

Deep Learning for Genomic Prediction

Agenda for today

- Perceptron
- Multi-Layer Perceptron
- Backpropagation
- Neural Network
- Convolutional Neural Network
- Residual Neural Network
- Practical

Neural Networks

Layers dimensions: $\mathbf{d} = [d, 3, 2, 1]$

$$\mathbf{d} = \left[d^{(0)}, d^{(1)}, \cdots, d^{(L)} \right]$$

Activation Function (differentiable!!!)

$$\theta(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Sigmoid activation functions

Neural Networks

(-)	$\int 1 \le l \le L$	layers
$w_{ij}^{(l)}$	$\begin{cases} 0 \le i \le d^{(l-1)} \end{cases}$	inputs
	$1 \le j \le d^{(l)}$	outputs

Signal	Notation	Dimensions
Signal in	$\mathbf{s}^{(l)}$	$d^{(l)}$
Output	$\mathbf{x}^{(l)}$	$d^{(l)} + 1$
Weights in	$\mathbf{W}^{(l)}$	$\left(d^{(l-1)} + 1\right) \times d^{(l)}$

$$\mathbf{s}^{(l)} = \left(\mathbf{W}^{(l)}\right)^{\top} \mathbf{x}^{(l-1)} \qquad x_j^{(l)} = \theta\left(s_j^{(l)}\right) = \theta\left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_i^{(l-1)}\right) \qquad \mathbf{x}^{(l)} = \left[1, \theta\left(\mathbf{s}^{(l)}\right)\right]^{\top}$$

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{W}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{W}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \longrightarrow \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x})$$

$$f(\mathbf{x}, \mathbf{W}) = h(\mathbf{x}) = \sigma\left(\left(W^{(L)}\right)^{\top} \sigma\left(\left(W^{(L-1)}\right)^{\top} \sigma\left(\cdots \sigma\left(\left(W^{(1)}\right)^{\top} \mathbf{x}^{(0)}\right)\right)\right)\right)$$

Neural Networks: forward and backward

Forward ---- $\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{W}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{W}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \longrightarrow \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x})$ $\mathbf{s}^{(1)} = \left(W^{(1)}\right)^{\top} \mathbf{x}^{(0)} \qquad \mathbf{s}^{(1)} \qquad \mathbf{x}^{(1)} = \theta_1 \left(\mathbf{s}^{(1)}\right) \qquad \mathbf{x}^{(1)} \qquad \mathbf{s}^{(2)} = \left(W^{(2)}\right)^{\top} \mathbf{x}^{(1)} \qquad \mathbf{s}^{(2)} = \theta_2 \left(\mathbf{s}^{(2)}\right)$ $\frac{\partial \mathbf{s}^{(2)}}{\partial \mathbf{x}^{(1)}}, \frac{\partial \mathbf{s}^{(2)}}{\partial W^{(2)}}$ $\partial \mathbf{x}^{(2)}$ $\frac{\partial \mathbf{x}^{(1)}}{\partial \mathbf{s}^{(1)}}$ $\overline{\partial \mathbf{s}^{(2)}}$ $\partial \mathbf{e}_n$ $\partial \mathbf{e}_n$

 $oldsymbol{\delta}^{(1)} \longleftarrow oldsymbol{\delta}^{(2)} \cdots \longleftarrow oldsymbol{\delta}^{(L-1)} \longleftarrow oldsymbol{\delta}^{(L)}$ ——Backward

Neural Networks... and images

$$d=1000\times 1000\times 3$$

$$d^{(1)}=1000\Rightarrow W^{(1)}_{(3\times 10^6)\times 1000}$$
 3 billion parameters

- Deep arquitectures
- Learned non-linear transformations
- GD with non-convex functions
 - does not guarantee global optimum
 - o global minimum: overfitting
 - local minima with similar performance
- Large number of parameters
- Generalization & overfitting
- Data, data, data, ...
- Not suitable for (big) images
- Vectorized images lose their structure
- Non multi-scale analysis

Digital images representation

A digital image is a matrix of values in a certain range.

_								
	166	166	161	149	122	107	102	98
	167	167	161	148	122	108	104	101
Γ	167	166	160	148	122	110	107	105
Γ	168	165	159	147	122	109	107	105
	169	165	155	139	113	103	104	102
	170	167	158	143	117	107	105	104
	169	168	160	146	121	109	107	105
	167	166	159	144	120	108	107	105

Digital images

[003, 011, 030] [098, 236, 255]

A color (RGB) image is a three **channels** image, with three matrices.

Red channel

Blue channel

$$(f * g)(u) = \int_{-\infty}^{\infty} f(v)g(u - v) dv = \int_{-\infty}^{\infty} f(u - v)g(v) dv$$

$$(f * g)(u) = \int_{-\infty}^{\infty} f(v)g(u - v) dv = \int_{-\infty}^{\infty} f(u - v)g(v) dv$$

$$(f * g)(u) = \int_{-\infty}^{\infty} f(v)g(u - v) dv = \int_{-\infty}^{\infty} f(u - v)g(v) dv$$

$$(f * g)(u) = \int_{-\infty}^{\infty} f(v)g(u - v) dv = \int_{-\infty}^{\infty} f(u - v)g(v) dv$$

$$(f * g)(u) = \int_{-\infty}^{\infty} f(v)g(u - v) dv = \int_{-\infty}^{\infty} f(u - v)g(v) dv$$

Convolution and images

2D convolution

$$\hat{I}(u,v) = (I * K)(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I(u,v)K(u-m,v-n)$$

kernel

output

• It is a cross-correlation!

image

Convolution and images

1	0	1	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	0	0
0	1	1	1	1

9	8	7	
6	5	4	=
3	2	1	

21	31	31	19	5
24	22			

1	0	1
0	1	1
1	0	0

	1	2	3	
<	4	5	6	
	7	8	9	

1	0	3
0	5	6
7	0	0

22

Convolution and images

1	0	1	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	0	0
0	1	1	1	1

9	8	7	
6	5	4	=
3	2	1	

21	31	31	19	5
24	22	14		

0	1	1
1	1	0
0	0	0

	1	2	3	
<	4	5	6	
	7	8	9	

14

Convolution and images: filtering

1	0	-1
2	0	-2
1	0	-1

*

Feature descriptor 1

Feature descriptor 2

M

Image

$$p_m = \frac{k_m - 1}{2}$$

$$p_m = \frac{k_m - 1}{2}$$

$$p_m = \frac{k_m - 1}{2}$$

Convolution and images: stride

Stride: skip intermediate locations when *moving* the kernel.

Reduces feature descriptor maps resolution, and increases translation invariance.

$$z_n = \max_{k=0,\dots,K-1} x_{n \times \text{stride}+k}$$

Neural networks: batch normalization

Normalization of the means and variances of each layer's inputs. It is computed in each mini-batch in the training process.

Denote B as a mini-batch of size N_B of the entire training set.

$$\mathbf{x} = (x_1, \cdots, x_d)^{\top}$$

$$\mu_B[k] = \frac{1}{N_B} \sum_{i=1}^{N_B} x_i[k] \text{ for } k = 1, \cdots, d$$

$$\sigma_B^2[k] = \frac{1}{N_B} \sum_{i=1}^{N_B} (x_i[k] - \mu_B[k])^2$$

$$\hat{x}_i[k] = \frac{x_i[k] - \mu_B[k]}{\sqrt{\sigma_B^2[k] + \epsilon}} \qquad \text{Normalized input, internal to each layer.}$$

representation.

 $y_i[k] = \gamma[k] \,\hat{x}_i[k] + \beta[k]$

Neural networks: softmax

- Converts a vector of K real numbers into a probability distribution of K possible outcomes.
- Probabilistic output.

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{i=1}^K e^{z_i}} ext{ for } i=1,\cdots K ext{ and } \mathbf{z} = (z_1,\cdots,z_K) \in \mathbb{R}^K$$

Neural networks: dropout

- Regularization techniques for reducing overfitting on training data.
- Randomly put to zero a fraction of the weights (except for the output layer).
- Layers neurons does not synchronously optimizing their weights, thus decorrelating the weights.
- The activations of the hidden units become sparse, which is desirable.

$$\hat{w}_{ij} = \begin{cases} w_{ij} & \text{with probability } (1-p) \\ 0 & \text{with probability } p \end{cases}$$

Feature descriptors 1, 2, 3 with *non-linear* stage

It quickly transforms into a *deep* architecture.

Computation time on Intel Xeon 3rd Gen Scalable cpu: 4.073 s

wall	1.000
sky	1.000
ceiling	1.000
person	1.000
fence	1.000
grandstand	1.000
stage	1.000

Hugging Face

UperNet, ConvNeXt small-sized backbone

Training dataset

Test dataset
Assign one of the learned *labels*

What does a CNN "see"?

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer International Publishing, 2014.

What does a CNN "see"? Receptive field

Convolutional Neural Networks: LeNet

60,000 parameters

Convolutional Neural Networks: LeNet

LeNet

Image: 28 (height) × 28 (width) × 1 (channel)

Convolution with 5×5 kernel+2padding:28×28×6

√ sigmoid

Pool with 2×2 average kernel+2 stride:14×14×6

Convolution with 5×5 kernel (no pad):10×10×16

 \downarrow sigmoid

Pool with 2×2 average kernel+2 stride: 5×5×16

flatten

Dense: 120 fully connected neurons

√ sigmoid

Dense: 84 fully connected neurons

√ sigmoid

Dense: 10 fully connected neurons

Output: 1 of 10 classes

```
# Pytorch: LeNet 5
class LeNet5(nn.Module):
    def init (self, num classes):
        super(ConvNeuralNet, self). init ()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 6, kernel size=5, stride=1, padding=0),
            nn.BatchNorm2d(6),
            nn.ReLU(),
            nn.MaxPool2d(kernel size = 2, stride = 2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(6, 16, kernel size=5, stride=1, padding=0),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel size = 2, stride = 2))
        self.fc = nn.Linear(400, 120)
        self.relu = nn.ReLU()
        self.fc1 = nn.Linear(120, 84)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(84, num classes)
   def forward(self, x):
        out = self.layer1(x)
        out = self.layer 2(out)
        out = out.reshape(out.size(∅), -1)
        out = self.fc(out)
        out = self.relu(out)
        out = self.fc1(out)
        out = self.relu1(out)
        out = self.fc2(out)
        return out
```

Convolutional Neural Networks: AlexNet

- ImageNet 2012
- 60 million parameters

Top 5 error for the algorithms that won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Convolutional Neural Networks: AlexNet

Convolutional Neural Networks: VGG

- Very simple architecture
 - 3x3 convolution
 - stride = 1, "same" padding
 - 2x2 max. pool
- Very large number of parameters: ~100 M
 - Features map: 256, 512, 512, ...
 - FCN: 4096, 4096, 1000
- Slow

Convolutional Neural Networks: VGG

Convolutional Neural Networks: Residual Network (ResNet)

- Vanishing gradient:
 - Update proportional to gradient
 - No update
- Skip connection
 - Skip the *errors* by regularization
- ResNet-N: 18, 20, 34, 50, 101, 152, ...

Convolutional Neural Networks: U-Net

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, 2015.

Practicals

Practicals

References

Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H. T. (2012). Learning from data (Vol. 4, p. 4). New York: AMLBook.

Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. "O'Reilly Media, Inc.".