality conveyed in the axiom when comparing stream functions in proofs.

9They resemble the usual relevance lemmas on formal languages stating the evaluation of the formulas
depend only on the values of the variables present in the formula.

10On a possible practical setting, we believe most of them don’t deserve to be proved by any means.
For an implementation in a programming language, that would be in part the job of type checking.
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5.4.1.4 The functional specification

The functional specification provides a formula characterizing the mathematical function

associated to the basic PCR. This formula is used in the Properties section of the specifica-

tion to assert correctness, and is also used to represent the PCR as one step computation

in module PCR A1step to prove correctness by way of refinement.

Module AbelianMonoidBigOp, explained previously in section 5.3, is instantiated with the

signature (D , id ,Op( , )). Assumption H Algebra asserts the signature satisfies the laws

of an abelian monoid, which gives us access to the corresponding theorems for theorem

proving.

M
∆
= instance AbelianMonoidBigOp

with D ← D , Id ← id , ⊗ ← Op

axiom H Algebra
∆
= AbelianMonoid(D , id , Op)

Again, it should be added that the assumption H Algebra could be (and should be) proved

as a theorem when dealing with concrete PCRs.

The stream versions of the basic functions, noted as
#«

g p ,
#«

f c and
#«

f r in chapter 3, are

defined as follows:

Gp(x ) , [i ∈ Assig 7→ gp(x , i)]

Fc(x , vp) , [i ∈ Assig 7→ fc(x , vp, i)]

Fr(x , vc) , [i ∈ Assig 7→ fr(x , vc, i)]

Because the basic functions are partial, we have Gp ∈ St(Tp), Fc ∈ St(Tc) and Fr ∈ St(D).

The formalization of the function 3.9 associated to the PCR A is:

A(x ) , M !BigOpP(lBnd(x ), uBnd(x ), prop, LAMBDA i : Fr(x ,Fc(x ,Gp(x )))[i ])

5.4.1.5 The operational specification

The operational specification provides a temporal formula in the canonical form 4.10

specifying the operational behaviour of the basic PCR.
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A main baseline unfair specification, named Spec as customary, and its fair version are

defined according to the canonical form:

Spec , Init ∧ 2[Next ]〈in,vs〉

FairSpec , Spec ∧ WFvs(Step)

where vs = 〈X , p, c, r , rs〉. The initial conditions are established by the Init state predi-

cate as follows:

Init
∆
= ∧ in ∈ T ∧ pre(in)

∧ X = [I ∈ Index 7→ if I = I 0 then in else Undef ]

∧ p = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]

∧ c = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]

∧ rs = [I ∈ Index 7→ [i ∈ Assig 7→ false]]

∧ r = [I ∈ Index 7→ id ]

Notice that there is a single well defined input with base index I0 (recall assumption 5.2.4),

having value in ∈ T which satisfies a possible precondition pre. The reducer output is

initially by default the monoid identity (recall assumption 5.2.2). Producer and consumer

outputs are initially undefined, and the reduction history is initially entirely false.

The Next action governing the evolution of the state is the disjunction of two possible

and mutually exclusive sub actions:

Next , Step ∨ Done

Sub action Done detects termination when all well defined instances of the PCR have

terminated:11

Done , ∧ ∀ I ∈ WDIndex : end(I )

∧ UNCHANGED 〈in, vs〉

The sub action Step represents any possible operation of the basic PCR components.

For this, operations are modeled by atomic actions, namely P for the producer, C for

the consumer and R for the reducer, which are parameterized by the instance index I

and the current assignment i . So, Step is defined as an (double) existential quantifier

which introduces non determinism to model the concurrent execution of possible multiple

11For the main PCR being specified, this just means termination at index I0.

176



instances of the basic PCR and their component actions:12

Step
∆
= ∃ I ∈ WDIndex :

∃ i ∈ It(X [I ]) : ∨ P(I , i) Producer action

∨ C (I , i) Consumer action

∨ R(I , i) Reducer action

Table 5.3 presents the PCR operations as syntax primitives and their corresponding for-

malization as TLA+ actions. Note that all these actions have in common that they are

enabled if:

1. They haven’t already happened. For example, producer action P(I , i) will be en-

abled until wrt(pI , i) holds, after that it will never be enabled again.

2. Their dependencies with respect to a previous component are meet. For example,

producer action P(I , i) is enabled if his past dependencies prescribed by Dep pp

(i.e. deps(X I ,Dep pp, i) \ {i}) have been written.

PCR Syntax TLA+ action

p = produce fp x p

P(I , i)
∆
=

∧ ¬wrt(p[I ][i ])
∧ wrts(p[I ], deps(X [I ], Dep pp, i) \ {i})
∧ p′ = [p except ! [I ][i ] = fp(X [I ], p[I ], i)]

∧ unchanged 〈X , c, r , rs〉

c = consume fc x p

C (I , i)
∆
=

∧ ¬wrt(c[I ][i ])
∧ wrts(p[I ], deps(X [I ], Dep pc, i))
∧ c′ = [c except ! [I ][i ] = fc(X [I ], p[I ], i)]

∧ unchanged 〈X , p, r , rs〉

r = reduce ⊗ id⊗ (fr x c)

R(I , i)
∆
=

∧ ¬red(I , i)
∧ wrts(c[I ], deps(X [I ], Dep cr , i))
∧ r ′ = [r except ! [I ] = Op(@, fr(X [I ], c[I ], i))]
∧ rs ′ = [rs except ! [I ][i ] = true]

∧ unchanged 〈X , p, c〉

Table 5.3: TLA+ specification for the principal PCR primitives: produce, consume and
reduce, over basic function names.

12We are omitting here that variable in is keep unchanged.
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For any of the PCR actions, if it is enabled and is chosen for execution, its effect will

be reflected in the corresponding output variable. In particular, an action R(I , i) writes

on reducer output variable r but also marks the assignment as reduced in rs . Note that

more than one action cannot occur simultaneously because:

1. The EXCEPT construct as is being used here asserts exactly only one instance I and

one assignment i is being modified in the transition. So, for example, producers on

different PCR instances cannot change variable p at the same step, nor can different

assignments on the same instance.

2. The UNCHANGED assertion precludes the variables of the other components to

change. So, a producer action cannot occur in the same step with a consumer

(or reducer) action.

This means the execution of all actions is interleaved in accordance with our assumption

5.2.1.

Finally, we wish to justify why asserting weak fairness (WF) over the Step action, i.e.

WFvs(Step), is enough for the fair formula FairSpec to guarantee progress and eventual

termination of the PCR computation. Fairness conditions (and liveness in general) are

a subtle point in system specification. For example, why do we need to assert WF for

the three kind of actions and not just one or two of them?. We make the following

observations:

• Initially, assuming the iteration space is not empty, at least one producer action

should be enabled and WFvs(Step) will make sure this producer action will be even-

tually chosen. Recall actions are no longer enabled after their execution, so the Step

disjunction isn’t necessarily enabled by the same action at each time. Subsequent

producer actions will be made enabled following a domino-like effect as their de-

pendencies are meet. Those could also enable consumer actions, but even if there

is producer bias and no consumer action is chosen, eventually all producer actions

on the iteration space will occur and at some moment there will be no other option

except to choose consumer actions. Similarly, when all consumer actions had been

already executed, there will be no other option except to choose reducer actions.
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Therefore, eventually Step is not true anymore and Done is true.

• It should be clear by the previous point, why it is not enough to assert WF only on

one or two of the kind of actions. For example, if we assert WF only on producer

actions, then there is no guarantee for the occurrence of consumer actions and this

in turn have the same consequence for reducer actions. Or, if we assert WF only for

consumer actions, then there is no guarantee for the occurrence of producer actions

and because the consumer actions depends on the producer actions they will never

be permanently enabled to be eligible for execution according to WF.

The complete TLA+ specification is in module PCR A (Appendix B).

5.4.2 Basic PCR with left reducer

A basic PCR with a left reducer is exactly a basic PCR except its reducer fixes the

reduction order as was explained in section 3.2.1. However, for simplicity, we assume here

a consecutive iteration space. This can be seen as either there is no filter predicate prop

or it is trivially TRUE. For the specification we prefer the former:

It(x ) , lBnd(x )..uBnd(x )

In PCR syntax, the following dependence is imposed on the reducer variable:

dep r(i − 1) → r(i)

Table 5.4 presents the left reducer formalization as a TLA+ action. It is just as the

ordinary reducer except it demands another enabling condition concerning the occurrence

of the previous reduce operation. The condition relies on the history of reductions.

The complete TLA+ specification is in module PCR ArLeft (Appendix B).

179



PCR Syntax TLA+ action

dep r(i−1) → r(i)
...
r = reduce ⊗ id⊗ (fr x c)

R(I , i)
∆
=

∧ ¬red(I , i)
∧ wrts(c[I ], deps(X [I ], Dep cr , i))
∧ i − 1 ≥ lBnd(X [I ])⇒ red(I , i − 1)
∧ r ′ = [r except ! [I ] = Op(@, fr(X [I ], c[I ], i))]
∧ rs ′ = [rs except ! [I ][i ] = true]

∧ unchanged 〈X , p, c〉

Table 5.4: TLA+ specification for a fixed order (left) reduction over a basic function name.

5.4.3 Basic PCR as a one step computation

The result of basic PCR computations, as described by the operational specification, is

captured as a mathematical function defined in the functional specification. Thus, the

computation of the basic PCR can be represented in just one step.

Two variables in and out are enough to model input and output respectively. Then, the

initial predicate and the next-state action are defined as follows:

Init , in ∈ T ∧ pre(in) ∧ out = id

Next , out ′ = A(in) ∧ UNCHANGED in

This is a short enough specification to be written as a one liner. It can be used as an

alternative way to prove correctness of the basic PCR. Instead of proving the operational

specification of the basic PCR satisfies a correctness property on formula A, we can prove

it is a refinement of this one step specification. However, the proof in both ways involves

essentially the very same ideas and amount of work.

The complete TLA+ specification is in module PCR A1step (Appendix B).

5.4.4 Composition through consumer

The main reference for this formalization is the definition of composition through con-

sumer given in 3.4.
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Here we have two PCRs in one specification: the main PCR A and the nested basic PCR

B. There is a set of constants and variables symbols for each one, and also there are

basic definitions associated with each one. To distinguish them, we suffix variables and

constants names with numbers 1 and 2 for A and B respectively (much like in 3.4), and

suffix definitions with the corresponding PCR name (e.g. we have IndexA and IndexB).

The operational and functional specification of B is essentially the same as was explained

previously for a basic PCR, so what we call B in module PCR A c B is what we call A
in module PCR A. The only important thing to note about B here is that its input is

controlled by A and there can be multiple instances of B. Inputs for B are triplets of type

T 2 , T 1× StA(Tp1)× AssigA

Initially, there is no input defined for B and consequently there is no initial instance of

B. In a later section, where we discuss a refinement proof, we will have a little more to

say about the relevance axioms that are actually needed for B.

Module AbelianMonoidBigOp is instantiated twice, namely M 1 and M 2, with the signa-

tures (D1, id1,Op1( , )) and (D2, id2,Op2( , )) for A and B respectively. The algebraic

assumptions of an abelian monoid are asserted for both. Consequently there is an associ-

ated function defined for each PCR:13

B(x2) , M 2!BigOpP(lBnd2(x2), uBnd2(x2), prop2,

LAMBDA i : Fr2(x2,Fc2(x2,Gp2(x2)))[i ])

A(x1) , M 1!BigOpP(lBnd1(x1), uBnd1(x1), prop1,

LAMBDA i : Fr1(x1,Fc1(x1,Gp1(x1)))[i ])

where in particular we have

Fc1(x1, vp) = [i ∈ AssigA 7→ B(〈x1, vp, i〉)]

so that the function of A is composed with the function of B. This formalizes the function

in equation 3.12.

13Alternatively, as we know here that B is used as a function on three parameters, we could define
B(x1, vp, i) , ..., but it get messier and doesn’t worthwhile. Sometimes we may write B(x1, vp, i)
informally.
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The operational specification of A differs from a basic PCR only in what concerns the

consumer component, as his values are computed by the nested PCR B and not by an

atomic basic function. Table 5.5 presents the formalization of the consumer syntax over

a PCR name as a pair of TLA+ actions that can be thought as a call and a return with

respect to B:

1. C 1ini(I , i): writes on B’s input variable X I ,i
2 if have not done yet and the depen-

dencies on the producer are meet.

2. C 1end(I , i): reads from B’s output variable r I ,i
2 if have not done yet, there is an

input written for B and it has finished calculating on that entry.

PCR Syntax TLA+ actions

c1 = consume B x1 p1

C 1ini(I , i)
∆
=

∧ ¬wrt(X 2[I ◦ 〈i〉])
∧ wrts(p1[I ], depsA(X 1[I ], Dep pc1, i))
∧ X 2′ = [X 2 except ! [I ◦ 〈i〉] = 〈X 1[I ], p1[I ], i〉]
∧ unchanged 〈X 1, p1, c1, r1, rs1〉

C 1end(I , i)
∆
=

∧ ¬wrt(c1[I ][i ])
∧ wrt(X 2[I ◦ 〈i〉])
∧ endB(I ◦ 〈i〉)
∧ c1′ = [c1 except ! [I ][i ] = r2[I ◦ 〈i〉]]
∧ unchanged 〈X 1, p1, r1, rs1, X 2〉

Table 5.5: TLA+ specification for the consume primitive over a PCR named B.

In general, we could have two (fair) specifications for A and B defined as:

FairSpecA , InitA ∧ 2[StepA ∨ DoneA]〈in,vs1〉 ∧ WFvs1(StepA)

FairSpecB , InitB ∧ 2[StepB ∨ DoneB ]vs2 ∧ WFvs2(StepB)

where vs1 = 〈X 1, p1, c1, r1, rs1,X 2〉 and vs2 = 〈p2, c2, r2, rs2〉, so that their conjoint

specification is their conjunction taking interleaving into account (recall assumption 5.2.1):

FairSpec , FairSpecA ∧ FairSpecB ∧ 2[vs1′ = vs1 ∨ vs2′ = vs2]〈vs1,vs2〉

As we already noted, the main PCR A is not basic, so its StepA action must be accom-

modated to the consumer specification explained previously as follows:
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StepA
∆
= ∃ I ∈ WDIndexA :

∃ i ∈ ItA(X 1[I ]) : ∨ P1(I , i) Producer action

∨ C 1ini(I , i) Consumer call action on B

∨ C 1end(I , i) Consumer return action from B

∨ R1(I , i) Reducer action

But, in order to work with TLC, we transform the conjoint specification to a single

canonical formula using logical equivalences as explained in chapter 4 which produces a

single system formula that can be arranged as:

Spec , Init ∧ 2[Next ]〈in,vs1,vs2〉

FairSpec , Spec ∧ WFvs1(StepA) ∧ WFvs2(StepB)

where

Init = InitA ∧ InitB

Next = ∨ StepA ∧ 〈in, vs2〉′ = 〈in, vs2〉
∨ StepB ∧ 〈in, vs1〉′ = 〈in, vs1〉
∨ DoneA ∧ DoneB

We add that, in general, for two actions A1 and A2:

WFvs1(A1) ∧WFvs2(A2) 6≡ WF〈vs1,vs2〉(A1 ∨ A2)

This looks like a desirable equivalence to have, because when composing two specifications

the fairness conditions of both could be made into one. But it does not hold in general,

it depends on the system at hand. In our case, WF〈vs1,vs2〉(StepA∨ StepB) have the same

effect that their separate conjunction.

The complete TLA+ specification is in module PCR A c B (Appendix B).

5.4.5 Composition through reducer

The main reference for this formalization is the definition of composition through reducer

given in 3.5.
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The situation here is very similar to the previous section, except that the composition

happens at the reducer component of the main PCR A and the inputs of B are pairs of

type

T 2 , D × D

Module AbelianMonoidBigOp is instantiated twice with the signatures (D , id ,Op1( , ))

and (D , id ,Op2( , )). Again, the algebraic assumptions of an abelian monoid are asserted

for both and there is an associated function defined for each PCR. In particular, here we

have that Op1(x , y) = B(〈x , y〉). This formalizes the function given in equation 3.21.

Table 5.6 presents the formalization of the reducer syntax over a PCR name as a pair of

TLA+ actions that can be thought as a call and a return with respect to B:

1. R1ini(I , i): writes on B’s input variable X I ,i
2 if this has not been done yet and the

dependencies on the producer are met. It also uses the lock mechanism explained

in 3.5 to avoid race conditions on the reducer variable.

2. R1end(I , i): reads from B’s output variable r I ,i
2 and marks the assignment as re-

duced if this has not been done yet, there is an input written for B and it has

finished calculating on that entry.

The StepA action is defined as follows:

StepA
∆
= ∃ I ∈ WDIndexA :

∃ i ∈ ItA(X 1[I ]) : ∨ P1(I , i) Producer action

∨ C 1(I , i) Consumer action

∨ R1ini(I , i) Reducer call action on B

∨ R1end(I , i) Reducer return action from B

Further treatment is just as we did before for composition through consumer. The com-

plete TLA+ specification is in module PCR A r B (Appendix B).
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PCR Syntax TLA+ actions

r1 = reduce B id⊗ (fr1 x1 c1)

R1ini(I , i)
∆
=

∧ ¬wrt(X 2[I ◦ 〈i〉])
∧ wrts(c1[I ], depsA(X 1[I ], Dep cr1, i))
∧ ¬∃ k ∈ ItA(X 1[I ]) : ∧ k 6= i

∧ wrt(X 2[I ◦ 〈k〉])
∧ ¬redA(I , k)

∧ X 2′ = [X 2 except ! [I ◦ 〈i〉] =
〈r1[I ], fr1(X 1[I ], c1[I ], i)〉]

∧ unchanged 〈X 1, p1, c1, r1, rs1〉

R1end(I , i)
∆
=

∧ wrt(X 2[I ◦ 〈i〉])
∧ endB(I ◦ 〈i〉)
∧ ¬redA(I , i)
∧ r1′ = [r1 except ! [I ] = r2[I ◦ 〈i〉]]
∧ rs1′ = [rs1 except ! [I ][i ] = true]

∧ unchanged 〈X 1, p1, c1, X 2〉

Table 5.6: TLA+ specification for the reduce primitive over a PCR named B.

5.4.6 Divide and conquer (DC)

As we explained in section 3.3.2, the divide and conquer PCR is a special case of compo-

sition through consumer with itself, and this composition can actually occur an arbitrary

number of times at execution time depending on the isBase condition. In particular, the

iteration space is defined in a more specific form:

uBnd(x ) , Len(div(x ))

It(x ) , 1..uBnd(x )

where div( ) is an operator representing the partitioning function. Besides, we have

the operators symbols isBase( , , ), base( , , ) and fr( , , ), where isBase and base

represents the basic functions involved in the recursive subproblem function associated to

the consumer in the DC scheme.

For the functional specification, module AbelianMonoidBigOp is instantiated with the

signature (D , id ,Op( , )). The formalization of the function 3.3 associated to the PCR
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DC can be expressed as the recursive operator:

DC (x ) , M !BigOp(1, uBnd(x ),

LAMBDA i : Fr(x , [k ∈ Assig 7→ IF isBase(x , div(x ), k)

THEN base(x , div(x ), k)

ELSE DC (div(x )[k ])])[i ])

or as the recursive function:

DC [x ∈ T ] , M !BigOp(1, uBnd(x ),

LAMBDA i : Fr(x , [k ∈ Assig 7→ IF isBase(x , div(x ), k)

THEN base(x , div(x ), k)

ELSE DC [div(x )[k ]]])[i ])

Both can be handled by TLC, but only the second can be handled by TLAPS. The inner

anonymous TLA+ function is the stream function noted as
#                       «

subproblem in 3.3.

For the operational specification, the consumer component differs from the ordinary con-

sumer composition because here the consumer is writing and reading on the same PCR

variables (although in different indexes) and we need to take into account when the isBase

condition. However, the overall idea is pretty much the same. Table 5.7 presents the for-

malization of the consumer syntax in a DC PCR in terms of three TLA+ actions:

1. Cbase(I , i): takes the value from the base function if haven’t done yet, the depen-

dencies on the producer are met and condition isBase does hold.

2. Cini(I , i): writes on input variable at I ◦ 〈i〉 creating a new instance of the same

PCR if haven’t done yet, the dependencies on the producer are meet and condition

isBase does not hold.

3. Cend(I , i): reads from output variable at I ◦ 〈i〉 if haven’t done yet, there is an

input written at I ◦ 〈i〉 and the corresponding instance has finished calculating on

that entry.

The Step action of the divide and conquer PCR is defined as follows:
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PCR Syntax TLA+ actions

fun subproblem(x,p,i) =
if isBase(x,p,i)
then base(x,p,i)
else DC(p)

...
c = consume subproblem x p

Cbase(I , i)
∆
=

∧ ¬wrt(c[I ][i ])
∧ wrts(p[I ], deps(X [I ], Dep pc, i))
∧ isBase(X [I ], p[I ], i)
∧ c′ = [c except ! [I ][i ] = base(X [I ], p[I ], i)]
∧ unchanged 〈X , p, r , rs〉

Cini(I , i)
∆
=

∧ ¬wrt(X [I ◦ 〈i〉])
∧ wrts(p[I ], deps(X [I ], Dep pc, i))
∧ ¬isBase(X [I ], p[I ], i)
∧ X ′ = [X except ! [I ◦ 〈i〉] = p[I ][i ]]
∧ unchanged 〈p, c, r , rs〉

Cend(I , i)
∆
=

∧ ¬wrt(c[I ][i ])
∧ wrt(X [I ◦ 〈i〉])
∧ end(I ◦ 〈i〉)
∧ c′ = [c except ! [I ][i ] = r [I ◦ 〈i〉]]
∧ unchanged 〈X , p, r , rs〉

Table 5.7: TLA+ specification for the consume primitive in a divide and conquer PCR
named DC.

Step
∆
= ∃ I ∈ WDIndex :

∃ i ∈ It(X [I ]) : ∨ P(I , i) Producer action

∨ Cbase(I , i) Consumer base case action

∨ Cini(I , i) Consumer recursive call action

∨ Cend(I , i) Consumer recursive return action

∨ R(I , i) Reducer action

The complete TLA+ specification is in module PCR DC (Appendix B).

5.4.7 DC with left reducer (DCrLeft)

A DC PCR with a left reducer is a combination of what we did previously for the ordinary

DC PCR and the basic PCR with left reduction. There is nothing important to note.

The complete TLA+ specification is in module PCR DCrLeft (Appendix B).
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5.4.8 DC composed through reducer with a DCrLeft

A DC PCR composed through reducer with a DCrLeft PCR is a combination of what

we did previously for the ordinary DC PCR, the basic PCR with left reduction and

composition through reducer.

One important thing to note here is that, according to our discussion in section 3.3.3.2, the

indexing scheme needs to be slightly generalized to accommodate correctly the concurrent

execution of the nested DC PCRs. Indexes for the inner DCrLeft PCR B are defined as

pairs of sequences:

IndexB , Seq(Nat)× Seq(Nat)

This means that, in general, when manipulating B variables the indexing is differs from

our previous specifications. For example, we need to write X 2[〈I , 〈i〉〉] (informally X I ;i
2 )

instead of X 2[I ◦ 〈i〉] (informally X I ,i
2 /X

I◦〈i〉
2 ). But apart from this, there is nothing new.

The complete TLA+ specification is in module PCR DC r DCrLeft (Appendix B).

5.4.9 Iteration over basic function

The main reference for this formalization is the definition of the iterative PCR scheme

given in 3.6, in case that the iterable function is a basic function.

Some important constant symbols in this specification are the following:

1. v0( ) : operator representing the initial value of iteration that possibly depends on

PCR input.

2. fc( , , , ) : operator representing the iterable basic function. So, fc(y , x , p, i)

computes the next value of the iteration which should be of type Tc, where y ∈ Tc

is the previous value.

3. cnd( , ) : operator representing the termination condition. So, cnd(s , k) is a truth
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condition on iteration sequence s and the iteration number k .

The auxiliary variable s is used to track iterations at any assignment and instance. Itera-

tions are also streams in our sense and starting from index 1, but they evolve incrementally

in a well behaved fashion so its convenient to model them as ordinary TLA+ sequences

for which a new value is appended at each iteration.14 Thus, s is a function mapping

indexes to streams of sequences.

s ∈ [Seq(Nat)→ [Nat → Seq(Tc) ∪ {Undef }]]

Like other internal variables representing functions, s is curried for convenience. So, s [I ]

denotes all the iteration sequences at index I , s [I ][i ] denotes the i -th iteration sequence at

index I , s [I ][i ][k ] denotes the value at iteration k on the i -th iteration sequence of index

I , and more specifically last(s [I ][i ]) denotes the last value on the i -th iteration sequence

of index I where last(S ) = S [Len(S )].

The functional specification, formalizing the function at equation 3.27, is exactly like the

one for a basic PCR except that we have the stream function for the consumer defined as

Fc(x , vp) , [i ∈ Assig 7→ last(iter(〈v0(x )〉, x , vp, i))]

where iter can be expressed as the recursive operator:

iter(vs, x , vp, i) , IF cnd(vs,Len(vs))

THEN vs

ELSE iter(vs ◦ 〈fc(last(vs), x , vp, i)〉, x , vp, i)

or alternatively as a recursive function like we did for the DC PCR.

For the operational specification, initially all the iteration sequences are undefined, that

is the condition

s = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]

Table 5.8 presents the formalization of the iterative consumer syntax over basic functions

in terms of three TLA+ actions:

14However, it should be noted this sequences are finite, so they aren’t faithfully modeling the possible
unbounded iterations as real streams do.
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1. Cstart(I , i): initializes an iteration sequence using v0 if haven’t done yet and the

dependencies on the producer are meet.

2. Cstep(I , i): expands an iteration sequence computing fc on the previous value (and

other elements) if a sequence is defined and the condition cnd does not hold.

3. Cend(I , i): reads the last value of an iteration sequence if haven’t done yet, a

sequence is defined and condition cnd does hold.

One interesting difference between action Cstep(I , i) and the other actions is that this

action can occur more than once on the same I and i , because each occurrence represents

the expansion of the i -th iteration sequence at index I . It could be argued that this is a

slight deviation from our abstract model and how we formalized everything else so far, but

we found it convenient enough and captures the same intended behaviour. As a possible

advantage, it resembles more the functional specification.

PCR Syntax TLA+ actions

c = iterate cnd fc (v0 x) x p

Cstart(I , i)
∆
=

∧ ¬wrt(s[I ][i ])
∧ wrts(p[I ], deps(X [I ], Dep pc, i))
∧ s ′ = [s except ! [I ][i ] = 〈v0(X [I ])〉]
∧ unchanged 〈X , p, c, r , rs〉

Cstep(I , i)
∆
=

∧ wrt(s[I ][i ])
∧ ¬cnd(s[I ][i ], Len(s[I ][i ]))
∧ s ′ = [s except ! [I ][i ] =

@ ◦ 〈fc(last(s[I ][i ]), X [I ], p[I ], i)〉]
∧ unchanged 〈X , p, c, r , rs〉

Cend(I , i)
∆
=

∧ ¬wrt(c[I ][i ])
∧ wrt(s[I ][i ])
∧ cnd(s[I ][i ], Len(s[I ][i ]))
∧ c′ = [c except ! [I ][i ] = last(s[I ][i ])]

∧ unchanged 〈X , p, r , rs, s〉

Table 5.8: TLA+ specification for the iterate primitive over a basic function name.

The Step action of the iterative PCR is defined as follows:
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Step
∆
= ∃ I ∈ WDIndex :

∃ i ∈ It(X [I ]) : ∨ P(I , i) Producer action

∨ Cstart(I , i) Iteration start action

∨ Cstep(I , i) Iteration step action

∨ Cend(I , i) Iteration end action

∨ R(I , i) Reducer action

The complete TLA+ specification is in module PCR A it (Appendix B).

5.4.10 Iteration over PCR

The main reference for this formalization is the definition of the iterative PCR scheme

given in 3.6, in case that the iterable function is a basic PCR. And this is essentially a

combination of what we did previously for the iteration over basic functions and com-

position through the consumer, because the iterate component is used in place of the

consumer.

In this setting there is a main PCR A iterating over a nested basic PCR B. The important

thing to note here is that there is no basic function fc( , , , ). For the functional

specification, this means the iter function denoting the iterative behaviour of A should

obtain the new values from B(〈last(vs), x , vp, i〉) where B is, of course, the function

associated to B. This also means the inputs of B are quadruples

T 2 , D2× T × StA(Tp1)× AssigA

where D2 is the type of the reducer variable of B (i.e. its output type).

For the operational specification, the iteration step action should be further divided into

a pair of call and return actions with respect to B. Table 5.9 presents the formalization

of the iterative consumer syntax over a PCR in terms of four TLA+ actions. The first

and last of them are the same presented previously in 5.8 representing the starting and

ending actions of the iteration, the others are the call and return pair on B.

The StepA action of the composed iterative PCR is defined as follows:
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PCR Syntax TLA+ actions

c1 = iterate cnd B (v0 x1) x1 p1

C 1start(I , i)
∆
=

∧ wrts(p1[I ], depsA(X 1[I ], Dep pc1, i))
∧ ¬wrt(s[I ][i ])
∧ s ′ = [s except ! [I ][i ] = 〈v0(X 1[I ])〉]
∧ unchanged 〈X 1, p1, c1, r1, rs1, X 2〉

C 1stepIni(I , i)
∆
=

∧ wrt(s[I ][i ])
∧ ¬cnd(s[I ][i ], Len(s[I ][i ]))
∧ ¬wrt(X 2[I ◦ 〈Len(s[I ][i ])〉])
∧ X 2′ = [X 2 except ! [I ◦ 〈Len(s[I ][i ])〉] =

〈last(s[I ][i ]), X 1[I ], p1[I ], i〉]
∧ unchanged 〈X 1, p1, c1, r1, rs1, s〉

C 1stepEnd(I , i)
∆
=

∧ wrt(s[I ][i ])
∧ wrt(X 2[I ◦ 〈Len(s[I ][i ])〉])
∧ endB(I ◦ 〈Len(s[I ][i ])〉)
∧ s ′ = [s except ! [I ][i ] =

@ ◦ 〈r2[I ◦ 〈Len(s[I ][i ])〉]〉]
∧ unchanged 〈X 1, p1, c1, r1, rs1, X 2〉

C 1end(I , i)
∆
=

∧ ¬wrt(c1[I ][i ])
∧ wrt(s[I ][i ])
∧ cnd(s[I ][i ], Len(s[I ][i ]))
∧ c1′ = [c1 except ! [I ][i ] = last(s[I ][i ])]

∧ unchanged 〈X 1, p1, r1, rs1, s, X 2〉

Table 5.9: TLA+ specification for the iterate primitive over a PCR named B.

StepA
∆
= ∃ I ∈ WDIndexA :

∃ i ∈ ItA(X 1[I ]) : ∨ P1(I , i) Producer action

∨ C 1start(I , i) Iteration start action

∨ C 1stepIni(I , i) Iteration call action on B

∨ C 1stepEnd(I , i) Iteration return action from B

∨ C 1end(I , i) Iteration end action

∨ R1(I , i) Reducer action

The complete TLA+ specification is in module PCR A it B (Appendix B).
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5.5 Verification of properties

As we explained before when introducing our formalization of the abstract PCR models,

each module has a final section that states the safety and liveness properties concerning

the PCRs being specified in the module and possibly also refinement properties relating to

PCRs specified in other modules. Here, safety properties includes the partial correctness

of the PCR computation and other invariant properties like type correctness, whereas

liveness properties are, more specifically, termination properties.

Figure 5.1 illustrates the graph of all the refinements that have been established between

the ten modules summarised in table 5.2. It should be added that refinements are not

always just direct implications between the specification formulas. In general, refinements

exists under appropriate substitutions (i.e. refinement mappings). The graph is not

connected, because we have not identified yet a refinement between the divide and conquer

models and the rest so that it all comes together to the one-step computation model.

Figure 5.1: A hierarchy of refinements between the ten modules formalizing the abstract
PCR models.

In the TLA+ framework, the mechanical verification of this properties can be done, subject

to some restrictions, in either of the following ways:
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• Model checking with TLC. The modules we presented so far as a formalization of the

abstract PCR models are specifying general classes of PCRs. For model checking

purposes, constant symbol parameters need to be instantiated with concrete defini-

tions that can be evaluated, which result in concrete PCRs. This means that model

checking can be used as a method of verification for concrete PCRs over finite data

types. TLC allows to verify safety, liveness and refinement.15

• Assisted theorem proving with TLAPS. For the deductive approach we don’t need

to instantiate constant symbol parameters. This means verification can be actually

done for the abstract PCR model, i.e. general classes of PCRs without finiteness

restrictions. TLAPS currently allows to verify safety properties and the safety

component of refinement properties (i.e. without fairness), liveness properties are

ruled out.

For this thesis, we have done theorem proving for the following:

• All the safety properties of the basic PCR (PCR A). They are in module PCR A

Thms at GitHub. In particular, the correctness proof is also in Appendix C.

• All the safety properties of the basic PCR with left reducer (PCR ArLeft). They

are in module PCR ArLeft Thms at GitHub. In particular, the correctness proof

is also in Appendix C.

• A basic PCR (PCR A) is a refinement of a basic PCR expressed as a one step

computation (PCR A1step). It is in module PCR A Thms at GitHub and can also

be found at Appendix C.

• A basic PCR with left reducer (PCR ArLeft) is a refinement of a basic PCR

(PCR A). It is in module PCR ArLeft Thms at GitHub and can also be found

at Appendix C.

• The composition through the consumer (PCR A c B) is a refinement of a basic

PCR (PCR A). It is in module PCR A c B Thms at GitHub and can also be

found at Appendix C.

15By default, TLC searches for deadlocks. However, the absence of deadlocks does not rule out infinite
pathological behaviours like livelock or starvation.
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• The assumptions made for the basic PCR where expressed as lemmas/theorems and

proved for the concrete PCR FibPrimes1. They are in modules PCR FibPrimes1

Lems and PCR FibPrimes1 Thms at GitHub.

All this and everything else has been verified by model checking on concrete PCRs. The

complete specification of the concrete PCRs are in PCR/Concrete (GitHub) and Appendix

D. They are just modules instantiating the abstract PCR modules we presented previously

with the concrete elements that characterize them (e.g. types, data dependencies, basic

functions, etc.). We summarize the results of model checking in Appendix E.

In what follows, we discuss properties and deductive proofs for some of the mentioned

models. We will present semi-formal versions of the proofs, preserving the formal hierar-

chical proof structure.

5.5.1 Basic PCR

The most basic property we can assert for a basic PCR (and any TLA+ specification for

that matter) is type correctness:

TypeInv
∆
= ∧ in ∈ T

∧ X ∈ [Index → T ∪ {Undef }] ∧ X I0 = in

∧ p ∈ [Index → St(Tp)]

∧ c ∈ [Index → St(Tc)]

∧ r ∈ [Index → D ]

∧ rs ∈ [Index → [Assig → boolean ]]

This can be proved directly as an inductive invariant using rule INV1. But instead, we

have proved it by rule INV3 relying on the following inductive invariant which states that

the only well defined instance of the main PCR have index I0 (an expected consequence

of our assumption 5.2.4):

IndexInv , WDIndex = { I0 }

In general, all the properties of the main PCR are stated relative to index I0, thus the

their proofs relies on IndexInv , as well on TypeInv . The following invariant PInv states
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the expected consequences of producer actions:

PInv , ∀ i ∈ It(X I0) : wrt(pI0,i) ⇒ ∧ wrts(pI0 , deps(X I0 ,Dep pp, i))

∧ pI0,i = fp(X I0 , pI0 , i)

That is, if a producer assignment i has been written, then the past dependencies relative

to i where meet and the written value was calculated by the basic function fp at i .

Analogously, a very similar invariant CInv states the expected consequences of consumer

actions:

CInv , ∀ i ∈ It(X I0) : wrt(cI0,i) ⇒ ∧ wrts(pI0 , deps(X I0 ,Dep pc, i))

∧ cI0,i = fc(X I0 , pI0 , i)

As for the reducer actions, two separate invariants RInv1 and RInv2 state their conse-

quences:

RInv1 , ∀ i ∈ It(X I0) : red(I0, i) ⇒ wrts(cI0 , deps(X I0 ,Dep cr , i))

RInv2 , r I0 =
⊗

{i ∈m..n : Q(i)∧ red(I0,i)}
fr(x , cI0 , i)

where m = lBnd(X I0), n = uBnd(X I0) and Q(i) = prop(i). These two invariants are

related, they were separated for convenience. Indeed, the proof of RInv2 relies also on

RInv1. In particular, RInv2 characterizes the reducer output value at any time of the

PCR computation as the combination (i.e. ⊗) of the values computed at the assignments

marked as reduced.

All the previous invariants are conjoined into one invariant named Inv :

Inv , TypeInv ∧ IndexInv ∧ PInv ∧ CInv ∧ RInv1 ∧ RInv2

Now, note that when model checking invariant properties the graph of reachable states is

generated. But that is not a verification of the inductiveness of the invariant, as not all

invariants are inductive. It is possible to use the model checker TLC to verify , on finite

concrete PCRs, that Inv is actually an inductive invariant. This constitutes a particular

and interesting use case of TLC. For this, we need to define first an alternative main

specification formula for the PCR as follows:

ISpec , Inv ∧ 2[Next ]〈in,vs〉
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Note that instead of using Init as initial state formula, like in the main Spec, we use Inv .

Then, we can instruct TLC to check ISpec satisfies the invariant Inv . If the verification

is positive, we have gained confidence in that Inv is inductive and not just an invariant,

which can be useful later when doing deductive reasoning. This technique is explained by

Lamport as a tutorial in [77].

Partial correctness and termination is stated as follows:

Correctness , end(I0) ⇒ r I0 = A(X I0)

Termination , 3end(I0)

5.5.1.1 Partial Correctness

Next, we prove partial correctness of the basic PCR relying on the invariant properties

presented before.

Theorem 5.7 (PCR A Thms !Thm Correctness).

Spec ⇒ �(end(I0) ⇒ r I0 = A(x I0))

Proof. First, let us make the following abbreviations:

x = X I0

y = r I0

m = lBnd(x )

n = uBnd(x )

Q(i) = prop(i)
#«

f A =
#«

f r(x ,
#«

f c(x ,
#«

g p(x )))

By rule INV3 it is enough to prove 〈1〉1 and 〈1〉2 with the help of invariant Inv :

〈1〉1. Init ⇒ Correctness

It suffices to assume Init and end(I0) to prove y = A(x ). We proceed by cases on

iteration space It(x ):

〈2〉A. It(x ) = ∅ : For this to hold, there are two possibilities:
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i. m > n : Then trivially A(x ) = id⊗. Besides, y = id⊗ by Init . Therefore

y = A(x ).

ii. ¬Q(i) for all i ∈ m..n : Then A(x ) = id⊗ by FalsePredicate. Besides,

y = id⊗ by Init . Therefore y = A(x ).

〈2〉B. It(x ) 6= ∅ : We show this case is not possible arriving at a contradiction. By

our assumption end(I0) it should be the case that red(I0, j ) for any j ∈ It(x ).

But in fact, is the opposite, by Init we have ¬red(I0, j ) for any j ∈ It(x ).

〈1〉2. Inv ∧ Correctness ∧ [Next ]〈in,vs〉 ⇒ Correctness ′

We have that A(x ) is a constant expression, i.e. A(x )′ = A(x ). Thus, it suffices to

assume Inv , Correctness , [Next ]〈in,vs〉 and end(I0)′ to prove y ′ = A(x ). By def. of

[Next ]〈in,vs〉 there are three cases to consider:

〈2〉A. Step : By invariant IndexInv it suffices to assume there exists some i ∈ It(x )

such that

P(I0, i) ∨ C (I0, i) ∨ R(I0, i)

We proceed by cases on these actions:

〈3〉A. P(I0, i) : We show this case is not possible arriving at a contradiction. By

invariants CInv and RInv1 we have for all j ∈ It(x )

(red(I0, j ) ⇒ wrt(cI0,j )) ∧ (wrt(cI0,j ) ⇒ wrt(pI0,j )) (5.4)

from which we can deduce

(¬wrt(cI0,j ) ⇒ ¬red(I0, j ) ∧ (¬wrt(pI0,j ) ⇒ ¬wrt(cI0,j )) (5.5)

By the producer action P(I0, i) we have ¬wrt(pI0,i), thus by formula 5.5 it

follows that ¬red(I0, i). Besides, rs ′ = rs , and thus ¬red(I0, i)
′ also holds.

But the last fact contradicts with our assumption end(I0)′ as this means

red(I0, j )′ for all j ∈ It(x ).

〈3〉B. C (I0, i) : Not possible. Proof analogous to previous case.
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〈3〉C. R(I0, i) : The following holds in the reducer action:

¬red(I0, i) (5.6)

∧ wrts(cI0 , deps(x ,Dep cr , i)) (5.7)

∧ y ′ = y ⊗ fr(x , cI0 , i) (5.8)

First, note that by assumption end(I0)′ we have red(I0, j )′ for all j ∈ It(x ).

So, by 5.6 the only assignment that has not been reduced yet is current

i . This and 5.7 implies that all producer and consumer assignments have

been written.

Now, we gather some facts.

i. Q(j ) ∧ j 6= i ≡ Q(j ) ∧ red(I0, j ) for all j ∈ m..n

Because the only assignment that has not been reduced yet is the

current i .

ii.
#«

f A
j

= fr(x , cI0 , j ) for all j ∈ It(x )

By def. of
#«

f A and
#«

f r , we need to prove:

fr(x ,
#«

f c(x ,
#«

g p(x )), j ) = fr(x , cI0 , j ) for any j ∈ It(x )

Take any j ∈ It(x ). By axiom H frRelevance and def. of
#«

f c, it suffices

to prove:

fc(x , #«g p(x )), k) = cI0,k for any k ∈ deps(x ,Dep cr , j )

But, by invariant CInv , we can prove instead:

fc(x , #«g p(x )), k) = fc(x , pI0 , k) for any k ∈ deps(x ,Dep cr , j )

Take any k ∈ deps(x ,Dep cr , j ). By axiom H frRelevance and def.

of #«g p it suffices to prove:

gp(x , l) = pI0,l for any l ∈ deps(x ,Dep pc, k)

But, by invariant PInv , we can prove instead:

gp(x , l) = fp(x , pI0 , l) for any l ∈ deps(x ,Dep pc, k)

Which it is true by axiom H ProdEqInv .

199



Finally, let us calculate:

A(x ) =
⊗

{j ∈m..n : Q(j )}

#«

f A
j

by def. A

=
⊗

{j ∈m..n : Q(j )∧ j 6=i}

#«

f A
j ⊗ #«

f A
i

by SplitRandomP

=
⊗

{j ∈m..n : Q(j )∧ red(I0,j )}

#«

f A
j ⊗ #«

f A
i

by i. and PredicateEq

=
⊗

{j ∈m..n : Q(j )∧ red(I0,j )}
fr (x , cI0 , j ) ⊗ fr (x , cI0 , i) by ii. and FunctionEqP

= y ⊗ fr (x , cI0 , i) by invariant RInv2

= y ′ by 5.8

〈2〉B. Done : We have that end(I0) and 〈in, vs〉′ = 〈in, vs〉 holds. So it must be that

y ′ = y because nothing changes. By the Correctness assumption and end(I0)

we have y = A(x ). Therefore y ′ = y = A(x ).

〈2〉C. 〈in, vs〉′ = 〈in, vs〉 : By assumption we have end(I0)′. As nothing changes, it

must be that end(I0)′ = end(I0) and y ′ = y , thus we also have end(I0). Then,

by the Correctness assumption and end(I0) we have y = A(x ). Therefore,

y ′ = y = A(x ).

As a general comment about proofs, at some point we realized that we had never used

rule INV2, instead we always relied on the more general rule INV3 (and INV1 for the

most basic properties). As we mentioned earlier, we gained confidence in that Inv is

an inductive invariant via model checking verification. Then, it should not be hard to

corroborate it formally and apply rule INV2 which then requires to prove

Inv ⇒ Correctness

in order to conclude Spec ⇒ 2Correctness as we desired. That would have resulted in,

perhaps, a more direct proof eliding the cases we justified resorting to their impossibility.

However, note that in those cases we did not made use of indirect reasoning, we reasoned

“by negation” and not “by contradiction”, thus being acceptable from the constructive

point of view.
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5.5.1.2 Refinement of a one step computation

Next, we prove that the basic PCR is a refinement of the basic PCR expressed as a one

step computation. First, we instantiate module PCR A1step as follows:

inS , X I0

outS , IF end(I0) THEN r I0 ELSE id⊗

A1step , INSTANCE PCR A1step WITH in ← inS , out ← outS

Typically, we suffix by S the names of the symbols substituted with new non-trivial ex-

pressions (i.e. not the identity) which allow us to hide part of the state. Figure 5.2

presents an intuitive illustration of the refinement. For convenience, we will reuse the

Figure 5.2: PCR A!Spec (here Spec) refines PCR A1step!Spec (here A1step!Spec). All
the computation in Spec before the last reduction action is simulated by stuttering steps
at A1step!Spec. What allows A!Spec to stutter is that the substitution sets outS = id⊗
until termination, thus hiding from A!Spec the intermediate partial values of the reducer
output at the low level. The last reduction action corresponds to the single step action
at A1step!Spec.

previous (partial) correctness result. This can be seen as a bit of cheating as the same

formula A(x ) that is used in the correctness property is also used in the one step com-

putation. But we actually do not need correctness, we only need invariant Inv . The long

version of the formal proof is in Appendix C.
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Theorem 5.8 (PCR A Thms !Thm Refinement).

Spec ⇒ A1step!Spec

Proof. First, let us make the following abbreviations:

x = X I0

y = r I0

By rule REF it is enough to prove 〈1〉1 and 〈1〉2 with the help of invariants Inv and

Correctness :

〈1〉1. Init ⇒ A1step!Init

By def. of Init we have x ∈ T and y = id⊗, so

outS = IF end(I0) THEN y ELSE id⊗ = id⊗

Therefore A1step!Init holds.

〈1〉2. Inv ∧ Correctness ′ ∧ [Next ]〈in,vs〉 ⇒ [A1step!Next ]〈inS ,outS〉

It suffices to assume Inv , Correctness ′ and [Next ]〈in,vs〉 to prove that A1step!Spec

either makes a A1step!Next step or stutters, that is:

outS = A(inS ) ∨ 〈inS , outS 〉′ = 〈inS , outS 〉

By def. of [Next ]〈in,vs〉 there are three cases to consider:

〈2〉A. Step : By invariant IndexInv it suffices to assume there exists some i ∈ It(x )

such that

P(I0, i) ∨ C (I0, i) ∨ R(I0, i)

We proceed by cases on these actions, and further consider for the case R(I0, i)

the mutually exclusive possibilities end(I0)′ and ¬end(I0)′.

〈3〉A. P(I0, i) : In a producer action, we have ¬end(I0) and ¬end(I0)′, thus

outS ′ = outS = id⊗. Also, input inS remains constant. Therefore

〈inS , outS 〉′ = 〈inS , outS 〉.
〈3〉B. C (I0, i) : Analogous to previous case.

〈3〉C. R(I0, i) ∧ end(I0)′ : In this case, this is the last reduction. We have that
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outS ′ 6= outS , but input inS remains constant. We prove outS ′ = A(inS )

as follows:

outS ′ = y ′ by end(I0)′

= A(inS )′ by Correctness ′ and end(I0)′

= A(inS ) input is constant

〈3〉D. R(I0, i)∧¬end(I0)′ : In this case, this is not the last reduction. If ¬end(I0)′

then also ¬end(I0), thus outS ′ = outS = id⊗. Besides, input inS remains

constant. Therefore 〈inS , outS 〉′ = 〈inS , outS 〉.

〈2〉B. Done : We have that 〈in, vs〉′ = 〈in, vs〉, i.e. Spec stutters. Variables inS

and outS of A1step!Spec are expressed in terms of vs by our substitution.

Therefore, if Spec stutters then A1step!Spec also stutters.

〈2〉C. 〈in, vs〉′ = 〈in, vs〉 : Analogous to previous case.

5.5.2 Basic PCR with left reducer

A basic PCR with left reducer differs from the ordinary one only in the reducer component

specification. However, recall that we assume a consecutive iteration space for simplicity,

i.e. there is no filter condition.

Here, the relevant difference is in the invariants concerning the consequences of the reducer

actions:

RInv1 , ∀ i ∈ It(X I0) : red(I0, i) ⇒ ∧wrts(cI0 , deps(X I0 ,Dep cr , i))

∧ ∀ k ∈ It(X I0) : k < i ⇒ red(I0, k)

RInv2 , ∀ i ∈ It(X I0) : ¬red(I0, i) ⇒ r I0 =
⊗

{j ∈m..i−1 : red(I0,j )}
fr(x , cI0 , j )

where m = lBnd(X I0). Note that RInv1 now also states that for any assignment i that has

been reduced, we can be sure all the previous assignments k < i have also been reduced.

Unfortunately, RInv2 is a bit more involved than what we saw for the ordinary basic
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PCR. Here, it states that for any assignment i that has not been reduced, the reducer

output value is the combination (i.e. ⊗) of all the values computed at the assignments

from m to i − 1 that are marked as reduced.16

5.5.2.1 Partial Correctness

Most of the partial correctness proof for PCR ArLeft is very similar to that for PCR A

(theorem 5.7). So, in what follows we concentrate only on what happens at the reducer

component. A fundamental difference is that we have less mathematical facts available,

because commutativity is not assumed.

Theorem 5.9 (PCR ArLeft Thms !Thm Correctness).

Spec ⇒ �(end(I0) ⇒ r I0 = A(x I0))

Proof. First, let us make the following abbreviations:

x = X I0

y = r I0

m = lBnd(x )

n = uBnd(x )
#«

f A =
#«

f r(x ,
#«

f c(x ,
#«

g p(x )))

Having as hypothesis invariant Inv and condition end(I0)′, now assume reducer action

R(I0, i) for some i ∈ It(x ) = m..n. The following holds in this action:

¬red(I0, i) (5.9)

∧ wrts(cI0 , deps(x ,Dep cr , i)) (5.10)

∧ i − 1 ≥ m ⇒ red(I0, i − 1) (5.11)

∧ y ′ = y ⊗ fr(x , cI0 , i) (5.12)

First, note that by assumption end(I0)′ we have red(I0, j )′ for all j ∈ m..n. So, by 5.9 the

only assignment that has not been reduced yet is current i . This and 5.10 implies that

all producer and consumer assignments have been written.

16Actually, we found simpler alternatives for RInv2. But the proof would need to be done again.
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Now, we gather some facts.

i. red(I0, j ) for all j ∈ m..(i − 1)

Because by invariant RInv1 we know that red(I0, j ) holds for all j < i where

j ∈ m..n.

ii. i = n

We know that ¬red(I0, i) by 5.9 where i ∈ m..n, then by i. it must be the case that

i = n.

iii.
#«

f A
j

= fr(x , cI0 , j ) for all j ∈ m..n

Proceed exactly like we did in point ii. for the basic PCR.

Finally, let’s calculate:

A(x ) =
n⊗

j =m

#«

f A
j

by def. A

=
n−1⊗
j =m

#«

f A
j ⊗ #«

f A
n

by SplitLast

=
⊗

{j ∈m..n−1 : red(I0,j )}

#«

f A
j ⊗ #«

f A
n

by i. and TruePredicate

=
⊗

{j ∈m..n−1 : red(I0,j )}
fr(x , cI0 , j ) ⊗ fr(x , cI0 , n) by iii. and FunctionEqP

= y ⊗ fr(x , cI0 , n) by invariant RInv2 and 5.9

= y ′ by 5.12 and ii.

5.5.2.2 Refinement of a basic PCR

The fact that the basic PCR with left reducer is a refinement of the ordinary basic PCR

is a very direct result. It is easy to see that any behavior of the former is an admitted

behavior on the later, as the former only reduces in a fixed order but the later allows any

order. To prove this refinement we do not require any non-trivial substitution when doing
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module instantiation. The formal proof is in Appendix C.

5.5.3 Composition through consumer

Here we have a main PCR A and a nested basic PCR B. There are properties stated for

both of them separately, so that we group most of them as InvA and InvB for convenience.

But B is a basic PCR, so its properties are essentially no different from what we saw

earlier except that now there can be multiple instances of B and their indexes are now

characterized by the following invariant:

IndexInvB , WDIndexB ⊆ {I0 ◦ 〈i〉 : i ∈ AssigA}

PCR A is more interesting because the consumer specification is different from a basic

PCR. As we explained in the formalization, there is a pair of call and return actions with

respect to B. The following invariant CInv1A state the consequences of a call action on

B:

CInv1A ,

∀ i ∈ ItA(X I0
1 ) : wrt(X I0,i

2 ) ⇒ ∧wrts(pI0
1 , depsA(X I0

1 ,Dep pc1, i))

∧ ∃ vp ∈ #«

T p1 :

∧ eqs(vp, pI0
1 , depsA(X I0

1 ,Dep pc1, i))

∧ X I0,i
2 = 〈X I0

1 , vp, i〉

That is, if an input on B has been written on assignment i , then the dependencies with

respect to the producer and relative to i were met and there exists some stream vp on

range type Tp1 such that is equal to the current producer stream pI0
1 and whose input for

B is exactly the triplet 〈X I0
1 , vp, i〉. Something important to note here is that it would be

erroneous to assert the input is 〈X I0
1 , p

I0
1 , i〉, because pI0

1 will continue to evolve in time

after the call, whereas the input for B is actually only a “freezed” version of pI0
1 at the

instant of the call17, so the invariant would be surely violated afterwards.

17It could be argued that in mathematics everything is passed “by value”, using programming termi-
nology. That is exactly what is happening here.
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Invariant CInv2A states the consequences of a return action from B:

CInv2A , ∀ i ∈ ItA(X I0
1 ) : wrt(cI0,i

1 ) ⇒ ∧ wrt(X I0,i
2 )

∧ endB(I0, i)

∧ cI 0,i
1 = r I0,i

2

That is, if a consumer assignment i has been written, then there is an input written on

B for which the corresponding instance terminated and the written value came from the

output variable of that instance of B.

Partial correctness and termination is stated for both PCRs as follows:

CorrectnessA , endA(I0) ⇒ r I0
1 = A(X I0

1 )

TerminationA , 3endA(I0)

CorrectnessB , ∀ I ∈ WDIndexB : endB(I ) ⇒ r I
2 = B(X I

2 )

TerminationB , 3(∀ I ∈ WDIndexB : endB(I ))

The correctness of the overall specification is what we state for the main PCR A, as always

relative to I0, which in turns depends on the correctness of possibly multiple instances of

B. However, the proof of the refinement of a basic PCR, to be discussed next, only relies

on the correctness of B (and some basic invariants of A).

The relation between the termination of both PCRs can be made explicit by the invariant:

endA(I0) ⇒ ∀ I ∈ WDIndexB : endB(I )

It should be obvious that the converse does not hold.

5.5.3.1 Refinement of a basic PCR

In what follows, we prove that a PCRA composed through the consumer with a basic PCR

B is a refinement of a basic PCR where the consumer computes the function associated
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to B. First, we instantiate module PCR A as follows:

inS , X I0

fcS (x , vp, i) , B(〈x , vp, i〉)
A , INSTANCE PCR A WITH in ← inS , fc ← fcS

Figure 5.2 presents an intuitive illustration of the refinement. Before the proof, we still

Figure 5.3: PCR A c B !Spec (here Spec) refines PCR A!Spec (here A!Spec). All the com-
putation in Spec starting with a call action on B till the termination of B is simulated by
stuttering steps at A!Spec. The return action from B in Spec corresponds to the consumer
action at A!Spec. We write vp ≈ pI

1 to abbreviate eqs(vp, pI
1 , depsA(X I

1 ,Dep pc1, i)), i.e.
they are equivalent streams relative to the dependencies the consumer has on the producer.

need other relevance axioms apart of what is already asserted for A and B in the specifi-

cation. Note that PCR B has as input the producer stream variable of the father PCR A.

Thus, all the basic functions of B can use not only their own internal streams correspond-

ing to internal variables but also the stream received in the input which corresponds to an

external variable (in this case the producer variable of A). So, we also need to know that

all the basic functions of B are also insensitive to indexes of that stream which they do not

depend on. We have not added all the corresponding relevance axioms in the specification

module PCR A c B because, at least for the purposes of the refinement proof, we can
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capture all that information in a single axiom as follows:18

AXIOM H fcSRelevance ,

∀ x ∈ T : ∀ i ∈ ItA(x ), vp1 ∈
#«

T p1 , vp2 ∈
#«

T p1 :

eqs(vp1, vp2, depsA(x ,Dep pc1, i)) ⇒ fcS (x , vp1, i) = fcS (x , vp2, i)

Without further ado, we present the proof.

Theorem 5.10 (PCR A c B Thms !Thms Refinement).

Spec ⇒ A!Spec

Proof. First, let us make the following abbreviations:

x1 = X I0
1

x I
2 = X I

2

By rule REF it is enough to prove 〈1〉1 and 〈1〉2 with the help of invariants InvA and

CorrectnessB :

〈1〉1. Init ⇒ A!Init

We have Init = InitA ∧ InitB , and InitA by def. asserts the same initial conditions

that A!Init , therefore A!Init holds.

〈1〉2. InvA ∧ CorrectnessB ∧ [Next ]〈in,vs1,vs2〉 ⇒ [A!Next ]〈inS ,A!vs〉

By our substitution, we have that A!vs = 〈x1, p1, c1, r1, rs1〉 and inS = x1. So,

it suffices to assume InvA, CorrectnessB and [Next ]〈in,vs1,vs2〉 to prove that A!Spec

either makes a A!Next step or stutters on variables A!vs , that is:

A!Next ∨ A!vs ′ = A!vs

By def. of [Next ]〈in,vs1,vs2〉 there are four cases to consider:

〈2〉A. StepA : This is a step of the outer PCR. By invariant IndexInvA it suffices to

assume there exists some i ∈ ItA(x1) such that

P1(I0, i) ∨ C 1ini(I0, i) ∨ C 1end(I0, i) ∨ R1(I0, i)

18There is another consequence here that can be easily missed. The basic functions computing the
upper/lower bounds for the iteration space of B can also depend on the input stream. So, to be more
precise, maybe it would be more appropriate to treat them as partial functions just like the other basic
functions with some knowledge of what are their dependencies (if any) on the input stream.
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We proceed by cases on these actions.

〈3〉A. P1(I0, i) : A producer action corresponds directly with sub-action A!P(I0, i)

of A!Next .

〈3〉B. C 1ini(I0, i) : The consumer of the outer PCR invokes the inner PCR writ-

ing on input x I0,i
2 . In this case, we have that A!vs1′ = A!vs1, i.e. A!Spec

stutters.

〈3〉C. C 1end(I0, i) : The (I0, i)-th instance of the inner PCR finished computing

on input x I0,i
2 . The following holds in this action:

¬wrt(cI0,i
1 ) (5.13)

∧ wrt(x I0,i
2 ) (5.14)

∧ endB(I0, i) (5.15)

∧ (cI0,i
1 )′ = r I0,i

2 (5.16)

By 5.14, index I0, i is a well defined instance of the inner PCR, thus

I0, i ∈ WDIndexB . Then, by invariant CorrectnessB , we have:

endB(I0, i) ⇒ r I0,i
2 = B(x I0,i

2 ) (5.17)

By invariant CInv1A and 5.14 there exists a stream variable vp on range

type Tp1 such that:

eqs(vp, pI0
1 , depsA(x1,Dep pc1, i)) (5.18)

∧ x I0,i
2 = 〈x1, vp, i〉 (5.19)

Now, we prove the result computed by the inner PCR coincides with the

basic function fcS :

(cI0,i
1 )′ = r I0,i

2 by 5.16

= B(x I0,i
2 ) by 5.17 and 5.15

= B(〈x1, vp, i〉) by 5.19

= fcS (x1, vp, i) by our substitution

= fcS (x1, p
I0
1 , i) by axiom H fcSRelevance and 5.18

This result proves that action C 1end(I0, i) corresponds to sub-action A!C (I0, i)

of A!Next .
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〈3〉D. R1(I0, i) : A reducer action corresponds directly with sub-action A!R(I0, i)

of A!Next .

〈2〉B. StepB : This is a step of the inner PCR. We have that 〈in, vs1〉′ = 〈in, vs1〉,
i.e. the outer PCR state does not change. Note that A!vs is included in vs1,

therefore A!vs1′ = A!vs1.

〈2〉C. Done : We have that 〈in, vs1, vs2〉′ = 〈in, vs1, vs2〉, i.e. Spec stutters. Note

that A!vs is included in vs1, therefore A!vs1′ = A!vs1.

〈2〉D. 〈in, vs1, vs2〉′ = 〈in, vs1, vs2〉 : Analogous to previous case.
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Chapter 6

Conclusions

If debugging is the process of removing software bugs, then programming

must be the process of putting them in.

Edsger Dijkstra

We would like to start with a retrospective of our work. When we started with this

thesis, our main objective was to build upon the work of Pérez and Yovine [26]. More

specifically, as we explained at the introduction, our main concern was the functional

correctness of high level PCR designs. Firstly, we were looking for some appropriate formal

framework with associated tools on which we could base our work. We experimented a bit

of concurrent design with Promela/Spin and TLA+ during a semester, and we were also

looking into some of the introductory examples of the K framework. We were particularly

attracted by TLA+ philosophy of expressing refinement by logical implication at the

language level, which seemed simple and elegant. Of course, we did not have lots of

experience with it at the time, so that was not the only selling point. But considering

also the availability of tools for model checking and theorem proving, and the industry

attention it gained in the last five years, it was enough for us to decide to stick with it

during this thesis.

Initially, we started trying to formalize two of the most relevant features of FXML that

where used originally in [26] to give semantics to PCRs, namely stream variables and data

dependencies, and we were able to prove relations between different data dependencies.

Soon, we learned about PlusCal [78], an algorithmic language that can be used to replace

pseudo-code for sequential and concurrent algorithms. This tool translates something

that looks like pseudo-code (and of which one might think it does not possess any formal
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meaning) to very structured and understandable TLA+. It was designed by Lamport as

a tool to teach rigorous algorithmic thinking, but received a good amount of industrial

attention, for example the PGo project aims to produce Go programs from PlusCal [79].1

Inspired by this, we opted for a more direct approach: instead of relying on FXML, we

could just take from it the concepts we needed for the PCR pattern and express them

directly in TLA+. So, there was no intention to capture all of FXML semantics in TLA+,

as we really did not need all of it. We also saw this as a possible more direct path to

generate correct parallel executable code, but out of the scope of the current thesis, of

course.

We worked for some time on concrete PCR problems, treating them as study cases. Here

we tried to be as systematic as possible, envisioning an automatic translator tool in the

spirit of PlusCal.2 At this stage, we noticed model checking was particularly helpful

to validate quickly what we where doing. When model checking is simply not possible

because of the state explosion problem, the simulation mode can be used as last resort.

We were pleased to have the opportunity to present our work in progress at the TLA+

Community Event that was held (virtually) in October 2020 as a satellite of the DISC

2020 Conference. The abstract can be seen in [80].

Until that moment, we had not written any formal proof of correctness, we relied only on

model checking. So we started to put TLAPS to serious use on some concrete examples,

and after some work intuition suggested that proofs for different concrete examples would

be almost identical, were it not by the fact that the mathematical functions used at the

time where chosen in an ad-hoc way. We wanted to seek a more uniform methodology

of proof. At this point, we had enough confidence to stop worrying about concrete ex-

amples and to try to abstract away of the concrete basic functions. So, we identified,

first informally, abstract PCR models along the mathematical functions characterizing

their functional behaviour. The idea of representing these functions as a composition of

stream functions allowed us to capture in a single formula any possible dependency be-

1In fact, the Amazon report on TLA+ notes that some of their engineers feels more productive on
PlusCal than with raw TLA+.

2Actually, we started its development using OCaml, but we realized it was too much work to be
sustained in a short time, so it was abandoned.
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tween the components without need to mention them explicitly in the formula itself. For

the formalization in TLA+, the mental translation from the dependence graphs induced

by the data dependencies to the transition systems described by temporal formulas was

very intuitive. Finally, with the formalization of the abstract PCR models, operational

and functional, we now could carry out general proofs for entire classes of PCRs instead

of just concrete PCRs. In particular, we could prove a chain of refinements where a PCR

is represented initially as a mathematical function and is further implemented by PCRs

adding more parallelism but preserving functional equivalence.

We want to stress that even if theorem proving is the only way to prove general results,

like we have done, for a possible practical setting where one is concerned with a concrete

PCR for a specific problem, model checking is surely more cost-effective. In particular,

note that instead of using the standard correctness property as we had defined it, we may

want to check correctness with respect to an alternative custom solution formula (see the

CorrectnessAlt formulas in the concrete specifications at Appendix D). This is worthwhile

for model checking purposes, but for theorem proving it requires its own formal proof.

Now, we make some observations with regard to what has been done and possible future

work:

• We have not covered all the PCR features. One of them is the the feedbackloop

extension. In the context of task-based parallelism, this corresponds to the workpile

pattern, where an instance of a task can generate more instances and add them to

a pile of tasks to be done.

Other interesting feature is the implementation of eureka computations. This makes

possible early termination, which is useful for search or optimization problems (e.g.

return only the first solution on the NQueens problem). An eureka condition, say

cnd , is made part of to the reducer syntax as follows:

reduce cnd ⊗ (v0 x ) (fr x p c1 . . . ck)

We modeled eureka conditions for some time, as it is relatively easy. The problem

was that the concurrent semantics of the PCR is non-deterministic, and if there is

an eureka condition present then we cannot assert correctness as usual, because the
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PCR output will not necessarily match the output of the mathematical function. For

now, the only reasonable idea we have is that in the context of eureka computations

the correctness assertion could be relaxed to state a containment condition and not

an equality, i.e. that the output computed by the PCR is contained in all the possible

results. But we have not investigated how this could be formalized in general.

Finally, in this thesis we limited ourselves to finite iteration spaces, which seems

enough for most use cases, but maybe there are compelling use cases for infinite

(i.e. unbounded) iteration spaces.3

• We have not finished all the formal proofs. In particular, we have not formally

dealt with termination, which is a kind of liveness property, because of a limitation

of TLAPS. However, we believe the next release of TLAPS will have support for

liveness proofs, so it will be possible to deal formally with termination in the near

future.

It should be noted that formal proofs for divide and conquer and the iterative

schemes are likely to be harder than the rest. Surely, well founded induction with

some additional assumptions are needed to justify the mathematical functions are

well defined. We add that at some time we had a formal proof for the partial

correctness of the divide and conquer scheme —the reason we never mentioned it

is because it was done on a simpler specification than what we presented here. We

need to rewrite it for the current version.

• Currently, we have enough confidence to know that a tool can be written to translate

high level PCR designs to TLA+. For this, it would be productive if we could reuse

parts of the PlusCal translator or maybe even extend it somehow. In this way, we

would not need a host language to define the basic functions. About the possibility

of generating correct parallel executable code, it seems plausible if we can leverage

on a project like PGo. For the best of our knowledge, research in code synthesis

from TLA+ specifications is in its infancy.

3As an aside, eureka conditions together with infinite iteration spaces allow a basic PCR to express the
iterate construct so that it is no longer a primitive extension. The possibility of an unbounded search
is reminiscent of role of the minimization operator µ whose addition to the class of recursive primitive
functions results in a turing complete model.
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• In this thesis we have made the tacit assumption that one can express the solution

of the problem in exactly the mathematical form associated to the abstract PCR

models. Of course, it may not be obvious how to put the solution in that form

to obtain a PCR. This is an interesting problem in the area of program derivation,

something that initiated with Dijkstra [47] in the structured programming paradigm

and was then taken to the functional programming paradigm by Bird [76], as in the

Bird–Meertens formalism, where both functions and programs live at the same level.

Bird showed how one can start with an inefficient functional solution assumed as

obviously correct and this can be transformed by equational reasoning to a simple

map-reduce expression which have an intuitive parallel interpretation and an alge-

braic significance (an homomorphism between algebraic structures). At least for

basic PCRs, our mathematical functions used in the correctness assertions are just

that, a reduce operation (the reducer combiner ⊗) over a composition of maps (the

producer and the consumers transforming the iteration space) that can be simplified

in just one map. But we are oversimplifying a bit here, because the producer is not

in general just a map, it can depend on its past values. In general, one may need to

start with an obvious mathematical definition and massage it somehow to obtain a

functional PCR form.

In summary, we think this thesis contributes to the state of the art in formal refinement

of parallel programs from abstract models, especially starting off from an alternative

characterization of the general PCR pattern, and utilizing the TLA+ framework. We

hope to have shown this as an interesting line of research within the general quest for

quality programming.
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1 module AbstractAlgebra

This module formally defines some basic algebraic structures.

7 extends TLAPS

9

A Magma consists of a set D equipped with a single binary operation ⊗ that is closed on D .

15 Magma(D , ⊗ )
∆
=

16 ∀ x , y ∈ D : x ⊗ y ∈ D

A SemiGroup is a Magma where operation ⊗ : D ×D → D satisfies Associativity.

22 SemiGroup(D , ⊗ )
∆
=

23 ∧Magma(D , ⊗ )
24 ∧ ∀ x , y , z ∈ D : (x ⊗ y)⊗ z = x ⊗ (y ⊗ z )

A Monoid is a SemiGroup with identity element for operation ⊗ : D ×D → D .

30 Monoid(D , c, ⊗ )
∆
=

31 ∧ SemiGroup(D , ⊗ )
32 ∧ ∃ e ∈ D : ∀ x ∈ D : ∧ e = c
33 ∧ x ⊗ e = x
34 ∧ e ⊗ x = x

36 Monoid2(D , ⊗ )
∆
=

37 ∧ SemiGroup(D , ⊗ )
38 ∧ ∃ e ∈ D : ∀ x ∈ D : ∧ x ⊗ e = x
39 ∧ e ⊗ x = x

An Abelian Monoid is a Monoid where operation ⊗ : D ×D → D satisfies Commutativity.

45 AbelianMonoid(D , c, ⊗ )
∆
=

46 ∧Monoid(D , c, ⊗ )
47 ∧ ∀ x , y ∈ D : x ⊗ y = y ⊗ x

49 AbelianMonoid2(D , ⊗ )
∆
=

50 ∧Monoid2(D , ⊗ )
51 ∧ ∀ x , y ∈ D : x ⊗ y = y ⊗ x

53

The identity element in a Monoid is unique.

58 theorem MonoidUniqueIdentity
∆
=

59 assume new D , new ⊗ ,
60 Monoid2(D , ⊗ ),
61 new e1, new e2,
62 ∀ x : x ⊗ e1 = x ∧ e1⊗ x = x ,
63 ∀ x : x ⊗ e2 = x ∧ e2⊗ x = x
64 prove e1 = e2
65 by Z3 def Monoid2

67

A.1 Abstract algebra

226



1 module MonoidBigOp

Let (D , Id ,⊗) be a Monoid structure. This module defines the extension of binary operation ⊗ over finite intervals.

See relevant theorems in module MonoidBigOpThms.

11 extends AbstractAlgebra

13 local instance Naturals

15

This module is parameterized by the signature (D , Id ,⊗) .

Is taken as an assumption that (D , Id ,⊗) obeys the laws of a Monoid .

24 constants D , Domain

25 Id , Special constant symbol

26 ⊗ Binary operator

28 axiom Algebra
∆
= Monoid(D , Id , ⊗ )

30

The operation ⊗ over (non empty) interval m..n defined as a recursive function
n⊗

m

f : m..n → D

39 bigOp(m, n, f ( ))
∆
=

40 let recDef [i ∈ m . . n]
∆
=

41 if i = m
42 then f (m)
43 else recDef [i − 1]⊗ f (i)
44 in recDef

When m > n , and thus interval m..n is empty, it is assumed the result is the monoid identity Id . The result of the

operation ⊗ over interval m..n is denoted by
n⊗

i=m

f (i)
∆
=

(
n⊗

m

f

)
[n]

54 BigOp(m, n, f ( ))
∆
=

55 if m ≤ n
56 then bigOp(m, n, f )[n]
57 else Id

A convenient abbreviation to deal with holes in the interval:
⊗

{i ∈m..n :P(i)}
f (i)

∆
=

n⊗

i=m

(P(i)→ f (i), Id)

66 BigOpP(m, n, P( ), f ( ))
∆
= BigOp(m, n, lambda i : if P(i) then f (i) else Id)

68

A.2 Operation on monoid structure
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1 module MonoidBigOpThms

This module states theorems for module MonoidBigOp.

See proofs in module MonoidBigOpThms proofs.

9 extends MonoidBigOp

11 local instance NaturalsInduction

13

The following theorems asserts that our definition of bigOp is well defined, that is, there exists a function matching the

recursive definition.

20 lemma bigOpDefConclusion
∆
=

21 assume new m ∈ Nat ,
22 new n ∈ Nat ,
23 new f ( )
24 prove FiniteNatInductiveDefConclusion(bigOp(m, n, f ), f (m), lambda v , i : f (i)⊗ v , m, n)

26 theorem bigOpDef
∆
=

27 assume new m ∈ Nat ,
28 new n ∈ Nat ,
29 new f ( ),
30 new i ∈ m . . n
31 prove bigOp(m, n, f )[i ] = if i = m then f (m) else bigOp(m, n, f )[i − 1]⊗ f (i)

The bigOp function type.
n⊗

m

f : m..n → D

39 theorem bigOpType
∆
=

40 assume new m ∈ Nat ,
41 new n ∈ Nat ,
42 new f ( ), ∀ x ∈ m . . n : f (x ) ∈ D ,
43 m ≤ n
44 prove bigOp(m, n, f ) ∈ [m . . n → D ]

The base case for bigOp function:
n⊗

m

f [i ] = f (m) when i = m

52 lemma bigOpBaseCase
∆
=

53 assume new m ∈ Nat ,
54 new n ∈ Nat ,
55 new i ∈ m . . n, i = m,
56 new f ( )
57 prove bigOp(m, n, f )[i ] = f (m)

The recursive step for bigOp function:
n⊗

m

f [i ] =

n⊗

m

f [i − 1] ⊕ f (i) when i 6= m

67 lemma bigOpRecStep
∆
=

68 assume new m ∈ Nat ,
69 new n ∈ Nat ,
70 new i ∈ m . . n, i 6= m,
71 new f ( )

A.3 Theorems for monoid structures
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72 prove bigOp(m, n, f )[i ] = bigOp(m, n, f )[i − 1]⊗ f (i)

The BigOp result type.
n⊗

i=m

f (i) ∈ D

80 theorem BigOpType
∆
=

81 assume new m ∈ Nat ,
82 new n ∈ Nat ,
83 new f ( ), ∀ x ∈ m . . n : f (x ) ∈ D
84 prove BigOp(m, n, f ) ∈ D

86

The (assumed) monoid laws for binary operator ⊗ .

92 proposition OpClosure
∆
=

93 ∀ x , y ∈ D : x ⊗ y ∈ D

95 proposition OpAssociativity
∆
=

96 ∀ x , y , z ∈ D : (x ⊗ y)⊗ z = x ⊗ (y ⊗ z )

98 proposition OpIdentity
∆
=

99 ∃ e ∈ D : ∀ x ∈ D : ∧ e = Id
100 ∧ x ⊗ Id = x
101 ∧ Id ⊗ x = x

103 theorem OpUniqueIdentity
∆
=

104 assume new e1, new e2,
105 ∀ x : x ⊗ e1 = x ∧ e1⊗ x = x ,
106 ∀ x : x ⊗ e2 = x ∧ e2⊗ x = x
107 prove e1 = e2

109 proposition OpIdentityLeft
∆
=

110 ∀ x ∈ D : Id ⊗ x = x
111 by OpIdentity

113 proposition OpIdentityRight
∆
=

114 ∀ x ∈ D : x ⊗ Id = x
115 by OpIdentity

117

To evaluate the bigOp function on m..n starting from any i ∈ m..n is the same as evaluating on subinterval m..i

starting from i . That is:
n⊗

m

f [i ] =
i⊗

m

f [i ]

This fact is used in some proofs. For example, when i 6= m in the recursive step we have:
n⊗

m

f [i ] =
n⊗

m

f [i − 1] ⊗ f (i) =

n−1⊗

m

f [i − 1] ⊗ f (i)

133 theorem BasicNotationalEq
∆
=

134 assume new m ∈ Nat ,
135 new n ∈ Nat ,
136 new l ∈ m . . n,
137 new f ( ), ∀ x ∈ m . . n : f (x ) ∈ D ,
138 m ≤ n
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139 prove bigOp(m, n, f )[l ] = bigOp(m, l , f )[l ]

BigOp over constant identity.
n⊗

i=m

Id = Id

147 theorem OpIdentityExt
∆
=

148 assume new m ∈ Nat ,
149 new n ∈ Nat
150 prove BigOp(m, n, lambda i : Id) = Id

If f (i) = g(i) for all i ∈ m..n then:
n⊗

i=m

f (i) =

n⊗

i=m

g(i)

158 theorem FunctionEq
∆
=

159 assume new m ∈ Nat ,
160 new n ∈ Nat ,
161 new f ( ), ∀ i ∈ m . . n : f (i) ∈ D ,
162 new g( ), ∀ i ∈ m . . n : g(i) ∈ D ,
163 ∀ i ∈ m . . n : f (i) = g(i)
164 prove BigOp(m, n, f ) = BigOp(m, n, g)

Operation over unitary interval is trivial.
n⊗

i=n

f (i) = f (n)

172 theorem UnitInterval
∆
=

173 assume new n ∈ Nat ,
174 new f ( )
175 prove BigOp(n, n, f ) = f (n)

For any k ∈ m..n , operation can be split at k .
n⊗

i=m

f (i) =

k⊗

i=m

f (i) ⊗
n⊗

i=k+1

f (i)

184 theorem SplitUp
∆
=

185 assume new m ∈ Nat ,
186 new n ∈ Nat ,
187 new f ( ), ∀ x ∈ m . . n : f (x ) ∈ D ,
188 new k ∈ m . . n,
189 m ≤ n
190 prove BigOp(m, n, f ) = BigOp(m, k , f )⊗ BigOp(k + 1, n, f )

For any k ∈ m..n , operation can be split at k − 1 .
n⊗

i=m

f (i) =

k−1⊗

i=m

f (i) ⊗
n⊗

i=k

f (i)

199 theorem SplitDown
∆
=

200 assume new m ∈ Nat ,
201 new n ∈ Nat ,
202 new f ( ), ∀ x ∈ m . . n : f (x ) ∈ D ,
203 new k ∈ m + 1 . . n,
204 m ≤ n
205 prove BigOp(m, n, f ) = BigOp(m, k − 1, f )⊗ BigOp(k , n, f )
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Extraction of the m-indexed (first) term.
n⊗

i=m

f (i) = f (m) ⊗
n⊗

i=m+1

f (i)

213 theorem SplitFirst
∆
=

214 assume new m ∈ Nat ,
215 new n ∈ Nat ,
216 new f ( ), ∀ x ∈ m . . n : f (x ) ∈ D ,
217 m ≤ n
218 prove BigOp(m, n, f ) = f (m)⊗ BigOp(m + 1, n, f )

Extraction of the n-indexed (last) term.
n⊗

i=m

f (i) =

n−1⊗

i=m

f (i) ⊗ f (n)

226 theorem SplitLast
∆
=

227 assume new m ∈ Nat ,
228 new n ∈ Nat ,
229 new f ( ), ∀ x ∈ m . . n : f (x ) ∈ D ,
230 m ≤ n
231 prove BigOp(m, n, f ) = BigOp(m, n − 1, f )⊗ f (n)

233

When m > n , and thus inverval m..n is empty, it is assumed the result is the monoid identity Id .

239 corollary EmptyIntvAssumpP
∆
=

240 assume new m ∈ Int ,
241 new n ∈ Int ,
242 new P( ),
243 new f ( ),
244 n < m
245 prove BigOpP(m, n, P , f ) = Id

The BigOpP result type.
⊗

{i ∈m..n :P(i)}
f (i) ∈ D

253 corollary BigOpPType
∆
=

254 assume new m ∈ Nat ,
255 new n ∈ Nat ,
256 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
257 new f ( ), ∀ x ∈ {i ∈ m . . n : P(i)} : f (x ) ∈ D
258 prove BigOpP(m, n, P , f ) ∈ D

BigOpP over constant identity.
⊗

{i ∈m..n :P(i)}
Id = Id

266 corollary OpIdentityExtP
∆
=

267 assume new m ∈ Nat ,
268 new n ∈ Nat ,
269 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean
270 prove BigOpP(m, n, P , lambda i : Id) = Id

If f (i) = g(i) for all i ∈ m..n then:
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⊗

{i ∈m..n :P(i)}
f (i) =

⊗

{i ∈m..n :P(i)}
g(i)

278 corollary FunctionEqP
∆
=

279 assume new m ∈ Nat ,
280 new n ∈ Nat ,
281 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
282 new f ( ), ∀ i ∈ {j ∈ m . . n : P(j )} : f (i) ∈ D ,
283 new g( ), ∀ i ∈ {j ∈ m . . n : P(j )} : g(i) ∈ D ,
284 ∀ i ∈ {j ∈ m . . n : P(j )} : f (i) = g(i)
285 prove BigOpP(m, n, P , f ) = BigOpP(m, n, P , g)

For always false predicate P the result is identity.
⊗

{i ∈m..n :P(i)}
f (i) = Id

293 corollary FalsePredicate
∆
=

294 assume new m ∈ Nat ,
295 new n ∈ Nat ,
296 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
297 new f ( ), ∀ x ∈ {i ∈ m . . n : P(i)} : f (x ) ∈ D ,
298 ∀ i ∈ m . . n : ¬P(i)
299 prove BigOpP(m, n, P , f ) = Id

For always true predicate P , collapse to basic definition.
⊗

{i ∈m..n :P(i)}
f (i) =

n⊗

i=m

f (i)

307 corollary TruePredicate
∆
=

308 assume new m ∈ Nat ,
309 new n ∈ Nat ,
310 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
311 new f ( ), ∀ x ∈ {i ∈ m . . n : P(i)} : f (x ) ∈ D ,
312 ∀ i ∈ m . . n : P(i)
313 prove BigOpP(m, n, P , f ) = BigOp(m, n, f )

If P(i) ≡ Q(i) for all i ∈ m..n then:
⊗

{i ∈m..n :P(i)}
f (i) =

⊗

{i ∈m..n :Q(i)}
f (i)

321 corollary PredicateEq
∆
=

322 assume new m ∈ Nat ,
323 new n ∈ Nat ,
324 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
325 new Q( ), ∀ i ∈ m . . n : Q(i) ∈ boolean ,
326 new f ( ), ∀ i ∈ {j ∈ m . . n : P(j ) ∧Q(j )} : f (i) ∈ D ,
327 ∀ i ∈ m . . n : P(i) ≡ Q(i)
328 prove BigOpP(m, n, P , f ) = BigOpP(m, n, Q , f )

Operation over unitary interval is trivial.
⊗

{i ∈n..n :P(i)}
f (i) = (P(n)→ f (n), Id)

336 corollary UnitIntervalP
∆
=

337 assume new n ∈ Nat ,
338 new P( ),
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339 new f ( )
340 prove BigOpP(n, n, P , f ) = if P(n) then f (n) else Id

For any k ∈ m..n , operation can be split at k .
⊗

{i ∈m..n :P(i)}
f (i) =

⊗

{i ∈m..k :P(i)}
f (i) ⊗

⊗

{i ∈k+1..n :P(i)}
f (i)

349 corollary SplitUpP
∆
=

350 assume new m ∈ Nat ,
351 new n ∈ Nat ,
352 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
353 new f ( ), ∀ x ∈ {i ∈ m . . n : P(i)} : f (x ) ∈ D ,
354 new k ∈ m . . n,
355 m ≤ n
356 prove BigOpP(m, n, P , f ) = BigOpP(m, k , P , f )⊗ BigOpP(k + 1, n, P , f )

For any k ∈ m..n , operation can be split at k − 1 .
⊗

{i ∈m..n :P(i)}
f (i) =

⊗

{i ∈m..k−1 :P(i)}
f (i) ⊗

⊗

{i ∈k..n :P(i)}
f (i)

365 corollary SplitDownP
∆
=

366 assume new m ∈ Nat ,
367 new n ∈ Nat ,
368 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
369 new f ( ), ∀ x ∈ {i ∈ m . . n : P(i)} : f (x ) ∈ D ,
370 new k ∈ m + 1 . . n,
371 m ≤ n
372 prove BigOpP(m, n, P , f ) = BigOpP(m, k − 1, P , f )⊗ BigOpP(k , n, P , f )

Extraction of the m-indexed (first) term.
⊗

{i ∈m..n :P(i)}
f (i) = (P(m)→ f (m), Id) ⊗

⊗

{i ∈m+1..n :P(i)}
f (i)

381 corollary SplitFirstP
∆
=

382 assume new m ∈ Nat ,
383 new n ∈ Nat ,
384 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
385 new f ( ), ∀ x ∈ {i ∈ m . . n : P(i)} : f (x ) ∈ D ,
386 m ≤ n
387 prove BigOpP(m, n, P , f ) = (if P(m) then f (m) else Id)⊗ BigOpP(m + 1, n, P , f )

Extraction of the n-indexed (last) term.
⊗

{i ∈m..n :P(i)}
f (i) =

⊗

{i ∈m..n−1 :P(i)}
f (i) ⊗ (P(n)→ f (n), Id)

396 corollary SplitLastP
∆
=

397 assume new m ∈ Nat ,
398 new n ∈ Nat ,
399 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
400 new f ( ), ∀ x ∈ {i ∈ m . . n : P(i)} : f (x ) ∈ D ,
401 m ≤ n
402 prove BigOpP(m, n, P , f ) = BigOpP(m, n − 1, P , f )⊗ if P(n) then f (n) else Id

404
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1 module AbelianMonoidBigOp

Let (D , Id ,⊗) be an Abelian monoid structure. This module defines the extension of binary operation ⊗ over finite

intervals.

As order does not matter, definition from module MonoidBigOp is reused and commutativity is postulated as an

additional assumption.

See relevant theorems in module AbelianMonoidBigOpThms.

14 extends AbstractAlgebra, MonoidBigOp

16 axiom OpCommutativity
∆
= ∀ x , y ∈ D : x ⊗ y = y ⊗ x

18

A.4 Operation on abelian monoid structure
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1 module AbelianMonoidBigOpThms

This module states theorems for module AbelianMonoidBigOp.

See proofs in module AbelianMonoidBigOpThms proofs.

9 extends AbelianMonoidBigOp, MonoidBigOpThms

11 local instance Naturals

13

Distributivity (aka linearity).
n⊗

i=m

f (i) ⊗
n⊗

i=m

g(i) =
n⊗

i=m

(f (i)⊗ g(i))

22 theorem Linearity
∆
=

23 assume new m ∈ Nat ,
24 new n ∈ Nat ,
25 new f ( ), ∀ x ∈ m . . n : f (x ) ∈ D ,
26 new g( ), ∀ x ∈ m . . n : g(x ) ∈ D ,
27 m ≤ n
28 prove BigOp(m, n, f )⊗ BigOp(m, n, g) = BigOp(m, n, lambda i : f (i)⊗ g(i))

Skip index outside operation interval has no effect. That is, if j /∈ m..n then:
⊗

{i ∈m..n : i 6=j}
f (i) =

n⊗

i=m

f (i)

36 theorem SkipOutOfBounds
∆
=

37 assume new m ∈ Nat ,
38 new n ∈ Nat ,
39 new f ( ), ∀ x ∈ m . . n : f (x ) ∈ D ,
40 new j , j /∈ m . . n
41 prove BigOpP(m, n, lambda i : i 6= j , f ) = BigOp(m, n, f )

For any j ∈ m..n , the j -indexed term can be extracted.
n⊗

i=m

f (i) =
⊗

{i ∈m..n : i 6=j}
f (i) ⊗ f (j )

49 theorem SplitRandom
∆
=

50 assume new m ∈ Nat ,
51 new n ∈ Nat ,
52 new f ( ), ∀ i ∈ m . . n : f (i) ∈ D ,
53 new j ∈ m . . n,
54 m ≤ n
55 prove BigOp(m, n, f ) = BigOpP(m, n, lambda i : i 6= j , f )⊗ f (j )

For any j ∈ m..n and predicate P for which P(j ) holds, the j -indexed term can be extracted.
⊗

{i ∈m..n :P(i)}
f (i) =

⊗

{i ∈m..n :P(i)∧i 6=j}
f (i) ⊗ f (j )

65 corollary SplitRandomP
∆
=

66 assume new m ∈ Nat ,
67 new n ∈ Nat ,
68 new P( ), ∀ i ∈ m . . n : P(i) ∈ boolean ,
69 new f ( ), ∀ i ∈ {k ∈ m . . n : P(k)} : f (i) ∈ D ,
70 new j ∈ m . . n, P(j ),
71 m ≤ n

A.5 Theorems for abelian monoid structures
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72 prove BigOpP(m, n, P , f ) = BigOpP(m, n, lambda i : P(i) ∧ i 6= j , f )⊗ f (j )

74

236



Appendix B

Specification of abstract PCR models
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1 module PCR A

Basic PCR.

-----------------------------------------------------------------

fun fp(x,p,i) = ... // fp : T x St(Tp) x N -> Tp

fun fc(x,p,i) = ... // fc : T x St(Tp) x N -> Tc

fun fr(x,c,i) = ... // fr : T x St(Tc) x N -> D

dep p(i-k) -> p(i)

dep p(i[+/-]k) -> c(i)

dep c(i[+/-]k) -> r(i)

lbnd A = \x. ...

ubnd A = \x. ...

prop A = \i. ...

PCR A(x) // x \in T

par

p = produce fp x p

c = consume fc x p

r = reduce Op id (fr x c) // r \in D

-----------------------------------------------------------------

27 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, TLC

29

PCR constants and variables

35 constants I 0, pre( ),
36 T , Tp, Tc, D ,
37 id , Op( , ),
38 lBnd( ), uBnd( ), prop( ),
39 fp( , , ), fc( , , ), fr( , , ), gp( , ),
40 Dep pp, Dep pc, Dep cr

42 variables in, X , p, c, r , rs

44

General definitions

50 Undef
∆
= choose x : x /∈ union {T , Tp, Tc, D}

52 wrt(v)
∆
= v 6= Undef

53 wrts(v , S )
∆
= ∀ k ∈ S : wrt(v [k ])

54 eqs(v1, v2, S )
∆
= ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

56

PCR definitions and assumptions

62 Index
∆
= Seq(Nat)

63 Assig
∆
= Nat

64 St(R)
∆
= [Assig → R ∪ {Undef }]

65 WDIndex
∆
= {I ∈ Index : wrt(X [I ])}

66 It(x )
∆
= {i ∈ lBnd(x ) . . uBnd(x ) : prop(i)}

67 red(I , i)
∆
= rs[I ][i ]

68 end(I )
∆
= ∀ i ∈ It(X [I ]) : red(I , i)

70 deps(x , d , i)
∆
=

71 {i − k : k ∈ {k ∈ d [1] : i − k ≥ lBnd(x ) ∧ prop(i − k)}}
72 ∪ {i}

B.1 Basic PCR
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73 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd(x ) ∧ prop(i + k)}}

75 axiom H Type
∆
=

76 ∧ I 0 ∈ Index
77 ∧ ∀ x ∈ T : lBnd(x ) ∈ Nat
78 ∧ ∀ x ∈ T : uBnd(x ) ∈ Nat
79 ∧ ∀ i ∈ Nat : prop(i) ∈ boolean
80 ∧ ∀ x ∈ T : pre(x ) ∈ boolean
81 ∧Dep pp ∈ (subset (Nat \ {0}))× (subset {})
82 ∧Dep pc ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
83 ∧Dep cr ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

85 axiom H BFunType
∆
=

86 ∀ x ∈ T , i ∈ Assig :
87 ∧ gp(x , i) ∈ Tp ∪ {Undef }
88 ∧ ∀ vp ∈ St(Tp) : fp(x , vp, i) ∈ Tp ∪ {Undef }
89 ∧ ∀ vp ∈ St(Tp) : fc(x , vp, i) ∈ Tc ∪ {Undef }
90 ∧ ∀ vc ∈ St(Tc) : fr(x , vc, i) ∈ D ∪ {Undef }

92 axiom H BFunWD
∆
=

93 ∀ x ∈ T : ∀ i ∈ It(x ) :
94 ∧ gp(x , i) ∈ Tp
95 ∧ ∀ vp ∈ St(Tp) : wrts(vp, deps(x , Dep pp, i) \ {i})⇒ fp(x , vp, i) ∈ Tp
96 ∧ ∀ vp ∈ St(Tp) : wrts(vp, deps(x , Dep pc, i)) ⇒ fc(x , vp, i) ∈ Tc
97 ∧ ∀ vc ∈ St(Tc) : wrts(vc, deps(x , Dep cr , i)) ⇒ fr(x , vc, i) ∈ D

99 axiom H fpRelevance
∆
=

100 ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :
101 eqs(vp1, vp2, deps(x , Dep pp, i) \ {i})⇒ fp(x , vp1, i) = fp(x , vp2, i)

103 axiom H fcRelevance
∆
=

104 ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :
105 eqs(vp1, vp2, deps(x , Dep pc, i))⇒ fc(x , vp1, i) = fc(x , vp2, i)

107 axiom H frRelevance
∆
=

108 ∀ x ∈ T : ∀ i ∈ It(x ), vc1 ∈ St(Tc), vc2 ∈ St(Tc) :
109 eqs(vc1, vc2, deps(x , Dep cr , i))⇒ fr(x , vc1, i) = fr(x , vc2, i)

111 lemma H ProdEqInv
∆
=

112 ∀ x ∈ T : ∀ i ∈ It(x ) :
113 wrt(p[I 0][i ])⇒ fp(x , p[I 0], i) = gp(x , i)

115

Functional specification

121 M
∆
= instance AbelianMonoidBigOp

122 with D ← D , Id ← id , ⊗ ← Op

124 axiom H Algebra
∆
= AbelianMonoid(D , id , Op)

126 Gp(x )
∆
= [i ∈ Assig 7→ gp(x , i)]

127 Fc(x , vp)
∆
= [i ∈ Assig 7→ fc(x , vp, i)]

128 Fr(x , vc)
∆
= [i ∈ Assig 7→ fr(x , vc, i)]
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Informal notation:

A(x)
∆
=

⊕

i ∈ Ix

#«
f r

i(
x ,

#«
f c(x ,

#«
g p(x))

)
where Ix

∆
= {i ∈ lBnd2(x)..uBnd(x) : prop(i)}

140 A(x )
∆
= M !BigOpP(lBnd(x ), uBnd(x ), prop, lambda i : Fr(x , Fc(x , Gp(x )))[i ])

142

Operational specification

148 vs
∆
= 〈X , p, c, r , rs〉

150 Init
∆
= ∧ in ∈ T ∧ pre(in)

151 ∧X = [I ∈ Index 7→ if I = I 0 then in else Undef ]
152 ∧ p = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
153 ∧ c = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
154 ∧ rs = [I ∈ Index 7→ [i ∈ Assig 7→ false]]
155 ∧ r = [I ∈ Index 7→ id ]

157 P(I , i)
∆
=

158 ∧ ¬wrt(p[I ][i ])
159 ∧ wrts(p[I ], deps(X [I ], Dep pp, i) \ {i})
160 ∧ p′ = [p except ! [I ][i ] = fp(X [I ], p[I ], i)]
161 ∧ unchanged 〈X , c, r , rs〉

163 C (I , i)
∆
=

164 ∧ ¬wrt(c[I ][i ])
165 ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
166 ∧ c′ = [c except ! [I ][i ] = fc(X [I ], p[I ], i)]
167 ∧ unchanged 〈X , p, r , rs〉

169 R(I , i)
∆
=

170 ∧ ¬red(I , i)
171 ∧ wrts(c[I ], deps(X [I ], Dep cr , i))
172 ∧ r ′ = [r except ! [I ] = Op(@, fr(X [I ], c[I ], i))]
173 ∧ rs ′ = [rs except ! [I ][i ] = true]
174 ∧ unchanged 〈X , p, c〉

176 Done
∆
= ∧ ∀ I ∈ WDIndex : end(I )

177 ∧ unchanged 〈in, vs〉

179 Step
∆
= ∧ ∃ I ∈ WDIndex :

180 ∃ i ∈ It(X [I ]) : ∨ P(I , i)
181 ∨ C (I , i)
182 ∨ R(I , i)
183 ∧ unchanged in

185 Next
∆
= Step ∨Done

187 Spec
∆
= Init ∧2[Next ]〈in, vs〉

189 FairSpec
∆
= Spec ∧WFvs(Step)

191

Properties
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197 IndexInv
∆
= WDIndex = {I 0}

199 TypeInv
∆
=

200 ∧ in ∈ T
201 ∧X ∈ [Index → T ∪ {Undef }] ∧X [I 0] = in
202 ∧ p ∈ [Index → St(Tp)]
203 ∧ c ∈ [Index → St(Tc)]
204 ∧ r ∈ [Index → D ]
205 ∧ rs ∈ [Index → [Assig → boolean ]]

207 PInv
∆
=

208 ∀ i ∈ It(X [I 0]) :
209 wrt(p[I 0][i ])⇒ ∧ wrts(p[I 0], deps(X [I 0], Dep pp, i))
210 ∧ p[I 0][i ] = fp(X [I 0], p[I 0], i)

212 CInv
∆
=

213 ∀ i ∈ It(X [I 0]) :
214 wrt(c[I 0][i ])⇒ ∧ wrts(p[I 0], deps(X [I 0], Dep pc, i))
215 ∧ c[I 0][i ] = fc(X [I 0], p[I 0], i)

217 RInv1
∆
=

218 ∀ i ∈ It(X [I 0]) :
219 red(I 0, i)⇒ wrts(c[I 0], deps(X [I 0], Dep cr , i))

221 RInv2
∆
=

222 r [I 0] = M !BigOpP(lBnd(X [I 0]), uBnd(X [I 0]),
223 lambda i : prop(i) ∧ red(I 0, i),
224 lambda i : fr(X [I 0], c[I 0], i))

226 Inv
∆
= ∧ TypeInv

227 ∧ IndexInv
228 ∧ PInv
229 ∧ CInv
230 ∧ RInv1
231 ∧ RInv2

233 ISpec
∆
= Inv ∧2[Next ]〈vs〉

235 Correctness
∆
= end(I 0)⇒ r [I 0] = A(X [I 0])

237 Termination
∆
= 3end(I 0)

Refinement

243 inS
∆
= X [I 0]

244 outS
∆
= if end(I 0) then r [I 0] else id

246 A1step
∆
= instance PCR A1step

247 with in ← inS , out ← outS ,
248 T ← T , D ← D ,
249 id ← id , Op ← Op,
250 lBnd ← lBnd , uBnd ← uBnd , prop ← prop,
251 fp ← fp, fc ← fc, fr ← fr , gp ← gp

253
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1 module PCR ArLeft

Basic PCR with left reducer over a consecutive iteration space.

-----------------------------------------------------------------

fun fp(x,p,i) = ... // fp : T x St(Tp) x N -> Tp

fun fc(x,p,i) = ... // fc : T x St(Tp) x N -> Tc

fun fr(x,c,i) = ... // fr : T x St(Tc) x N -> D

dep p(i-k) -> p(i)

dep p(i[+/-]k) -> c(i)

dep c(i[+/-]k) -> r(i)

dep r(i-1) -> r(i)

lbnd A = \x. ...

ubnd A = \x. ...

PCR A(x) // x \in T

par

p = produce fp x p

c = consume fc x p

r = reduce Op id (fr x c) // r \in D

-----------------------------------------------------------------

27 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, TLC

29

PCR constants and variables

35 constants I 0, pre( ),
36 T , Tp, Tc, D ,
37 id , Op( , ),
38 lBnd( ), uBnd( ),
39 fp( , , ), fc( , , ), fr( , , ), gp( , ),
40 Dep pp, Dep pc, Dep cr

42 variables in, X , p, c, r , rs

44

General definitions

50 Undef
∆
= choose x : x /∈ union {T , Tp, Tc, D}

52 wrt(v)
∆
= v 6= Undef

53 wrts(v , S )
∆
= ∀ k ∈ S : wrt(v [k ])

54 eqs(v1, v2, S )
∆
= ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

56

PCR definitions and assumptions

62 Index
∆
= Seq(Nat)

63 Assig
∆
= Nat

64 It(x )
∆
= lBnd(x ) . . uBnd(x )

65 WDIndex
∆
= {I ∈ Index : wrt(X [I ])}

66 St(R)
∆
= [Assig → R ∪ {Undef }]

67 red(I , i)
∆
= rs[I ][i ]

68 end(I )
∆
= ∀ i ∈ It(X [I ]) : red(I , i)

70 deps(x , d , i)
∆
=

71 {i − k : k ∈ {k ∈ d [1] : i − k ≥ lBnd(x )}}
72 ∪ {i}

B.2 Basic PCR with left reducer
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73 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd(x )}}

75 axiom H Type
∆
=

76 ∧ I 0 ∈ Index
77 ∧ ∀ x ∈ T : lBnd(x ) ∈ Nat
78 ∧ ∀ x ∈ T : uBnd(x ) ∈ Nat
79 ∧ ∀ x ∈ T : pre(x ) ∈ boolean
80 ∧Dep pp ∈ (subset (Nat \ {0}))× (subset {})
81 ∧Dep pc ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
82 ∧Dep cr ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

84 axiom H BFunType
∆
=

85 ∀ x ∈ T , i ∈ Assig :
86 ∧ gp(x , i) ∈ Tp ∪ {Undef }
87 ∧ ∀ vp ∈ St(Tp) : fp(x , vp, i) ∈ Tp ∪ {Undef }
88 ∧ ∀ vp ∈ St(Tp) : fc(x , vp, i) ∈ Tc ∪ {Undef }
89 ∧ ∀ vc ∈ St(Tc) : fr(x , vc, i) ∈ D ∪ {Undef }

91 axiom H BFunWD
∆
=

92 ∀ x ∈ T : ∀ i ∈ It(x ) :
93 ∧ gp(x , i) ∈ Tp
94 ∧ ∀ vp ∈ St(Tp) : wrts(vp, deps(x , Dep pp, i) \ {i})⇒ fp(x , vp, i) ∈ Tp
95 ∧ ∀ vp ∈ St(Tp) : wrts(vp, deps(x , Dep pc, i)) ⇒ fc(x , vp, i) ∈ Tc
96 ∧ ∀ vc ∈ St(Tc) : wrts(vc, deps(x , Dep cr , i)) ⇒ fr(x , vc, i) ∈ D

98 axiom H fpRelevance
∆
=

99 ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :
100 eqs(vp1, vp2, deps(x , Dep pp, i) \ {i})⇒ fp(x , vp1, i) = fp(x , vp2, i)

102 axiom H fcRelevance
∆
=

103 ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :
104 eqs(vp1, vp2, deps(x , Dep pc, i))⇒ fc(x , vp1, i) = fc(x , vp2, i)

106 axiom H frRelevance
∆
=

107 ∀ x ∈ T : ∀ i ∈ It(x ), vc1 ∈ St(Tc), vc2 ∈ St(Tc) :
108 eqs(vc1, vc2, deps(x , Dep cr , i))⇒ fr(x , vc1, i) = fr(x , vc2, i)

110 lemma H ProdEqInv
∆
=

111 ∀ x ∈ T : ∀ i ∈ It(x ) :
112 wrt(p[I 0][i ])⇒ fp(x , p[I 0], i) = gp(x , i)

114

Functional specification

120 M
∆
= instance MonoidBigOp

121 with D ← D , Id ← id , ⊗ ← Op

123 axiom H Algebra
∆
= Monoid(D , id , Op)

125 Gp(x )
∆
= [i ∈ Assig 7→ gp(x , i)]

126 Fc(x , vp)
∆
= [i ∈ Assig 7→ fc(x , vp, i)]

127 Fr(x , vc)
∆
= [i ∈ Assig 7→ fr(x , vc, i)]

Informal notation:

A(x)
∆
=

⊗

i ∈ Ix

#«
f r

i(
x ,

#«
f c(x ,

#«
g p(x))

)
where Ix

∆
= {i ∈ lBnd(x)..uBnd(x) : prop(i)}
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138 A(x )
∆
= M !BigOp(lBnd(x ), uBnd(x ), lambda i : Fr(x , Fc(x , Gp(x )))[i ])

140

Operational specification

146 vs
∆
= 〈X , p, c, r , rs〉

148 Init
∆
= ∧ in ∈ T ∧ pre(in)

149 ∧X = [I ∈ Index 7→ if I = I 0 then in else Undef ]
150 ∧ p = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
151 ∧ c = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
152 ∧ rs = [I ∈ Index 7→ [i ∈ Assig 7→ false]]
153 ∧ r = [I ∈ Index 7→ id ]

155 P(I , i)
∆
=

156 ∧ ¬wrt(p[I ][i ])
157 ∧ wrts(p[I ], deps(X [I ], Dep pp, i) \ {i})
158 ∧ p′ = [p except ! [I ][i ] = fp(X [I ], p[I ], i)]
159 ∧ unchanged 〈X , c, r , rs〉

161 C (I , i)
∆
=

162 ∧ ¬wrt(c[I ][i ])
163 ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
164 ∧ c′ = [c except ! [I ][i ] = fc(X [I ], p[I ], i)]
165 ∧ unchanged 〈X , p, r , rs〉

167 R(I , i)
∆
=

168 ∧ ¬red(I , i)
169 ∧ wrts(c[I ], deps(X [I ], Dep cr , i))
170 ∧ i − 1 ≥ lBnd(X [I ])⇒ red(I , i − 1) dep r(i − 1)→ r(i)

171 ∧ r ′ = [r except ! [I ] = Op(@, fr(X [I ], c[I ], i))]
172 ∧ rs ′ = [rs except ! [I ][i ] = true]
173 ∧ unchanged 〈X , p, c〉

175 Done
∆
= ∧ ∀ I ∈ WDIndex : end(I )

176 ∧ unchanged 〈in, vs〉

178 Step
∆
= ∧ ∃ I ∈ WDIndex :

179 ∃ i ∈ It(X [I ]) : ∨ P(I , i)
180 ∨ C (I , i)
181 ∨ R(I , i)
182 ∧ unchanged in

184 Next
∆
= Step ∨Done

186 Spec
∆
= Init ∧2[Next ]〈in, vs〉

188 FairSpec
∆
= Spec ∧WFvs(Step)

190

Properties

196 IndexInv
∆
= WDIndex = {I 0}

198 TypeInv
∆
=

199 ∧ in ∈ T
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200 ∧X ∈ [Index → T ∪ {Undef }] ∧X [I 0] = in
201 ∧ p ∈ [Index → St(Tp)]
202 ∧ c ∈ [Index → St(Tc)]
203 ∧ r ∈ [Index → D ]
204 ∧ rs ∈ [Index → [Assig → boolean ]]

206 PInv
∆
=

207 ∀ i ∈ It(X [I 0]) :
208 wrt(p[I 0][i ])⇒ ∧ wrts(p[I 0], deps(X [I 0], Dep pp, i))
209 ∧ p[I 0][i ] = fp(X [I 0], p[I 0], i)

211 CInv
∆
=

212 ∀ i ∈ It(X [I 0]) :
213 wrt(c[I 0][i ])⇒ ∧ wrts(p[I 0], deps(X [I 0], Dep pc, i))
214 ∧ c[I 0][i ] = fc(X [I 0], p[I 0], i)

216 RInv1
∆
=

217 ∀ i ∈ It(X [I 0]) :
218 red(I 0, i)⇒ ∧ wrts(c[I 0], deps(X [I 0], Dep cr , i))
219 ∧ ∀ k ∈ It(X [I 0]) : k < i ⇒ red(I 0, k)

221 RInv2
∆
=

222 ∀ i ∈ It(X [I 0]) :
223 ¬red(I 0, i)⇒ r [I 0] = M !BigOpP(lBnd(X [I 0]), i − 1,
224 lambda j : red(I 0, j ),
225 lambda j : fr(X [I 0], c[I 0], j ))

227 Inv
∆
= ∧ TypeInv

228 ∧ IndexInv
229 ∧ PInv
230 ∧ CInv
231 ∧ RInv1
232 ∧ RInv2

234 ISpec
∆
= Inv ∧2[Next ]〈in, vs〉

236 Correctness
∆
= end(I 0)⇒ r [I 0] = A(X [I 0])

238 Termination
∆
= 3end(I 0)

Refinement

244 inS
∆
= X [I 0]

245 propS (x )
∆
= true

247 PCR A
∆
= instance PCR A

248 with in ← inS , X ← X , p ← p, c ← c, r ← r , rs ← rs,
249 T ← T , Tp ← Tp, Tc ← Tc, D ← D ,
250 id ← id , Op ← Op,
251 lBnd ← lBnd , uBnd ← uBnd , prop ← propS ,
252 fp ← fp, fc ← fc, fr ← fr , gp ← gp,
253 Dep pp ← Dep pp, Dep pc ← Dep pc, Dep cr ← Dep cr

255
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1 module PCR A1step

Basic PCR as a one step computation.

-----------------------------------------------------------------

fun fp(x,p,i) = ... // fp : T x St(Tp) x N -> Tp

fun fc(x,p,i) = ... // fc : T x St(Tp) x N -> Tc

fun fr(x,c,i) = ... // fr : T x St(Tc) x N -> D

dep p(i-k) -> p(i)

dep p(i[+/-]k) -> c(i)

dep c(i[+/-]k) -> r(i)

lbnd A = \x. ...

ubnd A = \x. ...

prop A = \i. ...

PCR A(x) // x \in T

par

p = produce fp x p

c = consume fc x p

r = reduce Op id (fr x c) // r \in D

-----------------------------------------------------------------

27 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, TLC

29

PCR constants and variables

35 constants pre( ),
36 T , D ,
37 id , Op( , ),
38 lBnd( ), uBnd( ), prop( ),
39 fp( , , ), fc( , , ), fr( , , ), gp( , )

41 variables in, out

43

PCR definitions

49 Assig
∆
= Nat

51 M
∆
= instance AbelianMonoidBigOp

52 with D ← D , Id ← id , ⊗ ← Op

54 Gp(x )
∆
= [i ∈ Assig 7→ gp(x , i)]

55 Fc(x , vp)
∆
= [i ∈ Assig 7→ fc(x , vp, i)]

56 Fr(x , vc)
∆
= [i ∈ Assig 7→ fr(x , vc, i)]

Informal notation:

A(x)
∆
=

⊗

i ∈ Ix

#«
f r

i(
x ,

#«
f c(x ,

#«
g p(x))

)
where Ix

∆
= {i ∈ lBnd(x)..uBnd(x) : prop(i)}

67 A(x )
∆
= M !BigOpP(lBnd(x ), uBnd(x ), prop, lambda i : Fr(x , Fc(x , Gp(x )))[i ])

69

Operational specification

75 vs
∆
= 〈in, out〉

77 Init
∆
= ∧ in ∈ T

78 ∧ pre(in)

B.3 Basic PCR: one step computation
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79 ∧ out = id

81 Next
∆
= ∧ out ′ = A(in)

82 ∧ unchanged in

84 Spec
∆
= Init ∧2[Next ]vs

86 FairSpec
∆
= Spec ∧WFvs(Next)

88

Properties

94 Termination
∆
= 3(out = A(in))

96
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1 module PCR A c B

PCR composed through consumer with a basic PCR.

-----------------------------------------------------------------

// PCR A

fun fp1(x1,p1,i) = ... // fp1 : T x St(Tp1) x N -> Tp1

fun fr1(x1,c1,i) = ... // fr1 : T x St(D2) x N -> D1

dep p1(i-k) -> p1(i)

dep p1(i[+/-]k) -> c1(i)

dep c1(i[+/-]k) -> r1(i)

lbnd A = \x1. ...

ubnd A = \x1. ...

prop A = \i. ...

PCR A(x1) // x1 \in T

par

p1 = produce fp1 x1 p1

c1 = consume B x1 p1

r1 = reduce Op1 id1 (fr1 x1 c1) // r1 \in D1

// PCR B

// T2 = T x St(Tp1) x N

fun fp2(x2,p2,j) = ... // fp2 : T2 x St(Tp2) x N -> Tp2

fun fc2(x2,p2,j) = ... // fc2 : T2 x St(Tp2) x N -> Tc2

fun fr2(x2,c2,j) = ... // fr2 : T2 x St(Tc2) x N -> D2

dep p2(i-k) -> p2(i)

dep p2(i[+/-]k) -> c2(i)

dep c2(i[+/-]k) -> r2(i)

lbnd B = \x2. ...

ubnd B = \x2. ...

prop B = \j. ...

PCR B(x2) // x2 \in T2

par

p2 = produce fp1 x2 p2

c2 = consume fc2 x2 p2

r2 = reduce Op2 id2 (fr2 x2 c2) // r2 \in D2

-----------------------------------------------------------------

48 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, TLC

50

PCR A constants and variables

56 constants I 0, pre( ),
57 T , Tp1, D1,
58 id1, Op1( , ),
59 lBnd1( ), uBnd1( ), prop1( ),
60 fp1( , , ), fr1( , , ), gp1( , ),
61 Dep pp1, Dep pc1, Dep cr1

63 variables in, X 1, p1, c1, r1, rs1

PCR B constants and variables

69 constants Tp2, Tc2, D2,
70 id2, Op2( , ),
71 lBnd2( ), uBnd2( ), prop2( ),
72 fp2( , , ), fc2( , , ), fr2( , , ), gp2( , ),
73 Dep pp2, Dep pc2, Dep cr2

B.4 Composition through consumer
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75 variables X 2, p2, c2, r2, rs2

77

General definitions

83 Undef
∆
= choose x : x /∈ union {T , Tp1, Tp2, Tc2, D1, D2}

85 wrt(v)
∆
= v 6= Undef

86 wrts(v , S )
∆
= ∀ k ∈ S : wrt(v [k ])

87 eqs(v1, v2, S )
∆
= ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

89

PCR A definitions and assumptions

95 IndexA
∆
= Seq(Nat)

96 AssigA
∆
= Nat

97 ItA(x )
∆
= {i ∈ lBnd1(x ) . . uBnd1(x ) : prop1(i)}

98 WDIndexA
∆
= {I ∈ IndexA : wrt(X 1[I ])}

99 StA(R)
∆
= [AssigA→ R ∪ {Undef }]

100 redA(I , i)
∆
= rs1[I ][i ]

101 endA(I )
∆
= ∀ i ∈ ItA(X 1[I ]) : redA(I , i)

103 depsA(x , d , i)
∆
=

104 {i − k : k ∈ {k ∈ d [1] : i − k ≥ lBnd1(x ) ∧ prop1(i − k)}}
105 ∪ {i}
106 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd1(x ) ∧ prop1(i + k)}}

108 axiom H TypeA
∆
=

109 ∧ I 0 ∈ IndexA
110 ∧ ∀ x ∈ T : lBnd1(x ) ∈ Nat
111 ∧ ∀ x ∈ T : uBnd1(x ) ∈ Nat
112 ∧ ∀ i ∈ Nat : prop1(i) ∈ boolean
113 ∧ ∀ x ∈ T : pre(x ) ∈ boolean
114 ∧Dep pp1 ∈ (subset (Nat \ {0}))× (subset {})
115 ∧Dep pc1 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
116 ∧Dep cr1 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

118 axiom H BFunTypeA
∆
=

119 ∀ x ∈ T , i ∈ AssigA :
120 ∧ gp1(x , i) ∈ Tp1 ∪ {Undef }
121 ∧ ∀ vp ∈ StA(Tp1) : fp1(x , vp, i) ∈ Tp1 ∪ {Undef }
122 ∧ ∀ vc ∈ StA(D2) : fr1(x , vc, i) ∈ D1 ∪ {Undef }

124 axiom H BFunWDA
∆
=

125 ∀ x ∈ T : ∀ i ∈ ItA(x ) :
126 ∧ gp1(x , i) ∈ Tp1
127 ∧ ∀ vp ∈ StA(Tp1) : wrts(vp, depsA(x , Dep pp1, i) \ {i})⇒ fp1(x , vp, i) ∈ Tp1
128 ∧ ∀ vc ∈ StA(D2) : wrts(vc, depsA(x , Dep cr1, i)) ⇒ fr1(x , vc, i) ∈ D1

130 axiom H fpRelevanceA
∆
=

131 ∀ x ∈ T : ∀ i ∈ ItA(x ), vp1 ∈ StA(Tp1), vp2 ∈ StA(Tp1) :
132 eqs(vp1, vp2, depsA(x , Dep pp1, i) \ {i})⇒ fp1(x , vp1, i) = fp1(x , vp2, i)

134 axiom H frRelevanceA
∆
=

135 ∀ x ∈ T : ∀ i ∈ ItA(x ), vc1 ∈ StA(D2), vc2 ∈ StA(D2) :
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136 eqs(vc1, vc2, depsA(x , Dep cr1, i))⇒ fr1(x , vc1, i) = fr1(x , vc2, i)

138 lemma H ProdEqInvA
∆
=

139 ∀ x ∈ T : ∀ i ∈ ItA(x ) :
140 wrt(p1[I 0][i ])⇒ fp1(x , p1[I 0], i) = gp1(x , i)

PCR B definitions and assumptions

146 IndexB
∆
= Seq(Nat)

147 AssigB
∆
= Nat

148 ItB(x )
∆
= {i ∈ lBnd2(x ) . . uBnd2(x ) : prop2(i)}

149 WDIndexB
∆
= {I ∈ IndexB : wrt(X 2[I ])}

150 StB(R)
∆
= [AssigB → R ∪ {Undef }]

151 redB(I , i)
∆
= rs2[I ][i ]

152 endB(I )
∆
= ∀ i ∈ ItB(X 2[I ]) : redB(I , i)

154 depsB(x , d , i)
∆
=

155 {i − k : k ∈ {k ∈ d [1] : i − k ≥ lBnd2(x ) ∧ prop2(i − k)}}
156 ∪ {i}
157 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd2(x ) ∧ prop2(i + k)}}

159 T2
∆
= T × StA(Tp1)×AssigA

161 axiom H TypeB
∆
=

162 ∧ ∀ x ∈ T2 : lBnd2(x ) ∈ Nat
163 ∧ ∀ x ∈ T2 : uBnd2(x ) ∈ Nat
164 ∧ ∀ i ∈ Nat : prop2(i) ∈ boolean
165 ∧Dep pp2 ∈ (subset (Nat \ {0}))× (subset {})
166 ∧Dep pc2 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
167 ∧Dep cr2 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

169 axiom H BFunTypeB
∆
=

170 ∀ x ∈ T2, i ∈ AssigB :
171 ∧ gp2(x , i) ∈ Tp2 ∪ {Undef }
172 ∧ ∀ vp ∈ StB(Tp2) : fp2(x , vp, i) ∈ Tp2 ∪ {Undef }
173 ∧ ∀ vp ∈ StB(Tp2) : fc2(x , vp, i) ∈ Tc2 ∪ {Undef }
174 ∧ ∀ vc ∈ StB(Tc2) : fr2(x , vc, i) ∈ D2 ∪ {Undef }

176 axiom H BFunWDB
∆
=

177 ∀ x ∈ T2 : ∀ i ∈ ItB(x ) :
178 ∧ gp2(x , i) ∈ Tp2
179 ∧ ∀ vp ∈ StB(Tp2) : wrts(vp, depsB(x , Dep pp2, i) \ {i})⇒ fp2(x , vp, i) ∈ Tp2
180 ∧ ∀ vp ∈ StB(Tp2) : wrts(vp, depsB(x , Dep pc2, i)) ⇒ fc2(x , vp, i) ∈ Tc2
181 ∧ ∀ vc ∈ StB(Tc2) : wrts(vc, depsB(x , Dep cr2, i)) ⇒ fr2(x , vc, i) ∈ D2

183 axiom H fpRelevanceB
∆
=

184 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vp1 ∈ StB(Tp2), vp2 ∈ StB(Tp2) :
185 eqs(vp1, vp2, depsB(x , Dep pp2, i) \ {i})⇒ fp2(x , vp1, i) = fp2(x , vp2, i)

187 axiom H fcRelevanceB
∆
=

188 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vp1 ∈ StB(Tp2), vp2 ∈ StB(Tp2) :
189 eqs(vp1, vp2, depsB(x , Dep pc2, i))⇒ fc2(x , vp1, i) = fc2(x , vp2, i)

191 axiom H frRelevanceB
∆
=

192 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vc1 ∈ StB(Tc2), vc2 ∈ StB(Tc2) :
193 eqs(vc1, vc2, depsB(x , Dep cr2, i))⇒ fr2(x , vc1, i) = fr2(x , vc2, i)
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195 lemma H ProdEqInvB
∆
=

196 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
197 wrt(p1[I ][i ])⇒ fp2(X 2[I ], p2[I ], i) = gp2(X 2[I ], i)

199

Functional specification

205 M 2
∆
= instance AbelianMonoidBigOp

206 with D ← D2, Id ← id2, ⊗ ← Op2

208 axiom H AlgebraB
∆
= AbelianMonoid(D2, id2, Op2)

210 Gp2(x )
∆
= [i ∈ AssigB 7→ gp2(x , i)]

211 Fc2(x , vc)
∆
= [i ∈ AssigB 7→ fc2(x , vc, i)]

212 Fr2(x , vc)
∆
= [i ∈ AssigB 7→ fr2(x , vc, i)]

Informal notation:

B(x2)
∆
=

⊕

j ∈ Jx2

#«
f r2

j (
x2,

#«
f c2 (x2,

#«
g p2 (x2))

)
where Jx2

∆
= {j ∈ lBnd2(x2)..uBnd2(x2) : prop2(j )}

224 B(x2)
∆
= M 2 !BigOpP(lBnd2(x2), uBnd2(x2), prop2,

225 lambda j : Fr2(x2, Fc2(x2, Gp2(x2)))[j ])

227 M 1
∆
= instance AbelianMonoidBigOp

228 with D ← D1, Id ← id1, ⊗ ← Op1

230 axiom H AlgebraA
∆
= AbelianMonoid(D1, id1, Op1)

232 Gp1(x )
∆
= [i ∈ AssigA 7→ gp1(x , i)]

233 Fc1(x1, vp)
∆
= [i ∈ AssigA 7→ B(〈x1, vp, i〉)]

234 Fr1(x , vc)
∆
= [i ∈ AssigA 7→ fr1(x , vc, i)]

Informal notation:

A(x1)
∆
=

⊗

i ∈ Ix1

#«
f r1

i(
x1, i ∈ N 7→ B(x1,

#«
g p1 (x1), i)

)
where Ix1

∆
= {i ∈ lBnd1(x1)..uBnd1(x1) : prop1(i)}

246 A(x1)
∆
= M 1 !BigOpP(lBnd1(x1), uBnd1(x1), prop1,

247 lambda i : Fr1(x1, Fc1(x1, Gp1(x1)))[i ])

249

Operational specification

255 vs1
∆
= 〈X 1, p1, c1, r1, rs1, X 2〉

256 vs2
∆
= 〈p2, c2, r2, rs2〉

258 InitA
∆
= ∧ in ∈ T ∧ pre(in)

259 ∧X 1 = [I ∈ IndexA 7→ if I = I 0 then in else Undef ]
260 ∧ p1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ Undef ]]
261 ∧ c1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ Undef ]]
262 ∧ rs1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ false]]
263 ∧ r1 = [I ∈ IndexA 7→ id1]

265 InitB
∆
= ∧X 2 = [I ∈ IndexB 7→ Undef ]

266 ∧ p2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ Undef ]]
267 ∧ c2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ Undef ]]
268 ∧ rs2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ false]]
269 ∧ r2 = [I ∈ IndexB 7→ id2]
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271 Init
∆
= InitA ∧ InitB

273 P1(I , i)
∆
=

274 ∧ ¬wrt(p1[I ][i ])
275 ∧ wrts(p1[I ], depsA(X 1[I ], Dep pp1, i) \ {i})
276 ∧ p1′ = [p1 except ! [I ][i ] = fp1(X 1[I ], p1[I ], i)]
277 ∧ unchanged 〈X 1, c1, r1, rs1, X 2〉

279 C1ini(I , i)
∆
=

280 ∧ ¬wrt(X 2[I ◦ 〈i〉])
281 ∧ wrts(p1[I ], depsA(X 1[I ], Dep pc1, i))
282 ∧ X 2′ = [X 2 except ! [I ◦ 〈i〉] = 〈X 1[I ], p1[I ], i〉]
283 ∧ unchanged 〈X 1, p1, c1, r1, rs1〉

285 C1end(I , i)
∆
=

286 ∧ ¬wrt(c1[I ][i ])
287 ∧ wrt(X 2[I ◦ 〈i〉])
288 ∧ endB(I ◦ 〈i〉)
289 ∧ c1′ = [c1 except ! [I ][i ] = r2[I ◦ 〈i〉]]
290 ∧ unchanged 〈X 1, p1, r1, rs1, X 2〉

292 R1(I , i)
∆
=

293 ∧ ¬redA(I , i)
294 ∧ wrts(c1[I ], depsA(X 1[I ], Dep cr1, i))
295 ∧ r1′ = [r1 except ! [I ] = Op1(@, fr1(X 1[I ], c1[I ], i))]
296 ∧ rs1′ = [rs1 except ! [I ][i ] = true]
297 ∧ unchanged 〈X 1, p1, c1, X 2〉

299 P2(I , i)
∆
=

300 ∧ ¬wrt(p2[I ][i ])
301 ∧ wrts(p2[I ], depsB(X 2[I ], Dep pp2, i) \ {i})
302 ∧ p2′ = [p2 except ! [I ][i ] = fp2(X 2[I ], p2[I ], i)]
303 ∧ unchanged 〈c2, r2, rs2〉

305 C2(I , i)
∆
=

306 ∧ ¬wrt(c2[I ][i ])
307 ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
308 ∧ c2′ = [c2 except ! [I ][i ] = fc2(X 2[I ], p2[I ], i)]
309 ∧ unchanged 〈p2, r2, rs2〉

311 R2(I , i)
∆
=

312 ∧ ¬redB(I , i)
313 ∧ wrts(c2[I ], depsB(X 2[I ], Dep cr2, i))
314 ∧ r2′ = [r2 except ! [I ] = Op2(@, fr2(X 2[I ], c2[I ], i))]
315 ∧ rs2′ = [rs2 except ! [I ][i ] = true]
316 ∧ unchanged 〈p2, c2〉

318 Done
∆
= ∧ ∀ I ∈ WDIndexA : endA(I )

319 ∧ ∀ I ∈ WDIndexB : endB(I )
320 ∧ unchanged 〈in, vs1, vs2〉

322 StepA
∆
= ∧ ∃ I ∈ WDIndexA :

323 ∃ i ∈ ItA(X 1[I ]) : ∨ P1(I , i)
324 ∨ C1ini(I , i)
325 ∨ C1end(I , i)
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326 ∨ R1(I , i)
327 ∧ unchanged 〈in, vs2〉

329 StepB
∆
= ∧ ∃ I ∈ WDIndexB :

330 ∃ i ∈ ItB(X 2[I ]) : ∨ P2(I , i)
331 ∨ C2(I , i)
332 ∨ R2(I , i)
333 ∧ unchanged 〈in, vs1〉

335 Next
∆
= StepA ∨ StepB ∨Done

337 Spec
∆
= Init ∧2[Next ]〈in, vs1, vs2〉

339 FairSpec
∆
= Spec ∧WFvs1(StepA) ∧WFvs2(StepB)

341

PCR A properties

347 IndexInvA
∆
= WDIndexA = {I 0}

349 TypeInvA
∆
=

350 ∧ in ∈ T
351 ∧X 1 ∈ [IndexA→ T ∪ {Undef }] ∧X 1[I 0] = in
352 ∧ p1 ∈ [IndexA→ StA(Tp1)]
353 ∧ c1 ∈ [IndexA→ StA(D2)]
354 ∧ r1 ∈ [IndexA→ D1]
355 ∧ rs1 ∈ [IndexA→ [AssigA→ boolean ]]

357 PInvA
∆
=

358 ∀ i ∈ ItA(X 1[I 0]) :
359 wrt(p1[I 0][i ])⇒ ∧ wrts(p1[I 0], depsA(X 1[I 0], Dep pp1, i))
360 ∧ p1[I 0][i ] = gp1(X 1[I 0], i)

362 CInv1A
∆
=

363 ∀ i ∈ ItA(X 1[I 0]) :
364 wrt(X 2[I 0 ◦ 〈i〉])⇒ ∧ wrts(p1[I 0], depsA(X 1[I 0], Dep pc1, i))
365 ∧ ∃ vp ∈ StA(Tp1) :
366 ∧ eqs(vp, p1[I 0], depsA(X 1[I 0], Dep pc1, i))
367 ∧X 2[I 0 ◦ 〈i〉] = 〈X 1[I 0], vp, i〉
368 CInv2A

∆
=

369 ∀ i ∈ ItA(X 1[I 0]) :
370 wrt(c1[I 0][i ])⇒ ∧ wrt(X 2[I 0 ◦ 〈i〉])
371 ∧ endB(I 0 ◦ 〈i〉)
372 ∧ c1[I 0][i ] = r2[I 0 ◦ 〈i〉]

374 RInv1A
∆
=

375 ∀ i ∈ ItA(X 1[I 0]) :
376 redA(I 0, i)⇒ wrts(c1[I 0], depsA(X 1[I 0], Dep cr1, i))

378 RInv2A
∆
=

379 r1[I 0] = M 1 !BigOpP(lBnd1(X 1[I 0]), uBnd1(X 1[I 0]),
380 lambda i : prop1(i) ∧ redA(I 0, i),
381 lambda i : fr1(X 1[I 0], c1[I 0], i))

383 InvA
∆
= ∧ IndexInvA

384 ∧ TypeInvA
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385 ∧ PInvA
386 ∧ CInv1A
387 ∧ CInv2A
388 ∧ RInv1A
389 ∧ RInv2A

391 CorrectnessA
∆
= endA(I 0)⇒ r1[I 0] = A(X 1[I 0])

393 TerminationA
∆
= 3endA(I 0)

395 GTermination
∆
= endA(I 0)⇒ ∀ I ∈ WDIndexB : endB(I )

PCR B properties

401 IndexInvB
∆
= WDIndexB ⊆ {I 0 ◦ 〈i〉 : i ∈ AssigA}

403 TypeInvB
∆
=

404 ∧X 2 ∈ [IndexB → T2 ∪ {Undef }]
405 ∧ p2 ∈ [IndexB → StB(Tp2)]
406 ∧ c2 ∈ [IndexB → StB(Tc2)]
407 ∧ r2 ∈ [IndexB → D2]
408 ∧ rs2 ∈ [IndexB → [AssigB → boolean ]]

410 PInvB
∆
=

411 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
412 wrt(p2[I ][i ])⇒ ∧ wrts(p2[I ], depsB(X 2[I ], Dep pp2, i))
413 ∧ p2[I ][i ] = gp2(X 2[I ], i)

415 CInvB
∆
=

416 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
417 wrt(c2[I ][i ])⇒ ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
418 ∧ c2[I ][i ] = fc2(X 2[I ], p2[I ], i)

420 RInv1B
∆
=

421 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
422 redB(I , i)⇒ wrts(c2[I ], depsB(X 2[I ], Dep cr2, i))

424 RInv2B
∆
=

425 ∀ I ∈ WDIndexB :
426 r2[I ] = M 2 !BigOpP(lBnd2(X 2[I ]), uBnd2(X 2[I ]),
427 lambda j : prop2(j ) ∧ redB(I , j ),
428 lambda j : fr2(X 2[I ], c2[I ], j ))

430 InvB
∆
= ∧ IndexInvB

431 ∧ TypeInvB
432 ∧ PInvB
433 ∧ CInvB
434 ∧ RInv1B
435 ∧ RInv2B

437 CorrectnessB
∆
= ∀ I ∈ WDIndexB : endB(I )⇒ r2[I ] = B(X 2[I ])

439 TerminationB
∆
= 3(∀ I ∈ WDIndexB : endB(I ))

Conjoint properties
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445 TypeInv
∆
= ∧ TypeInvA

446 ∧ TypeInvB

448 Inv
∆
= ∧ TypeInv

449 ∧ InvA
450 ∧ InvB

452 Correctness
∆
= ∧ CorrectnessA

453 ∧ CorrectnessB

455 Termination
∆
= ∧ TerminationA

456 ∧ TerminationB

Refinement

462 inS
∆
= X 1[I 0]

463 fcS (x1, vp1, i)
∆
= B(〈x1, vp1, i〉)

465 PCR A
∆
= instance PCR A

466 with in ← inS , X ← X 1, p ← p1, c ← c1, r ← r1, rs ← rs1,
467 T ← T , Tp ← Tp1, Tc ← D2, D ← D1,
468 id ← id1, Op ← Op1,
469 lBnd ← lBnd1, uBnd ← uBnd1, prop ← prop1,
470 fp ← fp1, fc ← fcS , fr ← fr1, gp ← gp1,
471 Dep pp ← Dep pp1, Dep pc ← Dep pc1, Dep cr ← Dep cr1

473 axiom H UndefRestrict
∆
= PCR A !Undef = Undef

475 axiom H fcSRelevance
∆
=

476 ∀ x ∈ T : ∀ i ∈ ItA(x ), vp1 ∈ StA(Tp1), vp2 ∈ StA(Tp1) :
477 eqs(vp1, vp2, depsA(x , Dep pc1, i))⇒ fcS (x , vp1, i) = fcS (x , vp2, i)

479

255



1 module PCR A r B

PCR composed through reducer with a basic PCR.

-----------------------------------------------------------------

// PCR A

fun fp1(x1,p1,i) = ... // fp1 : T x St(Tp1) x N -> Tp1

fun fc1(x1,p1,i) = ... // fc1 : T x St(Tp1) x N -> Tc1

fun fr1(x1,c1,i) = ... // fr1 : T x St(Tc1) x N -> D

dep p1(i-k) -> p1(i)

dep p1(i[+/-]k) -> c1(i)

dep c1(i[+/-]k) -> r1(i)

lbnd A = \x1. ...

ubnd A = \x1. ...

prop A = \i. ...

PCR A(x1) : // x1 \in T

par

p1 = produce fp1 x1 p1

c1 = consume fc1 x1 p1

r1 = reduce B id1 (fr1 x1 c1) // r1 \in D, Op1(x,y) = B(<x,y>)

// PCR B

// T2 = D x D

fun fp2(x2,p2,j) = ... // fp2 : T2 x St(Tp2) x N -> Tp2

fun fc2(x2,p2,j) = ... // fc2 : T2 x St(Tp2) x N -> Tc2

fun fr2(x2,c2,j) = ... // fr2 : T2 x St(Tc2) x N -> D

dep p2(i-k) -> p2(i)

dep p2(i[+/-]k) -> c2(i)

dep c2(i[+/-]k) -> r2(i)

lbnd B = \x2. ...

ubnd B = \x2. ...

prop B = \j. ...

PCR B(x2) : // x2 \in T2

par

p2 = produce fp1 x2 p2

c2 = consume fc2 x2 p2

r2 = reduce Op2 id2 (fr2 x2 c2) // r2 \in D

-----------------------------------------------------------------

49 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, TLC

51

PCR A constants and variables

57 constants I 0, pre( ),
58 T , Tp1, Tc1, D ,
59 id ,
60 lBnd1( ), uBnd1( ), prop1( ),
61 fp1( , , ), fc1( , , ), fr1( , , ), gp1( , ),
62 Dep pp1, Dep pc1, Dep cr1

64 variables in, X 1, p1, c1, r1, rs1

PCR B constants and variables

70 constants Tp2, Tc2,
71 Op2( , ),
72 lBnd2( ), uBnd2( ), prop2( ),
73 fp2( , , ), fc2( , , ), fr2( , , ), gp2( , ),
74 Dep pp2, Dep pc2, Dep cr2

B.5 Composition through reducer
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76 variables X 2, p2, c2, r2, rs2

78

General definitions

84 Undef
∆
= choose x : x /∈ union {T , Tp1, Tp2, Tc1, Tc2, D}

86 wrt(v)
∆
= v 6= Undef

87 wrts(v , S )
∆
= ∀ k ∈ S : wrt(v [k ])

88 eqs(v1, v2, S )
∆
= ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

90

PCR A definitions and assumptions

96 IndexA
∆
= Seq(Nat)

97 AssigA
∆
= Nat

98 ItA(x )
∆
= {i ∈ lBnd1(x ) . . uBnd1(x ) : prop1(i)}

99 WDIndexA
∆
= {I ∈ IndexA : wrt(X 1[I ])}

100 StA(R)
∆
= [AssigA→ R ∪ {Undef }]

101 redA(I , i)
∆
= rs1[I ][i ]

102 endA(I )
∆
= ∀ i ∈ ItA(X 1[I ]) : redA(I , i)

104 depsA(x , d , i)
∆
=

105 {i − k : k ∈ {k ∈ d [1] : i − k ≥ lBnd1(x ) ∧ prop1(i − k)}}
106 ∪ {i}
107 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd1(x ) ∧ prop1(i + k)}}

109 axiom H TypeA
∆
=

110 ∧ I 0 ∈ IndexA
111 ∧ ∀ x ∈ T : lBnd1(x ) ∈ Nat
112 ∧ ∀ x ∈ T : uBnd1(x ) ∈ Nat
113 ∧ ∀ i ∈ Nat : prop1(i) ∈ boolean
114 ∧ ∀ x ∈ T : pre(x ) ∈ boolean
115 ∧Dep pp1 ∈ (subset (Nat \ {0}))× (subset {})
116 ∧Dep pc1 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
117 ∧Dep cr1 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

119 axiom H BFunTypeA
∆
=

120 ∀ x ∈ T , i ∈ AssigA :
121 ∧ gp1(x , i) ∈ Tp1 ∪ {Undef }
122 ∧ ∀ vp ∈ StA(Tp1) : fp1(x , vp, i) ∈ Tp1 ∪ {Undef }
123 ∧ ∀ vp ∈ StA(Tp1) : fc1(x , vp, i) ∈ Tc1 ∪ {Undef }
124 ∧ ∀ vc ∈ StA(Tc1) : fr1(x , vc, i) ∈ D ∪ {Undef }

126 axiom H BFunWDA
∆
=

127 ∀ x ∈ T : ∀ i ∈ ItA(x ) :
128 ∧ gp1(x , i) ∈ Tp1
129 ∧ ∀ vp ∈ StA(Tp1) : wrts(vp, depsA(x , Dep pp1, i) \ {i})⇒ fp1(x , vp, i) ∈ Tp1
130 ∧ ∀ vp ∈ StA(Tp1) : wrts(vp, depsA(x , Dep pc1, i)) ⇒ fc1(x , vp, i) ∈ Tc1
131 ∧ ∀ vc ∈ StA(Tc1) : wrts(vc, depsA(x , Dep cr1, i)) ⇒ fr1(x , vc, i) ∈ D

133 axiom H fpRelevanceA
∆
=

134 ∀ x ∈ T : ∀ i ∈ ItA(x ), vp1 ∈ StA(Tp1), vp2 ∈ StA(Tp1) :
135 eqs(vp1, vp2, depsA(x , Dep pp1, i) \ {i})⇒ fp1(x , vp1, i) = fp1(x , vp2, i)
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137 axiom H fcRelevanceA
∆
=

138 ∀ x ∈ T : ∀ i ∈ ItA(x ), vp1 ∈ StA(Tp1), vp2 ∈ StA(Tp1) :
139 eqs(vp1, vp2, depsA(x , Dep pc1, i))⇒ fc1(x , vp1, i) = fc1(x , vp2, i)

141 axiom H frRelevanceA
∆
=

142 ∀ x ∈ T : ∀ i ∈ ItA(x ), vc1 ∈ StA(Tc1), vc2 ∈ StA(Tc1) :
143 eqs(vc1, vc2, depsA(x , Dep cr1, i))⇒ fr1(x , vc1, i) = fr1(x , vc2, i)

145 lemma H ProdEqInvA
∆
=

146 ∀ x ∈ T : ∀ i ∈ ItA(x ) :
147 wrt(p1[I 0][i ])⇒ fp1(x , p1[I 0], i) = gp1(x , i)

PCR B definitions and assumptions

153 IndexB
∆
= Seq(Nat)

154 AssigB
∆
= Nat

155 ItB(x )
∆
= {i ∈ lBnd2(x ) . . uBnd2(x ) : prop2(i)}

156 WDIndexB
∆
= {I ∈ IndexB : wrt(X 2[I ])}

157 StB(R)
∆
= [AssigB → R ∪ {Undef }]

158 redB(I , i)
∆
= rs2[I ][i ]

159 endB(I )
∆
= ∀ i ∈ ItB(X 2[I ]) : redB(I , i)

161 depsB(x , d , i)
∆
=

162 {i − k : k ∈ {k ∈ d [1] : i − k ≥ lBnd2(x ) ∧ prop2(i − k)}}
163 ∪ {i}
164 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd2(x ) ∧ prop2(i + k)}}

166 T2
∆
= D ×D

168 axiom H TypeB
∆
=

169 ∧ ∀ x ∈ T2 : lBnd2(x ) ∈ Nat
170 ∧ ∀ x ∈ T2 : uBnd2(x ) ∈ Nat
171 ∧ ∀ i ∈ Nat : prop2(i) ∈ boolean
172 ∧Dep pp2 ∈ (subset (Nat \ {0}))× (subset {})
173 ∧Dep pc2 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
174 ∧Dep cr2 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

176 axiom H BFunTypeB
∆
=

177 ∀ x ∈ T2, i ∈ AssigB :
178 ∧ gp2(x , i) ∈ Tp2 ∪ {Undef }
179 ∧ ∀ vp ∈ StB(Tp2) : fp2(x , vp, i) ∈ Tp2 ∪ {Undef }
180 ∧ ∀ vp ∈ StB(Tp2) : fc2(x , vp, i) ∈ Tc2 ∪ {Undef }
181 ∧ ∀ vc ∈ StB(Tc2) : fr2(x , vc, i) ∈ D ∪ {Undef }

183 axiom H BFunWDB
∆
=

184 ∀ x ∈ T2 : ∀ i ∈ ItB(x ) :
185 ∧ gp2(x , i) ∈ Tp2
186 ∧ ∀ vp ∈ StB(Tp2) : wrts(vp, depsB(x , Dep pp2, i) \ {i})⇒ fp2(x , vp, i) ∈ Tp2
187 ∧ ∀ vp ∈ StB(Tp2) : wrts(vp, depsB(x , Dep pc2, i)) ⇒ fc2(x , vp, i) ∈ Tc2
188 ∧ ∀ vc ∈ StB(Tc2) : wrts(vc, depsB(x , Dep cr2, i)) ⇒ fr2(x , vc, i) ∈ D

190 axiom H fpRelevanceB
∆
=

191 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vp1 ∈ StB(Tp2), vp2 ∈ StB(Tp2) :
192 eqs(vp1, vp2, depsB(x , Dep pp2, i) \ {i})⇒ fp2(x , vp1, i) = fp2(x , vp2, i)

194 axiom H fcRelevanceB
∆
=
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195 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vp1 ∈ StB(Tp2), vp2 ∈ StB(Tp2) :
196 eqs(vp1, vp2, depsB(x , Dep pc2, i))⇒ fc2(x , vp1, i) = fc2(x , vp2, i)

198 axiom H frRelevanceB
∆
=

199 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vc1 ∈ StB(Tc2), vc2 ∈ StB(Tc2) :
200 eqs(vc1, vc2, depsB(x , Dep cr2, i))⇒ fr2(x , vc1, i) = fr2(x , vc2, i)

202 lemma H ProdEqInvB
∆
=

203 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
204 wrt(p1[I ][i ])⇒ fp2(X 2[I ], p2[I ], i) = gp2(X 2[I ], i)

206

Functional specification

212 M 2
∆
= instance AbelianMonoidBigOp

213 with D ← D , Id ← id , ⊗ ← Op2

215 axiom H AlgebraB
∆
= AbelianMonoid(D , id , Op2)

217 Gp2(x )
∆
= [i ∈ AssigB 7→ gp2(x , i)]

218 Fc2(x , vc)
∆
= [i ∈ AssigB 7→ fc2(x , vc, i)]

219 Fr2(x , vc)
∆
= [i ∈ AssigB 7→ fr2(x , vc, i)]

Informal notation:

B(x2)
∆
=

⊕

j ∈ Jx2

#«
f r2

j (
x2,

#«
f c2 (x2,

#«
g p2 (x2))

)
where Jx2

∆
= {j ∈ lBnd2(x2)..uBnd2(x2) : prop2(j )}

231 B(x2)
∆
= M 2 !BigOpP(lBnd2(x2), uBnd2(x2), prop2,

232 lambda j : Fr2(x2, Fc2(x2, Gp2(x2)))[j ])

234 Op1(x , y)
∆
= B(〈x , y〉)

236 M 1
∆
= instance AbelianMonoidBigOp

237 with D ← D , Id ← id , ⊗ ← Op1

239 axiom H AlgebraA
∆
= AbelianMonoid(D , id , Op1)

241 Gp1(x )
∆
= [i ∈ AssigA 7→ gp1(x , i)]

242 Fc1(x , vp)
∆
= [i ∈ AssigA 7→ fc1(x , vp, i)]

243 Fr1(x , vc)
∆
= [i ∈ AssigA 7→ fr1(x , vc, i)]

Informal notation:

A(x1)
∆
=

⊗

i ∈ Ix1

#«
f r1

i(
x1,

#«
f c1 (x1,

#«
g p1 (x1))

)

where Ix1
∆
= {i ∈ lBnd1(x1)..uBnd1(x1) : prop1(i)} and x ⊗ y

∆
= B(x , y)

256 A(x1)
∆
= M 1 !BigOpP(lBnd1(x1), uBnd1(x1), prop1,

257 lambda i : Fr1(x1, Fc1(x1, Gp1(x1)))[i ])

259

Operational specification

265 vs1
∆
= 〈X 1, p1, c1, r1, rs1, X 2〉

266 vs2
∆
= 〈p2, c2, r2, rs2〉

268 InitA
∆
= ∧ in ∈ T ∧ pre(in)

269 ∧X 1 = [I ∈ IndexA 7→ if I = I 0 then in else Undef ]
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270 ∧ p1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ Undef ]]
271 ∧ c1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ Undef ]]
272 ∧ rs1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ false]]
273 ∧ r1 = [I ∈ IndexA 7→ id ]

275 InitB
∆
= ∧X 2 = [I ∈ IndexB 7→ Undef ]

276 ∧ p2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ Undef ]]
277 ∧ c2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ Undef ]]
278 ∧ rs2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ false]]
279 ∧ r2 = [I ∈ IndexB 7→ id ]

281 Init
∆
= InitA ∧ InitB

283 P1(I , i)
∆
=

284 ∧ ¬wrt(p1[I ][i ])
285 ∧ wrts(p1[I ], depsA(X 1[I ], Dep pp1, i) \ {i})
286 ∧ p1′ = [p1 except ! [I ][i ] = fp1(X 1[I ], p1[I ], i)]
287 ∧ unchanged 〈X 1, c1, r1, rs1, X 2〉

289 C1(I , i)
∆
=

290 ∧ ¬wrt(c1[I ][i ])
291 ∧ wrts(p1[I ], depsA(X 1[I ], Dep pc1, i))
292 ∧ c1′ = [c1 except ! [I ][i ] = fc1(X 1[I ], p1[I ], i)]
293 ∧ unchanged 〈X 1, p1, r1, rs1, X 2〉

295 R1ini(I , i)
∆
=

296 ∧ ¬wrt(X 2[I ◦ 〈i〉])
297 ∧ wrts(c1[I ], depsA(X 1[I ], Dep cr1, i))
298 ∧ ¬∃ k ∈ ItA(X 1[I ]) : ∧ k 6= i
299 ∧ wrt(X 2[I ◦ 〈k〉])
300 ∧ ¬redA(I , k)
301 ∧ X 2′ = [X 2 except ! [I ◦ 〈i〉] = 〈r1[I ], fr1(X 1[I ], c1[I ], i)〉]
302 ∧ unchanged 〈X 1, p1, c1, r1, rs1〉

304 R1end(I , i)
∆
=

305 ∧ wrt(X 2[I ◦ 〈i〉])
306 ∧ endB(I ◦ 〈i〉)
307 ∧ ¬redA(I , i)
308 ∧ r1′ = [r1 except ! [I ] = r2[I ◦ 〈i〉]]
309 ∧ rs1′ = [rs1 except ! [I ][i ] = true]
310 ∧ unchanged 〈X 1, p1, c1, X 2〉

312 P2(I , i)
∆
=

313 ∧ ¬wrt(p2[I ][i ])
314 ∧ wrts(p2[I ], depsB(X 2[I ], Dep pp2, i) \ {i})
315 ∧ p2′ = [p2 except ! [I ][i ] = fp2(X 2[I ], p2[I ], i)]
316 ∧ unchanged 〈c2, r2, rs2〉

318 C2(I , i)
∆
=

319 ∧ ¬wrt(c2[I ][i ])
320 ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
321 ∧ c2′ = [c2 except ! [I ][i ] = fc2(X 2[I ], p2[I ], i)]
322 ∧ unchanged 〈p2, r2, rs2〉

324 R2(I , i)
∆
=
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325 ∧ ¬redB(I , i)
326 ∧ wrts(c2[I ], depsB(X 2[I ], Dep cr2, i))
327 ∧ r2′ = [r2 except ! [I ] = Op2(@, fr2(X 2[I ], c2[I ], i))]
328 ∧ rs2′ = [rs2 except ! [I ][i ] = true]
329 ∧ unchanged 〈p2, c2〉

331 Done
∆
= ∧ ∀ I ∈ WDIndexA : endA(I )

332 ∧ ∀ I ∈ WDIndexB : endB(I )
333 ∧ unchanged 〈in, vs1, vs2〉

335 StepA
∆
= ∧ ∃ I ∈ WDIndexA :

336 ∃ i ∈ ItA(X 1[I ]) : ∨ P1(I , i)
337 ∨ C1(I , i)
338 ∨ R1ini(I , i)
339 ∨ R1end(I , i)
340 ∧ unchanged 〈in, vs2〉

342 StepB
∆
= ∧ ∃ I ∈ WDIndexB :

343 ∃ i ∈ ItB(X 2[I ]) : ∨ P2(I , i)
344 ∨ C2(I , i)
345 ∨ R2(I , i)
346 ∧ unchanged 〈in, vs1〉

348 Next
∆
= StepA ∨ StepB ∨Done

350 Spec
∆
= Init ∧2[Next ]〈in, vs1, vs2〉

352 FairSpec
∆
= Spec ∧WFvs1(StepA) ∧WFvs2(StepB)

354

PCR A properties

360 IndexInvA
∆
= WDIndexA = {I 0}

362 TypeInvA
∆
=

363 ∧ in ∈ T
364 ∧X 1 ∈ [IndexA→ T ∪ {Undef }] ∧X 1[I 0] = in
365 ∧ p1 ∈ [IndexA→ StA(Tp1)]
366 ∧ c1 ∈ [IndexA→ StA(Tc1)]
367 ∧ r1 ∈ [IndexA→ D ]
368 ∧ rs1 ∈ [IndexA→ [AssigA→ boolean ]]

370 PInvA
∆
=

371 ∀ i ∈ ItA(X 1[I 0]) :
372 wrt(p1[I 0][i ])⇒ ∧ wrts(p1[I 0], depsA(X 1[I 0], Dep pp1, i))
373 ∧ p1[I 0][i ] = gp1(X 1[I 0], i)

375 CInvA
∆
=

376 ∀ i ∈ ItA(X 1[I 0]) :
377 wrt(c1[I 0][i ])⇒ ∧ wrts(p1[I 0], depsA(X 2[I 0], Dep pc2, i))
378 ∧ c1[I 0][i ] = fc1(X 1[I 0], p1[I 0], i)

380 RInv1A
∆
=

381 ∀ i ∈ ItA(X 1[I 0]) :
382 redA(I 0, i)⇒ ∧ wrts(c1[I 0], depsA(X 1[I 0], Dep cr1, i))
383 ∧ wrt(X 2[I 0 ◦ 〈i〉])
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384 ∧ endB(I 0 ◦ 〈i〉)

386 RInv2A
∆
=

387 r1[I 0] = M 1 !BigOpP(lBnd1(X 1[I 0]), uBnd1(X 1[I 0]),
388 lambda i : prop1(i) ∧ redA(I 0, i),
389 lambda i : fr1(X 1[I 0], c1[I 0], i))

391 InvA
∆
= ∧ TypeInvA

392 ∧ IndexInvA
393 ∧ PInvA
394 ∧ CInvA
395 ∧ RInv1A
396 ∧ RInv2A

398 CorrectnessA
∆
= endA(I 0)⇒ r1[I 0] = A(X 1[I 0])

400 TerminationA
∆
= 3endA(I 0)

PCR B roperties

406 IndexInvB
∆
= WDIndexB ⊆ {I 0 ◦ 〈i〉 : i ∈ AssigA}

408 TypeInvB
∆
=

409 ∧X 2 ∈ [IndexB → T2 ∪ {Undef }]
410 ∧ p2 ∈ [IndexB → StB(Tp2)]
411 ∧ c2 ∈ [IndexB → StB(Tc2)]
412 ∧ r2 ∈ [IndexB → D ]
413 ∧ rs2 ∈ [IndexB → [AssigB → boolean ]]

415 PInvB
∆
=

416 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
417 wrt(p2[I ][i ])⇒ ∧ wrts(p2[I ], depsB(X 2[I ], Dep pp2, i))
418 ∧ p2[I ][i ] = gp2(X 2[I ], i)

420 CInvB
∆
=

421 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
422 wrt(c2[I ][i ])⇒ ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
423 ∧ c2[I ][i ] = fc2(X 2[I ], p2[I ], i)

425 RInv1B
∆
=

426 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
427 redB(I 0, i)⇒ wrts(c2[I ], depsB(X 2[I ], Dep cr2, i))

429 RInv2B
∆
=

430 ∀ I ∈ WDIndexB :
431 r2[I ] = M 2 !BigOpP(lBnd2(X 2[I ]), uBnd2(X 2[I ]),
432 lambda j : prop2(j ) ∧ redB(I 0, j ),
433 lambda j : fr2(X 2[I ], c2[I ], j ))

435 InvB
∆
= ∧ TypeInvB

436 ∧ IndexInvB
437 ∧ PInvB
438 ∧ CInvB
439 ∧ RInv1B
440 ∧ RInv2B
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442 CorrectnessB
∆
= ∀ I ∈ WDIndexB : endB(I )⇒ r2[I ] = B(X 2[I ])

444 TerminationB
∆
= 3(∀ I ∈ WDIndexB : endB(I ))

Conjoint properties

450 TypeInv
∆
= ∧ TypeInvA

451 ∧ TypeInvB

453 Inv
∆
= ∧ TypeInv

454 ∧ InvA
455 ∧ InvB

457 Correctness
∆
= ∧ CorrectnessA

458 ∧ CorrectnessB

460 Termination
∆
= ∧ TerminationA

461 ∧ TerminationB

Refinement

467 PCR A
∆
= instance PCR A

468 with X ← X 1, p ← p1, c ← c1, r ← r1, rs ← rs1,
469 T ← T , Tp ← Tp1, Tc ← Tc1, D ← D ,
470 id ← id , Op ← Op1,
471 lBnd ← lBnd1, uBnd ← uBnd1, prop ← prop1,
472 fp ← fp1, fc ← fc1, fr ← fr1, gp ← gp1,
473 Dep pp ← Dep pp1, Dep pc ← Dep pc1, Dep cr ← Dep cr1

475
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1 module PCR DC

Divide-and-conquer PCR.

-----------------------------------------------------------------

fun div(x) = ... // div : T -> Seq(T)

fun isBase(x,p,i) = ... // isBase : T x St(T) x N -> Bool

fun base(x,p,i) = ... // base : T x St(T) x N -> D

fun fr(x,c,i) = ... // fr : T x St(D) x N -> D

fun iterDiv(x,p,i) = div(x)[i]

fun subproblem(x,p,i) = if isBase(x,p,i)

then base(x,p,i)

else DC(p)

fun conquer(r,x,c,i) = Op(r, fr(x,c,i))

dep p(i[+/-]k) -> c(i)

dep c(i[+/-]k) -> r(i)

lbnd DC = \x. 1

ubnd DC = \x. len(div(x))

PCR DC(x) // x \in T

par

p = produce iterDiv x p

c = consume subproblem x p

r = reduce conquer id x c // r \in D

-----------------------------------------------------------------

32 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, TLC

34

PCR constants and variables

40 constants I 0, pre( ),
41 T , D ,
42 id , Op( , ),
43 div( ), isBase( , , ), base( , , ), fr( , , ),
44 Dep pc, Dep cr

46 variables in, X , p, c, r , rs

48

General definitions

54 Undef
∆
= choose x : x /∈ T ∪D

56 wrt(v)
∆
= v 6= Undef

57 wrts(v , S )
∆
= ∀ k ∈ S : wrt(v [k ])

58 eqs(v1, v2, S )
∆
= ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

60

PCR definitions and assumptions

66 Index
∆
= Seq(Nat)

67 Assig
∆
= Nat

68 uBnd(x )
∆
= Len(div(x ))

69 It(x )
∆
= 1 . . uBnd(x )

70 WDIndex
∆
= {I ∈ Index : wrt(X [I ])}

71 St(R)
∆
= [Assig → R ∪ {Undef }]

72 red(I , i)
∆
= rs[I ][i ]

73 end(I )
∆
= ∀ i ∈ It(X [I ]) : red(I , i)

B.6 Divide and conquer (DC)
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75 deps(x , d , i)
∆
=

76 {i − k : k ∈ {k ∈ d [1] : i − k ≥ 1}}
77 ∪ {i}
78 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd(x )}}

80 axiom H Type
∆
=

81 ∧ I 0 ∈ Index
82 ∧ ∀ x ∈ T : uBnd(x ) ∈ Nat
83 ∧ ∀ x ∈ T : pre(x ) ∈ boolean
84 ∧Dep pc ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
85 ∧Dep cr ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

87 axiom H BFunType
∆
=

88 ∀ x ∈ T , i ∈ Assig :
89 ∧ div(x ) ∈ Seq(T ) ∪ {Undef }
90 ∧ ∀ vp ∈ St(T ) : isBase(x , vp, i) ∈ boolean ∪ {Undef }
91 ∧ ∀ vp ∈ St(T ) : base(x , vp, i) ∈ D ∪ {Undef }
92 ∧ ∀ vc ∈ St(D) : fr(x , vc, i) ∈ D ∪ {Undef }

94 axiom H BFunWD
∆
=

95 ∀ x ∈ T : ∀ i ∈ It(x ) :
96 ∧ div(x ) ∈ Seq(T )
97 ∧ ∀ vp ∈ St(T ) : wrts(vp, deps(x , Dep pc, i))⇒ isBase(x , vp, i) ∈ boolean
98 ∧ ∀ vp ∈ St(T ) : wrts(vp, deps(x , Dep pc, i))⇒ base(x , vp, i) ∈ D
99 ∧ ∀ vc ∈ St(D) : wrts(vc, deps(x , Dep cr , i)) ⇒ fr(x , vc, i) ∈ D

101 axiom H fcRelevance
∆
=

102 ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(T ), vp2 ∈ St(T ) :
103 eqs(vp1, vp2, deps(x , Dep pc, i))⇒ isBase(x , vp1, i) = isBase(x , vp2, i)

105 axiom H baseRelevance
∆
=

106 ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(T ), vp2 ∈ St(T ) :
107 eqs(vp1, vp2, deps(x , Dep pc, i))⇒ base(x , vp1, i) = base(x , vp2, i)

109 axiom H frRelevance
∆
=

110 ∀ x ∈ T : ∀ i ∈ It(x ), vc1 ∈ St(D), vc2 ∈ St(D) :
111 eqs(vc1, vc2, deps(x , Dep cr , i))⇒ fr(x , vc1, i) = fr(x , vc2, i)

113

Functional specification

119 M
∆
= instance AbelianMonoidBigOp

120 with D ← D , Id ← id , ⊗ ← Op

122 axiom H Algebra
∆
= AbelianMonoid(D , id , Op)

124 Fr(x , vc)
∆
= [i ∈ Assig 7→ fr(x , vc, i)]

Informal notation:

DC(x)
∆
=

len(div(x))⊗

i=1

#«
f r

i(
x , i ∈ N 7→

(
isBase(x ,

#   «
div(x), i) → base(x ,

#   «
div(x), i), DC(

#   «
div

i
(x))

))

136 recursive DC ( )
137 DC (x )

∆
= M !BigOp(1, uBnd(x ),

138 lambda i : Fr(x , [k ∈ Assig 7→ if isBase(x , div(x ), k)
139 then base(x , div(x ), k)
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140 else DC (div(x )[k ])])[i ])

Alternatively, DC defined as a recursive function:

DC [x ∈ T ]
∆
=

M !BigOp(1, uBnd(x),

lambda i : Fr(x , [k ∈ Assig 7→ if isBase(x , div(x), k)

then base(x , div(x), k)

else DC [div(x)[k ]]])[i ])

151

Operational specification

157 vs
∆
= 〈X , p, c, r , rs〉

159 Init
∆
= ∧ in ∈ T ∧ pre(in)

160 ∧X = [I ∈ Index 7→ if I = I 0 then in else Undef ]
161 ∧ p = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
162 ∧ c = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
163 ∧ rs = [I ∈ Index 7→ [i ∈ Assig 7→ false]]
164 ∧ r = [I ∈ Index 7→ id ]

166 P(I , i)
∆
=

167 ∧ ¬wrt(p[I ][i ])
168 ∧ p′ = [p except ! [I ][i ] = div(X [I ])[i ]]
169 ∧ unchanged 〈X , c, r , rs〉

171 Cbase(I , i)
∆
=

172 ∧ ¬wrt(c[I ][i ])
173 ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
174 ∧ isBase(X [I ], p[I ], i)
175 ∧ c′ = [c except ! [I ][i ] = base(X [I ], p[I ], i)]
176 ∧ unchanged 〈X , p, r , rs〉

178 Cini(I , i)
∆
=

179 ∧ ¬wrt(X [I ◦ 〈i〉])
180 ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
181 ∧ ¬isBase(X [I ], p[I ], i)
182 ∧X ′ = [X except ! [I ◦ 〈i〉] = p[I ][i ]]
183 ∧ unchanged 〈p, c, r , rs〉

185 Cend(I , i)
∆
=

186 ∧ ¬wrt(c[I ][i ])
187 ∧ wrt(X [I ◦ 〈i〉])
188 ∧ end(I ◦ 〈i〉)
189 ∧ c′ = [c except ! [I ][i ] = r [I ◦ 〈i〉]]
190 ∧ unchanged 〈X , p, r , rs〉

192 R(I , i)
∆
=

193 ∧ ¬red(I , i)
194 ∧ wrts(c[I ], deps(X [I ], Dep cr , i))
195 ∧ r ′ = [r except ! [I ] = Op(@, fr(X [I ], c[I ], i))]
196 ∧ rs ′ = [rs except ! [I ][i ] = true]
197 ∧ unchanged 〈X , p, c〉
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199 Done
∆
= ∧ ∀ I ∈ WDIndex : end(I )

200 ∧ unchanged 〈in, vs〉

202 Step
∆
= ∧ ∃ I ∈ WDIndex :

203 ∃ i ∈ It(X [I ]) : ∨ P(I , i)
204 ∨ Cbase(I , i)
205 ∨ Cini(I , i)
206 ∨ Cend(I , i)
207 ∨ R(I , i)
208 ∧ unchanged in

210 Next
∆
= Step ∨Done

212 Spec
∆
= Init ∧2[Next ]〈in, vs〉

214 FairSpec
∆
= Spec ∧WFvs(Step)

216

Properties

222 TypeInv
∆
=

223 ∧ in ∈ T
224 ∧X ∈ [Index → T ∪ {Undef }] ∧X [I 0] = in
225 ∧ p ∈ [Index → St(T )]
226 ∧ c ∈ [Index → St(D)]
227 ∧ r ∈ [Index → D ]
228 ∧ rs ∈ [Index → [Assig → boolean ]]

230 PInv
∆
=

231 ∀ I ∈ WDIndex : ∀ i ∈ It(X [I ]) :
232 wrt(p[I ][i ])⇒ p[I ][i ] = div(X [I ])[i ]

234 CInv1
∆
=

235 ∀ I ∈ WDIndex : ∀ i ∈ It(X [I ]) :
236 wrt(c[I ][i ]) ∧ ¬isBase(X [I ], p[I ], i)
237 ⇒ ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
238 ∧ wrt(X [I ◦ 〈i〉])
239 ∧ c[I ][i ] = r [I ◦ 〈i〉]

241 CInv2
∆
=

242 ∀ I ∈ WDIndex : ∀ i ∈ It(X [I ]) :
243 wrt(c[I ][i ]) ∧ isBase(X [I ], p[I ], i)
244 ⇒ ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
245 ∧ c[I ][i ] = base(X [I ], p[I ], i)

247 RInv1
∆
=

248 ∀ I ∈ WDIndex : ∀ i ∈ It(X [I ]) :
249 red(I , i)⇒ wrts(c[I ], deps(X [I ], Dep cr , i))

251 RInv2
∆
=

252 ∀ I ∈ WDIndex :
253 r [I ] = M !BigOpP(1, uBnd(X [I ]),
254 lambda i : red(I , i),
255 lambda i : fr(X [I ], c[I ], i))

257 Inv
∆
= ∧ TypeInv
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258 ∧ PInv
259 ∧ CInv1
260 ∧ CInv2
261 ∧ RInv1
262 ∧ RInv2

264 Correctness
∆
= ∀ I ∈ WDIndex : end(I )⇒ r [I ] = DC (X [I ])

266 Termination
∆
= 3(∀ I ∈ WDIndex : end(I ))

268
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1 module PCR DCrLeft

Divide-and-conquer PCR with left reducer.

-----------------------------------------------------------------

fun div(x) = ... // div : T -> Seq(T)

fun isBase(x,p,i) = ... // isBase : T x St(T) x N -> Bool

fun base(x,p,i) = ... // base : T x St(T) x N -> D

fun fr(x,c,i) = ... // fr : T x St(D) x N -> D

fun iterDiv(x,p,i) = div(x)[i]

fun subproblem(x,p,i) = if isBase(x,p,i)

then base(x,p,i)

else DC(p)

fun conquer(r,x,c,i) = Op(r, fr(x,c,i))

dep p(i[+/-]k) -> c(i)

dep c(i[+/-]k) -> r(i)

dep r(i-1) -> r(i)

lbnd DC = \x. 1

ubnd DC = \x. len(div(x))

PCR DC(x) // x \in T

par

p = produce iterDiv x p

c = consume subproblem x p

r = reduce conquer id x c // r \in D

-----------------------------------------------------------------

33 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, TLC

35

PCR constants and variables

41 constants I 0, pre( ),
42 T , D ,
43 id , Op( , ),
44 div( ), isBase( , , ), base( , , ), fr( , , ),
45 Dep pc, Dep cr

47 variables in, X , p, c, r , rs

49

General definitions

55 Undef
∆
= choose x : x /∈ T ∪D

57 wrt(v)
∆
= v 6= Undef

58 wrts(v , S )
∆
= ∀ k ∈ S : wrt(v [k ])

59 eqs(v1, v2, S )
∆
= ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

61

PCR definitions and assumptions

67 Index
∆
= Seq(Nat)

68 Assig
∆
= Nat

69 uBnd(x )
∆
= Len(div(x ))

70 It(x )
∆
= 1 . . uBnd(x )

71 WDIndex
∆
= {I ∈ Index : wrt(X [I ])}

72 St(R)
∆
= [Assig → R ∪ {Undef }]

73 red(I , i)
∆
= rs[I ][i ]

B.7 DC with left reducer (DCrLeft)
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74 end(I )
∆
= ∀ i ∈ It(X [I ]) : red(I , i)

76 deps(x , d , i)
∆
=

77 {i − k : k ∈ {k ∈ d [1] : i − k ≥ 1}}
78 ∪ {i}
79 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd(x )}}

81 axiom H Type
∆
=

82 ∧ I 0 ∈ Index
83 ∧ ∀ x ∈ T : uBnd(x ) ∈ Nat
84 ∧ ∀ x ∈ T : pre(x ) ∈ boolean
85 ∧Dep pc ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
86 ∧Dep cr ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

88 axiom H BFunType
∆
=

89 ∀ x ∈ T , i ∈ Assig :
90 ∧ div(x ) ∈ Seq(T ) ∪ {Undef }
91 ∧ ∀ vp ∈ St(T ) : isBase(x , vp, i) ∈ boolean ∪ {Undef }
92 ∧ ∀ vp ∈ St(T ) : base(x , vp, i) ∈ D ∪ {Undef }
93 ∧ ∀ vc ∈ St(D) : fr(x , vc, i) ∈ D ∪ {Undef }

95 axiom H BFunWD
∆
=

96 ∀ x ∈ T : ∀ i ∈ It(x ) :
97 ∧ div(x ) ∈ Seq(T )
98 ∧ ∀ vp ∈ St(T ) : wrts(vp, deps(x , Dep pc, i))⇒ isBase(x , vp, i) ∈ boolean
99 ∧ ∀ vp ∈ St(T ) : wrts(vp, deps(x , Dep pc, i))⇒ base(x , vp, i) ∈ D

100 ∧ ∀ vc ∈ St(D) : wrts(vc, deps(x , Dep cr , i)) ⇒ fr(x , vc, i) ∈ D

102 axiom H fcRelevance
∆
=

103 ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(T ), vp2 ∈ St(T ) :
104 eqs(vp1, vp2, deps(x , Dep pc, i))⇒ isBase(x , vp1, i) = isBase(x , vp2, i)

106 axiom H baseRelevance
∆
=

107 ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(T ), vp2 ∈ St(T ) :
108 eqs(vp1, vp2, deps(x , Dep pc, i))⇒ base(x , vp1, i) = base(x , vp2, i)

110 axiom H frRelevance
∆
=

111 ∀ x ∈ T : ∀ i ∈ It(x ), vc1 ∈ St(D), vc2 ∈ St(D) :
112 eqs(vc1, vc2, deps(x , Dep cr , i))⇒ fr(x , vc1, i) = fr(x , vc2, i)

114

Functional specification

120 M
∆
= instance MonoidBigOp

121 with D ← D , Id ← id , ⊗ ← Op

123 axiom H Algebra
∆
= Monoid(D , id , Op)

125 Fr(x , vc)
∆
= [i ∈ Assig 7→ fr(x , vc, i)]

Informal notation:

DC(x)
∆
=

len(div(x))⊗

i=1

#«
f r

i(
x , i ∈ N 7→

(
isBase(x ,

#   «
div(x), i) → base(x ,

#   «
div(x), i), DC(

#   «
div

i
(x))

))

137 recursive DC ( )
138 DC (x )

∆
= M !BigOp(1, uBnd(x ),
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139 lambda i : Fr(x , [k ∈ Assig 7→ if isBase(x , div(x ), k)
140 then base(x , div(x ), k)
141 else DC (div(x )[k ])])[i ])

Alternatively, DC defined as a recursive function:

DC [x ∈ T ]
∆
=

M !BigOp(1, uBnd(x),

lambda i : Fr(x , [k ∈ Assig 7→ if isBase(x , div(x), k)

then base(x , div(x), k)

else DC [div(x)[k ]]])[i ])

152

Operational specification

158 vs
∆
= 〈X , p, c, r , rs〉

160 Init
∆
= ∧ in ∈ T ∧ pre(in)

161 ∧X = [I ∈ Index 7→ if I = I 0 then in else Undef ]
162 ∧ p = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
163 ∧ c = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
164 ∧ rs = [I ∈ Index 7→ [i ∈ Assig 7→ false]]
165 ∧ r = [I ∈ Index 7→ id ]

167 P(I , i)
∆
=

168 ∧ ¬wrt(p[I ][i ])
169 ∧ p′ = [p except ! [I ][i ] = div(X [I ])[i ]]
170 ∧ unchanged 〈X , c, r , rs〉

172 Cbase(I , i)
∆
=

173 ∧ ¬wrt(c[I ][i ])
174 ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
175 ∧ isBase(X [I ], p[I ], i)
176 ∧ c′ = [c except ! [I ][i ] = base(X [I ], p[I ], i)]
177 ∧ unchanged 〈X , p, r , rs〉

179 Cini(I , i)
∆
=

180 ∧ ¬wrt(X [I ◦ 〈i〉])
181 ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
182 ∧ ¬isBase(X [I ], p[I ], i)
183 ∧X ′ = [X except ! [I ◦ 〈i〉] = p[I ][i ]]
184 ∧ unchanged 〈p, c, r , rs〉

186 Cend(I , i)
∆
=

187 ∧ ¬wrt(c[I ][i ])
188 ∧ wrt(X [I ◦ 〈i〉])
189 ∧ end(I ◦ 〈i〉)
190 ∧ c′ = [c except ! [I ][i ] = r [I ◦ 〈i〉]]
191 ∧ unchanged 〈X , p, r , rs〉

193 R(I , i)
∆
=

194 ∧ ¬red(I , i)
195 ∧ wrts(c[I ], deps(X [I ], Dep cr , i))
196 ∧ i − 1 ≥ 1⇒ red(I , i − 1)
197 ∧ r ′ = [r except ! [I ] = Op(@, fr(X [I ], c[I ], i))]
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198 ∧ rs ′ = [rs except ! [I ][i ] = true]
199 ∧ unchanged 〈X , p, c〉

201 Done
∆
= ∧ ∀ I ∈ WDIndex : end(I )

202 ∧ unchanged 〈in, vs〉

204 Step
∆
= ∧ ∃ I ∈ WDIndex :

205 ∃ i ∈ It(X [I ]) : ∨ P(I , i)
206 ∨ Cbase(I , i)
207 ∨ Cini(I , i)
208 ∨ Cend(I , i)
209 ∨ R(I , i)
210 ∧ unchanged in

212 Next
∆
= Step ∨Done

214 Spec
∆
= Init ∧2[Next ]〈in, vs〉

216 FairSpec
∆
= Spec ∧WFvs(Step)

218

Properties

224 TypeInv
∆
=

225 ∧ in ∈ T
226 ∧X ∈ [Index → T ∪ {Undef }] ∧X [I 0] = in
227 ∧ p ∈ [Index → St(T )]
228 ∧ c ∈ [Index → St(D)]
229 ∧ r ∈ [Index → D ]
230 ∧ rs ∈ [Index → [Assig → boolean ]]

232 PInv
∆
=

233 ∀ I ∈ WDIndex : ∀ i ∈ It(X [I ]) :
234 wrt(p[I ][i ])⇒ p[I ][i ] = div(X [I ])[i ]

236 CInv1
∆
=

237 ∀ I ∈ WDIndex : ∀ i ∈ It(X [I ]) :
238 wrt(c[I ][i ]) ∧ ¬isBase(X [I ], p[I ], i)
239 ⇒ ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
240 ∧ wrt(X [I ◦ 〈i〉])
241 ∧ c[I ][i ] = r [I ◦ 〈i〉]

243 CInv2
∆
=

244 ∀ I ∈ WDIndex : ∀ i ∈ It(X [I ]) :
245 wrt(c[I ][i ]) ∧ isBase(X [I ], p[I ], i)
246 ⇒ ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
247 ∧ c[I ][i ] = base(X [I ], p[I ], i)

249 RInv1
∆
=

250 ∀ I ∈ WDIndex : ∀ i ∈ It(X [I ]) :
251 red(I , i)⇒ ∧ wrts(c[I ], deps(X [I ], Dep cr , i))
252 ∧ ∀ k ∈ It(X [I ]) : k < i ⇒ red(I , k)

254 RInv2
∆
=

255 ∀ I ∈ WDIndex : ∀ i ∈ It(X [I ]) :
256 ¬red(I , i)⇒ r [I ] = M !BigOpP(1, i − 1,
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257 lambda j : red(I , j ),
258 lambda j : fr(X [I ], c[I ], j ))

260 Inv
∆
= ∧ TypeInv

261 ∧ PInv
262 ∧ CInv1
263 ∧ CInv2
264 ∧ RInv1
265 ∧ RInv2

267 Correctness
∆
= ∀ I ∈ WDIndex : end(I )⇒ r [I ] = DC (X [I ])

269 Termination
∆
= 3∀ I ∈ WDIndex : end(I )

Refinement

275 PCR DC
∆
= instance PCR DC

276 with X ← X , p ← p, c ← c, r ← r , rs ← rs,
277 T ← T , D ← D ,
278 id ← id , Op ← Op,
279 div ← div , isBase ← isBase, base ← base, fr ← fr ,
280 Dep pc ← Dep pc, Dep cr ← Dep cr

282
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1 module PCR DC r DCrLeft

Divide-and-conquer PCR composed through reducer with a divide-and-conquer PCR with left reducer.

-----------------------------------------------------------------

// PCR A

fun div1(x1) = ... // div1 : T -> Seq(T)

fun isBase1(x1,p1,i) = ... // isBase1 : T x St(T) -> Bool

fun base1(x1,p1,i) = ... // base1 : T x St(T) -> D

fun fr1(x1,c1,i) = ... // fr1 : T x St(D) -> D

fun iterDiv1(x1,p1,i) = div1(x1)[i]

fun subproblem1(x1,p1,i) = if isBase1(x1,p1,i)

then base1(x1,p1,i)

else A(p1)

fun conquer1(r1,x1,c1,i) = B(r1, fr1(x1,c1,i))

dep p1(i[+/-]k) -> c1(i)

dep c1(i[+/-]k) -> r1(i)

lbnd A = \x1. 1

ubnd A = \x1. len(div1(x1))

PCR A(x1) // x1 \in T

par

p1 = produce iterDiv1 x1

c1 = consume subproblem1 x1 p1

r1 = reduce conquer1 id x1 c1 // r1 \in D

// PCR B

// T2 = D x D

fun div2(x2) = ... // div2 : T2 -> Seq(T2)

fun isBase2(x2,p2,i) = ... // isBase2 : T2 x St(T2) x N -> Bool

fun base2(x2,p2,i) = ... // base2 : T2 x St(T2) x N -> D

fun fr2(x2,c2,i) = ... // fr2 : T2 x St(D) x N -> D

fun iterDiv2(x2,p2,i) = div2(x2)[i]

fun subproblem2(x2,p2,i) = if isBase2(x2,p2,i)

then base2(x2,p2,i)

else B(p2)

fun conquer2(r2,x2,c2,i) = Op2(r2, fr2(x2,c2,i))

dep p2(i[+/-]k) -> c2(i)

dep c2(i[+/-]k) -> r2(i)

dep r2(i-1) -> r2(i)

lbnd B = \x2. 1

ubnd B = \x2. len(div2(x2))

PCR B(x2) // x2 \in T2

par

p2 = produce iterDiv2 x2

c2 = consume subproblem2 x2 p2

r2 = reduce conquer2 id x2 c2 // r2 \in D

-----------------------------------------------------------------

61 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, TLC

63

PCR A constants and variables

69 constants I 0, pre( ),
70 T , D ,
71 id ,
72 div1( ), isBase1( , , ), base1( , , ), fr1( , , ),
73 Dep pc1, Dep cr1

75 variables in, X 1, p1, c1, r1, rs1

B.8 DC composed through reducer with DCrLeft
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PCR B constants and variables

81 constants Op2( , ),
82 div2( ), isBase2( , , ), base2( , , ), fr2( , , ),
83 Dep pc2, Dep cr2

85 variables X 2, p2, c2, r2, rs2

87

General definitions

93 Undef
∆
= choose x : x /∈ T ∪D

95 wrt(v)
∆
= v 6= Undef

96 wrts(v , S )
∆
= ∀ k ∈ S : wrt(v [k ])

97 eqs(v1, v2, S )
∆
= ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

99

PCR A definitions and assumptions

105 IndexA
∆
= Seq(Nat)

106 AssigA
∆
= Nat

107 uBnd1(x )
∆
= Len(div1(x ))

108 ItA(x )
∆
= 1 . . uBnd1(x )

109 WDIndexA
∆
= {I ∈ IndexA : wrt(X 1[I ])}

110 StA(R)
∆
= [AssigA→ R ∪ {Undef }]

111 redA(I , i)
∆
= rs1[I ][i ]

112 endA(I )
∆
= ∀ i ∈ ItA(X 1[I ]) : redA(I , i)

114 depsA(x , d , i)
∆
=

115 {i − k : k ∈ {k ∈ d [1] : i − k ≥ 1}}
116 ∪ {i}
117 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd1(x )}}

119 axiom H TypeA
∆
=

120 ∧ I 0 ∈ IndexA
121 ∧ ∀ x ∈ T : uBnd1(x ) ∈ Nat
122 ∧ ∀ x ∈ T : pre(x ) ∈ boolean
123 ∧Dep pc1 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
124 ∧Dep cr1 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

126 axiom H BFunTypeA
∆
=

127 ∀ x ∈ T , i ∈ AssigA :
128 ∧ div1(x ) ∈ Seq(T ) ∪ {Undef }
129 ∧ ∀ vp ∈ StA(T ) : isBase1(x , vp, i) ∈ boolean ∪ {Undef }
130 ∧ ∀ vp ∈ StA(T ) : base1(x , vp, i) ∈ D ∪ {Undef }
131 ∧ ∀ vc ∈ StA(D) : fr1(x , vc, i) ∈ D ∪ {Undef }

133 axiom H BFunWDA
∆
=

134 ∀ x ∈ T : ∀ i ∈ ItA(x ) :
135 ∧ div1(x ) ∈ Seq(T )
136 ∧ ∀ vp ∈ StA(T ) : wrts(vp, depsA(x , Dep pc1, i))⇒ isBase1(x , vp, i) ∈ boolean
137 ∧ ∀ vp ∈ StA(T ) : wrts(vp, depsA(x , Dep pc1, i))⇒ base1(x , vp, i) ∈ D
138 ∧ ∀ vc ∈ StA(D) : wrts(vc, depsA(x , Dep cr1, i)) ⇒ fr1(x , vc, i) ∈ D

140 axiom H isBaseRelevanceA
∆
=

275



141 ∀ x ∈ T : ∀ i ∈ ItA(x ), vp1 ∈ StA(T ), vp2 ∈ StA(T ) :
142 eqs(vp1, vp2, depsA(x , Dep pc1, i))⇒ isBase1(x , vp1, i) = isBase1(x , vp2, i)

144 axiom H baseRelevanceA
∆
=

145 ∀ x ∈ T : ∀ i ∈ ItA(x ), vp1 ∈ StA(T ), vp2 ∈ StA(T ) :
146 eqs(vp1, vp2, depsA(x , Dep pc1, i))⇒ base1(x , vp1, i) = base1(x , vp2, i)

148 axiom H frRelevanceA
∆
=

149 ∀ x ∈ T : ∀ i ∈ ItA(x ), vc1 ∈ StA(D), vc2 ∈ StA(D) :
150 eqs(vc1, vc2, depsA(x , Dep cr1, i))⇒ fr1(x , vc1, i) = fr1(x , vc2, i)

PCR B definitions and assumptions

156 IndexB
∆
= Seq(Nat)× Seq(Nat)

157 AssigB
∆
= Nat

158 uBnd2(x )
∆
= Len(div2(x ))

159 ItB(x )
∆
= 1 . . uBnd2(x )

160 WDIndexB
∆
= {I ∈ IndexB : wrt(X 2[I ])}

161 StB(R)
∆
= [AssigB → R ∪ {Undef }]

162 redB(I , i)
∆
= rs2[I ][i ]

163 endB(I )
∆
= ∀ i ∈ ItB(X 2[I ]) : redB(I , i)

165 depsB(x , d , i)
∆
=

166 {i − k : k ∈ {k ∈ d [1] : i − k ≥ 1}}
167 ∪ {i}
168 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd2(x )}}

170 T2
∆
= D ×D

172 axiom H TypeB
∆
=

173 ∧ ∀ x ∈ T2 : uBnd2(x ) ∈ Nat
174 ∧Dep pc2 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
175 ∧Dep cr2 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

177 axiom H BFunTypeB
∆
=

178 ∀ x ∈ T2, i ∈ AssigB :
179 ∧ div2(x ) ∈ Seq(T2) ∪ {Undef }
180 ∧ ∀ vp ∈ StB(T2) : isBase2(x , vp, i) ∈ boolean ∪ {Undef }
181 ∧ ∀ vp ∈ StB(T2) : base2(x , vp, i) ∈ D ∪ {Undef }
182 ∧ ∀ vc ∈ StB(D) : fr2(x , vc, i) ∈ D ∪ {Undef }

184 axiom H BFunWDB
∆
=

185 ∀ x ∈ T2 : ∀ i ∈ ItB(x ) :
186 ∧ div2(x ) ∈ Seq(T2)
187 ∧ ∀ vp ∈ StB(T2) : wrts(vp, depsB(x , Dep pc2, i))⇒ isBase2(x , vp, i) ∈ boolean
188 ∧ ∀ vp ∈ StB(T2) : wrts(vp, depsB(x , Dep pc2, i))⇒ base2(x , vp, i) ∈ D
189 ∧ ∀ vc ∈ StB(D) : wrts(vc, depsB(x , Dep cr2, i)) ⇒ fr2(x , vc, i) ∈ D

191 axiom H isBaseRelevanceB
∆
=

192 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vp1 ∈ StB(T2), vp2 ∈ StB(T2) :
193 eqs(vp1, vp2, depsB(x , Dep pc2, i))⇒ isBase2(x , vp1, i) = isBase2(x , vp2, i)

195 axiom H baseRelevanceB
∆
=

196 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vp1 ∈ StB(T2), vp2 ∈ StB(T2) :
197 eqs(vp1, vp2, depsB(x , Dep pc2, i))⇒ base2(x , vp1, i) = base2(x , vp2, i)
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199 axiom H frRelevanceB
∆
=

200 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vc1 ∈ StB(D), vc2 ∈ StB(D) :
201 eqs(vc1, vc2, depsB(x , Dep cr2, i))⇒ fr2(x , vc1, i) = fr2(x , vc2, i)

203

Functional specification

209 M 2
∆
= instance MonoidBigOp

210 with D ← D , Id ← id , ⊗ ← Op2

212 axiom H AlgebraB
∆
= Monoid(D , id , Op2)

214 Fr2(x , vc)
∆
= [i ∈ AssigB 7→ fr2(x , vc, i)]

Informal notation:

B(x2)
∆
=

len(div2(x2))⊕

j=1

#«
f r2

j (
x2, j ∈ N 7→

(
isBase2(x2,

#      «
div2(x2), i)→ base2(x2,

#      «
div2(x2), j ), B(

#      «
div2

j
(x2))

))

226 recursive B( )
227 B(x )

∆
= M 2 !BigOp(1, uBnd2(x ),

228 lambda i : Fr2(x , [k ∈ AssigB 7→ if isBase2(x , div2(x ), k)
229 then base2(x , div2(x ), k)
230 else B(div2(x )[k ])])[i ])

Alternatively, B as a recursive function:

B [x ∈ D ×D ]
∆
=

M2 !BigOp(1, uBnd2(x),

lambda i : Fr2(x , [k ∈ AssigB 7→ if isBase2(x , div2(x), k)

then base2(x , div2(x), k)

else B [div2(x)[k ]]])[i ])

241 Op1(x , y)
∆
= B(〈x , y〉)

243 M 1
∆
= instance AbelianMonoidBigOp

244 with D ← D , Id ← id , ⊗ ← Op1

246 axiom H AlgebraA
∆
= AbelianMonoid(D , id , Op1)

248 Fr1(x , vc)
∆
= [i ∈ AssigA 7→ fr1(x , vc, i)]

Informal notation:

A(x1)
∆
=

len(div1(x1))⊗

i=1

#«
f r1

i(
x1, i ∈ N 7→

(
isBase1(x1,

#      «
div1(x1), i)→ base1(x1,

#      «
div1(x1), i), A(

#      «
div1

i
(x1))

))

where x ⊗ y
∆
= B(x , y)

262 recursive A( )
263 A(x )

∆
= M 1 !BigOp(1, uBnd1(x ),

264 lambda i : Fr1(x , [k ∈ AssigA 7→ if isBase1(x , div1(x ), k)
265 then base1(x , div1(x ), k)
266 else A(div1(x )[k ])])[i ])

Alternatively, A as a recursive function:

A[x ∈ T ]
∆
=

M1 !BigOp(1, uBnd1(x),

lambda i : Fr1(x , [k ∈ AssigA 7→ if isBase1(x , div1(x), k)
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then base1(x , div1(x), k)

else A[div1(x)[k ]]])[i ])

277

Operational specification

283 vs1
∆
= 〈X 1, p1, c1, r1, rs1〉

284 vs2
∆
= 〈p2, c2, r2, rs2〉

286 InitA
∆
= ∧ in ∈ T ∧ pre(in)

287 ∧X 1 = [I ∈ IndexA 7→ if I = I 0 then in else Undef ]
288 ∧ p1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ Undef ]]
289 ∧ c1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ Undef ]]
290 ∧ rs1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ false]]
291 ∧ r1 = [I ∈ IndexA 7→ id ]

293 InitB
∆
= ∧X 2 = [I ∈ IndexB 7→ Undef ]

294 ∧ p2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ Undef ]]
295 ∧ c2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ Undef ]]
296 ∧ rs2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ false]]
297 ∧ r2 = [I ∈ IndexB 7→ id ]

299 Init
∆
= InitA ∧ InitB

301 P1(I , i)
∆
=

302 ∧ ¬wrt(p1[I ][i ])
303 ∧ p1′ = [p1 except ! [I ][i ] = div1(X 1[I ])[i ]]
304 ∧ unchanged 〈X 1, c1, r1, rs1, X 2〉

306 C1base(I , i)
∆
=

307 ∧ ¬wrt(c1[I ][i ])
308 ∧ wrts(p1[I ], depsA(X 1[I ], Dep pc1, i))
309 ∧ isBase1(X 1[I ], p1[I ], i)
310 ∧ c1′ = [c1 except ! [I ][i ] = base1(X 1[I ], p1[I ], i)]
311 ∧ unchanged 〈X 1, p1, r1, rs1, X 2〉

313 C1ini(I , i)
∆
=

314 ∧ ¬wrt(X 1[I ◦ 〈i〉])
315 ∧ wrts(p1[I ], depsA(X 1[I ], Dep pc1, i))
316 ∧ ¬isBase1(X 1[I ], p1[I ], i)
317 ∧ X 1′ = [X 1 except ! [I ◦ 〈i〉] = p1[I ][i ]]
318 ∧ unchanged 〈p1, c1, r1, rs1, X 2〉

320 C1end(I , i)
∆
=

321 ∧ ¬wrt(c1[I ][i ])
322 ∧ wrt(X 1[I ◦ 〈i〉])
323 ∧ endA(I ◦ 〈i〉)
324 ∧ c1′ = [c1 except ! [I ][i ] = r1[I ◦ 〈i〉]]
325 ∧ unchanged 〈X 1, p1, r1, rs1, X 2〉

327 R1ini(I , i)
∆
=

328 ∧ ¬wrt(X 2[〈I , 〈i〉〉])
329 ∧ wrts(c1[I ], depsA(X 1[I ], Dep cr1, i))
330 ∧ ¬∃ k ∈ ItA(X 1[I ]) : ∧ k 6= i
331 ∧ wrt(X 2[〈I , 〈k〉〉])
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332 ∧ ¬redA(I , k)
333 ∧ X 2′ = [X 2 except ! [〈I , 〈i〉〉] = 〈r1[I ], fr1(X 1[I ], c1[I ], i)〉]
334 ∧ unchanged 〈X 1, p1, c1, r1, rs1〉

336 R1end(I , i)
∆
=

337 ∧ ¬redA(I , i)
338 ∧ wrt(X 2[〈I , 〈i〉〉])
339 ∧ endB(〈I , 〈i〉〉)
340 ∧ r1′ = [r1 except ! [I ] = r2[〈I , 〈i〉〉]]
341 ∧ rs1′ = [rs1 except ! [I ][i ] = true]
342 ∧ unchanged 〈X 1, p1, c1, X 2〉

344 PCR B

346 P2(I , i)
∆
=

347 ∧ ¬wrt(p2[I ][i ])
348 ∧ p2′ = [p2 except ! [I ][i ] = div2(X 2[I ])[i ]]
349 ∧ unchanged 〈c2, r2, rs2, X 2〉

351 C2base(I , i)
∆
=

352 ∧ ¬wrt(c2[I ][i ])
353 ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
354 ∧ isBase2(X 2[I ], p2[I ], i)
355 ∧ c2′ = [c2 except ! [I ][i ] = base2(X 2[I ], p2[I ], i)]
356 ∧ unchanged 〈p2, r2, rs2, X 2〉

358 C2ini(I , i)
∆
=

359 ∧ ¬wrt(X 2[〈I [1], I [2] ◦ 〈i〉〉])
360 ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
361 ∧ ¬isBase2(X 2[I ], p2[I ], i)
362 ∧ X 2′ = [X 2 except ! [〈I [1], I [2] ◦ 〈i〉〉] = p2[I ][i ]]
363 ∧ unchanged 〈p2, c2, r2, rs2〉

365 C2end(I , i)
∆
=

366 ∧ ¬wrt(c2[I ][i ])
367 ∧ wrt(X 2[〈I [1], I [2] ◦ 〈i〉〉])
368 ∧ endB(〈I [1], I [2] ◦ 〈i〉〉)
369 ∧ c2′ = [c2 except ! [I ][i ] = r2[〈I [1], I [2] ◦ 〈i〉〉]]
370 ∧ unchanged 〈p2, r2, rs2, X 2〉

372 R2(I , i)
∆
=

373 ∧ ¬redB(I , i)
374 ∧ wrts(c2[I ], depsB(X 2[I ], Dep cr2, i))
375 ∧ i − 1 ≥ 1⇒ redB(I , i − 1)
376 ∧ r2′ = [r2 except ! [I ] = Op2(@, fr2(X 2[I ], c2[I ], i))]
377 ∧ rs2′ = [rs2 except ! [I ][i ] = true]
378 ∧ unchanged 〈p2, c2, X 2〉

380 Done
∆
= ∧ ∀ I ∈ WDIndexA : endA(I )

381 ∧ ∀ I ∈ WDIndexB : endB(I )
382 ∧ unchanged 〈in, vs1, X 2, vs2〉

384 StepA
∆
= ∧ ∃ I ∈ WDIndexA :

385 ∃ i ∈ ItA(X 1[I ]) : ∨ P1(I , i)
386 ∨ C1base(I , i)
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387 ∨ C1ini(I , i)
388 ∨ C1end(I , i)
389 ∨ R1ini(I , i)
390 ∨ R1end(I , i)
391 ∧ unchanged 〈in, vs2〉

393 StepB
∆
= ∧ ∃ I ∈ WDIndexB :

394 ∃ i ∈ ItB(X 2[I ]) : ∨ P2(I , i)
395 ∨ C2base(I , i)
396 ∨ C2ini(I , i)
397 ∨ C2end(I , i)
398 ∨ R2(I , i)
399 ∧ unchanged 〈in, vs1〉

401 Next
∆
= StepA ∨ StepB ∨Done

403 Spec
∆
= Init ∧2[Next ]〈in, vs1, vs2,X2〉

405 FairSpec
∆
= Spec ∧WF〈vs1,X2〉(StepA) ∧WF〈vs2,X2〉(StepB)

407

PCR A properties

413 TypeInvA
∆
=

414 ∧ in ∈ T
415 ∧X 1 ∈ [IndexA→ T ∪ {Undef }] ∧X 1[I 0] = in
416 ∧ p1 ∈ [IndexA→ StA(T )]
417 ∧ c1 ∈ [IndexA→ StA(D)]
418 ∧ r1 ∈ [IndexA→ D ]
419 ∧ rs1 ∈ [IndexA→ [AssigA→ boolean ]]

421 PInvA
∆
=

422 ∀ I ∈ WDIndexA : ∀ i ∈ ItA(X 1[I ]) :
423 wrt(p1[I ][i ])⇒ p1[I ][i ] = div1(X 1[I ])[i ]

425 CInv1A
∆
=

426 ∀ I ∈ WDIndexA : ∀ i ∈ ItA(X 1[I ]) :
427 wrt(c1[I ][i ]) ∧ ¬isBase1(X 1[I ], p1[I ], i)
428 ⇒ ∧ wrts(p1[I ], depsA(X 1[I ], Dep pc1, i))
429 ∧ wrt(X 1[I ◦ 〈i〉])
430 ∧ endA(I ◦ 〈i〉)
431 ∧ c1[I ][i ] = r1[I ◦ 〈i〉]

433 CInv2A
∆
=

434 ∀ I ∈ WDIndexA : ∀ i ∈ ItA(X 1[I ]) :
435 wrt(c1[I ][i ]) ∧ isBase1(X 1[I ], p1[I ], i)
436 ⇒ ∧ wrts(p1[I ], depsA(X 1[I ], Dep pc1, i))
437 ∧ c1[I ][i ] = base1(X 1[I ], p1[I ], i)

439 RInv1A
∆
=

440 ∀ I ∈ WDIndexA : ∀ i ∈ ItA(X 1[I ]) :
441 redA(I , i)⇒ ∧ wrts(c1[I ], depsA(X 1[I ], Dep cr1, i))
442 ∧ wrt(X 2[〈I , 〈i〉〉])
443 ∧ endB(〈I , 〈i〉〉)

280



445 RInv2A
∆
=

446 ∀ I ∈ WDIndexA :
447 r1[I ] = M 1 !BigOpP(1, uBnd1(X 1[I ]),
448 lambda i : redA(I , i),
449 lambda i : fr1(X 1[I ], c1[I ], i))

451 InvA
∆
= ∧ TypeInvA

452 ∧ PInvA
453 ∧ CInv1A
454 ∧ CInv2A
455 ∧ RInv1A
456 ∧ RInv2A

458 CorrectnessA
∆
= ∀ I ∈ WDIndexA : endA(I )⇒ r1[I ] = A(X 1[I ])

460 TerminationA
∆
= 3(∀ I ∈ WDIndexA : endA(I ))

PCR B properties

466 TypeInvB
∆
=

467 ∧X 2 ∈ [IndexB → T2 ∪ {Undef }]
468 ∧ p2 ∈ [IndexB → StB(T2)]
469 ∧ c2 ∈ [IndexB → StB(D)]
470 ∧ r2 ∈ [IndexB → D ]
471 ∧ rs2 ∈ [IndexB → [AssigB → boolean ]]

473 PInvB
∆
=

474 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
475 wrt(p2[I ][i ])⇒ ∧ p2[I ][i ] = div2(X 2[I ])[i ]
476 ∧ wrt(X 2[I ])

478 CInv1B
∆
=

479 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
480 wrt(c2[I ][i ]) ∧ ¬isBase2(X 2[I ], p2[I ], i)
481 ⇒ ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
482 ∧ wrt(X 2[〈I [1], I [2] ◦ 〈i〉〉])
483 ∧ endB(〈I [1], I [2] ◦ 〈i〉〉)
484 ∧ c2[I ][i ] = r2[〈I [1], I [2] ◦ 〈i〉〉]

486 CInv2B
∆
=

487 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
488 wrt(c2[I ][i ]) ∧ isBase2(X 2[I ], p2[I ], i)
489 ⇒ ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
490 ∧ c2[I ][i ] = base2(X 2[I ], p2[I ], i)

492 RInv1B
∆
=

493 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
494 redB(I , i) ⇒ ∧ wrts(c2[I ], depsB(X 2[I ], Dep cr2, i))
495 ∧ ∀ k ∈ ItB(X 2[I ]) : k < i ⇒ redB(I , k)

497 RInv2B
∆
=

498 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
499 ¬redB(I , i)⇒ r2[I ] = M 2 !BigOpP(1, i − 1,
500 lambda j : redB(I , j ),
501 lambda j : fr2(X 2[I ], c2[I ], j ))

281



503 InvB
∆
= ∧ TypeInvB

504 ∧ PInvB
505 ∧ CInv1B
506 ∧ CInv2B
507 ∧ RInv1B
508 ∧ RInv2B

510 CorrectnessB
∆
= ∀ I ∈ WDIndexB : endB(I )⇒ r2[I ] = B(X 2[I ])

512 TerminationB
∆
= 3(∀ I ∈ WDIndexB : endB(I ))

Conjoint properties

518 TypeInv
∆
= ∧ TypeInvA

519 ∧ TypeInvB

521 Inv
∆
= ∧ TypeInv

522 ∧ InvA
523 ∧ InvB

525 Correctness
∆
= ∧ CorrectnessA

526 ∧ CorrectnessB

528 Termination
∆
= ∧ TerminationA

529 ∧ TerminationB

Refinement

535 PCR DC
∆
= instance PCR DC

536 with X ← X 1, p ← p1, c ← c1, r ← r1, rs ← rs1,
537 T ← T , D ← D ,
538 id ← id , Op ← Op1,
539 div ← div1, isBase ← isBase1, base ← base1, fr ← fr1,
540 Dep pc ← Dep pc1, Dep cr ← Dep cr1

542
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1 module PCR A it

PCR with iterative consumer over basic function.

-----------------------------------------------------------------

fun fp(x,p,i) = ... // fp : T x St(Tp) x N -> Tp

fun fc(y,x,p,i) = ... // fc : Tc x T x St(Tp) x N -> Tc

fun fr(x,c,i) = ... // fr : T x St(Tc) x N -> D

fun cnd(s,k) = ... // cnd : St(Tc) x N -> Bool

dep p(i-k) -> p(i)

dep p(i[+/-]k) -> c(i)

dep c(i[+/-]k) -> r(i)

lbnd A = \x. ...

ubnd A = \x. ...

prop A = \i. ...

PCR A(x) // x \in T

par

p = produce fp x p

c = iterate cnd fc (v0 x) x p

r = reduce Op id (fr x c) // r \in D

-----------------------------------------------------------------

28 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, TLC

30

PCR constants and variables

36 constants I 0, pre( ),
37 T , Tp, Tc, D ,
38 id , Op( , ), v0( ),
39 lBnd( ), uBnd( ), prop( ),
40 fp( , , ), fc( , , , ), fr( , , ), gp( , ), cnd( , ),
41 Dep pp, Dep pc, Dep cr

43 variables in, X , p, c, r , rs, s

45

General definitions

51 Undef
∆
= choose x : x /∈ union {T , Tp, Tc, D}

53 last(S )
∆
= S [Len(S )]

54 wrt(v)
∆
= v 6= Undef

55 wrts(v , S )
∆
= ∀ k ∈ S : wrt(v [k ])

56 eqs(v1, v2, S )
∆
= ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

58

PCR A definitions and assumptions

64 Index
∆
= Seq(Nat)

65 Assig
∆
= Nat

66 It(x )
∆
= {i ∈ lBnd(x ) . . uBnd(x ) : prop(i)}

67 WDIndex
∆
= {I ∈ Index : wrt(X [I ])}

68 St(R)
∆
= [Assig → R ∪ {Undef }]

69 Iter(Z )
∆
= Seq(Z )

70 red(I , i)
∆
= rs[I ][i ]

71 end(I )
∆
= ∀ i ∈ It(X [I ]) : red(I , i)

B.9 Iteration over basic function
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73 deps(x , d , i)
∆
=

74 {i − k : k ∈ {k ∈ d [1] : i − k ≥ lBnd(x ) ∧ prop(i − k)}}
75 ∪ {i}
76 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd(x ) ∧ prop(i + k)}}

78 axiom H Type
∆
=

79 ∧ I 0 ∈ Index
80 ∧ ∀ x ∈ T : lBnd(x ) ∈ Nat
81 ∧ ∀ x ∈ T : uBnd(x ) ∈ Nat
82 ∧ ∀ i ∈ Nat : prop(i) ∈ boolean
83 ∧ ∀ x ∈ T : pre(x ) ∈ boolean
84 ∧ ∀ x ∈ T : v0(x ) ∈ Tc
85 ∧Dep pp ∈ (subset (Nat \ {0}))× (subset {})
86 ∧Dep pc ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
87 ∧Dep cr ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

89 axiom H BFunType
∆
=

90 ∧ ∀ x ∈ T , i ∈ Assig :
91 ∧ gp(x , i) ∈ Tp ∪ {Undef }
92 ∧ ∀ vp ∈ St(Tp) : fp(x , vp, i) ∈ Tp ∪ {Undef }
93 ∧ ∀ vc ∈ St(Tc) : fr(x , vc, i) ∈ D ∪ {Undef }
94 ∧ ∀ vp ∈ St(Tp), y ∈ Tc : fc(y , x , vp, i) ∈ Tc ∪ {Undef }
95 ∧ ∀ vs ∈ Iter(Tc), k ∈ Nat : cnd(vs, k) ∈ boolean

97 axiom H BFunWD
∆
=

98 ∀ x ∈ T : ∀ i ∈ It(x ) :
99 ∧ gp(x , i) ∈ Tp

100 ∧ ∀ vp ∈ St(Tp) : wrts(vp, deps(x , Dep pp, i) \ {i})⇒ fp(x , vp, i) ∈ Tp
101 ∧ ∀ vc ∈ St(Tp) : wrts(vc, deps(x , Dep cr , i)) ⇒ fr(x , vc, i) ∈ D
102 ∧ ∀ vp ∈ St(Tp), y ∈ Tc :
103 wrts(vp, deps(x , Dep pc, i))⇒ fc(y , x , vp, i) ∈ Tc

105 axiom H fpRelevance
∆
=

106 ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :
107 eqs(vp1, vp2, deps(x , Dep pp, i) \ {i})⇒ fp(x , vp1, i) = fp(x , vp2, i)

109 axiom H fcRelevance
∆
=

110 ∀ y ∈ Tc : ∀ x ∈ T : ∀ i ∈ It(x ), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :
111 eqs(vp1, vp2, deps(x , Dep pc, i))⇒ fc(y , x , vp1, i) = fc(y , x , vp2, i)

113 axiom H frRelevance
∆
=

114 ∀ x ∈ T : ∀ i ∈ It(x ), vc1 ∈ St(Tp), vc2 ∈ St(Tp) :
115 eqs(vc1, vc1, deps(x , Dep cr , i))⇒ fr(x , vc1, i) = fr(x , vc2, i)

117 lemma H ProdEqInv
∆
=

118 ∀ x ∈ T : ∀ i ∈ It(x ) :
119 wrt(p[I 0][i ])⇒ fp(x , p[I 0], i) = gp(x , i)

121

Functional specification

127 M
∆
= instance AbelianMonoidBigOp

128 with D ← D , Id ← id , ⊗ ← Op

130 axiom H Algebra
∆
= AbelianMonoid(D , id , Op)
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132 recursive iter( , , , )
133 iter(vs, x , vp, i)

∆
= if cnd(vs, Len(vs))

134 then vs
135 else iter(vs ◦ 〈fc(last(vs), x , vp, i)〉, x , vp, i)

Alternatively, iter defined as a recursive function:

iter [vs ∈ Iter(Tc), x ∈ T , vp ∈ St(Tp), i ∈ Assig]
∆
=

if cnd(vs, Len(vs))

then vs

else iter [vs ◦ 〈fc(lst(vs), x , vp, i)〉, x , vp, i ]
146 Gp(x )

∆
= [i ∈ Assig 7→ gp(x , i)]

147 Fr(x , vc)
∆
= [i ∈ Assig 7→ fr(x , vc, i)]

148 Fc(x , vp)
∆
= [i ∈ Assig 7→ last(iter(〈v0(x )〉, x , vp, i))]

Informal notation:

A(x)
∆
=

⊗

i ∈ Ix

#«
f r

i(
x , i ∈ N 7→ last(iter(〈v0(x)〉, x , #«

g p(x), i))
)

where Ix
∆
= {i ∈ lBnd(x)..uBnd(x) : prop(i)}

161 A(x )
∆
= M !BigOpP(lBnd(x ), uBnd(x ), prop, lambda i : Fr(x , Fc(x , Gp(x )))[i ])

163

Operational specification

169 vs
∆
= 〈X , p, c, r , rs, s〉

171 Init
∆
= ∧ in ∈ T ∧ pre(in)

172 ∧X = [I ∈ Index 7→ if I = I 0 then in else Undef ]
173 ∧ p = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
174 ∧ c = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
175 ∧ s = [I ∈ Index 7→ [i ∈ Assig 7→ Undef ]]
176 ∧ rs = [I ∈ Index 7→ [i ∈ Assig 7→ false]]
177 ∧ r = [I ∈ Index 7→ id ]

179 P(I , i)
∆
=

180 ∧ ¬wrt(p[I ][i ])
181 ∧ wrts(p[I ], deps(X [I ], Dep pp, i) \ {i})
182 ∧ p′ = [p except ! [I ][i ] = fp(X [I ], p[I ], i)]
183 ∧ unchanged 〈X , c, r , rs, s〉

185 Cstart(I , i)
∆
=

186 ∧ ¬wrt(s[I ][i ])
187 ∧ wrts(p[I ], deps(X [I ], Dep pc, i))
188 ∧ s ′ = [s except ! [I ][i ] = 〈v0(X [I ])〉]
189 ∧ unchanged 〈X , p, c, r , rs〉

191 Cstep(I , i)
∆
=

192 ∧ wrt(s[I ][i ])
193 ∧ ¬cnd(s[I ][i ], Len(s[I ][i ]))
194 ∧ s ′ = [s except ! [I ][i ] = @ ◦ 〈fc(last(s[I ][i ]), X [I ], p[I ], i)〉]
195 ∧ unchanged 〈X , p, c, r , rs〉

197 Cend(I , i)
∆
=

198 ∧ ¬wrt(c[I ][i ])
199 ∧ wrt(s[I ][i ])
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200 ∧ cnd(s[I ][i ], Len(s[I ][i ]))
201 ∧ c′ = [c except ! [I ][i ] = last(s[I ][i ])]
202 ∧ unchanged 〈X , p, r , rs, s〉

204 R(I , i)
∆
=

205 ∧ ¬red(I , i)
206 ∧ wrts(c[I ], deps(X [I ], Dep cr , i))
207 ∧ r ′ = [r except ! [I ] = Op(@, fr(X [I ], c[I ], i))]
208 ∧ rs ′ = [rs except ! [I ][i ] = true]
209 ∧ unchanged 〈X , p, c, s〉

211 Done
∆
= ∧ ∀ I ∈ WDIndex : end(I )

212 ∧ unchanged 〈in, vs〉

214 Step
∆
= ∧ ∃ I ∈ WDIndex :

215 ∃ i ∈ It(X [I ]) : ∨ P(I , i)
216 ∨ Cstart(I , i)
217 ∨ Cstep(I , i)
218 ∨ Cend(I , i)
219 ∨ R(I , i)
220 ∧ unchanged in

222 Next
∆
= Step ∨Done

224 Spec
∆
= Init ∧2[Next ]〈in, vs〉

226 FairSpec
∆
= Spec ∧WFvs(Step)

228

Properties

234 IndexInv
∆
= WDIndex = {I 0}

236 TypeInv
∆
=

237 ∧ in ∈ T
238 ∧X ∈ [Index → T ∪ {Undef }] ∧X [I 0] = in
239 ∧ p ∈ [Index → St(Tp)]
240 ∧ c ∈ [Index → St(Tc)]
241 ∧ s ∈ [Index → St(Iter(Tc))]
242 ∧ r ∈ [Index → D ]
243 ∧ rs ∈ [Index → [Assig → boolean ]]

245 PInv
∆
=

246 ∀ i ∈ It(X [I 0]) :
247 wrt(p[I 0][i ])⇒ ∧ wrts(p[I 0], deps(X [I 0], Dep pp, i))
248 ∧ p[I 0][i ] = gp(X [I 0], i)

250 CInv
∆
=

251 ∀ i ∈ It(X [I 0]) :
252 wrt(c[I 0][i ])⇒ ∧ wrts(p[I 0], deps(X [I 0], Dep pc, i))
253 ∧ c[I 0][i ] = last(iter(〈v0(X [I 0])〉, X [I 0], p[I 0], i))

255 RInv1
∆
=

256 ∀ i ∈ It(X [I 0]) :
257 red(I 0, i)⇒ wrts(c[I 0], deps(X [I 0], Dep cr , i))
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259 RInv2
∆
=

260 r [I 0] = M !BigOpP(lBnd(X [I 0]), uBnd(X [I 0]),
261 lambda i : prop(i) ∧ red(I 0, i),
262 lambda i : fr(X [I 0], c[I 0], i))

264 Inv
∆
= ∧ TypeInv

265 ∧ IndexInv
266 ∧ PInv
267 ∧ CInv
268 ∧ RInv1
269 ∧ RInv2

271 Correctness
∆
= end(I 0)⇒ r [I 0] = A(X [I 0])

273 Termination
∆
= 3end(I 0)

Refinement

279 fcS (x , vp, i)
∆
= last(iter(〈v0(x )〉, x , vp, i))

281 PCR A
∆
= instance PCR A

282 with X ← X , p ← p, c ← c, r ← r , rs ← rs,
283 T ← T , Tp ← Tp, Tc ← Tc, D ← D ,
284 id ← id , Op ← Op,
285 lBnd ← lBnd , uBnd ← uBnd , prop ← prop,
286 fp ← fp, fc ← fcS , fr ← fr , gp ← gp,
287 Dep pp ← Dep pp, Dep pc ← Dep pc, Dep cr ← Dep cr

289

287



1 module PCR A it B

PCR with iterative consumer over a basic PCR.

-----------------------------------------------------------------

// PCR A

fun fp1(x1,p1,i) = ... // fp1 : T x St(Tp1) x N -> Tp1

fun fr1(x1,c1,i) = ... // fr1 : T x St(D2) x N -> D1

fun cnd(s,k) = ... // cnd : St(D2) x N -> Bool

dep p1(i-k) -> p1(i)

dep p1(i[+/-]k) -> c1(i)

dep c1(i[+/-]k) -> r1(i)

lbnd A = \x1. ...

ubnd A = \x1. ...

prop A = \i. ...

PCR A(x1) // x1 \in T

par

p1 = produce fp1 x p1

c1 = iterate cnd B (v0 x) x p1

r1 = reduce Op1 id1 (fr1 x1 c1) // r1 \in D1

// PCR B

// T2 = D2 x T x St(Tp1) x N

fun fp2(x2,p2,j) = ... // fp2 : T2 x St(Tp2) x N -> Tp2

fun fc2(x2,p2,j) = ... // fc2 : T2 x St(Tp2) x N -> Tc2

fun fr2(x2,c2,j) = ... // fr2 : T2 x St(Tc2) x N -> D2

dep p2(i-k) -> p2(i)

dep p2(i[+/-]k) -> c2(i)

dep c2(i[+/-]k) -> r2(i)

lbnd B = \x2. ...

ubnd B = \x2. ...

prop B = \j. ...

PCR B(x2) // x2 \in T2

par

p2 = produce fp2 x2 p2

c2 = consume fc2 x2 p2

r2 = reduce Op2 id2 (fr2 x2 c2) // r2 \in D2

-----------------------------------------------------------------

49 extends AbstractAlgebra, Naturals, Sequences, Bags, SeqUtils, ArithUtils, SequencesExt , TLC

51

PCR A constants and variables

57 constants I 0, pre( ),
58 T , Tp1, D1,
59 id1, Op1( , ), v0( ),
60 lBnd1( ), uBnd1( ), prop1( ),
61 fp1( , , ), fr1( , , ), gp1( , ), cnd( , ),
62 Dep pp1, Dep pc1, Dep cr1

64 variables in, X 1, p1, c1, r1, rs1, s

PCR B constants and variables

70 constants Tp2, Tc2, D2,
71 id2, Op2( , ),
72 lBnd2( ), uBnd2( ), prop2( ),
73 fp2( , , ), fc2( , , ), fr2( , , ), gp2( , ),
74 Dep pp2, Dep pc2, Dep cr2

B.10 Iteration over PCR
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76 variables X 2, p2, c2, r2, rs2

78

General definitions

84 Undef
∆
= choose x : x /∈ union {T , Tp1, Tp2, Tc2, D1, D2}

86 last(S )
∆
= S [Len(S )]

87 wrt(v)
∆
= v 6= Undef

88 wrts(v , S )
∆
= ∀ k ∈ S : wrt(v [k ])

89 eqs(v1, v2, S )
∆
= ∀ k ∈ S : wrt(v1[k ]) ∧ v1[k ] = v2[k ]

91

PCR A definitions and assumptions

97 IndexA
∆
= Seq(Nat)

98 AssigA
∆
= Nat

99 ItA(x )
∆
= {i ∈ lBnd1(x ) . . uBnd1(x ) : prop1(i)}

100 WDIndexA
∆
= {I ∈ IndexA : wrt(X 1[I ])}

101 StA(R)
∆
= [AssigA→ R ∪ {Undef }]

102 Iter(Z )
∆
= Seq(Z )

103 redA(I , i)
∆
= rs1[I ][i ]

104 endA(I )
∆
= ∀ i ∈ ItA(X 1[I ]) : redA(I , i)

106 depsA(x , d , i)
∆
=

107 {i − k : k ∈ {k ∈ d [1] : i − k ≥ lBnd1(x ) ∧ prop1(i − k)}}
108 ∪ {i}
109 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd1(x ) ∧ prop1(i + k)}}

111 axiom H TypeA
∆
=

112 ∧ I 0 ∈ IndexA
113 ∧ ∀ x ∈ T : lBnd1(x ) ∈ Nat
114 ∧ ∀ x ∈ T : uBnd1(x ) ∈ Nat
115 ∧ ∀ i ∈ Nat : prop1(i) ∈ boolean
116 ∧ ∀ x ∈ T : pre(x ) ∈ boolean
117 ∧ ∀ x ∈ T : v0(x ) ∈ D2
118 ∧Dep pp1 ∈ (subset (Nat \ {0}))× (subset {})
119 ∧Dep pc1 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
120 ∧Dep cr1 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

122 axiom H BFunTypeA
∆
=

123 ∧ ∀ x ∈ T , i ∈ AssigA :
124 ∧ gp1(x , i) ∈ Tp1 ∪ {Undef }
125 ∧ ∀ vp ∈ StA(Tp1) : fp1(x , vp, i) ∈ Tp1 ∪ {Undef }
126 ∧ ∀ vc ∈ StA(D2) : fr1(x , vc, i) ∈ D1 ∪ {Undef }
127 ∧ ∀ vc ∈ Seq(Tp1), k ∈ Nat : cnd(vc, k) ∈ boolean

129 axiom H BFunWDA
∆
=

130 ∀ x ∈ T : ∀ i ∈ ItA(x ) :
131 ∧ gp1(x , i) ∈ Tp1
132 ∧ ∀ vp ∈ StA(Tp1) : wrts(vp, depsA(x , Dep pp1, i) \ {i})⇒ fp1(x , vp, i) ∈ Tp1
133 ∧ ∀ vc ∈ StA(Tp1) : wrts(vc, depsA(x , Dep cr1, i)) ⇒ fr1(x , vc, i) ∈ D1

135 axiom H ProdEqA
∆
=

136 ∀ x ∈ T : ∀ i ∈ ItA(x ), vp ∈ StA(Tp1) :
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137 wrts(vp, depsA(x , Dep pp1, i) \ {i})⇒ fp1(x , vp, i) = gp1(x , i)

139 axiom H fpRelevanceA
∆
=

140 ∀ x ∈ T : ∀ i ∈ ItA(x ), vp1 ∈ StA(Tp1), vp2 ∈ StA(Tp1) :
141 eqs(vp1, vp2, depsA(x , Dep pp1, i) \ {i})⇒ fp1(x , vp1, i) = fp1(x , vp2, i)

143 axiom H frRelevanceA
∆
=

144 ∀ x ∈ T : ∀ i ∈ ItA(x ), vc1 ∈ StA(Tp1), vc2 ∈ StA(Tp1) :
145 eqs(vc1, vc1, depsA(x , Dep cr1, i))⇒ fr1(x , vc1, i) = fr1(x , vc2, i)

147 lemma H ProdEqInvA
∆
=

148 ∀ x ∈ T : ∀ i ∈ ItA(x ) :
149 wrt(p1[I 0][i ])⇒ fp1(x , p1[I 0], i) = gp1(x , i)

PCR B definitions and assumptions

155 IndexB
∆
= Seq(Nat)

156 AssigB
∆
= Nat

157 ItB(x )
∆
= {i ∈ lBnd2(x ) . . uBnd2(x ) : prop2(i)}

158 WDIndexB
∆
= {I ∈ IndexB : wrt(X 2[I ])}

159 StB(R)
∆
= [AssigB → R ∪ {Undef }]

160 redB(I , i)
∆
= rs2[I ][i ]

161 endB(I )
∆
= ∀ i ∈ ItB(X 2[I ]) : redB(I , i)

163 depsB(x , d , i)
∆
=

164 {i − k : k ∈ {k ∈ d [1] : i − k ≥ lBnd2(x ) ∧ prop2(i − k)}}
165 ∪ {i}
166 ∪ {i + k : k ∈ {k ∈ d [2] : i + k ≤ uBnd2(x ) ∧ prop2(i + k)}}

168 T2
∆
= D2× T × StA(Tp1)×AssigA

170 axiom H TypeB
∆
=

171 ∧ ∀ x ∈ T2 : lBnd2(x ) ∈ Nat
172 ∧ ∀ x ∈ T2 : uBnd2(x ) ∈ Nat
173 ∧ ∀ i ∈ Nat : prop2(i) ∈ boolean
174 ∧Dep pp2 ∈ (subset (Nat \ {0}))× (subset {})
175 ∧Dep pc2 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
176 ∧Dep cr2 ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

178 axiom H BFunTypeB
∆
=

179 ∀ x ∈ T2, i ∈ AssigB :
180 ∧ gp2(x , i) ∈ Tp2 ∪ {Undef }
181 ∧ ∀ vp ∈ StB(Tp2) : fp2(x , vp, i) ∈ Tp2 ∪ {Undef }
182 ∧ ∀ vp ∈ StB(Tp2) : fc2(x , vp, i) ∈ Tc2 ∪ {Undef }
183 ∧ ∀ vc ∈ StB(Tc2) : fr2(x , vc, i) ∈ T2 ∪ {Undef }

185 axiom H BFunWDB
∆
=

186 ∀ x ∈ T2 : ∀ i ∈ ItB(x ) :
187 ∧ gp2(x , i) ∈ Tp2
188 ∧ ∀ vp ∈ StB(Tp2) : wrts(vp, depsB(x , Dep pp2, i) \ {i})⇒ fp2(x , vp, i) ∈ Tp2
189 ∧ ∀ vp ∈ StB(Tp2) : wrts(vp, depsB(x , Dep pc2, i)) ⇒ fc2(x , vp, i) ∈ Tc2
190 ∧ ∀ vc ∈ StB(Tc2) : wrts(vc, depsB(x , Dep cr2, i)) ⇒ fr2(x , vc, i) ∈ T2

192 axiom H fpRelevanceB
∆
=

193 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vp1 ∈ StB(Tp2), vp2 ∈ StB(Tp2) :
194 eqs(vp1, vp2, depsB(x , Dep pp2, i) \ {i})⇒ fp2(x , vp1, i) = fp2(x , vp2, i)
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196 axiom H fcRelevanceB
∆
=

197 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vp1 ∈ StB(Tp2), vp2 ∈ StB(Tp2) :
198 eqs(vp1, vp2, depsB(x , Dep pc2, i))⇒ fc2(x , vp1, i) = fc2(x , vp2, i)

200 axiom H frRelevanceB
∆
=

201 ∀ x ∈ T2 : ∀ i ∈ ItB(x ), vc1 ∈ StB(Tc2), vc2 ∈ StB(Tc2) :
202 eqs(vc1, vc1, depsB(x , Dep cr2, i))⇒ fr2(x , vc1, i) = fr2(x , vc2, i)

204 lemma H ProdEqInvB
∆
=

205 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
206 wrt(p1[I ][i ])⇒ fp2(X 2[I ], p2[I ], i) = gp2(X 2[I ], i)

208

Functional specification

214 M 2
∆
= instance AbelianMonoidBigOp

215 with D ← D2, Id ← id2, ⊗ ← Op2

217 axiom H AlgebraB
∆
= AbelianMonoid(Tp2, id2, Op2)

219 Gp2(x )
∆
= [i ∈ AssigB 7→ gp2(x , i)]

220 Fc2(x , vc)
∆
= [i ∈ AssigB 7→ fc2(x , vc, i)]

221 Fr2(x , vc)
∆
= [i ∈ AssigB 7→ fr2(x , vc, i)]

Informal notation:

B(x2)
∆
=

⊕

j ∈ Jx2

#«
f r2

j (
x2,

#«
f c2 (x2,

#«
g p2 (x2))

)
where Jx2

∆
= {j ∈ lBnd2(x2)..uBnd2(x2) : prop2(j )}

233 B(x2)
∆
= M 2 !BigOpP(lBnd2(x2), uBnd2(x2), prop2,

234 lambda j : Fr2(x2, Fc2(x2, Gp2(x2)))[j ])

236 M 1
∆
= instance AbelianMonoidBigOp

237 with D ← D1, Id ← id1, ⊗ ← Op1

239 axiom H AlgebraA
∆
= AbelianMonoid(D1, id1, Op1)

241 recursive iter( , , , )
242 iter(vs, x , vp, i)

∆
= if cnd(vs, Len(vs))

243 then vs
244 else iter(vs ◦ 〈B(〈last(vs), x , vp, i〉)〉, x , vp, i)

Alternatively, iter defined as a recursive function:

iter [vs ∈ Iter(D2), x ∈ T , vp ∈ StA(Tp1), i ∈ AssigA]
∆
=

if cnd(vs, Len(vs))

then vs

else iter [vs ◦ 〈B(〈lst(vs), x , vp, i〉)〉, x , vp, i ]
255 Gp1(x )

∆
= [i ∈ AssigA 7→ gp1(x , i)]

256 Fc1(x1, vp)
∆
= [i ∈ AssigA 7→ last(iter(〈v0(x1)〉, x1, vp, i))]

257 Fr1(x , vc)
∆
= [i ∈ AssigA 7→ fr1(x , vc, i)]

Informal notation:

A(x1)
∆
=

⊗

i ∈ Ix1

#«
f r1

i(
x1, i ∈ N 7→ last(iter(〈v0(x1)〉, x1,

#«
g p1 (x1), i))

)

where Ix1
∆
= {i ∈ lBnd1(x1)..uBnd1(x1) : prop1(i)}
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270 A(x1)
∆
= M 1 !BigOpP(lBnd1(x1), uBnd1(x1), prop1,

271 lambda i : Fr1(x1, Fc1(x1, Gp1(x1)))[i ])

273

Operational specification

279 vs1
∆
= 〈X 1, p1, c1, r1, rs1, s, X 2〉

280 vs2
∆
= 〈p2, c2, r2, rs2〉

282 InitA
∆
= ∧ in ∈ T ∧ pre(in)

283 ∧X 1 = [I ∈ IndexA 7→ if I = I 0 then in else Undef ]
284 ∧ p1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ Undef ]]
285 ∧ c1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ Undef ]]
286 ∧ s = [I ∈ IndexA 7→ [i ∈ AssigA 7→ Undef ]]
287 ∧ rs1 = [I ∈ IndexA 7→ [i ∈ AssigA 7→ false]]
288 ∧ r1 = [I ∈ IndexA 7→ id1]

290 InitB
∆
= ∧X 2 = [I ∈ IndexB 7→ Undef ]

291 ∧ p2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ Undef ]]
292 ∧ c2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ Undef ]]
293 ∧ rs2 = [I ∈ IndexB 7→ [i ∈ AssigB 7→ false]]
294 ∧ r2 = [I ∈ IndexB 7→ id2]

296 Init
∆
= InitA ∧ InitB

298 P1(I , i)
∆
=

299 ∧ ¬wrt(p1[I ][i ])
300 ∧ wrts(p1[I ], depsA(X 1[I ], Dep pp1, i) \ {i})
301 ∧ p1′ = [p1 except ! [I ][i ] = fp1(X 1[I ], p1[I ], i)]
302 ∧ unchanged 〈X 1, c1, r1, rs1, s, X 2〉

304 C1start(I , i)
∆
=

305 ∧ wrts(p1[I ], depsA(X 1[I ], Dep pc1, i))
306 ∧ ¬wrt(s[I ][i ])
307 ∧ s ′ = [s except ! [I ][i ] = 〈v0(X 1[I ])〉]
308 ∧ unchanged 〈X 1, p1, c1, r1, rs1, X 2〉

310 C1stepIni(I , i)
∆
=

311 ∧ wrt(s[I ][i ])
312 ∧ ¬cnd(s[I ][i ], Len(s[I ][i ]))
313 ∧ ¬wrt(X 2[I ◦ 〈Len(s[I ][i ])〉])
314 ∧X 2′ = [X 2 except ! [I ◦ 〈Len(s[I ][i ])〉] = 〈last(s[I ][i ]), X 1[I ], p1[I ], i〉]
315 ∧ unchanged 〈X 1, p1, c1, r1, rs1, s〉

317 C1stepEnd(I , i)
∆
=

318 ∧ wrt(s[I ][i ])
319 ∧ wrt(X 2[I ◦ 〈Len(s[I ][i ])〉])
320 ∧ endB(I ◦ 〈Len(s[I ][i ])〉)
321 ∧ s ′ = [s except ! [I ][i ] = @ ◦ 〈r2[I ◦ 〈Len(s[I ][i ])〉]〉]
322 ∧ unchanged 〈X 1, p1, c1, r1, rs1, X 2〉

324 C1end(I , i)
∆
=

325 ∧ ¬wrt(c1[I ][i ])
326 ∧ wrt(s[I ][i ])
327 ∧ cnd(s[I ][i ], Len(s[I ][i ]))
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328 ∧ c1′ = [c1 except ! [I ][i ] = last(s[I ][i ])]
329 ∧ unchanged 〈X 1, p1, r1, rs1, s, X 2〉

331 R1(I , i)
∆
=

332 ∧ ¬redA(I , i)
333 ∧ wrts(c1[I ], depsA(X 1[I ], Dep cr1, i))
334 ∧ r1′ = [r1 except ! [I ] = Op1(@, fr1(X 1[I ], c1[I ], i))]
335 ∧ rs1′ = [rs1 except ! [I ][i ] = true]
336 ∧ unchanged 〈X 1, p1, c1, s, X 2〉

338 P2(I , i)
∆
=

339 ∧ ¬wrt(p2[I ][i ])
340 ∧ wrts(p2[I ], depsB(X 2[I ], Dep pp2, i) \ {i})
341 ∧ p2′ = [p2 except ! [I ][i ] = fp2(X 2[I ], p2[I ], i)]
342 ∧ unchanged 〈c2, r2, rs2〉

344 C2(I , i)
∆
=

345 ∧ ¬wrt(c2[I ][i ])
346 ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
347 ∧ c2′ = [c2 except ! [I ][i ] = fc2(X 2[I ], p2[I ], i)]
348 ∧ unchanged 〈p2, r2, rs2〉

350 R2(I , i)
∆
=

351 ∧ ¬redB(I , i)
352 ∧ wrts(c2[I ], depsB(X 2[I ], Dep cr2, i))
353 ∧ r2′ = [r2 except ! [I ] = Op2(@, fr2(X 2[I ], c2[I ], i))]
354 ∧ rs2′ = [rs2 except ! [I ][i ] = true]
355 ∧ unchanged 〈p2, c2〉

357 Done
∆
= ∧ ∀ I ∈ WDIndexA : endA(I )

358 ∧ ∀ I ∈ WDIndexB : endB(I )
359 ∧ unchanged 〈in, vs1, vs2〉

361 StepA
∆
= ∧ ∃ I ∈ WDIndexA :

362 ∃ i ∈ ItA(X 1[I ]) : ∨ P1(I , i)
363 ∨ C1start(I , i)
364 ∨ C1stepIni(I , i)
365 ∨ C1stepEnd(I , i)
366 ∨ C1end(I , i)
367 ∨ R1(I , i)
368 ∧ unchanged 〈in, vs2〉

370 StepB
∆
= ∧ ∃ I ∈ WDIndexB :

371 ∃ i ∈ ItB(X 2[I ]) : ∨ P2(I , i)
372 ∨ C2(I , i)
373 ∨ R2(I , i)
374 ∧ unchanged 〈in, vs1〉

376 Next
∆
= StepA ∨ StepB ∨Done

378 Spec
∆
= Init ∧2[Next ]〈in, vs1, vs2〉

380 FairSpec
∆
= Spec ∧WFvs1(StepA) ∧WFvs2(StepB)

382
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PCR A properties

388 IndexInvA
∆
= WDIndexA = {I 0}

390 TypeInvA
∆
=

391 ∧ in ∈ T
392 ∧X 1 ∈ [IndexA→ T ∪ {Undef }] ∧X 1[I 0] = in
393 ∧ p1 ∈ [IndexA→ StA(Tp1)]
394 ∧ c1 ∈ [IndexA→ StA(D2)]
395 ∧ s ∈ [IndexA→ StA(Iter(D2))]
396 ∧ r1 ∈ [IndexA→ D1]
397 ∧ rs1 ∈ [IndexA→ [AssigA→ boolean ]]

399 PInvA
∆
=

400 ∀ i ∈ ItA(X 1[I 0]) :
401 wrt(p1[I 0][i ])⇒ ∧ wrts(p1[I 0], depsA(X 1[I 0], Dep pp1, i))
402 ∧ p1[I 0][i ] = gp1(X 1[I 0], i)

404 CInv1A
∆
=

405 ∀ i ∈ ItA(X 1[I 0]) :
406 wrt(c1[I 0][i ])⇒ ∧ wrts(p1[I 0], depsA(X 1[I 0], Dep pc1, i))
407 ∧ wrt(s[I 0][i ])
408 ∧ c1[I 0][i ] = last(s[I 0][i ])

410 CInv2A
∆
=

411 ∀ i ∈ ItA(X 1[I 0]) :
412 wrt(c1[I 0][i ])⇒ ∀ k ∈ 1 . . (Len(s[I 0][i ])− 1) :
413 ∧ wrt(X 2[I 0 ◦ 〈k〉])
414 ∧ endB(I 0 ◦ 〈k〉)

416 RInv1A
∆
=

417 ∀ i ∈ ItA(X 1[I 0]) :
418 redA(I 0, i)⇒ wrts(c1[I 0], depsA(X 1[I 0], Dep cr1, i))

420 RInv2A
∆
=

421 r1[I 0] = M 1 !BigOpP(lBnd1(X 1[I 0]), uBnd1(X 1[I 0]),
422 lambda i : prop1(i) ∧ redA(I 0, i),
423 lambda i : fr1(X 1[I 0], c1[I 0], i))

425 InvA
∆
= ∧ IndexInvA

426 ∧ TypeInvA
427 ∧ PInvA
428 ∧ CInv1A
429 ∧ CInv2A
430 ∧ RInv1A
431 ∧ RInv2A

433 CorrectnessA
∆
= endA(I 0)⇒ r1[I 0] = A(X 1[I 0])

435 TerminationA
∆
= 3endA(I 0)

PCR B properties

441 IndexInvB
∆
= WDIndexB ⊆ {I 0 ◦ 〈i〉 : i ∈ Nat}

443 TypeInvB
∆
=

444 ∧X 2 ∈ [IndexB → T2 ∪ {Undef }]
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445 ∧ p2 ∈ [IndexB → StB(Tp2)]
446 ∧ c2 ∈ [IndexB → StB(Tc2)]
447 ∧ r2 ∈ [IndexB → D2]
448 ∧ rs2 ∈ [IndexB → [AssigB → boolean ]]

450 PInvB
∆
=

451 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
452 wrt(p2[I ][i ])⇒ ∧ wrts(p2[I ], depsB(X 2[I ], Dep pp2, i))
453 ∧ p2[I ][i ] = gp2(X 2[I ], i)

455 CInvB
∆
=

456 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
457 wrt(c2[I ][i ])⇒ ∧ wrts(p2[I ], depsB(X 2[I ], Dep pc2, i))
458 ∧ c2[I ][i ] = fc2(X 2[I ], p2[I ], i)

461 RInv1B
∆
=

462 ∀ I ∈ WDIndexB : ∀ i ∈ ItB(X 2[I ]) :
463 redB(I , i)⇒ wrts(c2[I ], depsB(X 2[I ], Dep cr2, i))

465 RInv2B
∆
=

466 ∀ I ∈ WDIndexB :
467 r2[I ] = M 2 !BigOpP(lBnd2(X 2[I ]), uBnd2(X 2[I ]),
468 lambda j : prop2(j ) ∧ redB(I , j ),
469 lambda j : fr2(X 2[I ], c2[I ], j ))

471 InvB
∆
= ∧ TypeInvB

472 ∧ IndexInvB
473 ∧ PInvB
474 ∧ CInvB
475 ∧ RInv1B
476 ∧ RInv2B

478 CorrectnessB
∆
= ∀ I ∈ WDIndexB : endB(I )⇒ r2[I ] = B(X 2[I ])

480 TerminationB
∆
= 3(∀ I ∈ WDIndexB : endB(I ))

Conjoint properties

486 TypeInv
∆
= ∧ TypeInvA

487 ∧ TypeInvB

489 Inv
∆
= ∧ TypeInv

490 ∧ InvA
491 ∧ InvB

493 Correctness
∆
= ∧ CorrectnessA

494 ∧ CorrectnessB

496 Termination
∆
= ∧ TerminationA

497 ∧ TerminationB

Refinement

503 fcS (y , x , vp, i)
∆
= B(〈y , x , vp, i〉)

505 PCR A it
∆
= instance PCR A it

506 with X ← X 1, p ← p1, c ← c1, r ← r1, rs ← rs1, s ← s,
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507 T ← T , Tp ← Tp1, Tc ← D2, D ← D1,
508 id ← id1, Op ← Op1, v0← v0,
509 lBnd ← lBnd1, uBnd ← uBnd1, prop ← prop1,
510 fp ← fp1, fc ← fcS , fr ← fr1, gp ← gp1,
511 Dep pp ← Dep pp1, Dep pc ← Dep pc1, Dep cr ← Dep cr1

513
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Appendix C

Formal proofs on abstract PCR mod-

els
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1 module PCR A Thms

3 theorem Thm Correctness
∆
= Spec ⇒ 2Correctness

4 〈1〉 define x
∆
= X [I 0]

5 y
∆
= r [I 0]

6 m
∆
= lBnd(x )

7 n
∆
= uBnd(x )

8 Q(j )
∆
= prop(j )

9 f (i)
∆
= Fr(x , Fc(x , Gp(x )))[i ]

10 〈1〉1. Init ⇒ Correctness
11 〈2〉0. suffices assume Init ,
12 end(I 0)
13 prove y = A(x )
14 by def Correctness
15 〈2〉1. ∧ I 0 ∈ Seq(Nat)
16 ∧ x ∈ T
17 ∧ It(x ) ⊆ Nat
18 by 〈2〉0, H Type def Init , It
19 〈2〉A.case It(x ) = {}
20 〈3〉1. m ∈ Nat ∧ n ∈ Nat by 〈2〉1, H Type
21 〈3〉A.case m > n
22 〈4〉1. A(x ) = id
23 by 〈3〉1, 〈3〉A, H AMon, H MeqMT ,
24 MT !EmptyIntvAssumpP def A
25 〈4〉2. y = id
26 by 〈2〉0, 〈2〉1 def Init
27 〈4〉 qed
28 by 〈4〉1, 〈4〉2
29 〈3〉B.case ∀ i ∈ m . . n : ¬Q(i)
30 〈4〉1. ∀ i ∈ m . . n : Q(i) ∈ boolean
31 by 〈3〉1, m . . n ⊆ Nat , H Type
32 〈4〉2. ∀ i ∈ {j ∈ m . . n : Q(j )} : f (i) ∈ D
33 by 〈2〉A, 〈2〉1, 〈3〉1 def f , It
34 〈4〉 hide def m, n, Q , f
35 〈4〉3. M !BigOpP(m, n, Q , f ) = id
36 by 〈3〉1, 〈3〉B, 〈4〉1, 〈4〉2, H AMon, H MeqMT ,
37 MT !FalsePredicate, Isa def A
38 〈4〉4. A(x ) = id
39 by 〈4〉3 def A, f
40 〈4〉5. y = id
41 by 〈2〉0, 〈2〉1 def Init
42 〈4〉 qed
43 by 〈4〉4, 〈4〉5
44 〈3〉 qed
45 by 〈2〉A, 〈3〉A, 〈3〉B def It
46 〈2〉B.case It(x ) 6= {}
47 〈3〉1. ∀ i ∈ It(x ) : red(I 0, i) by 〈2〉0 def end
48 〈3〉2. ∀ i ∈ Nat : ¬red(I 0, i) by 〈2〉0, 〈2〉1 def Init
49 〈3〉3. false by 〈2〉1, 〈2〉B, 〈3〉1, 〈3〉2
50 〈3〉 qed by 〈3〉3
51 〈2〉 qed
52 by 〈2〉A, 〈2〉B

C.1 Basic PCR: Correctness
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53 〈1〉2. ∧ Inv
54 ∧ Correctness
55 ∧ [Next ]〈in, vs〉
56 ⇒ Correctness ′

57 〈2〉0. suffices assume IndexInv , TypeInv , PInv ,
58 CInv , RInv1, RInv2,
59 Correctness,
60 [Next ]〈in, vs〉
61 prove Correctness ′

62 by def Inv
63 〈2〉A.case Step
64 〈3〉0. suffices assume ∃ i ∈ It(x ) : ∨ P(I 0, i)
65 ∨ C (I 0, i)
66 ∨ R(I 0, i)
67 prove Correctness ′

68 by 〈2〉0, 〈2〉A def Step, IndexInv
69 〈3〉1. pick i ∈ It(x ) : ∨ P(I 0, i)
70 ∨ C (I 0, i)
71 ∨ R(I 0, i)
72 by 〈3〉0
73 〈3〉2. x ∈ T
74 by 〈2〉0 def IndexInv , TypeInv , WDIndex , wrt
75 〈3〉3. ∧ I 0 ∈ Seq(Nat)
76 ∧ I 0 ∈ WDIndex
77 ∧ i ∈ Nat
78 ∧ i ∈ {k ∈ m . . n : Q(k)}
79 ∧ It(x ) ⊆ Nat
80 by 〈2〉0, 〈3〉2, H Type def IndexInv , WDIndex , It
81 〈3〉4. m ∈ Nat ∧ n ∈ Nat
82 by 〈2〉0, 〈3〉2, H Type def TypeInv , m, n
83 〈3〉5. ∀ j ∈ It(x ) :
84 ∧ red(I 0, j ) ⇒ wrt(c[I 0][j ])
85 ∧ wrt(c[I 0][j ]) ⇒ wrt(p[I 0][j ])
86 by 〈2〉0 def CInv , RInv1, wrts, deps

88 〈3〉A.case P(I 0, i)
89 〈4〉0. suffices assume P(I 0, i),
90 end(I 0)′

91 prove false
92 by 〈2〉0, 〈3〉A def P , Correctness
93 〈4〉1. ∧ ¬wrt(p[I 0][i ])
94 ∧ 〈X , rs〉′ = 〈X , rs〉 by 〈4〉0 def P
95 〈4〉2. ¬wrt(p[I 0][i ])⇒ ¬red(I 0, i) by 〈3〉5
96 〈4〉3. ¬red(I 0, i) by 〈4〉1, 〈4〉2
97 〈4〉4. ¬red(I 0, i)′ by 〈4〉1, 〈4〉3
98 〈4〉5. ∃ j ∈ It(x )′ : ¬red(I 0, j )′ by 〈4〉1, 〈4〉4 def It
99 〈4〉6. false by 〈4〉5, end(I 0)′ def end

100 〈4〉 qed
101 by 〈4〉6

103 〈3〉B.case C (I 0, i)
104 〈4〉0. suffices assume C (I 0, i),
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105 end(I 0)′

106 prove false
107 by 〈2〉0, 〈3〉B def C , Correctness
108 〈4〉1. ∧ ¬wrt(c[I 0][i ])
109 ∧ 〈X , rs〉′ = 〈X , rs〉 by 〈4〉0 def C
110 〈4〉2. ¬wrt(c[I 0][i ])⇒ ¬red(I 0, i) by 〈3〉5
111 〈4〉3. ¬red(I 0, i) by 〈4〉1, 〈4〉2
112 〈4〉4. ¬red(I 0, i)′ by 〈4〉1, 〈4〉3
113 〈4〉5. ∃ j ∈ It(x )′ : ¬red(I 0, j )′ by 〈4〉1, 〈4〉4 def It
114 〈4〉6. false by 〈4〉5, end(I 0)′ def end
115 〈4〉 qed
116 by 〈4〉6

118 〈3〉C.case R(I 0, i)
119 〈4〉0. suffices assume R(I 0, i),
120 end(I 0)′

121 prove y ′ = A(x )
122 by 〈2〉0, 〈3〉C def R, Correctness, A, M !BigOpP , M !BigOp, M !bigOp
123 〈4〉 define g(j )

∆
= fr(x , c[I 0], j )

124 〈4〉1. ∧ ¬red(I 0, i)
125 ∧ wrts(c[I 0], deps(x , Dep cr , i))
126 ∧ y ′ = Op(y , g(i))
127 ∧ rs ′ = [rs except ! [I 0][i ] = true]
128 ∧X ′ = X
129 by 〈2〉0, 〈4〉0, 〈3〉3 def TypeInv , R, St

131 〈4〉2. ∧ ∀ j ∈ It(x ) \ {i} : red(I 0, j )
132 ∧ ¬red(I 0, i)
133 〈5〉1. It(x )′ = It(x )
134 by 〈4〉1 def It , m, n
135 〈5〉2. ¬red(I 0, i)
136 by 〈4〉1
137 〈5〉3. rs ′ = [rs except ! [I 0][i ] = true]
138 by 〈4〉1
139 〈5〉4. ∀ j ∈ It(x ) : red(I 0, j )′

140 by 〈4〉0, 〈5〉1 def end
141 〈5〉 qed
142 by 〈5〉2, 〈5〉3, 〈5〉4

144 〈4〉3. ∧ ∀ j ∈ It(x ) : wrt(c[I 0][j ])
145 ∧ ∀ j ∈ It(x ) : wrt(p[I 0][j ])
146 〈5〉1. ∀ j ∈ It(x ) : wrt(c[I 0][j ])
147 〈6〉1. wrt(c[I 0][i ])
148 by 〈4〉1 def wrts, deps
149 〈6〉2. ∀ j ∈ It(x ) \ {i} : wrt(c[I 0][j ])
150 by 〈2〉0, 〈3〉3, 〈3〉5, 〈4〉2
151 〈6〉 qed
152 by 〈2〉0, 〈3〉3, 〈6〉1, 〈6〉2
153 〈5〉2. ∀ j ∈ It(x ) : wrt(p[I 0][j ])
154 by 〈3〉5, 〈5〉1
155 〈5〉 qed
156 by 〈5〉1, 〈5〉2
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158 〈4〉4. ∧ ∀ j ∈ It(x ) : Gp(x )[j ] = p[I 0][j ]
159 ∧Gp(x ) ∈ St(Tp) ∧ p[I 0] ∈ St(Tp)
160 〈5〉1. Gp(x ) ∈ St(Tp)
161 〈6〉1. ∀ j ∈ Nat : gp(x , j ) ∈ Tp ∪ {Undef }
162 by 〈3〉2, 〈3〉3, H BFunType
163 〈6〉 qed
164 by 〈3〉3, 〈6〉1 def Gp, St
165 〈5〉2. p[I 0] ∈ St(Tp)
166 by 〈2〉0, 〈3〉3 def TypeInv
167 〈5〉3. ∀ j ∈ It(x ) : Gp(x )[j ] = p[I 0][j ]
168 〈6〉0. suffices assume new j ∈ It(x )
169 prove gp(x , j ) = fp(x , p[I 0], j )
170 by 〈2〉0, 〈3〉3, 〈4〉3 def PInv , Gp
171 〈6〉 qed
172 by 〈3〉2, 〈4〉3, H ProdEqInv
173 〈5〉 qed
174 by 〈5〉1, 〈5〉2, 〈5〉3 def St

176 〈4〉5. ∧ ∀ j ∈ It(x ) : Fc(x , Gp(x ))[j ] = c[I 0][j ]
177 ∧ Fc(x , Gp(x )) ∈ St(Tc) ∧ c[I 0] ∈ St(Tc)
178 〈5〉1. Fc(x , Gp(x )) ∈ St(Tc)
179 〈6〉1. ∀ j ∈ Nat : fc(x , Gp(x ), j ) ∈ Tc ∪ {Undef }
180 by 〈3〉2, 〈3〉3, 〈4〉4, H BFunType
181 〈6〉 qed
182 by 〈3〉3, 〈6〉1 def Fc, St
183 〈5〉2. c[I 0] ∈ St(Tc)
184 by 〈2〉0, 〈3〉3 def TypeInv
185 〈5〉3. ∀ j ∈ It(x ) : Fc(x , Gp(x ))[j ] = c[I 0][j ]
186 〈6〉0. suffices assume new j ∈ It(x )
187 prove fc(x , Gp(x ), j ) = fc(x , p[I 0], j )
188 by 〈2〉0, 〈3〉3, 〈4〉3 def CInv , Fc
189 〈6〉1. eqs(Gp(x ), p[I 0], deps(x , Dep pc, j ))
190 〈7〉1. deps(x , Dep pc, j ) ⊆ It(x )
191 by 〈3〉2, 〈3〉3, H Type def deps, It
192 〈7〉2. wrts(p[I 0], deps(x , Dep pc, j ))
193 by 〈4〉3, 〈7〉1 def wrts
194 〈7〉3. ∀ k ∈ deps(x , Dep pc, j ) :
195 wrt(p[I 0][k ]) ∧Gp(x )[k ] = p[I 0][k ]
196 by 〈4〉4, 〈7〉1, 〈7〉2 def wrts
197 〈7〉 qed
198 by 〈7〉3 def eqs
199 〈6〉2. Gp(x ) ∈ St(Tp) ∧ p[I 0] ∈ St(Tp)
200 by 〈4〉4
201 〈6〉3. fc(x , Gp(x ), j ) = fc(x , p[I 0], j )
202 by 〈3〉2, 〈3〉3, 〈6〉1, 〈6〉2, H fcRelevance
203 〈6〉 qed
204 by 〈6〉3
205 〈5〉 qed
206 by 〈5〉1, 〈5〉2, 〈5〉3 def St

208 〈4〉6. ∧ ∀ j ∈ It(x ) : f (j ) = g(j )
209 ∧ ∀ j ∈ It(x ) : f (j ) ∈ D ∧ g(j ) ∈ D
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210 〈5〉1. ∀ j ∈ It(x ) : f (j ) = g(j )
211 〈6〉0. suffices assume new j ∈ It(x )
212 prove fr(x , Fc(x , Gp(x )), j ) = fr(x , c[I 0], j )
213 by 〈3〉3 def Fr
214 〈6〉1. eqs(Fc(x , Gp(x )), c[I 0], deps(x , Dep cr , j ))
215 〈7〉1. deps(x , Dep cr , j ) ⊆ It(x )
216 by 〈3〉2, 〈3〉3, H Type def deps, It
217 〈7〉2. wrts(c[I 0], deps(x , Dep cr , j ))
218 by 〈4〉3, 〈7〉1 def wrts
219 〈7〉3. ∀ k ∈ deps(x , Dep cr , j ) :
220 wrt(c[I 0][k ]) ∧ Fc(x , Gp(x ))[k ] = c[I 0][k ]
221 by 〈4〉5, 〈7〉1, 〈7〉2 def wrts
222 〈7〉 qed
223 by 〈7〉3 def eqs
224 〈6〉2. Fc(x , Gp(x )) ∈ St(Tc) ∧ c[I 0] ∈ St(Tc)
225 by 〈4〉5
226 〈6〉3. fr(x , Fc(x , Gp(x )), j ) = fr(x , c[I 0], j )
227 by 〈3〉2, 〈3〉3, 〈6〉1, 〈6〉2, H frRelevance
228 〈6〉 qed
229 by 〈6〉3
230 〈5〉2. ∀ j ∈ It(x ) : f (j ) ∈ D
231 〈6〉1. ∀ j ∈ It(x ) : deps(x , Dep cr , j ) ⊆ It(x )
232 by 〈3〉2, 〈3〉3, H Type def deps, It
233 〈6〉2. ∀ j ∈ It(x ) : fr(x , Fc(x , Gp(x )), j ) ∈ D
234 by 〈3〉2, 〈4〉3, 〈4〉5, 〈6〉1, H BFunWD def wrts
235 〈6〉 qed
236 by 〈3〉3, 〈6〉2 def Fr , St
237 〈5〉3. ∀ j ∈ It(x ) : g(j ) ∈ D
238 〈6〉1. ∀ j ∈ It(x ) : deps(x , Dep cr , j ) ⊆ It(x )
239 by 〈3〉2, 〈3〉3, H Type def deps, It
240 〈6〉2. ∀ j ∈ It(x ) : fr(x , c[I 0], j ) ∈ D
241 by 〈3〉2, 〈4〉3, 〈4〉5, 〈6〉1, H BFunWD def wrts
242 〈6〉 qed
243 by 〈6〉2
244 〈5〉 qed
245 by 〈5〉1, 〈5〉2, 〈5〉3

247 〈4〉 define Q1(j )
∆
= Q(j ) ∧ j 6= i

248 Q2(j )
∆
= Q(j ) ∧ red(I 0, j )

249 〈4〉 hide def Q , Q1, Q2, f , g , m, n

251 〈4〉7. M !BigOpP(m, n, Q , f ) = Op(M !BigOpP(m, n, Q1, f ), f (i))
252 〈5〉1. m ∈ Nat ∧ n ∈ Nat ∧m ≤ n
253 by 〈3〉3, 〈3〉4
254 〈5〉2. i ∈ m . . n ∧Q(i)
255 by 〈3〉3 def Q
256 〈5〉3. ∀ j ∈ m . . n : Q(j ) ∈ boolean
257 by 〈3〉3, 〈3〉2, H Type, m . . n ⊆ Nat def It , Q , m, n
258 〈5〉4. ∀ j ∈ {k ∈ m . . n : Q(k)} : f (j ) ∈ D
259 by 〈4〉6 def It , m, n, Q
260 〈5〉5. MT !BigOpP(m, n, Q , f ) = Op(MT !BigOpP(m, n, Q1, f ), f (i))
261 by 〈5〉1, 〈5〉2, 〈5〉3, 〈5〉4, H AMon, MT !SplitRandomP , Isa def Q1
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262 〈5〉 qed
263 by 〈5〉5, H MeqMT

265 〈4〉8. M !BigOpP(m, n, Q1, f ) = M !BigOpP(m, n, Q2, f )
266 〈5〉1. m ∈ Nat ∧ n ∈ Nat
267 by 〈3〉4
268 〈5〉2. ∀ j ∈ {k ∈ m . . n : Q1(k) ∧Q2(k)} : f (j ) ∈ D
269 by 〈4〉6 def Q , Q1, Q2, It , m, n
270 〈5〉3. ∧ ∀ j ∈ m . . n : Q1(j ) ∈ boolean
271 ∧ ∀ j ∈ m . . n : Q2(j ) ∈ boolean
272 by def Q1, Q2
273 〈5〉4. ∀ j ∈ m . . n : Q1(j ) ≡ Q2(j )
274 by 〈3〉3, 〈3〉4, 〈4〉2 def It , Q , Q1, Q2, m, n
275 〈5〉5. MT !BigOpP(m, n, Q1, f ) = MT !BigOpP(m, n, Q2, f )
276 by 〈5〉1, 〈5〉2, 〈5〉3, 〈5〉4, H AMon, MT !PredicateEq , Isa
277 〈5〉 qed
278 by 〈5〉5, H MeqMT

280 〈4〉9. ∧M !BigOpP(m, n, Q2, f ) = M !BigOpP(m, n, Q2, g)
281 ∧ f (i) = g(i)
282 〈5〉1. m ∈ Nat ∧ n ∈ Nat
283 by 〈3〉4
284 〈5〉2. ∀ j ∈ m . . n : Q2(j ) ∈ boolean
285 by def Q2
286 〈5〉3. ∧ ∀ j ∈ {k ∈ m . . n : Q2(k)} : f (j ) ∈ D
287 ∧ ∀ j ∈ {k ∈ m . . n : Q2(k)} : g(j ) ∈ D
288 by 〈4〉6 def Q , Q2, It , m, n
289 〈5〉4. ∀ j ∈ {k ∈ m . . n : Q2(k)} : f (j ) = g(j )
290 by 〈2〉0, 〈3〉3, 〈4〉6 def Q , Q2, It , m, n
291 〈5〉5. MT !BigOpP(m, n, Q2, f ) = MT !BigOpP(m, n, Q2, g)
292 by 〈5〉1, 〈5〉2, 〈5〉3, 〈5〉4, H AMon, MT !FunctionEqP , IsaM (“blast”)
293 〈5〉6. f (i) = g(i)
294 by 〈4〉6
295 〈5〉 qed
296 by 〈5〉5, 〈5〉6, H MeqMT

298 〈4〉E1. A(x ) = M !BigOpP(m, n, Q , f ) by def A, Q , f , m, n
299 〈4〉E2. @ = Op(M !BigOpP(m, n, Q1, f ), f (i)) by 〈4〉7
300 〈4〉E3. @ = Op(M !BigOpP(m, n, Q2, f ), f (i)) by 〈4〉8
301 〈4〉E4. @ = Op(M !BigOpP(m, n, Q2, g), g(i)) by 〈4〉9
302 〈4〉E5. @ = Op(y , g(i)) by 〈2〉0, 〈3〉3 def RInv2, Q , Q2, g , m, n
303 〈4〉E6. @ = y ′ by 〈4〉1

305 〈4〉 qed
306 by 〈4〉E1, 〈4〉E2, 〈4〉E3, 〈4〉E4, 〈4〉E5, 〈4〉E6

308 〈3〉 qed
309 by 〈3〉1, 〈3〉A, 〈3〉B, 〈3〉C
310 〈2〉B.case Done
311 〈3〉0. suffices assume unchanged 〈in, vs〉,
312 end(I 0)
313 prove y ′ = A(x )
314 by 〈2〉B def Done, vs, A, M !BigOpP , M !BigOp, M !bigOp, end
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315 〈3〉1. y = A(x )
316 by 〈2〉0, 〈3〉0 def Correctness
317 〈3〉2. y ′ = y
318 by 〈3〉0 def vs
319 〈3〉 qed
320 by 〈3〉1, 〈3〉2
321 〈2〉C.case unchanged 〈in, vs〉
322 〈3〉0. suffices assume unchanged 〈in, vs〉,
323 end(I 0)
324 prove y ′ = A(x )
325 by 〈2〉C def vs, Correctness, A, M !BigOpP , M !BigOp, M !bigOp, end
326 〈3〉1. y = A(x )
327 by 〈2〉0, 〈3〉0 def Correctness
328 〈3〉2. y ′ = y
329 by 〈3〉0 def vs
330 〈3〉 qed
331 by 〈3〉1, 〈3〉2
332 〈2〉 qed
333 by 〈2〉0, 〈2〉A, 〈2〉B, 〈2〉C def Next
334 〈1〉 qed
335 by 〈1〉1, 〈1〉2, Thm Inv , PTL def Spec

337
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1 module PCR A Thms

3 theorem Thm Refinement
∆
= Spec ⇒ A1step !Spec

4 〈1〉 define x
∆
= X [I 0]

5 y
∆
= r [I 0]

6 m
∆
= lBnd(x )

7 n
∆
= uBnd(x )

8 Q(j )
∆
= prop(j )

9 f (i)
∆
= Fr(x , Fc(x , Gp(x )))[i ]

10 〈1〉1. Init ⇒ A1step !Init
11 〈2〉 suffices assume Init
12 prove A1step !Init
13 obvious
14 〈2〉1. ∧ x ∈ T
15 ∧ pre(x )
16 ∧ y = id
17 by H Type def Init
18 〈2〉 qed
19 by 〈2〉1 def A1step !Init , inS , outS
20 〈1〉2. ∧ Inv
21 ∧ Correctness ′

22 ∧ [Next ]〈in, vs〉
23 ⇒ [A1step !Next ]A1step !vs
24 〈2〉0. suffices assume IndexInv , TypeInv , PInv ,
25 CInv , RInv1, RInv2,
26 Correctness ′,
27 [Next ]〈in, vs〉
28 prove [A1step !Next ]〈inS , outS〉
29 by def A1step !vs, Inv
30 〈2〉A.case Step
31 〈3〉0. suffices assume ∃ i ∈ It(x ) : ∨ P(I 0, i)
32 ∨ C (I 0, i)
33 ∨ R(I 0, i)
34 prove [A1step !Next ]〈inS , outS〉
35 by 〈2〉0, 〈2〉A def Step, IndexInv
36 〈3〉1. pick i ∈ It(x ) : ∨ P(I 0, i)
37 ∨ C (I 0, i)
38 ∨ R(I 0, i)
39 by 〈3〉0
40 〈3〉2. x ∈ T
41 by 〈2〉0 def IndexInv , TypeInv , WDIndex , wrt
42 〈3〉3. ∧ I 0 ∈ Seq(Nat)
43 ∧ I 0 ∈ WDIndex
44 ∧ i ∈ Nat
45 ∧ i ∈ {k ∈ m . . n : Q(k)}
46 ∧ It(x ) ⊆ Nat
47 by 〈2〉0, 〈3〉2, H Type def IndexInv , WDIndex , It
48 〈3〉4. m ∈ Nat ∧ n ∈ Nat
49 by 〈2〉0, 〈3〉2, H Type def TypeInv , m, n
50 〈3〉5. ∀ j ∈ It(x ) :
51 ∧ red(I 0, j ) ⇒ wrt(c[I 0][j ])
52 ∧ wrt(c[I 0][j ]) ⇒ wrt(p[I 0][j ])

C.2 Basic PCR: Refinement of a basic PCR in one

step
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53 by 〈2〉0 def CInv , RInv1, wrts, deps

55 〈3〉A.case P(I 0, i)
56 〈4〉0. suffices assume P(I 0, i)
57 prove unchanged 〈inS , outS 〉
58 by 〈2〉0, 〈3〉A def P
59 〈4〉1. ∧ ¬wrt(p[I 0][i ])
60 ∧ 〈X , rs〉′ = 〈X , rs〉 by 〈4〉0 def P
61 〈4〉2. ¬wrt(p[I 0][i ])⇒ ¬red(I 0, i) by 〈3〉5
62 〈4〉3. ¬red(I 0, i) by 〈4〉1, 〈4〉2
63 〈4〉4. ¬end(I 0) by 〈4〉3 def end
64 〈4〉5. ¬end(I 0)′ by 〈4〉4, 〈4〉1 def end , It
65 〈4〉6. 〈inS , outS 〉′ = 〈inS , outS 〉 by 〈4〉1, 〈4〉4, 〈4〉5 def inS , outS
66 〈4〉 qed
67 by 〈4〉6

69 〈3〉B.case C (I 0, i)
70 〈4〉0. suffices assume C (I 0, i)
71 prove unchanged 〈inS , outS 〉
72 by 〈2〉0, 〈3〉B def C
73 〈4〉1. ∧ ¬wrt(c[I 0][i ])
74 ∧ 〈X , rs〉′ = 〈X , rs〉 by 〈4〉0 def C
75 〈4〉2. ¬wrt(c[I 0][i ])⇒ ¬red(I 0, i) by 〈3〉5
76 〈4〉3. ¬red(I 0, i) by 〈4〉1, 〈4〉2
77 〈4〉4. ¬end(I 0) by 〈4〉3 def end
78 〈4〉5. ¬end(I 0)′ by 〈4〉4, 〈4〉1 def end , It
79 〈4〉6. 〈inS , outS 〉′ = 〈inS , outS 〉 by 〈4〉1, 〈4〉4, 〈4〉5 def inS , outS
80 〈4〉 qed
81 by 〈4〉6

83 〈3〉C.case R(I 0, i) ∧ end(I 0)′

84 〈4〉0. suffices assume R(I 0, i),
85 end(I 0)′

86 prove outS ′ = A1step !A(x )
87 by 〈2〉0, 〈3〉C def R, A1step !Next , inS
88 〈4〉 define g(j )

∆
= fr(x , c[I 0], j )

89 〈4〉1. ∧ ¬red(I 0, i)
90 ∧ wrts(c[I 0], deps(x , Dep cr , i))
91 ∧ y ′ = Op(y , g(i))
92 ∧ rs ′ = [rs except ! [I 0][i ] = true]
93 ∧X ′ = X
94 by 〈2〉0, 〈4〉0, 〈3〉3 def TypeInv , R, St

96 〈4〉2. ∧ ∀ j ∈ It(x ) \ {i} : red(I 0, j )
97 ∧ ¬red(I 0, i)
98 〈5〉1. It(x )′ = It(x )
99 by 〈4〉1 def It , m, n

100 〈5〉2. ¬red(I 0, i)
101 by 〈4〉1
102 〈5〉3. rs ′ = [rs except ! [I 0][i ] = true]
103 by 〈4〉1
104 〈5〉4. ∀ j ∈ It(x ) : red(I 0, j )′

105 by 〈4〉0, 〈5〉1 def end
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106 〈5〉 qed
107 by 〈5〉2, 〈5〉3, 〈5〉4

109 〈4〉3. ∧ ∀ j ∈ It(x ) : wrt(c[I 0][j ])
110 ∧ ∀ j ∈ It(x ) : wrt(p[I 0][j ])
111 〈5〉1. ∀ j ∈ It(x ) : wrt(c[I 0][j ])
112 〈6〉1. wrt(c[I 0][i ])
113 by 〈4〉1 def wrts, deps
114 〈6〉2. ∀ j ∈ It(x ) \ {i} : wrt(c[I 0][j ])
115 by 〈2〉0, 〈3〉3, 〈3〉5, 〈4〉2
116 〈6〉 qed
117 by 〈2〉0, 〈3〉3, 〈6〉1, 〈6〉2
118 〈5〉2. ∀ j ∈ It(x ) : wrt(p[I 0][j ])
119 by 〈3〉5, 〈5〉1
120 〈5〉 qed
121 by 〈5〉1, 〈5〉2

123 〈4〉4. ∧ ∀ j ∈ It(x ) : Gp(x )[j ] = p[I 0][j ]
124 ∧Gp(x ) ∈ St(Tp) ∧ p[I 0] ∈ St(Tp)
125 〈5〉1. Gp(x ) ∈ St(Tp)
126 〈6〉1. ∀ j ∈ Nat : gp(x , j ) ∈ Tp ∪ {Undef }
127 by 〈3〉2, 〈3〉3, H BFunType
128 〈6〉 qed
129 by 〈3〉3, 〈6〉1 def Gp, St
130 〈5〉2. p[I 0] ∈ St(Tp)
131 by 〈2〉0, 〈3〉3 def TypeInv
132 〈5〉3. ∀ j ∈ It(x ) : Gp(x )[j ] = p[I 0][j ]
133 〈6〉0. suffices assume new j ∈ It(x )
134 prove gp(x , j ) = fp(x , p[I 0], j )
135 by 〈2〉0, 〈3〉3, 〈4〉3 def PInv , Gp
136 〈6〉 qed
137 by 〈3〉2, 〈4〉3, H ProdEqInv
138 〈5〉 qed
139 by 〈5〉1, 〈5〉2, 〈5〉3 def St

141 〈4〉5. ∧ ∀ j ∈ It(x ) : Fc(x , Gp(x ))[j ] = c[I 0][j ]
142 ∧ Fc(x , Gp(x )) ∈ St(Tc) ∧ c[I 0] ∈ St(Tc)
143 〈5〉1. Fc(x , Gp(x )) ∈ St(Tc)
144 〈6〉1. ∀ j ∈ Nat : fc(x , Gp(x ), j ) ∈ Tc ∪ {Undef }
145 by 〈3〉2, 〈3〉3, 〈4〉4, H BFunType
146 〈6〉 qed
147 by 〈3〉3, 〈6〉1 def Fc, St
148 〈5〉2. c[I 0] ∈ St(Tc)
149 by 〈2〉0, 〈3〉3 def TypeInv
150 〈5〉3. ∀ j ∈ It(x ) : Fc(x , Gp(x ))[j ] = c[I 0][j ]
151 〈6〉0. suffices assume new j ∈ It(x )
152 prove fc(x , Gp(x ), j ) = fc(x , p[I 0], j )
153 by 〈2〉0, 〈3〉3, 〈4〉3 def CInv , Fc
154 〈6〉1. eqs(Gp(x ), p[I 0], deps(x , Dep pc, j ))
155 〈7〉1. deps(x , Dep pc, j ) ⊆ It(x )
156 by 〈3〉2, 〈3〉3, H Type def deps, It
157 〈7〉2. wrts(p[I 0], deps(x , Dep pc, j ))
158 by 〈4〉3, 〈7〉1 def wrts
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159 〈7〉3. ∀ k ∈ deps(x , Dep pc, j ) :
160 wrt(p[I 0][k ]) ∧Gp(x )[k ] = p[I 0][k ]
161 by 〈4〉4, 〈7〉1, 〈7〉2 def wrts
162 〈7〉 qed
163 by 〈7〉3 def eqs
164 〈6〉2. Gp(x ) ∈ St(Tp) ∧ p[I 0] ∈ St(Tp)
165 by 〈4〉4
166 〈6〉3. fc(x , Gp(x ), j ) = fc(x , p[I 0], j )
167 by 〈3〉2, 〈3〉3, 〈6〉1, 〈6〉2, H fcRelevance
168 〈6〉 qed
169 by 〈6〉3
170 〈5〉 qed
171 by 〈5〉1, 〈5〉2, 〈5〉3 def St

173 〈4〉6. ∧ ∀ j ∈ It(x ) : f (j ) = g(j )
174 ∧ ∀ j ∈ It(x ) : f (j ) ∈ D ∧ g(j ) ∈ D
175 〈5〉1. ∀ j ∈ It(x ) : f (j ) = g(j )
176 〈6〉0. suffices assume new j ∈ It(x )
177 prove fr(x , Fc(x , Gp(x )), j ) = fr(x , c[I 0], j )
178 by 〈3〉3 def Fr
179 〈6〉1. eqs(Fc(x , Gp(x )), c[I 0], deps(x , Dep cr , j ))
180 〈7〉1. deps(x , Dep cr , j ) ⊆ It(x )
181 by 〈3〉2, 〈3〉3, H Type def deps, It
182 〈7〉2. wrts(c[I 0], deps(x , Dep cr , j ))
183 by 〈4〉3, 〈7〉1 def wrts
184 〈7〉3. ∀ k ∈ deps(x , Dep cr , j ) :
185 wrt(c[I 0][k ]) ∧ Fc(x , Gp(x ))[k ] = c[I 0][k ]
186 by 〈4〉5, 〈7〉1, 〈7〉2 def wrts
187 〈7〉 qed
188 by 〈7〉3 def eqs
189 〈6〉2. Fc(x , Gp(x )) ∈ St(Tc) ∧ c[I 0] ∈ St(Tc)
190 by 〈4〉5
191 〈6〉3. fr(x , Fc(x , Gp(x )), j ) = fr(x , c[I 0], j )
192 by 〈3〉2, 〈3〉3, 〈6〉1, 〈6〉2, H frRelevance
193 〈6〉 qed
194 by 〈6〉3
195 〈5〉2. ∀ j ∈ It(x ) : f (j ) ∈ D
196 〈6〉1. ∀ j ∈ It(x ) : deps(x , Dep cr , j ) ⊆ It(x )
197 by 〈3〉2, 〈3〉3, H Type def deps, It
198 〈6〉2. ∀ j ∈ It(x ) : fr(x , Fc(x , Gp(x )), j ) ∈ D
199 by 〈3〉2, 〈4〉3, 〈4〉5, 〈6〉1, H BFunWD def wrts
200 〈6〉 qed
201 by 〈3〉3, 〈6〉2 def Fr , St
202 〈5〉3. ∀ j ∈ It(x ) : g(j ) ∈ D
203 〈6〉1. ∀ j ∈ It(x ) : deps(x , Dep cr , j ) ⊆ It(x )
204 by 〈3〉2, 〈3〉3, H Type def deps, It
205 〈6〉2. ∀ j ∈ It(x ) : fr(x , c[I 0], j ) ∈ D
206 by 〈3〉2, 〈4〉3, 〈4〉5, 〈6〉1, H BFunWD def wrts
207 〈6〉 qed
208 by 〈6〉2
209 〈5〉 qed
210 by 〈5〉1, 〈5〉2, 〈5〉3
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212 〈4〉 define Q1(j )
∆
= Q(j ) ∧ j 6= i

213 Q2(j )
∆
= Q(j ) ∧ red(I 0, j )

214 〈4〉 hide def Q , Q1, Q2, f , g , m, n

216 〈4〉7. M !BigOpP(m, n, Q , f ) = Op(M !BigOpP(m, n, Q1, f ), f (i))
217 〈5〉1. m ∈ Nat ∧ n ∈ Nat ∧m ≤ n
218 by 〈3〉3, 〈3〉4
219 〈5〉2. i ∈ m . . n ∧Q(i)
220 by 〈3〉3 def Q
221 〈5〉3. ∀ j ∈ m . . n : Q(j ) ∈ boolean
222 by 〈3〉3, 〈3〉2, H Type, m . . n ⊆ Nat def It , Q , m, n
223 〈5〉4. ∀ j ∈ {k ∈ m . . n : Q(k)} : f (j ) ∈ D
224 by 〈4〉6 def It , m, n, Q
225 〈5〉5. MT !BigOpP(m, n, Q , f ) = Op(MT !BigOpP(m, n, Q1, f ), f (i))
226 by 〈5〉1, 〈5〉2, 〈5〉3, 〈5〉4, H AMon, MT !SplitRandomP , Isa def Q1
227 〈5〉 qed
228 by 〈5〉5, H MeqMT

230 〈4〉8. M !BigOpP(m, n, Q1, f ) = M !BigOpP(m, n, Q2, f )
231 〈5〉1. m ∈ Nat ∧ n ∈ Nat
232 by 〈3〉4
233 〈5〉2. ∀ j ∈ {k ∈ m . . n : Q1(k) ∧Q2(k)} : f (j ) ∈ D
234 by 〈4〉6 def Q , Q1, Q2, It , m, n
235 〈5〉3. ∧ ∀ j ∈ m . . n : Q1(j ) ∈ boolean
236 ∧ ∀ j ∈ m . . n : Q2(j ) ∈ boolean
237 by def Q1, Q2
238 〈5〉4. ∀ j ∈ m . . n : Q1(j ) ≡ Q2(j )
239 by 〈3〉3, 〈3〉4, 〈4〉2 def It , Q , Q1, Q2, m, n
240 〈5〉5. MT !BigOpP(m, n, Q1, f ) = MT !BigOpP(m, n, Q2, f )
241 by 〈5〉1, 〈5〉2, 〈5〉3, 〈5〉4, H AMon, MT !PredicateEq , Isa
242 〈5〉 qed
243 by 〈5〉5, H MeqMT

245 〈4〉9. ∧M !BigOpP(m, n, Q2, f ) = M !BigOpP(m, n, Q2, g)
246 ∧ f (i) = g(i)
247 〈5〉1. m ∈ Nat ∧ n ∈ Nat
248 by 〈3〉4
249 〈5〉2. ∀ j ∈ m . . n : Q2(j ) ∈ boolean
250 by def Q2
251 〈5〉3. ∧ ∀ j ∈ {k ∈ m . . n : Q2(k)} : f (j ) ∈ D
252 ∧ ∀ j ∈ {k ∈ m . . n : Q2(k)} : g(j ) ∈ D
253 by 〈4〉6 def Q , Q2, It , m, n
254 〈5〉4. ∀ j ∈ {k ∈ m . . n : Q2(k)} : f (j ) = g(j )
255 by 〈2〉0, 〈3〉3, 〈4〉6 def Q , Q2, It , m, n
256 〈5〉5. MT !BigOpP(m, n, Q2, f ) = MT !BigOpP(m, n, Q2, g)
257 by 〈5〉1, 〈5〉2, 〈5〉3, 〈5〉4, H AMon, MT !FunctionEqP , IsaM (“blast”)
258 〈5〉6. f (i) = g(i)
259 by 〈4〉6
260 〈5〉 qed
261 by 〈5〉5, 〈5〉6, H MeqMT

263 〈4〉E1. A(x ) = M !BigOpP(m, n, Q , f ) by def A, Q , f , m, n
264 〈4〉E2. @ = Op(M !BigOpP(m, n, Q1, f ), f (i)) by 〈4〉7
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265 〈4〉E3. @ = Op(M !BigOpP(m, n, Q2, f ), f (i)) by 〈4〉8
266 〈4〉E4. @ = Op(M !BigOpP(m, n, Q2, g), g(i)) by 〈4〉9
267 〈4〉E5. @ = Op(y , g(i)) by 〈2〉0, 〈3〉3 def RInv2, Q , Q2, g , m, n
268 〈4〉E6. @ = y ′ by 〈4〉1

270 〈4〉10. outS ′ = y ′ by 〈4〉0 def outS , y
271 〈4〉11. @ = A(x ) by 〈4〉E1, 〈4〉E2, 〈4〉E3, 〈4〉E4, 〈4〉E5, 〈4〉E6
272 〈4〉12. @ = A1step !A(x ) by H A1stepEqA
273 〈4〉 qed
274 by 〈4〉10, 〈4〉11, 〈4〉12

A shorter proof, reusing the Correctness property:

〈4〉2. outS ′ = y ′ by 〈4〉0 def outS , y

〈4〉3. @ = A(x)′ by 〈2〉0, 〈4〉0 def Correctness

〈4〉4. @ = A(x) by 〈4〉1 DEF A, M !BigOpP , M !BigOp, M !bigOp

〈4〉5. @ = A1step !A(x)by H A1stepEqA

〈4〉 qed

by 〈4〉2, 〈4〉3, 〈4〉4, 〈4〉5
286 〈3〉D.case R(I 0, i) ∧ ¬end(I 0)′

287 〈4〉0. suffices assume R(I 0, i),
288 ¬end(I 0)′

289 prove unchanged 〈inS , outS 〉
290 by 〈2〉0, 〈3〉D def R, A1step !Next , inS
291 〈4〉1. ∧ ¬red(I 0, i)
292 ∧X ′ = X
293 by 〈4〉0 def R
294 〈4〉2. ¬end(I 0)
295 by 〈4〉1 def end
296 〈4〉3. outS = id
297 by 〈4〉2 def outS
298 〈4〉4. outS ′ = id
299 by 〈4〉0 def outS
300 〈4〉 qed
301 by 〈4〉1, 〈4〉3, 〈4〉4 def inS

303 〈3〉 qed
304 by 〈3〉1, 〈3〉A, 〈3〉B, 〈3〉C, 〈3〉D
305 〈2〉B.case Done
306 〈3〉0. suffices assume unchanged 〈in, vs〉
307 prove unchanged 〈inS , outS 〉
308 by 〈2〉B def Done, vs
309 〈3〉1. 〈inS , outS 〉′ = 〈inS , outS 〉
310 by 〈3〉0 def inS , outS , vs, end
311 〈3〉 qed
312 by 〈3〉1
313 〈2〉C.case unchanged 〈in, vs〉
314 〈3〉0. suffices assume unchanged 〈in, vs〉
315 prove unchanged 〈inS , outS 〉
316 by 〈2〉C def vs
317 〈3〉1. 〈inS , outS 〉′ = 〈inS , outS 〉
318 by 〈3〉0 def inS , outS , vs, end
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319 〈3〉 qed
320 by 〈3〉1
321 〈2〉 qed
322 by 〈2〉0, 〈2〉A, 〈2〉B, 〈2〉C def Next
323 〈1〉 qed
324 by 〈1〉1, 〈1〉2, Thm Inv , Thm Correctness, PTL def Spec, A1step !Spec

326
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1 module PCR ArLeft Thms

3 theorem Thm Correctness
∆
= Spec ⇒ 2Correctness !1

4 〈1〉 define x
∆
= X [I 0]

5 y
∆
= r [I 0]

6 m
∆
= lBnd(x )

7 n
∆
= uBnd(x )

8 f (i)
∆
= Fr(x , Fc(x , Gp(x )))[i ]

9 〈1〉1. Init ⇒ Correctness !1
10 〈2〉0. suffices assume Init ,
11 end(I 0)
12 prove y = A(x )
13 by def Correctness
14 〈2〉1. ∧ I 0 ∈ Seq(Nat)
15 ∧ x ∈ T
16 ∧ It(x ) ⊆ Nat
17 by 〈2〉0, H Type def Init , It
18 〈2〉2. m ∈ Nat ∧ n ∈ Nat
19 by 〈2〉1, H Type
20 〈2〉A.case It(x ) = {}
21 〈3〉1. m > n
22 by 〈2〉A, 〈2〉2 def It , m, n
23 〈3〉2. A(x ) = id
24 by 〈2〉2, 〈3〉1, H Mon, H MeqMT def A, M !BigOp
25 〈3〉3. y = id
26 by 〈2〉0, 〈2〉1 def Init
27 〈3〉 qed
28 by 〈3〉2, 〈3〉3
29 〈2〉B.case It(x ) 6= {}
30 〈3〉1. ∀ i ∈ It(x ) : red(I 0, i) by 〈2〉0 def end
31 〈3〉2. ∀ i ∈ Nat : ¬red(I 0, i) by 〈2〉0, 〈2〉1 def Init
32 〈3〉3. false by 〈2〉1, 〈2〉B, 〈3〉1, 〈3〉2
33 〈3〉 qed by 〈3〉3
34 〈2〉 qed
35 by 〈2〉A, 〈2〉B
36 〈1〉2. ∧ Inv
37 ∧ Correctness !1
38 ∧ [Next ]〈in, vs〉
39 ⇒ Correctness !1′

40 〈2〉0. suffices assume IndexInv , TypeInv , PInv ,
41 CInv , RInv1, RInv2,
42 Correctness !1,
43 [Next ]〈in, vs〉
44 prove Correctness !1′

45 by def Inv
46 〈2〉A.case Step
47 〈3〉0. suffices assume ∃ i ∈ It(x ) : ∨ P(I 0, i)
48 ∨ C (I 0, i)
49 ∨ R(I 0, i)
50 prove Correctness !1′

51 by 〈2〉0, 〈2〉A def Step, IndexInv
52 〈3〉1. pick i ∈ It(x ) : ∨ P(I 0, i)

C.3 Basic PCR with left reducer: Correctness
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53 ∨ C (I 0, i)
54 ∨ R(I 0, i)
55 by 〈3〉0
56 〈3〉2. x ∈ T
57 by 〈2〉0 def IndexInv , TypeInv , WDIndex , wrt
58 〈3〉3. ∧ I 0 ∈ Seq(Nat)
59 ∧ I 0 ∈ WDIndex
60 ∧ i ∈ Nat
61 ∧ i ∈ m . . n
62 ∧ It(x ) ⊆ Nat
63 by 〈2〉0, 〈3〉2, H Type def IndexInv , WDIndex , It
64 〈3〉4. m ∈ Nat ∧ n ∈ Nat
65 by 〈2〉0, 〈3〉2, H Type def TypeInv , m, n
66 〈3〉5. ∀ j ∈ It(x ) :
67 ∧ red(I 0, j ) ⇒ wrt(c[I 0][j ])
68 ∧ wrt(c[I 0][j ]) ⇒ wrt(p[I 0][j ])
69 by 〈2〉0 def CInv , RInv1, wrts, deps

71 〈3〉A.case P(I 0, i)
72 〈4〉0. suffices assume P(I 0, i),
73 end(I 0)′

74 prove false
75 by 〈2〉0, 〈3〉A def P , Correctness
76 〈4〉1. ∧ ¬wrt(p[I 0][i ])
77 ∧ 〈X , rs〉′ = 〈X , rs〉 by 〈4〉0 def P
78 〈4〉2. ¬wrt(p[I 0][i ])⇒ ¬red(I 0, i) by 〈3〉5
79 〈4〉3. ¬red(I 0, i) by 〈4〉1, 〈4〉2
80 〈4〉4. ¬red(I 0, i)′ by 〈4〉1, 〈4〉3
81 〈4〉5. ∃ j ∈ It(x )′ : ¬red(I 0, j )′ by 〈4〉1, 〈4〉4 def It
82 〈4〉6. false by 〈4〉5, end(I 0)′ def end
83 〈4〉 qed
84 by 〈4〉6

86 〈3〉B.case C (I 0, i)
87 〈4〉0. suffices assume C (I 0, i),
88 end(I 0)′

89 prove false
90 by 〈2〉0, 〈3〉B def C , Correctness
91 〈4〉1. ∧ ¬wrt(c[I 0][i ])
92 ∧ 〈X , rs〉′ = 〈X , rs〉 by 〈4〉0 def C
93 〈4〉2. ¬wrt(c[I 0][i ])⇒ ¬red(I 0, i) by 〈3〉5
94 〈4〉3. ¬red(I 0, i) by 〈4〉1, 〈4〉2
95 〈4〉4. ¬red(I 0, i)′ by 〈4〉1, 〈4〉3
96 〈4〉5. ∃ j ∈ It(x )′ : ¬red(I 0, j )′ by 〈4〉1, 〈4〉4 def It
97 〈4〉6. false by 〈4〉5, end(I 0)′ def end
98 〈4〉 qed
99 by 〈4〉6

101 〈3〉C.case R(I 0, i)
102 〈4〉0. suffices assume R(I 0, i),
103 end(I 0)′

104 prove y ′ = A(x )
105 by 〈2〉0, 〈3〉C def R, Correctness, A, M !BigOpP , M !BigOp, M !bigOp
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106 〈4〉 define g(j )
∆
= fr(x , c[I 0], j )

107 〈4〉1. ∧ ¬red(I 0, i)
108 ∧ wrts(c[I 0], deps(x , Dep cr , i))
109 ∧ i − 1 ≥ m ⇒ red(I 0, i − 1)
110 ∧ y ′ = Op(y , g(i))
111 ∧ rs ′ = [rs except ! [I 0][i ] = true]
112 ∧X ′ = X
113 by 〈2〉0, 〈4〉0, 〈3〉3 def TypeInv , R, St

115 〈4〉2. ∧ ∀ j ∈ It(x ) \ {i} : red(I 0, j )
116 ∧ ∀ j ∈ It(x ) : j < i ⇒ red(I 0, j )
117 ∧ ¬red(I 0, i)
118 〈5〉1. It(x )′ = It(x )
119 by 〈4〉1 def It , m, n
120 〈5〉2. ¬red(I 0, i)
121 by 〈4〉1
122 〈5〉3. rs ′ = [rs except ! [I 0][i ] = true]
123 by 〈4〉1
124 〈5〉4. ∀ j ∈ It(x ) : red(I 0, j )′

125 by 〈4〉0, 〈5〉1 def end
126 〈5〉5. ∀ j ∈ It(x ) \ {i} : red(I 0, j )
127 by 〈5〉2, 〈5〉3, 〈5〉4
128 〈5〉6. ∀ j ∈ It(x ) : j < i ⇒ red(I 0, j )
129 by 〈5〉5 def It
130 〈5〉 qed
131 by 〈5〉2, 〈5〉5, 〈5〉6

133 〈4〉3. ∧ ∀ j ∈ It(x ) : wrt(c[I 0][j ])
134 ∧ ∀ j ∈ It(x ) : wrt(p[I 0][j ])
135 〈5〉1. ∀ j ∈ It(x ) : wrt(c[I 0][j ])
136 〈6〉1. wrt(c[I 0][i ])
137 by 〈4〉1 def wrts, deps
138 〈6〉2. ∀ j ∈ It(x ) \ {i} : wrt(c[I 0][j ])
139 by 〈2〉0, 〈3〉3, 〈3〉5, 〈4〉2
140 〈6〉 qed
141 by 〈2〉0, 〈3〉3, 〈6〉1, 〈6〉2
142 〈5〉2. ∀ j ∈ It(x ) : wrt(p[I 0][j ])
143 by 〈3〉5, 〈5〉1
144 〈5〉 qed
145 by 〈5〉1, 〈5〉2

147 〈4〉4. ∧ ∀ j ∈ It(x ) : Gp(x )[j ] = p[I 0][j ]
148 ∧Gp(x ) ∈ St(Tp) ∧ p[I 0] ∈ St(Tp)
149 〈5〉1. Gp(x ) ∈ St(Tp)
150 〈6〉1. ∀ j ∈ Nat : gp(x , j ) ∈ Tp ∪ {Undef }
151 by 〈3〉2, 〈3〉3, H BFunType
152 〈6〉 qed
153 by 〈3〉3, 〈6〉1 def Gp, St
154 〈5〉2. p[I 0] ∈ St(Tp)
155 by 〈2〉0, 〈3〉3 def TypeInv
156 〈5〉3. ∀ j ∈ It(x ) : Gp(x )[j ] = p[I 0][j ]
157 〈6〉0. suffices assume new j ∈ It(x )
158 prove gp(x , j ) = fp(x , p[I 0], j )
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159 by 〈2〉0, 〈3〉3, 〈4〉3 def PInv , Gp
160 〈6〉 qed
161 by 〈3〉2, 〈4〉3, H ProdEqInv
162 〈5〉 qed
163 by 〈5〉1, 〈5〉2, 〈5〉3 def St

165 〈4〉5. ∧ ∀ j ∈ It(x ) : Fc(x , Gp(x ))[j ] = c[I 0][j ]
166 ∧ Fc(x , Gp(x )) ∈ St(Tc) ∧ c[I 0] ∈ St(Tc)
167 〈5〉1. Fc(x , Gp(x )) ∈ St(Tc)
168 〈6〉1. ∀ j ∈ Nat : fc(x , Gp(x ), j ) ∈ Tc ∪ {Undef }
169 by 〈3〉2, 〈3〉3, 〈4〉4, H BFunType
170 〈6〉 qed
171 by 〈3〉3, 〈6〉1 def Fc, St
172 〈5〉2. c[I 0] ∈ St(Tc)
173 by 〈2〉0, 〈3〉3 def TypeInv
174 〈5〉3. ∀ j ∈ It(x ) : Fc(x , Gp(x ))[j ] = c[I 0][j ]
175 〈6〉0. suffices assume new j ∈ It(x )
176 prove fc(x , Gp(x ), j ) = fc(x , p[I 0], j )
177 by 〈2〉0, 〈3〉3, 〈4〉3 def CInv , Fc
178 〈6〉1. eqs(Gp(x ), p[I 0], deps(x , Dep pc, j ))
179 〈7〉1. deps(x , Dep pc, j ) ⊆ It(x )
180 by 〈3〉2, 〈3〉3, H Type def deps, It
181 〈7〉2. wrts(p[I 0], deps(x , Dep pc, j ))
182 by 〈4〉3, 〈7〉1 def wrts
183 〈7〉3. ∀ k ∈ deps(x , Dep pc, j ) :
184 wrt(p[I 0][k ]) ∧Gp(x )[k ] = p[I 0][k ]
185 by 〈4〉4, 〈7〉1, 〈7〉2 def wrts
186 〈7〉 qed
187 by 〈7〉3 def eqs
188 〈6〉2. Gp(x ) ∈ St(Tp) ∧ p[I 0] ∈ St(Tp)
189 by 〈4〉4
190 〈6〉3. fc(x , Gp(x ), j ) = fc(x , p[I 0], j )
191 by 〈3〉2, 〈3〉3, 〈6〉1, 〈6〉2, H fcRelevance
192 〈6〉 qed
193 by 〈6〉3
194 〈5〉 qed
195 by 〈5〉1, 〈5〉2, 〈5〉3 def St

197 〈4〉6. ∧ ∀ j ∈ It(x ) : f (j ) = g(j )
198 ∧ ∀ j ∈ It(x ) : f (j ) ∈ D ∧ g(j ) ∈ D
199 〈5〉1. ∀ j ∈ It(x ) : f (j ) = g(j )
200 〈6〉0. suffices assume new j ∈ It(x )
201 prove fr(x , Fc(x , Gp(x )), j ) = fr(x , c[I 0], j )
202 by 〈3〉3 def Fr
203 〈6〉1. eqs(Fc(x , Gp(x )), c[I 0], deps(x , Dep cr , j ))
204 〈7〉1. deps(x , Dep cr , j ) ⊆ It(x )
205 by 〈3〉2, 〈3〉3, H Type def deps, It
206 〈7〉2. wrts(c[I 0], deps(x , Dep cr , j ))
207 by 〈4〉3, 〈7〉1 def wrts
208 〈7〉3. ∀ k ∈ deps(x , Dep cr , j ) :
209 wrt(c[I 0][k ]) ∧ Fc(x , Gp(x ))[k ] = c[I 0][k ]
210 by 〈4〉5, 〈7〉1, 〈7〉2 def wrts
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211 〈7〉 qed
212 by 〈7〉3 def eqs
213 〈6〉2. Fc(x , Gp(x )) ∈ St(Tc) ∧ c[I 0] ∈ St(Tc)
214 by 〈4〉5
215 〈6〉3. fr(x , Fc(x , Gp(x )), j ) = fr(x , c[I 0], j )
216 by 〈3〉2, 〈3〉3, 〈6〉1, 〈6〉2, H frRelevance
217 〈6〉 qed
218 by 〈6〉3
219 〈5〉2. ∀ j ∈ It(x ) : f (j ) ∈ D
220 〈6〉1. ∀ j ∈ It(x ) : deps(x , Dep cr , j ) ⊆ It(x )
221 by 〈3〉2, 〈3〉3, H Type def deps, It
222 〈6〉2. ∀ j ∈ It(x ) : fr(x , Fc(x , Gp(x )), j ) ∈ D
223 by 〈3〉2, 〈4〉3, 〈4〉5, 〈6〉1, H BFunWD def wrts
224 〈6〉 qed
225 by 〈3〉3, 〈6〉2 def Fr , St
226 〈5〉3. ∀ j ∈ It(x ) : g(j ) ∈ D
227 〈6〉1. ∀ j ∈ It(x ) : deps(x , Dep cr , j ) ⊆ It(x )
228 by 〈3〉2, 〈3〉3, H Type def deps, It
229 〈6〉2. ∀ j ∈ It(x ) : fr(x , c[I 0], j ) ∈ D
230 by 〈3〉2, 〈4〉3, 〈4〉5, 〈6〉1, H BFunWD def wrts
231 〈6〉 qed
232 by 〈6〉2
233 〈5〉 qed
234 by 〈5〉1, 〈5〉2, 〈5〉3

236 〈4〉7. i = n
237 〈5〉0. suffices assume i 6= n
238 prove false
239 obvious
240 〈5〉1. ∀ j ∈ It(x ) \ {i} : red(I 0, j )
241 by 〈4〉2
242 〈5〉2. red(I 0, n)
243 by 〈3〉2, 〈3〉3, 〈5〉0, 〈5〉1, H Type def It
244 〈5〉3. ∀ j ∈ It(x ) : j < n ⇒ red(I 0, j )
245 by 〈2〉0, 〈3〉2, 〈3〉3, 〈5〉2, H Type def RInv1, It
246 〈5〉4. i < n
247 by 〈3〉2, 〈5〉0, H Type def It
248 〈5〉5. red(I 0, i)
249 by 〈5〉0, 〈5〉1, 〈5〉3, 〈5〉4 def It
250 〈5〉6. ¬red(I 0, i)
251 by 〈4〉2
252 〈5〉 qed
253 by 〈5〉5, 〈5〉6

255 〈4〉 define Q(j )
∆
= red(I 0, j )

256 IfQg(j )
∆
= if Q(j ) then g(j ) else id

257 〈4〉 hide def Q , f , g , m, n

259 〈4〉8. M !BigOp(m, n, f ) = Op(M !BigOp(m, n − 1, f ), f (n))
260 〈5〉1. m ∈ Nat ∧ n ∈ Nat
261 by 〈3〉4
262 〈5〉2. m ≤ n
263 by 〈3〉2, H Type def It , m, n
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264 〈5〉3. ∀ j ∈ m . . n : f (j ) ∈ D
265 by 〈4〉6 def It , m, n
266 〈5〉4. MT !BigOp(m, n, f ) = Op(MT !BigOp(m, n − 1, f ), f (n))
267 by 〈5〉1, 〈5〉2, 〈5〉3, H Mon, MT !SplitLast , Isa
268 〈5〉 qed
269 by 〈5〉4, H MeqMT

271 〈4〉9. M !BigOp(m, n − 1, f ) = M !BigOpP(m, n − 1, Q , f )
272 〈5〉A.case m = n
273 〈6〉1. m ∈ Int ∧ n − 1 ∈ Int
274 by 〈3〉3, 〈3〉4
275 〈6〉2. m > n − 1
276 by 〈5〉A, 〈6〉1
277 〈6〉3. MT !BigOp(m, n − 1, f ) = id
278 by 〈6〉1, 〈6〉2, H Mon, H MeqMT def MT !BigOp
279 〈6〉4. MT !BigOpP(m, n − 1, Q , f ) = id
280 by 〈6〉1, 〈6〉2, H Mon, H MeqMT , MT !EmptyIntvAssumpP
281 〈6〉 qed
282 by 〈6〉3, 〈6〉4, H MeqMT
283 〈5〉B.case m < n
284 〈6〉1. m ∈ Nat ∧ n − 1 ∈ Nat
285 by 〈3〉4, 〈5〉B
286 〈6〉2. ∀ j ∈ m . . n − 1 : Q(j ) ∈ boolean
287 by 〈2〉0, 〈3〉2, 〈3〉3, 〈6〉1 def TypeInv , Q
288 〈6〉3. ∀ j ∈ {k ∈ m . . n − 1 : Q(k)} : f (j ) ∈ D
289 by 〈3〉4, 〈4〉6 def It , m, n
290 〈6〉4. ∀ j ∈ m . . n − 1 : Q(j )
291 〈7〉1. ∀ j ∈ It(x ) : j < n ⇒ red(I 0, j )
292 by 〈4〉2, 〈4〉7
293 〈7〉 qed
294 by 〈7〉1, 〈4〉7 def Q , It , m, n
295 〈6〉5. MT !BigOp(m, n − 1, f ) = MT !BigOpP(m, n − 1, Q , f )
296 by 〈6〉1, 〈6〉2, 〈6〉3, 〈6〉4, H Mon, MT !TruePredicate, Isa
297 〈6〉 qed
298 by 〈6〉5, H MeqMT
299 〈5〉 qed
300 by 〈3〉3, 〈3〉4, 〈5〉A, 〈5〉B

302 〈4〉10. ∧M !BigOpP(m, n − 1, Q , f ) = M !BigOpP(m, n − 1, Q , g)
303 ∧ f (n) = g(n)
304 〈5〉1. M !BigOpP(m, n − 1, Q , f ) = M !BigOpP(m, n − 1, Q , g)
305 〈6〉A.case m = n
306 〈7〉1. m ∈ Int ∧ n − 1 ∈ Int
307 by 〈3〉3, 〈3〉4
308 〈7〉2. m > n − 1
309 by 〈6〉A, 〈7〉1
310 〈7〉3. MT !BigOpP(m, n − 1, Q , f ) = id
311 by 〈7〉1, 〈7〉2, H Mon, H MeqMT , MT !EmptyIntvAssumpP
312 〈7〉4. MT !BigOpP(m, n − 1, Q , g) = id
313 by 〈7〉1, 〈7〉2, H Mon, H MeqMT , MT !EmptyIntvAssumpP
314 〈7〉 qed
315 by 〈7〉3, 〈7〉4, H MeqMT
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316 〈6〉B.case m < n
317 〈7〉1. m ∈ Nat ∧ n − 1 ∈ Nat
318 by 〈3〉4, 〈6〉B
319 〈7〉2. ∀ j ∈ m . . n − 1 : Q(j ) ∈ boolean
320 by 〈2〉0, 〈3〉2, 〈3〉3, 〈7〉1 def TypeInv , Q
321 〈7〉3. ∧ ∀ j ∈ {j ∈ m . . n − 1 : Q(j )} : f (j ) ∈ D
322 ∧ ∀ j ∈ {j ∈ m . . n − 1 : Q(j )} : g(j ) ∈ D
323 by 〈3〉2, 〈4〉6, 〈4〉7 def Q , It , m, n
324 〈7〉4. ∀ j ∈ {j ∈ m . . n − 1 : Q(j )} : f (j ) = g(j )
325 by 〈3〉3, 〈4〉6, 〈4〉7 def Q , It , m, n
326 〈7〉5. MT !BigOpP(m, n − 1, Q , f ) = MT !BigOpP(m, n − 1, Q , g)
327 by 〈7〉1, 〈7〉2, 〈7〉3, 〈7〉4, H Mon, MT !FunctionEqP , IsaM (“blast”)
328 〈7〉 qed
329 by 〈7〉5, H MeqMT
330 〈6〉 qed
331 by 〈3〉3, 〈3〉4, 〈6〉A, 〈6〉B
332 〈5〉2. f (n) = g(n)
333 by 〈4〉6, 〈4〉7
334 〈5〉 qed
335 by 〈5〉1, 〈5〉2

337 〈4〉11. y = M !BigOpP(m, n − 1, Q , g)
338 〈5〉1. ¬red(I 0, n)
339 by 〈4〉2, 〈4〉7
340 〈5〉 qed
341 by 〈2〉0, 〈3〉3, 〈4〉7, 〈5〉1 def RInv2, Q , g , m, n

343 〈4〉E1. A(x ) = M !BigOp(m, n, f ) by def A, f , m, n
344 〈4〉E2. @ = Op(M !BigOp(m, n − 1, f ), f (n)) by 〈4〉8
345 〈4〉E3. @ = Op(M !BigOpP(m, n − 1, Q , f ), f (n)) by 〈4〉9
346 〈4〉E4. @ = Op(M !BigOpP(m, n − 1, Q , g), g(n)) by 〈4〉10
347 〈4〉E5. @ = Op(y , g(n)) by 〈4〉11
348 〈4〉E6. @ = y ′ by 〈4〉1, 〈4〉7

350 〈4〉 qed
351 by 〈4〉E1, 〈4〉E2, 〈4〉E3, 〈4〉E4, 〈4〉E5, 〈4〉E6

353 〈3〉 qed
354 by 〈3〉1, 〈3〉A, 〈3〉B, 〈3〉C
355 〈2〉B.case Done
356 〈3〉0. suffices assume unchanged 〈in, vs〉,
357 end(I 0)
358 prove y ′ = A(x )
359 by 〈2〉B def Done, vs, A, M !BigOpP , M !BigOp, M !bigOp, end
360 〈3〉1. y = A(x )
361 by 〈2〉0, 〈3〉0 def Correctness
362 〈3〉2. y ′ = y
363 by 〈3〉0 def vs
364 〈3〉 qed
365 by 〈3〉1, 〈3〉2
366 〈2〉C.case unchanged 〈in, vs〉
367 〈3〉0. suffices assume unchanged 〈in, vs〉,
368 end(I 0)
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369 prove y ′ = A(x )
370 by 〈2〉C def vs, Correctness, A, M !BigOpP , M !BigOp, M !bigOp, end
371 〈3〉1. y = A(x )
372 by 〈2〉0, 〈3〉0 def Correctness
373 〈3〉2. y ′ = y
374 by 〈3〉0 def vs
375 〈3〉 qed
376 by 〈3〉1, 〈3〉2
377 〈2〉 qed
378 by 〈2〉0, 〈2〉A, 〈2〉B, 〈2〉C def Next
379 〈1〉 qed
380 by 〈1〉1, 〈1〉2, Thm Inv , PTL def Spec

382
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1 module PCR ArLeft Thms

3 theorem Thm Refinement
∆
= Spec ⇒ PCR A !Spec

4 〈1〉 define x
∆
= X [I 0]

5 m
∆
= lBnd(x )

6 n
∆
= uBnd(x )

7 〈1〉 use def PCR A !Index , PCR A !Assig , PCR A !red
8 〈1〉1. Init ⇒ PCR A !Init
9 by H Type def Init , PCR A !Init , Undef , PCR A !Undef , inS

10 〈1〉2. ∧ Inv
11 ∧ [Next ]〈in, vs〉
12 ⇒ [PCR A !Next ]〈inS ,PCR A !vs〉
13 〈2〉0. suffices assume IndexInv , TypeInv ,
14 [Next ]〈in, vs〉
15 prove [PCR A !Next ]PCR A !vs
16 by def Inv , inS , PCR A !vs
17 〈2〉A.case Step
18 〈3〉0. suffices assume ∃ i ∈ It(x ) : ∨ P(I 0, i)
19 ∨ C (I 0, i)
20 ∨ R(I 0, i)
21 prove [PCR A !Next ]PCR A !vs
22 by 〈2〉0, 〈2〉A def Step, IndexInv
23 〈3〉1. pick i ∈ It(x ) : ∨ P(I 0, i)
24 ∨ C (I 0, i)
25 ∨ R(I 0, i)
26 by 〈3〉0
27 〈3〉2. x ∈ T
28 by 〈2〉0 def IndexInv , TypeInv , WDIndex , wrt
29 〈3〉3. ∧ I 0 ∈ Seq(Nat)
30 ∧ I 0 ∈ WDIndex
31 ∧ i ∈ Nat
32 ∧ i ∈ m . . n
33 ∧ It(x ) ⊆ Nat
34 by 〈2〉0, 〈3〉2, H Type def IndexInv , WDIndex , It
35 〈3〉4. m ∈ Nat ∧ n ∈ Nat
36 by 〈2〉0, 〈3〉2, H Type def TypeInv , m, n
37 〈3〉5. ∧ I 0 ∈ PCR A !WDIndex
38 ∧ i ∈ PCR A !It(x )
39 by 〈3〉3 def WDIndex , It , wrt , Undef , PCR A !WDIndex ,
40 PCR A !It , PCR A !wrt , PCR A !Undef , propS

42 〈3〉A.case P(I 0, i)
43 〈4〉0. suffices assume P(I 0, i)
44 prove PCR A !P(I 0, i)
45 by 〈2〉0, 〈3〉5, 〈3〉A def P , inS , PCR A !Next , PCR A !Step
46 〈4〉 qed
47 by 〈4〉0 def P , wrt , wrts, deps, Undef , PCR A !P ,
48 PCR A !wrt , PCR A !wrts, PCR A !deps, PCR A !Undef

50 〈3〉B.case C (I 0, i)
51 〈4〉0. suffices assume C (I 0, i)
52 prove PCR A !C (I 0, i)
53 by 〈2〉0, 〈3〉5, 〈3〉B def C , inS , PCR A !Next , PCR A !Step

C.4 Basic PCR with left reducer: Refinement of a

basic PCR
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54 〈4〉 qed
55 by 〈4〉0 def C , wrt , wrts, deps, Undef , PCR A !C ,
56 PCR A !wrt , PCR A !wrts, PCR A !deps, PCR A !Undef

58 〈3〉C.case R(I 0, i)
59 〈4〉0. suffices assume R(I 0, i)
60 prove PCR A !R(I 0, i)
61 by 〈2〉0, 〈3〉5, 〈3〉C def R, inS , PCR A !Next , PCR A !Step
62 〈4〉 qed
63 by 〈4〉0 def R, wrt , wrts, deps, Undef , PCR A !R,
64 PCR A !wrt , PCR A !wrts, PCR A !deps, PCR A !Undef

66 〈3〉 qed
67 by 〈3〉1, 〈3〉A, 〈3〉B, 〈3〉C
68 〈2〉B.case Done
69 〈3〉0. suffices assume unchanged 〈in, vs〉
70 prove unchanged PCR A !vs
71 by 〈2〉B def Done, vs
72 〈3〉1. PCR A !vs ′ = PCR A !vs
73 by 〈3〉0 def PCR A !vs, vs, end
74 〈3〉 qed
75 by 〈3〉1
76 〈2〉C.case unchanged 〈in, vs〉
77 〈3〉0. suffices assume unchanged 〈in, vs〉
78 prove unchanged PCR A !vs
79 by 〈2〉C def vs
80 〈3〉1. PCR A !vs ′ = PCR A !vs
81 by 〈3〉0 def PCR A !vs, vs, end
82 〈3〉 qed
83 by 〈3〉1
84 〈2〉 qed
85 by 〈2〉0, 〈2〉A, 〈2〉B, 〈2〉C def Next
86 〈1〉 qed
87 by 〈1〉1, 〈1〉2, Thm Inv , PTL def Spec, PCR A !Spec

89
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1 module PCR A c B Thms

3 theorem Thm Refinement
∆
= Spec ⇒ PCR A !Spec

4 〈1〉 define x1
∆
= X 1[I 0]

5 m1
∆
= lBnd1(x1)

6 n1
∆
= uBnd1(x1)

7 Q1(i)
∆
= prop1(i)

8 〈1〉 use def PCR A !Index , PCR A !Assig , PCR A !red
9 〈1〉1. Init ⇒ PCR A !Init

10 〈2〉 suffices assume Init
11 prove PCR A !Init
12 obvious
13 〈2〉1. ∧ x1 ∈ T ∧ pre(x1)
14 ∧X 1 = [I ∈ Seq(Nat) 7→ if I = I 0 then x1 else Undef ]
15 ∧ p1 = [I ∈ Seq(Nat) 7→ [i ∈ Nat 7→ Undef ]]
16 ∧ c1 = [I ∈ Seq(Nat) 7→ [i ∈ Nat 7→ Undef ]]
17 ∧ rs1 = [I ∈ Seq(Nat) 7→ [i ∈ Nat 7→ false]]
18 ∧ r1 = [I ∈ Seq(Nat) 7→ id1]
19 by H TypeA def Init , InitA
20 〈2〉 qed
21 by 〈2〉1, H UndefRestrict def PCR A !Init , inS
22 〈1〉2. ∧ InvA
23 ∧ CorrectnessB
24 ∧ [Next ]〈in, vs1, vs2〉
25 ⇒ [PCR A !Next ]〈inS ,PCR A !vs〉
26 〈2〉0. suffices assume IndexInvA, TypeInvA, CInv1A,
27 CorrectnessB ,
28 [Next ]〈in, vs1, vs2〉
29 prove [PCR A !Next ]PCR A !vs
30 by def InvA, inS , PCR A !vs
31 〈2〉A.case StepA
32 〈3〉0. suffices assume ∃ i ∈ ItA(x1) : ∨ P1(I 0, i)
33 ∨ C1ini(I 0, i)
34 ∨ C1end(I 0, i)
35 ∨ R1(I 0, i)
36 prove [PCR A !Next ]PCR A !vs
37 by 〈2〉0, 〈2〉A def StepA, IndexInvA
38 〈3〉1. pick i ∈ ItA(x1) : ∨ P1(I 0, i)
39 ∨ C1ini(I 0, i)
40 ∨ C1end(I 0, i)
41 ∨ R1(I 0, i)
42 by 〈3〉0
43 〈3〉2. x1 ∈ T
44 by 〈2〉0 def IndexInvA, TypeInvA, WDIndexA, wrt
45 〈3〉3. ∧ I 0 ∈ Seq(Nat)
46 ∧ I 0 ∈ WDIndexA
47 ∧ i ∈ Nat
48 ∧ i ∈ {k ∈ m1 . . n1 : Q1(k)}
49 ∧ ItA(x1) ⊆ Nat
50 by 〈2〉0, 〈3〉2, H TypeA def IndexInvA, WDIndexA, ItA
51 〈3〉4. m1 ∈ Nat ∧ n1 ∈ Nat
52 by 〈2〉0, 〈3〉2, H TypeA def TypeInvA, m1, n1

C.5 Composition through consumer: Refinement of

a basic PCR
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53 〈3〉5. ∧ I 0 ∈ PCR A !WDIndex
54 ∧ i ∈ PCR A !It(x1)
55 by 〈3〉3, H UndefRestrict def WDIndexA, ItA, wrt ,
56 PCR A !WDIndex , PCR A !It , PCR A !wrt

58 〈3〉A.case P1(I 0, i)
59 〈4〉0. suffices assume P1(I 0, i)
60 prove PCR A !P(I 0, i)
61 by 〈2〉0, 〈3〉5, 〈3〉A def P1, inS , PCR A !Next , PCR A !Step
62 〈4〉 qed
63 by 〈4〉0, H UndefRestrict def P1, wrt , wrts, depsA,
64 PCR A !P , PCR A !wrt , PCR A !wrts, PCR A !deps

66 〈3〉B.case C1ini(I 0, i)
67 〈4〉0. suffices assume C1ini(I 0, i)
68 prove unchanged PCR A !vs
69 by 〈2〉0, 〈3〉5, 〈3〉B def C1ini , PCR A !Next , PCR A !Step
70 〈4〉1. unchanged 〈X 1, p1, c1, r1, rs1〉
71 by 〈4〉0 def C1ini
72 〈4〉 qed
73 by 〈4〉1 def PCR A !vs

75 〈3〉C.case C1end(I 0, i)
76 〈4〉0. suffices assume C1end(I 0, i)
77 prove PCR A !C (I 0, i)
78 by 〈2〉0, 〈3〉5, 〈3〉C def C1end , inS , PCR A !Next , PCR A !Step
79 〈4〉1. ∧ ¬wrt(c1[I 0][i ])
80 ∧ wrt(X 2[I 0 ◦ 〈i〉])
81 ∧ endB(I 0 ◦ 〈i〉)
82 ∧ c1′ = [c1 except ! [I 0][i ] = r2[I 0 ◦ 〈i〉]]
83 ∧ unchanged 〈X 1, p1, r1, rs1, X 2〉
84 by 〈4〉0 def C1end
85 〈4〉2. wrts(p1[I 0], depsA(x1, Dep pc1, i))
86 by 〈2〉0, 〈4〉1 def CInv1A
87 〈4〉3. pick vp ∈ StA(Tp1) :
88 ∧ eqs(vp, p1[I 0], depsA(x1, Dep pc1, i))
89 ∧X 2[I 0 ◦ 〈i〉] = 〈x1, vp, i〉
90 by 〈2〉0, 〈4〉1 def CInv1A
91 〈4〉4. p1[I 0] ∈ StA(Tp1)
92 by 〈2〉0, 〈3〉3 def TypeInvA, StA
93 〈4〉5. I 0 ◦ 〈i〉 ∈ WDIndexB
94 by 〈3〉3, 〈4〉1 def WDIndexB

96 〈4〉E1. c1[I 0][i ]′ = r2[I 0 ◦ 〈i〉] by 〈2〉0, 〈3〉3, 〈4〉1 def TypeInvA, StA
97 〈4〉E2. @ = B(X 2[I 0 ◦ 〈i〉]) by 〈2〉0, 〈4〉1, 〈4〉5 def CorrectnessB
98 〈4〉E3. @ = B(〈x1, vp, i〉) by 〈4〉3
99 〈4〉E4. @ = fcS (x1, vp, i) by def fcS

100 〈4〉E5. @ = fcS (x1, p1[I 0], i) by 〈3〉2, 〈4〉3, 〈4〉4, H fcSRelevance

102 〈4〉6. c1[I 0][i ]′ = fcS (x1, p1[I 0], i)
103 by 〈4〉1, 〈4〉E1, 〈4〉E2, 〈4〉E3, 〈4〉E4, 〈4〉E5
104 〈4〉7. c1′ = [c1 except ! [I 0][i ] = fcS (x1, p1[I 0], i)]
105 by 〈4〉1, 〈4〉6
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107 〈4〉8. ∧ ¬wrt(c1[I 0][i ])
108 ∧ wrts(p1[I 0], depsA(x1, Dep pc1, i))
109 ∧ c1′ = [c1 except ! [I 0][i ] = fcS (x1, p1[I 0], i)]
110 ∧ unchanged 〈X 1, p1, r1, rs1〉
111 by 〈4〉1, 〈4〉2, 〈4〉7

113 〈4〉 qed
114 by 〈4〉8, H UndefRestrict def PCR A !C , wrt , wrts, depsA,
115 PCR A !wrt , PCR A !wrts, PCR A !deps

117 〈3〉D.case R1(I 0, i)
118 〈4〉0. suffices assume R1(I 0, i)
119 prove PCR A !R(I 0, i)
120 by 〈2〉0, 〈3〉5, 〈3〉D def R1, inS , PCR A !Next , PCR A !Step
121 〈4〉 qed
122 by 〈4〉0, H UndefRestrict def R1, wrt , wrts, depsA,
123 PCR A !R, PCR A !wrt , PCR A !wrts, PCR A !deps

125 〈3〉 qed
126 by 〈3〉1, 〈3〉A, 〈3〉B, 〈3〉C, 〈3〉D

128 〈2〉B.case StepB
129 〈3〉0. suffices assume ∃ I ∈ WDIndexB :
130 ∃ i ∈ ItB(X 2[I ]) : ∨ P2(I , i)
131 ∨ C2(I , i)
132 ∨ R2(I , i)
133 prove unchanged PCR A !vs
134 by 〈2〉0, 〈2〉B def StepB
135 〈3〉1. 〈in, vs1〉′ = 〈in, vs1〉
136 by 〈2〉B def StepB
137 〈3〉2. PCR A !vs ′ = PCR A !vs
138 by 〈3〉1 def vs1, PCR A !vs, wrt
139 〈3〉 qed
140 by 〈3〉2

142 〈2〉C.case Done
143 〈3〉0. suffices assume unchanged 〈in, vs1, vs2〉
144 prove unchanged PCR A !vs
145 by 〈2〉C def Done, vs1, vs2
146 〈3〉1. PCR A !vs ′ = PCR A !vs
147 by 〈3〉0 def PCR A !vs, vs1, vs2, wrt
148 〈3〉 qed
149 by 〈3〉1
150 〈2〉D.case unchanged 〈in, vs1, vs2〉
151 〈3〉0. suffices assume unchanged 〈in, vs1, vs2〉
152 prove unchanged PCR A !vs
153 by 〈2〉D def vs1, vs2
154 〈3〉1. PCR A !vs ′ = PCR A !vs
155 by 〈3〉0 def PCR A !vs, vs1, vs2, wrt
156 〈3〉 qed
157 by 〈3〉1
158 〈2〉 qed
159 by 〈2〉0, 〈2〉A, 〈2〉B, 〈2〉C, 〈2〉D def Next
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160 〈1〉 qed
161 by 〈1〉1, 〈1〉2, Thm Inv1, Thm CorrectnessB , PTL def Spec, PCR A !Spec

163
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Appendix D

Specification of concrete PCRs
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1 module PCR FibPrimes1

PCR FibPrimes1.

-----------------------------------------------------------------

fun fibs(p,i) = if i <= 2 then 1 else p[-1] + p[-2]

fun isPrime(p) = n > 1 and not (some (\m. divides(m,n)) [2..n-1])

fun count(r,c) = r + if c then 1 else 0

dep p(i-1) -> p(i)

dep p(i-2) -> p(i)

lbnd FibPrimes1 = \N. 1

ubnd FibPrimes1 = \N. x

PCR FibPrimes1(N)

par

p = produce fibs p

c = consume isPrime p

r = reduce count 0 c

-----------------------------------------------------------------

26 extends Naturals, Sequences, ArithUtils, TLC

28

Concrete elements of FibPrimes1

34 T
∆
= Nat

35 Tp
∆
= Nat

36 Tc
∆
= boolean

37 D
∆
= Nat

39 Dep pp
∆
= 〈{1, 2}, {}〉

40 Dep pc
∆
= 〈{}, {}〉

41 Dep cr
∆
= 〈{}, {}〉

43 lBnd(N )
∆
= 1

44 uBnd(N )
∆
= N

45 prop(i)
∆
= true

47 fibs(p, i)
∆
= if i ≤ 2 then 1 else p[i − 1] + p[i − 2]

48 isPrime(p)
∆
= p > 1 ∧ ¬∃m ∈ 2 . . (p − 1) : Divides(m, p)

49 toNat(c)
∆
= if c then 1 else 0

51 id
∆
= 0

52 Op(x , y)
∆
= x + y

54

FibPrimes1 is a concrete instance of the abstract model PCR A

60 variables in, X , p, c, r , rs

62 I 0
∆
= 〈〉

63 pre(x )
∆
= true

65 fp(x , vp, i)
∆
= fibs(vp, i)

66 fc(x , vp, i)
∆
= isPrime(vp[i ])

67 fr(x , vc, i)
∆
= toNat(vc[i ])

68 gp(x , i)
∆
= fibonacci [i ]

70 instance PCR A Thms

D.1 PCR FibPrimes1
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72

Most axioms can be promoted to ordinary mathematical lemmas. These are proved in module PCR FibPrimes1 Lems.

79 Lem Type
∆
= H Type

80 Lem BFunWD
∆
= H BFunWD

81 Lem fpRelevance
∆
= H fpRelevance

82 Lem fcRelevance
∆
= H fcRelevance

83 Lem frRelevance
∆
= H frRelevance

84 Lem Algebra
∆
= H Algebra

The invariant axiom for the producer can be proved alongside the other basic invariants. This is done in module

PCR FibPrimes1 Thms.

91 ProdEqInv
∆
=

92 ∀ i ∈ It(X [I 0]) :
93 wrt(p[I 0][i ])⇒ fp(X [I 0], p[I 0], i) = gp(X [I 0], i)

The ordinary lemmas re-stated as invariant properties for model checking.

They are relativized to I0 for a more tractable verification, but even so it is only feasible for very small bounds.

102 TypeCheck
∆
=

103 ∧ lBnd(X [I 0]) ∈ Nat
104 ∧ uBnd(X [I 0]) ∈ Nat
105 ∧ prop(X [I 0]) ∈ boolean
106 ∧ pre(X [I 0]) ∈ boolean
107 ∧Dep pp ∈ (subset (Nat \ {0}))× (subset {})
108 ∧Dep pc ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))
109 ∧Dep cr ∈ (subset (Nat \ {0}))× (subset (Nat \ {0}))

111 BFunWDCheck
∆
=

112 ∀ i ∈ It(X [I 0]) :
113 ∧ gp(X [I 0], i) ∈ Tp
114 ∧ wrts(p[I 0], deps(X [I 0], Dep pp, i) \ {i})⇒ fp(X [I 0], p[I 0], i) ∈ Tp
115 ∧ wrts(p[I 0], deps(X [I 0], Dep pc, i)) ⇒ fc(X [I 0], p[I 0], i) ∈ Tc
116 ∧ wrts(c[I 0], deps(X [I 0], Dep cr , i)) ⇒ fr(X [I 0], c[I 0], i) ∈ D

118 fpRelevanceCheck
∆
=

119 ∀ i ∈ It(X [I 0]), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :
120 eqs(vp1, vp2, deps(X [I 0], Dep pp, i) \ {i})⇒ fp(X [I 0], vp1, i) = fp(X [I 0], vp2, i)

122 fcRelevanceCheck
∆
=

123 ∀ i ∈ It(X [I 0]), vp1 ∈ St(Tp), vp2 ∈ St(Tp) :
124 eqs(vp1, vp2, deps(X [I 0], Dep pc, i))⇒ fc(X [I 0], vp1, i) = fc(X [I 0], vp2, i)

126 frRelevanceCheck
∆
=

127 ∀ i ∈ It(X [I 0]), vc1 ∈ St(Tc), vc2 ∈ St(Tc) :
128 eqs(vc1, vc2, deps(X [I 0], Dep cr , i))⇒ fr(X [I 0], vc1, i) = fr(X [I 0], vc2, i)

130 AlgebraCheck
∆
=

131 ∧ ∀ x , y , z ∈ D : Op(Op(x , y), z ) = Op(x , Op(y , z ))
132 ∧ ∀ x ∈ D : Op(x , id) = x ∧Op(id , x ) = x
133 ∧ ∀ x , y ∈ D : Op(x , y) = Op(y , x )

135 LemmaCheck
∆
= ∧ TypeCheck

136 ∧ BFunWDCheck
137 ∧ fpRelevanceCheck
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138 ∧ fcRelevanceCheck
139 ∧ frRelevanceCheck
140 ∧AlgebraCheck

Alternative correctness

146 CountFibPrimes(N )
∆
= let fibSeq

∆
= [i ∈ 1 . . N 7→ fibonacci [i ]]

147 in Len(SelectSeq(fibSeq , lambda f : IsPrime(f )))

149 CorrectnessAlt
∆
= end(I 0)⇒ r [I 0] = CountFibPrimes(X [I 0])

151
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1 module PCR IsPrime2

PCR IsPrime2.

-----------------------------------------------------------------

fun divs(i) = i

fun notDiv(N,p) = N > 1 and (p > 1 implies not divides(p,N))

lbnd IsPrime2 = \N. 0

ubnd IsPrime2 = \N. sqrt(N)

prop IsPrime2 = \i. i <= 2 or odd(i)

PCR IsPrime2(N)

par

p = produce divs p

c = consume notDiv N p

r = reduce and true c

-----------------------------------------------------------------

22 extends Naturals, Sequences, ArithUtils, TLC

24

Concrete elements of IsPrime2

30 T
∆
= Nat

31 Tp
∆
= Nat

32 Tc
∆
= boolean

33 D
∆
= boolean

35 Dep pp
∆
= 〈{}, {}〉

36 Dep pc
∆
= 〈{}, {}〉

37 Dep cr
∆
= 〈{}, {}〉

39 lBnd(N )
∆
= 0

40 uBnd(N )
∆
= Sqrt(N )

41 prop(i)
∆
= i ≤ 2 ∨Odd(i)

43 divs(i)
∆
= i

44 notDiv(N , p)
∆
= N > 1 ∧ (p > 1⇒ ¬Divides(p, N ))

46 id
∆
= true

47 Op(x , y)
∆
= x ∧ y

49

IsPrime2 is a concrete instance of the abstract model PCR A

55 variables in, X , p, c, r , rs

57 I 0
∆
= 〈〉

58 pre(x )
∆
= true

60 fp(x , vp, i)
∆
= divs(i)

61 fc(x , vp, i)
∆
= notDiv(x , vp[i ])

62 fr(x , vc, i)
∆
= vc[i ]

63 gp(x , i)
∆
= fp(x , p, i)

65 instance PCR A

67

Alternative correctness

D.2 PCR IsPrime2
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73 CorrectnessAlt
∆
= end(I 0)⇒ r [I 0] = IsPrime(X [I 0])

75
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1 module PCR FibPrimes2

PCR FibPrimes2.

-----------------------------------------------------------------

fun fibs(p,i) = if i <= 2 then 1 else p[-1] + p[-2]

fun count(r,c) = r + if c then 1 else 0

dep p(i-1) -> p(i)

dep p(i-2) -> p(i)

lbnd FibPrimes1 = \N. 1

ubnd FibPrimes1 = \N. x

PCR FibPrimes2(N)

par

p1 = produce fibs p1

c1 = consume IsPrime p1

r1 = reduce count 0 c1

fun divs(i) = i

fun notDiv(F,p) = F > 1 and (p > 1 implies not divides(p,F))

lbnd IsPrime2 = \F. 0

ubnd IsPrime2 = \F. sqrt(F)

prop IsPrime2 = \i. i <= 2 or odd(i)

PCR IsPrime2(F)

par

p2 = produce divs p2

c2 = consume notDiv F p2

r2 = reduce and true c2

-----------------------------------------------------------------

37 extends Naturals, Sequences, ArithUtils, TLC

39

Concrete elements of FibPrimes2

45 T
∆
= Nat

46 Tp1
∆
= Nat

47 Tc1
∆
= boolean

48 D1
∆
= Nat

50 Dep pp1
∆
= 〈{1, 2}, {}〉

51 Dep pc1
∆
= 〈{}, {}〉

52 Dep cr1
∆
= 〈{}, {}〉

54 lBnd1(N )
∆
= 1

55 uBnd1(N )
∆
= N

56 prop1(i)
∆
= true

58 fibs(p, i)
∆
= if i ≤ 2 then 1 else p[i − 1] + p[i − 2]

59 toNat(c)
∆
= if c then 1 else 0

61 id1
∆
= 0

62 Op1(x , y)
∆
= x + y

Concrete elements of IsPrime2

68 Tp2
∆
= Nat

69 Tc2
∆
= boolean

70 D2
∆
= boolean

72 Dep pp2
∆
= 〈{}, {}〉

D.3 PCR FibPrimes2
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73 Dep pc2
∆
= 〈{}, {}〉

74 Dep cr2
∆
= 〈{}, {}〉

76 lBnd2(F )
∆
= 0

77 uBnd2(F )
∆
= Sqrt(F )

78 prop2(i)
∆
= i ≤ 2 ∨Odd(i)

80 divs(i)
∆
= i

81 notDiv(F , p)
∆
= F > 1 ∧ (p > 1⇒ ¬Divides(p, F ))

83 id2
∆
= true

84 Op2(x , y)
∆
= x ∧ y

86

FibPrimes2 is a concrete instance of the abstract model PCR A c B

92 variables in, X 1, p1, c1, r1, rs1,
93 X 2, p2, c2, r2, rs2

95 I 0
∆
= 〈〉

96 pre(x1)
∆
= true

98 fp1(x1, vp, i)
∆
= fibs(vp, i)

99 fr1(x1, vc, i)
∆
= toNat(vc[i ])

100 gp1(x1, i)
∆
= fibonacci [i ]

102 uBnd2(x2)
∆
= let F

∆
= x2[2][x2[3]]in uBnd2(F )

103 fp2(x2, vp, i)
∆
= divs(i)

104 fc2(x2, vp, i)
∆
= let F

∆
= x2[2][x2[3]]in notDiv(F , vp[i ])

105 fr2(x2, vc, i)
∆
= vc[i ]

106 gp2(x2, i)
∆
= fp2(x2, p2, i)

108 instance PCR A c B with uBnd2← uBnd2

110

Alternative correctness

116 CountFibPrimes(N )
∆
= let fibSeq

∆
= [i ∈ 1 . . N 7→ fibonacci [i ]]

117 in Len(SelectSeq(fibSeq , lambda f : IsPrime(f )))

119 CorrectnessAlt
∆
= endA(I 0)⇒ r1[I 0] = CountFibPrimes(X 1[I 0])

121
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1 module PCR MergeSort1

PCR MergeSort1.

-----------------------------------------------------------------

fun div(L) = let m = floor(len(L) / 2)

in [L[1..m], L[m+1..len(L)]]

fun isBase(p) = len(p) <= 1

fun base(p) = p

PCR MergeSort1(L)

par

p = produce iterDiv L

c = consume subproblem L p

r = reduce merge [] c

-----------------------------------------------------------------

20 extends Naturals, Sequences, SeqUtils, ArithUtils, TLC

22

Concrete elements of MergeSort1

28 constant Elem

30 T
∆
= Seq(Elem)

31 D
∆
= Seq(Elem)

33 Dep pc
∆
= 〈{}, {}〉

34 Dep cr
∆
= 〈{}, {}〉

36 div(L)
∆
= let mid

∆
= Len(L)÷ 2

37 in 〈SubSeq(L, 1, mid), SubSeq(L, mid + 1, Len(L))〉
38 isBase(p)

∆
= Len(p) ≤ 1

39 base(p)
∆
= p

41 id
∆
= 〈〉

42 Op(x , y)
∆
= x ] y

44

MergeSort1 is a concrete instance of the abstract model PCR DC

50 variables in, X , p, c, r , rs

52 I 0
∆
= 〈〉

53 pre(x )
∆
= true

55 base(x , vp, i)
∆
= base(vp[i ])

56 isBase(x , vp, i)
∆
= isBase(vp[i ])

57 fr(x , vc, i)
∆
= vc[i ]

59 instance PCR DC with base ← base, isBase ← isBase

61

Alternative correctness

67 CorrectnessAlt
∆
= end(I 0)⇒ r [I 0] = SortSeq(X [I 0], < )

69

D.4 PCR MergeSort1

334



1 module PCR Merge

PCR Merge.

-----------------------------------------------------------------

fun binarySearch(L,e) = ...

fun div(L1,L2) = [(L11,L21), (L21,L22)] // ensure len(L1) >= len(L2)

where m = floor(len(L1) / 2)

L11 = L1[1..m]

L12 = L1[m+1..len(L1)]

k = binarySearch(L2, L12[1])

L21 = L2[1..k]

L22 = L2[k+1..len(L2)]

fun isBase(p) = len(p[1]) <= 1 and len(p[2]) <= 1

fun base(p) = merge(p[1],p[2])

PCR Merge(L1, L2)

par

p = produce iterDiv L1 L2

c = consume subproblem L1 L2 p

r = reduce ++ [] c

-----------------------------------------------------------------

26 extends Naturals, Sequences, SeqUtils, ArithUtils, TLC

28

Concrete elements of Merge

34 constant Elem

36 T
∆
= Seq(Elem)

37 D
∆
= Seq(Elem)

39 Dep pc
∆
= 〈{}, {}〉

40 Dep cr
∆
= 〈{}, {}〉

42 binarySearch(seq , e)
∆
=

43 let f [s ∈ Seq(Elem)]
∆
=

44 if s = 〈〉 then 0
45 else let m

∆
= (Len(s) + 1)÷ 2

46 in case e = s[m]→ m
47 2 e < s[m]→ f [SubSeq(s, 1, m − 1)]
48 2 e > s[m]→ let pv

∆
= f [SubSeq(s, m + 1, Len(s))]

49 in if pv > 0 then pv +m + 1 else m − pv
50 in f [seq ]

52 div( L1, L2)
∆
= Make sure len(L1) ≥ len(L2)

53 let L1
∆
= if Len( L1) ≥ Len( L2) then L1 else L2

54 L2
∆
= if Len( L1) ≥ Len( L2) then L2 else L1

55 in let m
∆
= Len(L1)÷ 2 a. Split L1 in halves L11 and L12

56 L11
∆
= SubSeq(L1, 1, m)

57 L12
∆
= SubSeq(L1, m + 1, Len(L1))

58 k
∆
= binarySearch(L2, L12[1]) b. Search position of L12[1] in L2

59 L21
∆
= case k = 0 → 〈〉 c. Split L2 in that position

60 2k > Len(L2)→ L2
61 2other → SubSeq(L2, 1, k)
62 L22

∆
= case k = 0 → L2

63 2k > Len(L2)→ 〈〉
64 2other → SubSeq(L2, k + 1, Len(L2))

D.5 PCR Merge
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65 in 〈〈L11, L21〉, 〈L12, L22〉〉 Produce two sub-merges

67 isBase(p)
∆
= Len(p[1]) ≤ 1 ∧ Len(p[2]) ≤ 1

68 base(p)
∆
= p[1] ] p[2]

70 id
∆
= 〈〉

71 Op(x , y)
∆
= x ◦ y

73

Merge is a concrete instance of the abstract model PCR DCrLeft

79 variables in, X , p, c, r , rs

81 I 0
∆
= 〈〉

82 pre(x )
∆
= IsOrdered(x [1]) ∧ IsOrdered(x [2])

84 div(x )
∆
= div(x [1], x [2])

85 base(x , vp, i)
∆
= base(vp[i ])

86 isBase(x , vp, i)
∆
= isBase(vp[i ])

87 fr(x , vc, i)
∆
= vc[i ]

89 instance PCR DCrLeft with div ← div , base ← base, isBase ← isBase

91

Alternative correctness

97 CorrectnessAlt
∆
= end(I 0)⇒ r [I 0] = X [I 0][1] ]X [I 0][2]

99
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1 module PCR MergeSort2

PCR MergeSort2.

-----------------------------------------------------------------

fun div1(L) = let m = floor(len(L) / 2)

in [L[1..m], L[m+1..len(L)]]

fun isBase1(p) = len(p) <= 1

fun base1(p) = p

PCR MergeSort2(L)

par

p1 = produce iterDiv1 L

c1 = consume subproblem1 L p1

r1 = reduce Merge [] c1

fun binarySearch(L,e) = ...

fun div2(L1,L2) = [(L11,L21), (L21,L22)] // ensure len(L1) >= len(L2)

where m = floor(len(L1) / 2)

L11 = L1[1..m]

L12 = L1[m+1..len(L1)]

k = binarySearch(L2, L12[1])

L21 = L2[1..k]

L22 = L2[k+1..len(L2)]

fun isBase2(p) = len(p[1]) <= 1 and len(p[2]) <= 1

fun base2(p) = merge(p[1],p[2])

PCR Merge(L1, L2)

par

p2 = produce iterDiv2 L1 L2

c2 = consume subproblem2 L1 L2 p2

r2 = reduce ++ [] c2

-----------------------------------------------------------------

37 extends Naturals, Sequences, SeqUtils, ArithUtils, TLC

39

Concrete elements of MergeSort2

45 constant Elem

47 T
∆
= Seq(Elem)

48 D
∆
= Seq(Elem)

50 Dep pc1
∆
= 〈{}, {}〉

51 Dep cr1
∆
= 〈{}, {}〉

53 div1(L)
∆
= let mid

∆
= Len(L)÷ 2

54 in 〈SubSeq(L, 1, mid), SubSeq(L, mid + 1, Len(L))〉
55 isBase1(p)

∆
= Len(p) ≤ 1

56 base1(p)
∆
= p

58 id
∆
= 〈〉

Concrete elements of Merge

64 Dep pc2
∆
= 〈{}, {}〉

65 Dep cr2
∆
= 〈{}, {}〉

67 binarySearch(seq , e)
∆
=

68 let f [s ∈ Seq(Elem)]
∆
=

69 if s = 〈〉 then 0
70 else let m

∆
= (Len(s) + 1)÷ 2

71 in case e = s[m]→ m
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72 2 e < s[m]→ f [SubSeq(s, 1, m − 1)]
73 2 e > s[m]→ let pv

∆
= f [SubSeq(s, m + 1, Len(s))]

74 in if pv > 0 then pv +m + 1 else m − pv
75 in f [seq ]

77 div2( L1, L2)
∆
= Make sure len(L1) ≥ len(L2)

78 let L1
∆
= if Len( L1) ≥ Len( L2) then L1 else L2

79 L2
∆
= if Len( L1) ≥ Len( L2) then L2 else L1

80 in let m
∆
= Len(L1)÷ 2 a. Split L1 in halves L11 and L12

81 L11
∆
= SubSeq(L1, 1, m)

82 L12
∆
= SubSeq(L1, m + 1, Len(L1))

83 k
∆
= binarySearch(L2, L12[1]) b. Search position of L12[1] in L2

84 L21
∆
= case k = 0 → 〈〉 c. Split L2 in that position

85 2k > Len(L2)→ L2
86 2other → SubSeq(L2, 1, k)
87 L22

∆
= case k = 0 → L2

88 2k > Len(L2)→ 〈〉
89 2other → SubSeq(L2, k + 1, Len(L2))
90 in 〈〈L11, L21〉, 〈L12, L22〉〉 Produce two sub-merges

92 isBase2(p)
∆
= Len(p[1]) ≤ 1 ∧ Len(p[2]) ≤ 1

93 base2(p)
∆
= p[1] ] p[2]

95 Op2(x , y)
∆
= x ◦ y

97

MergeSort2 is a concrete instance of the abstract model PCR DC r DCrLeft

103 variables in, X 1, p1, c1, r1, rs1,
104 X 2, p2, c2, r2, rs2

106 I 0
∆
= 〈〉

107 pre(x )
∆
= true

109 div1(x )
∆
= div1(x )

110 base1(x , vp, i)
∆
= base1(vp[i ])

111 isBase1(x , vp, i)
∆
= isBase1(vp[i ])

112 fr1(x , vc, i)
∆
= vc[i ]

114 div2(x )
∆
= div2(x [1], x [2])

115 base2(x , vp, i)
∆
= base2(vp[i ])

116 isBase2(x , vp, i)
∆
= isBase2(vp[i ])

117 fr2(x , vc, i)
∆
= vc[i ]

119 instance PCR DC r DCrLeft
120 with div1← div1, base1← base1, isBase1← isBase1,
121 div2← div2, base2← base2, isBase2← isBase2

123

Alternative correctness

129 CorrectnessAlt
∆
= endA(I 0)⇒ r1[I 0] = SortSeq(X 1[I 0], < )

131
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1 module PCR NQueensDC

PCR NQueensDC .

-----------------------------------------------------------------

fun validPos(C,i,j) = ...

fun addQInRow(C,i) = ...

fun canAddQInRow(C,i) = ...

fun canAddQueens(C) = ...

fun complete(C) = all (\j. j != 0) C

fun div(C) = [addQInRow(C,i) | 1 <= i <= len(C), canAddQInRow(C,i)]

fun isBase(p) = complete(p) or not canAddQueens(p)

fun base(p) = if complete(p) then { p } else {}

PCR NQueensDC(C)

par

p = produce iterDiv C

c = consume subproblem C p

r = reduce union {} c

-----------------------------------------------------------------

25 extends Naturals, Sequences, SeqUtils, ArithUtils, TLC

27

Concrete elements of NQueensDC

33 Config
∆
= Seq(Nat)

34 T
∆
= subset Config

35 D
∆
= subset Config

37 Dep pc
∆
= 〈{}, {}〉

38 Dep cr
∆
= 〈{}, {}〉

40 validPos(C , i , j )
∆
=

41 ∧ C [i ] = 0
42 ∧ ∀ k ∈ domain C : C [k ] 6= j
43 ∧ ∀ k ∈ domain C : C [k ] 6= 0⇒ abs(C [k ]− j ) 6= abs(k − i)

45 addQInRow(C , i)
∆
= let j

∆
= choose j ∈ domain C : validPos(C , i , j )

46 in [C except ! [i ] = j ]
47 canAddQInRow(C , i)

∆
= ∃ j ∈ domain C : validPos(C , i , j )

48 canAddQueens(C )
∆
= ∀ i ∈ domain C : C [i ] = 0⇒ canAddQInRow(C , i)

49 complete(C )
∆
= ∀ i ∈ domain C : C [i ] 6= 0

51 div(C )
∆
= Map(lambda i : addQInRow(C , i),

52 SelectSeq(1 . . .Len(C ), lambda i : canAddQInRow(C , i)))
53 isBase(p)

∆
= complete(p) ∨ ¬canAddQueens(p)

54 base(p)
∆
= if complete(p) then {p} else {}

56 id
∆
= {}

57 Op(x , y)
∆
= x ∪ y

59

NQueensDC is a concrete instance of the abstract model PCR DC

65 variables in, X , p, c, r , rs

67 I 0
∆
= 〈〉

68 pre(C )
∆
= ∀ i ∈ domain C : C [i ] = 0

D.7 PCR NQueensDC
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70 base(x , vp, i)
∆
= base(vp[i ])

71 isBase(x , vp, i)
∆
= isBase(vp[i ])

72 fr(x , vc, i)
∆
= vc[i ]

74 instance PCR DC with base ← base, isBase ← isBase

76

Alternative correctness

82 Solutions(x )
∆
= case Len(x ) = 0 → {}

83 2 Len(x ) = 1 → {〈1〉}
84 2 Len(x ) ∈ 2 . . 3 → {}
85 2 Len(x ) = 4 → {〈3, 1, 4, 2〉,
86 〈2, 4, 1, 3〉}
87 2 Len(x ) = 5 → {〈1, 3, 5, 2, 4〉,
88 〈1, 4, 2, 5, 3〉,
89 〈2, 4, 1, 3, 5〉,
90 〈2, 5, 3, 1, 4〉,
91 〈3, 1, 4, 2, 5〉,
92 〈3, 5, 2, 4, 1〉,
93 〈4, 1, 3, 5, 2〉,
94 〈4, 2, 5, 3, 1〉,
95 〈5, 2, 4, 1, 3〉,
96 〈5, 3, 1, 4, 2〉}
97 2 Len(x ) = 6 → {〈2, 4, 6, 1, 3, 5〉,
98 〈3, 6, 2, 5, 1, 4〉,
99 〈4, 1, 5, 2, 6, 3〉,

100 〈5, 3, 1, 6, 4, 2〉}
101 2 Len(x ) > 6 → “ask google...”

103 CorrectnessAlt
∆
= end(I 0)⇒ r [I 0] = Solutions(X [I 0])

105
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1 module PCR NQueensIT

PCR NQueensIT .

-----------------------------------------------------------------

fun cnd(s,j) = j > 1 and s == s[-1]

PCR NQueensIT(C)

c1 = iterate cnd NQueensITstep {C}

fun validPos(C,i,j) = ...

fun addQInRow(C,i) = ...

fun canAddQInRow(C,i) = ...

fun complete(C) = all (\j. j != 0) C

fun elem(CS,i) = enum(CS)[i]

fun div(p) = {addQInRow(p,i) | 1 <= i <= len(p), canAddQInRow(p,i)}

fun extend(p) = if complete(p) then {p} else div(p)

lbnd NQueensITstep = \CS. 1

ubnd NQueensITstep = \CS. #(CS)

PCR NQueensITstep(CS)

par

p = produce elem CS

c2 = consume extend p

r = reduce union {} c2

-----------------------------------------------------------------

32 extends Naturals, Sequences, SequencesExt , FiniteSets, ArithUtils, TLC

34

Concrete elements of NQueensIT

40 Config
∆
= Seq(Nat)

41 T
∆
= Config

42 Tp1
∆
= Config

43 D1
∆
= subset Config

45 Dep pp1
∆
= 〈{}, {}〉

46 Dep pc1
∆
= 〈{}, {}〉

47 Dep cr1
∆
= 〈{}, {}〉

49 lBnd1(C )
∆
= 0

50 uBnd1(C )
∆
= 0

51 prop1(i)
∆
= true

53 v0(C )
∆
= {C}

54 cnd(s, j )
∆
= j > 1 ∧ s[j ] = s[j − 1]

56 id1
∆
= choose x ∈ D1 : true

57 Op1(x , y)
∆
= y

Concrete elements of NQueensITstep

63 Tp2
∆
= Config

64 Tc2
∆
= subset Config

65 D2
∆
= subset Config

67 Dep pp2
∆
= 〈{}, {}〉

68 Dep pc2
∆
= 〈{}, {}〉

69 Dep cr2
∆
= 〈{}, {}〉

71 lBnd2(CS )
∆
= 1
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72 uBnd2(CS )
∆
= Cardinality(CS )

73 prop2(i)
∆
= true

75 validPos(C , i , j )
∆
=

76 ∧ C [i ] = 0
77 ∧ ∀ k ∈ domain C : C [k ] 6= j
78 ∧ ∀ k ∈ domain C : C [k ] 6= 0⇒ abs(C [k ]− j ) 6= abs(k − i)

80 addQInRow(C , i)
∆
= let j

∆
= choose j ∈ domain C : validPos(C , i , j )

81 in [C except ! [i ] = j ]
82 canAddQInRow(C , i)

∆
= ∃ j ∈ domain C : validPos(C , i , j )

83 complete(C )
∆
= ∀ i ∈ domain C : C [i ] 6= 0

85 elem(CS , i)
∆
= SetToSeq(CS )[i ]

86 div(p)
∆
= {addQInRow(p, i) : i ∈ {i ∈ 1 . . Len(p) : canAddQInRow(p, i)}}

87 extend(p)
∆
= if complete(p) then {p} else div(p)

89 id2
∆
= {}

90 Op2(x , y)
∆
= x ∪ y

92

NQueensIT is a concrete instance of the abstract model PCR A it B

98 variables in, X 1, p1, c1, s, r1, rs1,
99 X 2, p2, c2, r2, rs2

101 I 0
∆
= 〈〉

102 pre(C )
∆
= ∀ i ∈ domain C : C [i ] = 0

104 fp1(x1, vp, i)
∆
= x1

105 fr1(x1, vc, i)
∆
= vc[i ]

106 gp1(x1, i)
∆
= fp1(x1, p1, i)

108 uBnd2(x2)
∆
= let CS

∆
= x2[1]in uBnd2(CS )

109 fp2(x2, vp, i)
∆
= let CS

∆
= x2[1]in elem(CS , i)

110 fc2(x2, vp, i)
∆
= extend(vp[i ])

111 fr2(x2, vc, i)
∆
= vc[i ]

112 gp2(x2, i)
∆
= fp2(x2, p2, i)

114 instance PCR A it B with uBnd2← uBnd2

116

Alternative correctness

122 Solutions(x )
∆
= case Len(x ) = 0 → {}

123 2 Len(x ) = 1 → {〈1〉}
124 2 Len(x ) ∈ 2 . . 3 → {}
125 2 Len(x ) = 4 → {〈3, 1, 4, 2〉,
126 〈2, 4, 1, 3〉}
127 2 Len(x ) = 5 → {〈1, 3, 5, 2, 4〉,
128 〈1, 4, 2, 5, 3〉,
129 〈2, 4, 1, 3, 5〉,
130 〈2, 5, 3, 1, 4〉,
131 〈3, 1, 4, 2, 5〉,
132 〈3, 5, 2, 4, 1〉,
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133 〈4, 1, 3, 5, 2〉,
134 〈4, 2, 5, 3, 1〉,
135 〈5, 2, 4, 1, 3〉,
136 〈5, 3, 1, 4, 2〉}
137 2 Len(x ) = 6 → {〈2, 4, 6, 1, 3, 5〉,
138 〈3, 6, 2, 5, 1, 4〉,
139 〈4, 1, 5, 2, 6, 3〉,
140 〈5, 3, 1, 6, 4, 2〉}
141 2 Len(x ) > 6 → “ask google...”

143 CorrectnessAlt
∆
= endA(I 0)⇒ r1[I 0] = Solutions(X 1[I 0])

145
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Appendix E

Model checking results

Model checking of concrete PCRs was powered by a clustered machine whose access and

control was facilitated by the Jupyter kernel for TLA+ [81]. The TLC version used was

v2.14 of 10 July 2019 (rev: 0cae24f). Relevant characteristics of the mentioned machine

are the following:

Model name: Intel(R) Xeon(R) W-2195 CPU @ 2.30GHz

Core(s) per socket: 18

Thread(s) per core: 2

On-line CPU(s) list: 0-35

CPU max MHz: 4300.0000

CPU min MHz: 1000.0000

Table E.2 presents our results with a sub-table for each concrete PCR which is an instance

of some abstract PCR model. TLC was always instructed to use 18 worker threads, the

same number of physical cores on the machine, which makes most sense for a CPU bound

activity like model checking. In general, there would be almost no improvement in using

more worker threads than physical cores. Results are reported with respect to different

inputs (or inputs sizes), informed by the first column. The other columns are divided on

two kinds:

1. Information about the state graph. This includes a) the amount of states, which

TLC reports as the “distinct states found” and b) the depth, which TLC reports as

the “depth of the complete state graph search”. The “distinct states” correspond

with the cardinality of the set of reachable vertices of the state graph, and is typically

less than the total number of states examined by TLC as part of model checking
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[40]. An interesting feature of TLC is the option to automatically, after verification,

export the state graph to a file and produce a visualization. For example, figure E.1

correspond to the state graph of PCR FibPrimes1 when N = 2. Notice that it has

13 vertices and height/depth 7, which are the same values reported in table E.2.

However, this makes sense only for relatively small inputs, because the state graph

could be too big to be rendered by any tool.

2. Time taken to verify interesting properties. In general, this encompasses Correct-

ness, Termination and Refinement with respect to some high-level PCR model.

When refinement is applicable, it is further separated into the only safety case and

the complete case considering fairness, as both normally vary wildly on the computa-

tional effort required. Additionally, TLC is always by default checking for deadlock.

When reported time have the form “> t” it means we aborted verification beyond

that point.

For PCRs FibPrimes1, IsPrime2 and FibPrimes2 the result is reported with respect to

different inputs (i.e. the value N ), whereas for the rest the result is reported with respect

to different input sizes (e.g. the length of the input list L). More precisely, for input list

L:

• Input size #L = k represents all the possible combinations taking exactly k elements

from the set {0, 1, 2, 3}.

• Input size #L ≤ k represents all the possible combinations taking at most k elements

from the set {0, 1, 2, 3}.

There are some special cases whorty of mention. Inputs for PCR IsPrime2 are conveniently

grouped by ranges of the form k1 ≤ N ≤ k2 because the amount of states and depth on

those ranges is the same and the time taken to verify each property does not vary too

much for small inputs. Nevertheless, when there is a difference between extremes, we

report the time for both extremes in the form Time(k1) - Time(k2). Any input size for

PCR NQueensDC and NQueensIT represent exactly one input, as the initial input C for

the NQueens problem is expected to be the empty configuration (also a list) modeling an

empty board of some size.
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Figure E.1: State graph for PCR FibPrimes1 when N = 2 (in the graph this means
in = 2). Image produced by TLC.

Table E.1 presents metrics we identified for the PCR models under some assumptions on

the iteration space size. For PCR A, it its assumed |Ix | = n. For PCR A c B , it its

assumed |Ix | = n and |Jx i
1
| = m for all i ∈ Ix . Those metrics are:

• # Interleavings: the number of possible sequentializations between operations

satisfying appropriate dependence constrains. As parallelism is modeled by inter-

leaving, more parallelism means more interleaving which in turns means more states.
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A serial producer reduces the number of interleavings as imposes more dependencies

(i.e. it is less parallel). For example, PCR FibPrimes1 has 10 interleavings when

N = 2, and looking at figure E.1, the specific interleaving of actions (where I0 = 〈〉)

P(I0, 1), P(I0, 2), C (I0, 2), R(I0, 2), C (I0, 1), R(I0, 1)

correspond to the rightmost path from the initial state to the final state. The

formulas are developed by elementary counting methods, and verified by algorithmic

counting of linear/topological orderings.1

• # States: the number of reachable states. The formulas are inferred from the data

obtained exercising TLC on different inputs. We don’t have (yet) a formula for the

PCR A c B model, an exponential regression fit could be used but there is little

data available to be reliable as a predictor.

• Degree of parallelism: this is the (relative) speedup concerning the total serial

work and the parallel span. For simplicity, here it is assumed any operation have

a constant cost. For the basic model PCR A, it is evident that parallelism of a

linear PCR scales linearly on n (the size of the iteration space, which depends on

the input).2 When the producer is serial, as n → ∞ parallelism is bounded above

by a constant. For the nested model PCR A c B with only linear dependencies, it

scales linearly with either n or m. However, if the outer PCR has a serial producer,

good scalability depends now of m. In the worst case, if m = 1 then parallelism is

bounded above by a constant.

The metrics of PCR models can be helpful to understand the complexity related to model

verification. More specifically, the number of states can be used as a rough a priori

estimation of verification time for large inputs. As an example, let us consider the data

collected for PCR FibPrimes1 in table E.2. The largest input is N = 11, this requires

1In general, there is no nice closed formula to count linear orderings. For some special partial orders,
the hook length formula (associated to standard Young tableaux) can be used but is not general enough
for our setting [82]. According to [83], exact counting for this problem is #P-complete.

2Linear scalability is considered the holy grail of parallelism, as it is mathematically optimal and in
practice occurrences of super-linear scalability are very rare. However, it should be noted that in our
abstraction, by the interleaving assumption, reductions are considered as independent actions which is
not true in reality. A more realistic quantification of parallelism should account for a serial or parallel
reduction like we discussed in Chapter 2, and in either case parallelism will not scale linearly.
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PCR Model # Interleavings # States
Degree of
paralellism

PCR A
(3n)!

6n
4n 3n

3
= n

PCR A
with serial producer

(3n)!

n! 6n

1

2
(3n+1 − 1)

3n

n + 2

PCR A c B
(n(3m + 4))!

(3m + 4)4n 6mn
-

n(3m + 4)

7

PCR A c B
where A have serial
producer

(n(3m + 4))!

n! (3m + 4)n (3m + 3)3n 6mn
-

n(3m + 4)

n + 6

Table E.1: Metrics for some PCR models. x k denotes the falling factorial power: x (x −
1)(x − 2) . . . (x − (k − 1)).

to construct a graph with 265, 720 states for which checking correctness is still cheap as

it takes only 12 seconds. But, what would be the situation for a much larger input like

N = 20?. We can measure that TLC works at an average rate of 56, 983 s/m 3 on N = 20

without checking any property (not even deadlock, i.e. just constructing the graph).

Assuming work rate is maintained, to verify any property on N = 20 for which there

are 5, 230, 176, 601 states according to our formula, it would take at least 63 days 17h

44m. It is also interesting to compare the numbers with other machine. In our desktop

PC (an Intel(R) Core i5-2467M CPU @ 1.60GHz with two physical cores) TLC works

at 17, 177 s/m, thus by the same reasoning it would take at least 211 days 10h 47m. In

short, verification for N = 20 in the cluster machine would take two months, whereas in

the desktop PC would take half year.

3At each minute, TLC reports it’s runtime statistics, in particular the number of distinct states
found per minute (ds/m). This number depends on specification, input and machine. According to our
observations, this number tends to stabilize. However, several factors can affect the rate. For example,
after some time, thermal throttling due to heat will lower CPU frequency rates affecting TLC performance.
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PCR FibPrimes1 (PCR A)

Input States Depth Correctness Termination
Refines

PCR A1step
(only safety)

Refines
PCR A1step

N = 1 4 4 < 1s < 1s < 1s < 1s

N = 2 13 7 < 1s < 1s < 1s < 1s

N = 3 40 10 < 1s < 1s < 1s < 1s

N = 4 121 13 < 1s < 1s < 1s < 1s

N = 5 364 16 < 1s 1s < 1s 1s

N = 6 1, 093 19 < 1s 1s 1s 1s

N = 7 3, 280 22 1s 1s 2s 4s

N = 8 9, 841 25 1s 1s 2s 10s

N = 9 29, 524 28 2s 3s 4s 34s

N = 10 88, 573 31 4s 6s 13s 5m50s

N = 11 265, 720 34 12s 30s 5m24s > 3h

PCR IsPrime2 (PCR A)

Input States Depth Correctness Termination
Refines

PCR A1step
(only safety)

Refines
PCR A1step

N = 0 4 4 < 1s < 1s < 1s < 1s

1 ≤ N ≤ 3 16 7 < 1s < 1s < 1s < 1s

4 ≤ N ≤ 8 64 10 < 1s < 1s < 1s < 1s

9 ≤ N ≤ 24 256 13 < 1s 1s 1s 1s

25 ≤ N ≤ 48 1, 024 16 1s 1s 1s 2s

49 ≤ N ≤ 80 4, 096 19 1s 2s 2s 7s - 8s

81 ≤ N ≤ 120 16, 384 22 2s 6s - 8s 7s - 10s 31s - 46s

121 ≤ N ≤ 168 65, 536 25 4s 31s - 42s 50s - 1m2s 4m31s - 5m24s

169 ≤ N ≤ 224 262, 144 28 16s - 19s 3m28s - 4m25s 5m57s - 6m42s 33m39s - 35m20s

PCR FibPrimes2 (PCR A c B)

Input States Depth CorrectnessA TerminationA
Refines
PCR A

(only safety)

Refines
PCR A

N = 1 20 11 < 1s < 1s < 1s < 1s

N = 2 723 21 1s 1s 1s 1s

N = 3 33, 388 31 2s 8s 3s 8s

N = 4 2, 861, 933 41 51s 13m33s 3m37s 15m37s

N = 5 > 637, 161, 621 > 41 > 3h - - -

Table E.2: Model checking results for concrete PCRs.
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PCR MergeSort1 (PCR DC )

Input Size
Elem = {0, 1, 2, 3} States Depth Correctness Termination

#L = 0 16 7 < 1s < 1s

#L = 1 64 7 < 1s < 1s

#L = 2 256 7 < 1s < 1s

#L = 3 5, 120 14 1s 3s

#L = 4 102, 400 21 7s 9s

#L = 5 1, 720, 320 28 32s 2m59s

#L = 6 28, 901, 376 35 9m27s 1h5m

PCR Merge (PCR DCrLeft)

Input Size
Elem = {0, 1, 2, 3} States Depth Correctness Termination

Refines
PCR DC

(only safety)

Refines
PCR DC

#L1 ≤ 0, #L2 ≤ 0 13 7 < 1s < 1s < 1s < 1s

#L1 ≤ 1, #L2 ≤ 1 325 7 < 1s 1s < 1s 2s

#L1 ≤ 2, #L2 ≤ 2 5, 850 14 2s 5s 2s 6s

#L1 ≤ 3, #L2 ≤ 3 336, 830 28 18s 1m14s 25s 2m

#L1 ≤ 4, #L2 ≤ 4 11, 013, 223 42 8m1s 1h26m 17m1s 2h38m

PCR MergeSort2 (PCR DC r DCrLeft)

Input Size
Elem = {0, 1, 2, 3} States Depth CorrectnessA TerminationA

Refines
PCR DC

(only safety)

Refines
PCR DC

#L = 0 120 21 1s 1s 1s 1s

#L = 1 484 21 1s 2s 1s 3s

#L = 2 1, 936 21 2s 6s 2s 6s

#L = 3 144, 960 42 21s 7m35s 25s 6m31s

#L = 4 5, 879, 536 70 10m40s > 3h 15m1s > 3h

PCR NQueensDC (PCR DC )

Input Size States Depth Correctness Termination

#C = 1 4 4 < 1s < 1s

#C = 2 16 7 < 1s < 1s

#C = 3 8, 000 31 2s 6s

#C = 4 > 54, 531, 473 > 31 > 3h -

PCR NQueensIT (PCR A it B)

Input Size States Depth CorrectnessA TerminationA
Refines

PCR A it
(only safety)

Refines
PCR A it

#C = 1 15 15 < 1s < 1s < 1s 1s

#C = 2 29 20 < 1s < 1s < 1s 1s

#C = 3 4, 174 43 6s 13s 38s 22m8s

#C = 4 - - - - - -

Table E.2: Model checking results for concrete PCRs (continued).
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We end with some observations of our results:

• Assuming identical iteration space size, the number of interleavings and states for

IsPrime2 grows faster than for FibPrimes1 as it has more parallelism. However,

TLC can handle inputs for IsPrime2 much larger than for FibPrimes1 because the

size of IsPrime2’s iteration space is proportional to the square root of input N .

• As expected, checking nested PCR models is harder than checking their basic equiv-

alents. This can be appreciated comparing FibPrimes1 vs FibPrimes2 and Merge-

Sort1 vs MergeSort2.

• In general, checking termination (a liveness property) or a complete refinement

(which involves liveness conditions, i.e. fairness) is notably harder than checking

safety properties. This is in part because, when checking liveness properties, TLC

uses Tarjan’s algorithm to find strongly connected components on the state graph.

It is an efficient but serial algorithm which does not benefit from the presence of

more processing units.

• Checking the safety refinement of PCR A1step in both FibPrimes1 and IsPrime2

seems to be harder than checking termination. However, for the other refinements

the opposite is true. This may seem a bit strange considering that PCR A1step is

a very simple specification.

• Unfortunately, for the NQueens problem, we couldn’t completely check Correctness

for any of the proposed PCRs on input #C = 4. In the case of NQueensDC, after

some hours we aborted. In the case of NQueensIT, TLC reports the error:

Attempted to construct a set with too many elements (> 1000000)

Default maximum set size is one million, so we tuned TLC to lift the value up to one

hundred million, but wasn’t enough. The problem is that operator SetToSeq , used

by NQueensIT, requires TLC to explicitly enumerate a large set of functions.4 For

this reason, this operator is overridden with a much efficient java implementation,

but we don’t know yet how to take advantage of the java overrides on the Jupyter

TLA+ installation.
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We haven’t done any optimization effort on the specification itself, as the priority

was to keep it readable and similar as possible to the divide-and-conquer version.

As a last resort, we had to conform ourselves with random simulation on a desktop

PC, which can be used also for inputs larger than #C = 4. Hours of simulation

didn’t find any error while checking Correctness.

For comparison, we add that a specific TLA+ solution in imperative style (i.e. not

a declarative formula) for the NQueens problem, included as an example in the

TLA Toolbox installation, can be model checked in reasonable time up to #C = 5.

Besides, for an imperative style solution, research shows that a symbolic model

checker like ProB can’t do better [84].

4It is defined as: SetToSeq(S ) , CHOOSE f ∈ [1..Cardinality(S )→ S ] : IsInjective(f ).
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