# Impact of phenylalanine on *Hanseniaspora vineae* aroma metabolism during wine fermentation

María José Valera a\*, Valentina Olivera a, Gabriel Pérez a, Eduardo Boido a, Eduardo Dellacassa b, Francisco Carrau a,c

<sup>a</sup> Área de Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay

<sup>b</sup> Laboratorio de Biotecnología de Aromas, Facultad de Química, Universidad de la República, Montevideo, Uruguay

° Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República

\* Corresponding author: Postal address - Facultad de Química. Universidad de la República. General Flores 2021, 11800 Montevideo, Uruguay; Telephone number - (+598) 2924 8194; E-mail - mjvalera@fq.edu.uy

Abstract. Hanseniaspora vineae exhibits extraordinary positive oenological characteristics contributing to the aroma and texture of wines, especially by its ability to produce great concentrations of benzenoid and phenylpropanoid compounds compared with conventional Saccharomyces yeasts. Consequently, in practice, sequential inoculation of H. vineae and Saccharomyces cerevisiae allows to improve the aromatic quality of wines. In this work, we evaluated the impact on wine aroma produced by increasing the concentration of phenylalanine, the main amino acid precursor of phenylpropanoids and benzenoids. Fermentations were carried out using a Chardonnay grape juice containing 150 mg N/L yeast assimilable nitrogen. Fermentations were performed adding 60 mg/L of phenylalanine without any supplementary addition to the juice. Musts were inoculated sequentially using three different H. vineae strains isolated from Uruguayan vineyards and, after 96 h, S. cerevisiae was inoculated to complete the process. At the end of the fermentation, wine aromas were analysed by both gas chromatography—mass spectrometry and sensory evaluation through a panel of experts. Aromas derived from aromatic amino acids were differentially produced depending on the treatments. Sensory analysis revealed more floral character and greater aromatic complexity when compared with control fermentations without phenylalanine added. Moreover, fermentations performed in synthetic

must with pure *H. vineae* revealed that even tyrosine can be used in absence of phenylalanine, and phenylalanine is not used by this yeast for the synthesis of tyrosine derivatives.

*Keywords:* non-*Saccharomyces*, fermentation, mixed cultures, benzenoids, phenylpropanoids, assimilable nitrogen.

#### 1. Introduction

1

2 Wine producers are interested in new wine styles and differentiation of their products in the global 3 market; therefore, the use of new yeast strains able to confer improved sensory properties to wine is a 4 trend in oenology (Jolly et al., 2014; Mas et al., 2016; Pretorius, 2020). In addition, there has also been 5 a loss of diversity in winery microbiota due to the standardization of commercial S. cerevisiae strains 6 selected during the last decades for fast and complete fermentation performance, but forgetting the 7 aroma complexity valuable for wine consumers (Carrau et al., 2020). 8 Several yeast species referred in general as non-Saccharomyces have been proposed to be inoculated with S. cerevisiae. Mixed cultures can be performed sequentially, adding first the non-Saccharomyces 9 10 strain to increase some pleasant aromas and, after some hours, S. cerevisiae strains can be inoculated 11 to ensure complete sugar consumption. When wines are produced from musts with a high sugar concentration, specially above 10% of potential alcohol, S. cerevisiae is added due to its increased 12 13 tolerance to ethanol (Martin et al., 2018; Medina et al., 2013), that is accumulated in the extracellular 14 medium throughout the process (Pina et al., 2004). 15 Hanseniaspora vineae is a non-Saccharomyces species commonly found in the early stages of wine 16 fermentation. The aromatic properties conferred by H. vineae result in wines with increased fruity and 17 flowery notes (Martin et al., 2018; Valera et al., 2021). The aromatic profile of these wines has revealed 18 the presence of enhanced levels of 2-phenylethyl acetate and 2-phenylethanol (Valera et al., 2021; 19 Viana et al., 2011), both derivatives of phenylalanine metabolism, and some benzenoids originated 20 from the other two aromatic amino acids, tyrosine and tryptophan. Also, *H. vineae* is characterised by 21 its high capacity for acetylation compared with S. cerevisiae and other Hanseniaspora species (Carrau 22 et al., 2023) According to the whole genome sequence study of H. vineae, this species presents a high 23 copy number of acetyl transferases (Fig. 1) that could be conferring it this specific property (Giorello et al., 2019). 24

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Interestingly, grape musts with a low assimilable nitrogen concentration stimulate the production of benzenoids by H. vineae (Martin et al., 2016a; Carrau et al., 2023). In fact, addition of an inorganic phosphate, such as diammonium phosphate salt, causes a reduction of these aromatic compounds. However, the addition of a benzenoid precursor such as phenylalanine can increase the production of benzenoids and phenylpropanoids to obtain enhanced positive aromas (Zhang et al., 2020). Grape juices from different viticultural regions contain a full amino acid profile that will vary and depend on many aspects of soil, grape cultivar and level of maturity. Phenylalanine is the aromatic amino acid with the largest concentration range in grapes of different countries between 3 and 138 mg/L (Bell and Henschke, 2005). For example, in Australia, the grape variety Pinot Noir contains an average of 5 mg/L and Chardonnay up to 22 mg/L (Henschke and Jiranek, 1993; Treeby et al. 1998). In S. cerevisiae, it has been reported that the alternative use of phenylalanine or tyrosine, influences the production of the derived correspondent higher alcohols (phenylethanol and tyrosol) (Cordente et al., 2021). However, in feeding experiments it was not possible to detect the interconversion of phenylalanine derivatives into tyrosine derivatives and vice versa (Payet et al., 2016; Robinson et al., 2021). No studies were found about these alternatives in *H. vineae* or other *Hanseniaspora* species. Also, it is noteworthy that higher alcohols can be synthetised not only from amino acids in the medium but also de novo from sugars using the synthetic and degradative routes of the Erlich pathway (Ayrapaa, 1965; Hazelwood et al., 2008). This study investigates the impact of phenylalanine concentration in grape musts and its potential influence on aroma biosynthesis, aiming to understand its role in shaping wine quality. Mixed cultures of H. vineae and S. cerevisiae were inoculated sequentially in Chardonnay must with a moderate assimilable nitrogen content. The increase of phenylalanine concentration and its impact on the aroma profile of three different strains of *H. vineae* was compared with that in a natural grape must control. Also, the possible interconversion of phenylalanine and tyrosine aroma derivatives in *H. vineae* was analysed using feeding experiments in a synthetic grape must.

## 2. Materials and methods

53 2.1. Yeast strains

52

- Non-Saccharomyces strains used in this work were H. vineae T02/05AF (Vineae HV205 Oenobrands,
- France), H. vineae M12/196F and H. vineae T02/19AF from our strains collection, all of which were
- 56 isolated from Uruguayan vineyards. These strains are able to produce enhanced fruity and flowery
- aromas that impact in final wines quality (Carrau et al., 2023). A known commercial strain of S.
- 58 cerevisiae was used as control ALG804 (Oenobrands, France). Yeast strains were grown on solid Yeast
- Peptone Dextrose medium (2% glucose, 2% peptone, 1% yeast extract, 1.5% agarose all these products
- 60 were purchased from OXOID, Hampshire, United Kingdom) before preparing the pre-cultures for
- 61 fermentation.

#### 62 2.2. Fermentation conditions

- 63 Chardonnay musts were sterilised with dimethyldicarbonate (Velcorin®, Lanxess, Cologne, Germany)
- at a final concentration of 200 mg/L and stored at 4 °C for three days until it was used. Grape must
- was analysed for physicochemical parameters (sugars, nitrogen, pH, malic acid, tartaric acid, total
- acidity) by near infrared spectroscopy using a OenoFoss<sup>TM</sup> (FOSS, Hilleroed, Denmark).
- Yeast Assimilable Nitrogen (YAN) content in the must was 150 mg N/L, with a sugar concentration
- of 149 g/L, total acidity was 3.9 g/L and 3.6 of pH.
- Before starting the fermentation, the must was filtered through a sterile 0.45 µm pore diameter
- membrane, and every yeast strain was grown overnight in 50 mL of Chardonnay must in Erlenmeyer
- 71 flasks at 25 °C, shaken at 150 rpm. These *H. vineae* pre-cultures were used to inoculate 120 mL of
- 72 Chardonnay juice to obtain a total final population of  $1 \times 10^6$  cells/mL according to counts performed
- under the microscope using a Neubauer chamber. Fermentations were carried out in 125 mL
- 74 Erlenmeyer flasks with a silicone cap adapted with a Pasteur valve for CO<sub>2</sub> release. Fermentations
- 75 were carried out in triplicate for each treatment and strain, with or without addition of 60 mg/L of

- 76 phenylalanine to the Chardonnay juice. This concentration was defined according to the average
- 77 reported level of phenylalanine in grape musts of different regions (Bell and Henschke, 2005).
- 78 Erlenmeyer flasks were maintained in batch static conditions at 20 °C and shaken once every 24 h
- 79 throughout the experiment.
- 80 S. cerevisiae overnight pre-culture was inoculated 96 h after H. vineae inoculation. The final
- 81 concentration inoculated was  $1 \times 10^6$  cells/mL for each fermentation. Together with the sequential
- addition of Saccharomyces, must in fermentation was supplemented with 500 mg/L of yeast extract
- 83 (Oxoid, Hampshire, United Kingdom) to add available nitrogen for the yeasts avoiding the use of
- inorganic salts of nitrogen that reduce the production of benzenoids (Martin et al., 2016a) and 0.5 mg/L
- of thiamine (Sigma, St. Louis M.O., USA) to ensure yeast growth.
- 86 Fermentation kinetics were evaluated daily by weight loss of the flasks and expressed as CO<sub>2</sub> grams
- per 100 ml of medium. Fermentations were analysed until the weight remained stable for 48 h.
- Additionally, presence of the two strains inoculated and contamination control were evaluated at day
- 4 and 10 of the fermentation process by plating on Wallerstein Laboratory Nutrient (WLN) Medium
- 90 (Oxoid, Hampshire, UK). Wines were also analysed for physicochemical parameters (ethanol, volatile
- acidity) by near infrared spectroscopy using a OenoFoss<sup>TM</sup> (FOSS, Hilleroed, Denmark).
- Final wines were centrifuged at 3000 rpm for 8 min to remove yeast cells and stabilised with 50 mg/L
- of sodium metabisulphite (J.T.Baker, Xalostoc, Mexico). Then, 50 mL of each wine was analysed for
- volatile compounds and the rest of the volume was used for sensory analysis.
- 95 2.3. Sensory analysis
- 96 Sensory aroma description was performed by a panel of eight independent wine experts 3 oenologists
- and 5 professional sommeliers (4 women and 4 men). Wines samples (30 mL) were served at 20 °C in
- 98 clear, tulip-shaped 250 mL wine glasses (ISO 3591, 1977) covered with a watch glass, and were
- 99 identified with random three-digit codes. Six samples were evaluated for aroma characteristics in each
- session. Experts were required to rate secondary aroma terms (microbiological, spicy, nutty, floral, dry

vegetable, fruit, tropical fruit, citrus fruit, liquor) using a 10-point intensity scale (Gámbaro et al., 2001). At the same time, wines were also subjected to three triangular tests for each *H. vineae* strain to differentiate the addition of phenylalanine to the must.

Wine samples (50 mL) were extracted using an Isolute ENV+ cartridge (International Sorbent

# 2.4. Chemical characterization of aroma

Technology Ltd., Mid Glamorgan, UK) packed with 1 g of a highly cross-linked styrene-divinylbenzene (SDVB) polymer, as described previously (Boido et al., 2003). Adsorption and posterior elution with dichloromethane were performed, and after N<sub>2</sub> concentration, chemical analysis was carried out by gas chromatography coupled to mass spectrometry (GC-MS) in a Shimadzu-QP 2010 ULTRA mass spectrometer (Tokyo, Japan) equipped with a Stabilwax capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness; Restek Corporation, Bellefonte, PA, USA).

Wine aromas were identified by comparison of their Linear Retention Indices (LRI) with pure standards and values calculated by means of a C9-C30 saturated n-alkane homolog series prepared with isolated alkanes (Sigma Aldrich Inc., St Louis, MO, USA). Additionally, mass spectral fragmentation patterns were compared with those stored in commercial and our own databases (McLafferty, 2005; Mondello, 2015; Adams, 2007). Internal standards for quantification were 1-heptanol at 230 ppm and 2-octanol at 230 ppm in methanol solution.

#### 2.5. Fermentations with isotopically labelled amino acids

Experiments designed to detect interconversion between phenylalanine and tyrosine derivatives during the fermentation in *H. vineae* were carried out in a synthetic must with a composition similar to that of grape must, as previously described (Carrau et al., 2008). Fermentation medium with 100 mg N/L of YAN: sum of nitrogen equivalents of the amino acids and ammonium salts (not including proline) was prepared. Amino acid concentrations were used based on those determined in different grape must analysis (Henschke and Jiranek, 1993). Different combinations of tyrosine and phenylalanine were

tested (Table S1) and using either isotopically marked L-phenylalanine-(phenyl- $^{13}C_6$ ) (Merck Group, Germany) or L-tyrosine-(phenyl- $^{13}C_6$ ) (Merck Group, Germany). Synthetic must with unlabelled Phe and Tyr was used as control (9 mg/L Phe and 1.2 mg/L Tyr), also must with labelled Phe- $^{13}C_6$  and Tyr, must with labelled Tyr- $^{13}C_6$  and Phe, must prepared with 10 mg/L of labelled Phe- $^{13}C_6$  that did not contain Tyr and must with 11 mg/L of labelled Tyr- $^{13}C_6$  which did not contain Phe. The pH of each medium was adjusted with HCl to a final pH of 3.5. Equimolar concentrations of glucose and fructose were added to reach 200 g/L and mixed vitamins and salts were added as previously described (Carrau et al., 2008). Ergosterol (10 mg/L) was the only lipid supplement added. The must was filtered through a sterile 0.22  $\mu$ m pore diameter membrane. Erlenmeyer flasks containing 75 mL of must were inoculated with 1 × 106 cells/mL of *H. vineae* M12/196F previously reported as the highest producer of bencenoids (Martin et al., 2016b) and fermentations were carried out in triplicate for each condition for 10 days.

- 137 Samples of 50 mL were subjected to aroma extraction by Isolute ENV+ cartridge and analysed by GC-
- MS as detailed above. Isotopically labelled compounds were quantified by ion fragment comparison.
- 139 2.6. Statistical analysis

125

126

127

128

129

130

131

132

133

134

135

136

143

- 140 The sensory and analytical results were gathered and subjected to statistical analysis. Volatile
- quantifications were compared by ANOVA carried out with STATISTICA 7.0 software (StatSoft,
- Tulsa, OK, 1984–2005). Mean rating, Tukey and Fisher significant differences were calculated.

# 3. Results and discussion

- 3.1. Effects of phenylalanine concentration in Chardonnay wines aroma
- 145 Wine fermentations were completed after 13 days, at which point less than 5 g/L of sugars was detected
- in final wines. The ethanol content of all samples was around 9% (v/v) and volatile acidity was less
- than 0.5 g of H<sub>2</sub>SO<sub>4</sub>/L in all treatments (Table 1).

The kinetic behaviour was similar in all the fermentations, independent of yeast strain and phenylalanine addition. The concentration of H. vineae colonies at day 4 was around  $2 \times 10^7$  ufc/mL in all the treatments (Table S2), no contamination with other yeasts was detected. Also, H. vineae strains were recovered on WLN plates after 10 days of fermentation in a concentration of  $10^6$  ufc/ml although most of the colonies ( $5 \times 10^7$  ufc/ml) corresponded to S. cerevisiae.

**Table 1.** Chemical characterization of final wines. Average and standard deviation from triplicates were calculated. Different letters represent significant differences according to a Tukey test.

|     |         |               | ugars<br>(g/L) |               | nanol<br>v/v) |                     | e acidity<br>SO <sub>4</sub> /L) |
|-----|---------|---------------|----------------|---------------|---------------|---------------------|----------------------------------|
|     | Strain  | Control       | Phe added      | Control       | Phe added     | Control             | Phe added                        |
| Hv( | )2/05AF | 4.3 ± 2.5     | 2.5 ± 0.8      | 8.9 ± 0.0     | 8.9 ± 0.0     | $0.4 \pm 0.0^{a,b}$ | $0.3 \pm 0.1^{a,b}$              |
| Hv2 | L2/196F | $3.4 \pm 1.8$ | $3.1 \pm 2.0$  | $8.9 \pm 0.0$ | $9.0 \pm 0.1$ | $0.4 \pm 0.1^{a,b}$ | $0.3 \pm 0.0^{a}$                |
| Hv( | )2/19AF | $2.3 \pm 0.3$ | 5.5 ± 2.1      | 9.0 ± 0.1     | $8.9 \pm 0.0$ | $0.5 \pm 0.1^{b}$   | $0.3 \pm 0.1^{a}$                |

Wine samples evaluated from must with added phenylalanine had a greater complexity of aromas, as described by the panel, compared to those from Chardonnay must with no phenylalanine added (Fig. 2A). Secondary descriptors attributed by the panel of experts revealed an increased floral and fruity character in musts with added phenylalanine for the three strains of *H. vineae* used (Fig. 2B). Also, the panel considered those wines with added phenylalanine more pleasant, and aromatic compared with those made with the original Chardonnay.

A triangular test showed that six of the eight wine experts were able to distinguish as different those samples with phenylalanine added to Chardonnay must fermented with *H. vineae* T02/05AF. Samples with phenylalanine added were considered different with 5% significance. In contrast, those fermented with *H. vineae* T02/19AF and M12/196F with added phenylalanine were distinguished only by three experts in triangular tests.

Regarding aroma analysis, significant differences in several compounds were observed among strains, as well as in response to the addition of phenylalanine. *H. vineae* T02/05AF presented a reduced

content of 1-butanol and 3-hydroxy-2-butanol (acetoin) when phenylalanine was added to the must (Table 2). Both compounds were detected in concentrations below 150,000 µg/L which is their reported odour threshold (Fariña et al., 2015; Romano and Suzzi, 1996) so their influence in wine aroma might be not remarkable. However, they could be precursors of other aroma compounds able to contribute to wine bouquet such as diacetyl (Romano and Suzzi, 1996). Besides that, the strain *H. vineae* M12/196F showed less 3-methyl-1-butanol (isoamyl alcohol) when phenylalanine was added, but surpassed, in any case, the odour threshold for this compound in wine that is 30,000 µg/L (Fariña et al., 2015).

The highest concentration of 2-phenylethanol was detected in *H. vineae* T02/19AF when phenylalanine was added. In fact, all the strains presented a significantly higher concentration of this compound when phenylalanine was added to the must. With this addition, the odour threshold (15,000 µg/L) was reached by the three strains, in contrast to the results obtained for the original must. This is in agreement with previous studies using a lower phenylalanine concentration (Martin et al., 2016b).

Table 2. Aroma compounds (µg/L) detected by GC-MS in Chardonnay wines produced by three H. vineae strains and S. cerevisiae ALG804. Linear retention index based on a series of n-hydrocarbons reported according to their elution order on Carbowax 20 M. Average and standard deviation

from triplicates were calculated. Different letters represent significant differences according to a Tukey test. 185 186 187 188 189

|                       |      | H. vineae 02/05AF | 2/05A | щ     |                    |    |       | H. vineae 12/196F  | 2/19 |        |                      |    | Ä     | H. vineae 02/19AF    | ЭАЕ    |       |                     |          |       |
|-----------------------|------|-------------------|-------|-------|--------------------|----|-------|--------------------|------|--------|----------------------|----|-------|----------------------|--------|-------|---------------------|----------|-------|
| Compound              | R    | Control           |       |       | Phe added          | 75 |       | Control            |      |        | Phe added            |    |       | Control              |        | Ph    | Phe added           |          |       |
| Alcohols              |      |                   |       |       |                    |    |       |                    |      |        |                      |    |       |                      |        |       |                     |          |       |
| 2-Methyl-1-propanol   | 1067 | 7421 <sup>a</sup> | + 81  | 818   | 4814ª              | +1 | 315   | 16517 <sup>b</sup> | +1   | 5012   | 7890ª                | +1 | 621   | 7264ª ±              | 514    | 7626ª |                     | +        | 1343  |
| 1-Butanol             | 1128 | 490€              | +1    | 136   | 280ª,b             | +1 | 99    | 539°               | +1   | 216    | 394 <sup>b,c</sup>   | +1 | 135   | 769ª,b               | 28     | 174ª  |                     | +        | 15    |
| 3-Methyl-1-butanol    | 1187 | 124987ª           | +     | 11290 | 141420ª            | +1 | 56795 | 333465b            | +1   | 119309 | 178239ª              | +1 | 59386 | 137173ª ±            | 4839   |       | 252754ª             | +        | 19253 |
| 3-Ethoxy-1-propanol   | 1389 | 139               | ± 62  |       | 172                | +1 | 154   | 253                | +1   | 69     | 313                  | +1 | 92    | 150 ±                | 26     | 95    |                     | ₩<br>+I  | 82    |
| 2-Ethyl-1-hexanol     | 1453 | 1306              | +1    | 132   | 2567               | +1 | 707   | 3206               | +1   | 289    | 752                  | +1 | 79    | 974 ±                | 84     | 4340  |                     | +1       | 3887  |
| 1-Hexanol             | 1384 | 220               | + 38  |       | 287                | +1 | 134   | 98                 | +1   | 149    | 212                  | +1 | 11    | 155 ±                | 13     | 85    |                     | + 7      | 73    |
| 2,3-Butanediol        | 1526 | pu                |       |       | pu                 |    |       | 135                | +1   | 234    | 194                  | +1 | 78    | 197 ±                | 40     | 101   |                     | +        | 145   |
| Methionol             | 1716 | 436 <sup>b</sup>  | + 15  | 194   | 336ª,b             | +1 | 216   | 407 <sup>b</sup>   | +1   | 78     | 274ª,b               | +1 | 75    | 173ª,b ±             | 74     | 100ª  |                     | +1       | 91    |
| 3-Acetoxy-1-propanol  | 1756 | 288               | ± 56  |       | 664                | +1 | 548   | 744                | +1   | 227    | 798                  | +1 | 238   | 221 ±                | 384    | 705   |                     | ÷        | 308   |
| 2-Phenylethanol       | 1906 | 6226a             | + 11  | 1178  | 20834b             | +1 | 1047  | 13812ª             | +1   | 5061   | 34358 <sup>b,c</sup> | +1 | 1176  | 11293ª ±             | 2709   |       | 42773°              | +        | 15373 |
| Tyrosol               | 3012 | 241ª              | ± 50  |       | 330ª               | +1 | 149   | 375ª,b             | +1   | 128    | 557ª,b               | +1 | 72    | 736 <sup>b,c</sup> ± | 260    | 1377  |                     | H        | 378   |
| Tryptophol            | 3514 | 244               | ± 34  |       | 233                | +1 | 163   | 228                | +1   | 269    | 91                   | +1 | 79    | 473 ±                | 269    | 785   |                     | .9<br>+ı | 675   |
| Esters                |      |                   |       |       |                    |    |       |                    |      |        |                      |    |       |                      |        |       |                     |          |       |
| Ethyl octanoate       | 1027 | pu                |       |       | pu                 |    |       | pu                 |      |        | pu                   |    |       | ∓ 62                 | 72     | 86    |                     | +1       | 92    |
| 3-Methylbutyl acetate | 1126 | 258ª,b            | + 11  | 119   | 153ª               | +1 | 145   | 2192°              | +1   | 1533   | 858ª,b,c             | +1 | 288   | 1525ª,b,c ±          | 805.16 |       | 1928 <sup>b,c</sup> | ě<br>+   | 649   |
| Ethyl lactate         | 1341 | 40                | + 7   |       | 5                  | +1 | 6     | pu                 |      |        | pu                   |    |       | pu                   |        | 28    |                     | + 2      | 25    |
| 2-Phenylethyl acetate | 1813 | 14773ª            | + 14  | 1434  | 60775 <sup>b</sup> | +1 | 9913  | 19444ª             | +1   | 6815   | 59546 <sup>b</sup>   | +1 | 14275 | 6152ª ±              | 221    | 184   | 18432ª              | 9 +      | 6009  |
| Tyrosol acetate       | 2995 | 2255ª             | + 67  | 029   | 4548 <sup>b</sup>  | +1 | 1857  | 2561ª              | +1   | 770    | 4295 <sup>b</sup>    | +1 | 372   | 2584³ ±              | 256    |       | 3604ª,b             | +        | 1197  |

| ± 5910               |  |
|----------------------|--|
| 12293ª, <sup>b</sup> |  |
| ± 210                |  |
| 8246ª                |  |
| ₹ 3668               |  |
| 14033ª, <sup>b</sup> |  |
| ± 4446               |  |
| 12401ª, <sup>b</sup> |  |
| ± 4582               |  |
| 16749 <sup>b</sup>   |  |
| ± 970                |  |
| 7755ª                |  |
| 3405                 |  |
| Tryptophol acetate   |  |

| Tryptophol acetate     | 3405 | 7755ª | ∓ 970  | 16749 <sup>b</sup> | +1 | 4582 | 12401ª,b         | +1 | 4446 | 14033ª.b        | ·<br>+ι | 3668 | 8246ª         | +1 | 210 | 12293ª |
|------------------------|------|-------|--------|--------------------|----|------|------------------|----|------|-----------------|---------|------|---------------|----|-----|--------|
| Fatty acids            |      |       |        |                    |    |      |                  |    |      |                 |         |      |               |    |     |        |
| 2-Methylpropanoic acid | 1588 | 1692  | ± 847  | 2290               | +1 | 177  | <sup>e</sup> 292 | +1 | 13   | 1137            | +       | 239  | $nd^a$        |    |     | 41ª    |
| Heptanoic acid         | 1918 | pu    |        | pu                 |    |      | pu               |    |      | pu              |         |      | 444           | +1 | 12  | pu     |
| Octanoic acid          | 2070 | pu    |        | pu                 |    |      | pu               |    |      | pu              |         |      | 119           | +1 | 20  | 248    |
| Other compounds        |      |       |        |                    |    |      |                  |    |      |                 |         |      |               |    |     |        |
| 3-Hydroxy-2-butanone   | 1270 | 744€  | ± 187  | $331^{\mathrm{b}}$ | +1 | 195  | 61 <sup>a</sup>  | +1 | 106  | nd <sup>a</sup> |         |      | $^{\rm e}$ pu |    |     | nda    |
| 3-Hydroxy-2-pentanone  | 1330 | 8389  | ± 2924 | 4150               | +1 | 1227 | 1867             | +1 | 604  | 299             | +1      | 99   | 275           | +1 | 12  | 854    |
| Y-Butyrolactone        | 1620 | 223   | ± 54   | 119                | +1 | 38   | 43               | +1 | 74   | 58              | +       | 61   | 172           | +1 | 17  | 61     |

+1

+1

In H. vineae T02/196AF and H. vineae T02/05AF strains, the addition of phenylalanine caused a significant increase in 2-phenylethyl acetate. H. vineae T02/19AF presented no significant differences in 2-phenylethyl acetate between the control and the treatment with addition of phenylalanine, although the mean value was higher with this treatment. However, the sum of 2-phenylethanol and 2phenylethyl acetate is significantly higher with the addition of phenylalanine for this strain (Fig. 3). It is remarkable that 2-phenylethyl acetate is an aroma produced during fermentation, being part of the fermentative bouquet. In young wines these compounds increase the aromatic complexity of the final product (Martin et al., 2018). Benzyl alcohol, other derivative of phenylalanine commonly detected in H. vineae during the fermentation (Martin et al., 2018) was present in some of the samples but in such low concentration that did not allow their quantification. Also, tyrosol acetates produced by strains Hv02/05 and Hv12/196AF and tryptophol acetate from strain Hv02/05AF present differences in concentration depending on the concentrations of phenylalanine in the must and these differences are maintained regarding to the sum of alcohols and acetates (Fig. 3). Enhanced acetylation capacity of *H. vineae* has been widely described (Martin et al., 2018; Valera et al., 2021; Carrau et al., 2023) and it was proposed that the high copy number of acetyl transferases in the genome of this species (Giorello et al., 2019) could be explaining the difference of acetate esters production compared with Saccharomyces Acetate esters present, in general, lower odor thresholds compared with their corresponding alcohols. Therefore, the presence of increased acetates levels is positive to enhance wine bouquet. Moreover, both benzenoids, 2-phenylethanol and 2-phenylethyl acetate, are associated with a floral aroma, generally described as roses although it is present in essential oils of other flowers such as carnation and orange blossom (Panda, 2010). Tryptophol and tyrosol acetates have been related with fruity and flowery descriptors in concentrations ranging 5 to 10mg/L although their odor thresholds have been not characterised yet (Valera et al., 2021).

214

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

215

3.2. Phenylalanine and tyrosine use by H. vineae metabolic pathways

As commented before, tyrosol acetate concentrations were significantly higher in H. vineae mainly with T02/05AF and H. vineae M12/196F strains to which phenylalanine had been added. Mean tyrosol values increased with this treatment but were not statistically significantly different to those of the control in any strain. These results suggest that *H. vineae* might be using some of the Phe to synthetize tyrosine derivatives. An increase in the content of phenylalanine derivatives was expected when this amino acid was added to the must (Martin et al., 2018; Zhang et al., 2020), but not of the tyrosine derivatives. Although according to Cordente et al. (2021) there is a relationship between higher alcohols production and the alternative use of tyrosine or phenylalanine by S. cerevisiae, studies using isotopically labelled phenylalanine have reported no interconversion between phenylalanine derivatives and tyrosine derivatives in S. cerevisiae and vice versa (Payet et al., 2016; Robinson et al., 2021). To investigate the possible interconversion of these amino acids and their derived alcohols and acetates in H. vineae, fermentations were performed in synthetic must. Five conditions were used: must with Tyr-13C<sub>6</sub> without Phe, must with Phe-13C<sub>6</sub> without Tyr, musts with one of the two amino acids labelled and both unlabelled Tyr and Phe, which was used as a control. The other amino acids were present in the medium and, in all cases, the total YAN was adjusted to 100 mg/L to increase the production of these amino acid-derived compounds according to Martin et al. (2016a). There were no differences in aroma composition regarding phenylalanine and tyrosine derivatives (Table 3) but the labelling of these compounds presented a different pattern.

237

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

238

239

240

241

**Table 3.-** Concentration (μg/L) of phenylalanine and tyrosine derivatives in different synthetic grape musts

|                       | 2-Phenyletyl<br>acetate | Benzyl alcohol | 2-Phenylethanol | Tyrosol acetate | Tyrosol |
|-----------------------|-------------------------|----------------|-----------------|-----------------|---------|
| Phe+Tyr               | 13342±3320              | 175±42         | 11551±1045      | 2057±507        | 189±46  |
| <sup>13</sup> Phe+Tyr | 13163±1757              | 257±46         | 8512±1203       | 2246±164        | 157±52  |
| <sup>13</sup> Tyr+Phe | 12649±2244              | 218±38         | 11022±258       | 1925±111        | 122±12  |
| <sup>13</sup> Phe     | 11235±1952              | 132±24         | 6927±756        | 1953±423        | 154±43  |
| <sup>13</sup> Tyr     | 6700±694                | 111±27         | 5510±1166       | 1228±58         | 132±26  |

Most of the aromas were not isotopically labelled, probably due to the time spent by the fermentation process. Other synthetic routes are involved in the synthesis of higher alcohols de novo such as the Erlich pathway (Ayrapa et al., 1965; Hazelwood et al., 2008). The compounds 2-phenylethanol, 2-phenylethyl acetate and benzyl alcohol presented up to 15% of labelling, in those wines produced with Phe-<sup>13</sup>C<sub>6</sub> must without tyrosol (Fig. 4). This labelling is higher (35%) when tyrosine is also present in the medium. Conversely, low proportions of tyrosol and tyrosol acetate were labelled, and there were no significant differences to the control found. However, tyrosol and its corresponding acetate were labelled comparatively in wines produced with Tyr-<sup>13</sup>C<sub>6</sub> must. But in these conditions, benzyl alcohol were slightly more labelled, and significantly different to the control must regarding the mass fragments studied when phenylalanine was not present in the medium (Table 4).

**Table 4.** Fragments analysed for labelling comparison in each compound.

|                       | Molar      | mass (g/mol)    | Fragment used for | comparison      |
|-----------------------|------------|-----------------|-------------------|-----------------|
|                       | unlabelled | <sup>13</sup> C | unlabelled        | <sup>13</sup> C |
| 2-Phenylethyl acetate | 164.20     | 170.20          | 104               | 110             |
| Benzyl alcohol        | 108.14     | 114.14          | 108               | 114             |
| 2-Phenylethanol       | 122.16     | 128.16          | 122               | 128             |
| Tyrosol acetate       | 180.20     | 186.20          | 120               | 126             |
| Tyrosol               | 138.16     | 144.16          | 107               | 113             |

## 4. Conclusion

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

281

Some selected non-Saccharomyces yeasts are interesting to the winemaking industry due to the increased aroma properties that they confer to the final product. Wines elaborated with H. vineae present significantly higher concentrations of phenylpropanoid flavour compounds than those made with S. cerevisiae. Therefore, the concentration of phenylalanine in grape juice has a direct correlation with these compounds that enhance the floral and fruity characteristics that are typical within benzenoids. An increase of this amino acid at standard natural levels did not cause any negative sensory effect on the wine aroma, but significantly increase concentrations of the aromatic higher acetates phenylethanol, tyrosol and tryptophol acetates in some strains. The floral and fruity descriptors that are significantly increased in the final Chardonnay wines might be correlated to the overall increase of benzenoids and other acetates from the aromatic higher alcohols. This finding substantiates the potential alternative of using yeast lysate preparations as a nitrogen source for live cells, thereby increasing amino acids in the grape must. This approach avoids the use of ammonium salts, which has been reported to decrease the formation of benzenoids in both Saccharomyces and H. vineae. Future studies could focus on designing specific nutrients enriched in phenylalanine, aiming to enhance the aroma profile in the final wines. Moreover, although phenylalanine and its derivatives are not converted into tyrosine-derived aromas in H. vineae, interestingly when tyrosine is added some conversion is detected to benzyl alcohol. This fact appears not to happen in Saccharomyces.

#### Acknowledgements

- This research was funded by the Agencia Nacional de Investigación e Innovación (ANII), Application of the *Hanseniaspora vineae* Projects ALI\_2\_2019\_1\_155314 and ART\_X\_2022\_1\_172795 with Lage y Cia., Uruguay, and Oenobrands SAS, France. We wish to thank the Universidad de la República for basic support of this work: CSIC Group Project 802 and Facultad de Quimica, Uruguay.
  - References

- Adams, R. P 2007. Identification of essential oil components by gas chromatography/ mass
- spectrometry, 4th Edition. Allured Publ., Carol Stream, IL
- Ayrapaa, T., 1965. The formation of phenethyl alcohol from 14C- labelled phenylalanine. J.
- 285 Inst. Brew. 71, 341–347. https://doi.org/10.1002/j.2050-0416.1965.tb02068.x
- Bell, S. J., Henschke, P. A., 2005. Implications of nitrogen nutrition for grapes, fermentation
- 287 and wine. Aust. J. Grape Wine Res., 11(3), 242-295. https://doi.org/10.1111/j.1755-
- 288 0238.2005.tb00028.x
- Boido, E., Lloret, A., Medina, K., Fariña, L., Carrau, F., Versini, G., Dellacassa, E., 2003.
- 290 Aroma composition of *Vitis vinifera* cv. Tannat: The typical red wine from Uruguay. J. Agric. Food
- 291 Chem. 51, 5408–5413. https://doi.org/10.1021/jf030087i
- Carrau, F., Boido, E., Ramey, D., 2020. Yeasts for low input winemaking: Microbial terroir
- 293 and flavor differentiation, 1st ed, Advances in Applied Microbiology. Elsevier Inc.
- 294 https://doi.org/10.1016/bs.aambs.2020.02.001
- Carrau, F., Dellacassa, E., Boido, E., Medina, K., Valera, M. J., Fariña, L., Perez, G.; Martin, V.;
- 296 Alvarez-Valin, F. Balestrazzi, L., 2023. Biology and physiology of *Hanseniaspora vineae*: metabolic
- diversity and increase flavour complexity for food fermentation. FEMS Yeast Res. 23, foad010.
- 298 https://doi.org/10.1093/femsyr/foad010
- Carrau, F.M., Medina, K., Farina, L., Boido, E., Henschke, P.A., Dellacassa, E., 2008.
- 300 Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of
- 301 yeast assimilable nitrogen on two model strains. FEMS Yeast Res. 8, 1196-1207.
- 302 https://doi.org/10.1111/j.1567-1364.2008.00412.x
- Cordente, A.G., Nandorfy, D.E., Solomon, M., Schulkin, A., Kolouchova, R., Francis, I.L.,
- 304 Schmidt, S.A., 2021. Aromatic higher alcohols in wine: Implication on aroma and palate attributes
- during Chardonnay aging. Molecules 26. https://doi.org/10.3390/molecules26164979

- Fariña, L., Villar, V., Ares, G., Carrau, F., Dellacassa, E., Boido, E., 2015. Volatile composition
- 307 and aroma profile of Uruguayan Tannat wines. Food Res. Int. 69, 244-255.
- 308 https://doi.org/10.1016/j.foodres.2014.12.029
- Gámbaro, A., Boido, E., Zlotejablko, A., Medina, K., Lloret, A., Dellacassa, E., Carrau, F.,
- 2001. Effect of malolactic fermentation on the aroma properties of Tannat wine. Aust. J. Grape Wine
- 311 Res. 7, 27–32. https://doi.org/10.1111/j.1755-0238.2001.tb00190.x
- Giorello, F., Valera, M. J., Martin, V., Parada, A., Salzman, V., Camesasca, L., Fariña, L.
- Boido, E., Medina, K., Dellacassa, E., Berna, L., Aguilar, P. S., Mas, A., Gaggero, C., Carrau, F., 2019.
- 314 Genomic and transcriptomic basis of *Hanseniaspora vineae's* impact on flavor diversity and wine
- 315 quality. App. Env. Microbiol., 85(1), e01959-18. https://doi.org/10.1128/AEM.01959-18
- Hazelwood, L.A., Daran, J.M., Van Maris, A.J.A., Pronk, J.T., Dickinson, J.R., 2008. The
- 317 Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae
- 318 metabolism. Appl. Environ. Microbiol. 74, 2259–2266. https://doi.org/10.1128/AEM.02625-07
- Henschke, P.A., Jiranek, V., 1993. Yeast: Metabolism of nitrogen compounds, in: Wine
- Microbiology and Biotechnology. https://doi.org/10.1089/end.2014.0018
- Jolly, N.P., Varela, C., Pretorius, I.S., 2014. Not your ordinary yeast: Non-Saccharomyces
- yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237. https://doi.org/10.1111/1567-
- 323 1364.12111
- Martin, V., Boido, E., Giorello, F., Mas, A., Dellacassa, E., Carrau, F., 2016a. Effect of yeast
- 325 assimilable nitrogen on the synthesis of phenolic aroma compounds by *Hanseniaspora vineae* strains.
- 326 Yeast 33, 323–328. https://doi.org/10.1002/yea.3159
- Martin, V., Giorello, F., Fariña, L., Minteguiaga, M., Salzman, V., Boido, E., Aguilar, P.S.,
- Gaggero, C., Dellacassa, E., Mas, A., Carrau, F., 2016b. De novo synthesis of benzenoid compounds
- by the yeast *Hanseniaspora vineae* increases the flavor diversity of wines. J. Agric. Food Chem. 64,
- 330 4574–4583. https://doi.org/10.1021/acs.jafc.5b05442

- Martin, V., Valera, M.J., Medina, K., Boido, E., Carrau, F., 2018. Oenological impact of the
- 332 Hanseniaspora/Kloeckera yeast genus on wines A review. Fermentation 4, 1–21.
- https://doi.org/10.3390/fermentation4030076
- Mas, A., Guillamón, J.M., Beltran, G., 2016. Non-conventional yeast in the wine industry.
- 335 FEMS Yeast Res. 7, 1–2. https://doi.org/10.1111/1567-1364.12111
- McLafferty, F. W., 2005. Wiley Registry of Mass Spectral Data, 7th Edition with NIST 2005
- 337 Spectral Data.
- Medina, K., Boido, E., Fariña, L., Gioia, O., Gomez, M.E., Barquet, M., Gaggero, C.,
- Dellacassa, E., Carrau, F., 2013. Increased flavour diversity of Chardonnay wines by spontaneous
- fermentation and co-fermentation with *Hanseniaspora vineae*. Food Chem 141(3), 2513-2521.
- 341 25https://doi.org/10.1016/j.foodchem.2013.04.056
- Mondello, L., 2015. Mass spectra of flavors and fragrances of natural and synthetic
- 343 compounds ,10, pp. 4-5. Wiley Blackwell, Hoboken, NJ, USA
- Panda, H., 2010. Perfumes and Flavours Technology Handbook. Asia Pacific Business Press
- 345 Inc., Delhi.
- Payet, L.A., Leroux, M., Willison, J.C., Kihara, A., Pelosi, L., Pierrel, F., 2016. Mechanistic
- 347 Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast. Cell Chem. Biol. 23, 1241–
- 348 1250. https://doi.org/10.1016/j.chembiol.2016.08.008
- Pina, C., Santos, C., Couto, J.A., Hogg, T., 2004. Ethanol tolerance of five non-Saccharomyces
- wine yeasts in comparison with a strain of Saccharomyces cerevisiae Influence of different culture
- 351 conditions. Food Microbiol. https://doi.org/10.1016/j.fm.2003.10.009
- Pretorius, I.S., 2020. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. 20, 1–22.
- 353 https://doi.org/10.1093/femsyr/foz084
- Robinson, K. P., Jochem, A., Johnson, S. E., Reddy, T. R., Russell, J. D., Coon, J. J., Pagliarini,
- D. J. 2021. Defining intermediates and redundancies in coenzyme Q precursor biosynthesis. J. Biol.
- 356 Chem., 296. https://doi.org/10.1016/j.jbc.2021.100643

| 357 | Romano, P., Suzzi, G., 1996. Origin and production of acetoin during wine yeast fermentation.       |
|-----|-----------------------------------------------------------------------------------------------------|
| 358 | Appl. Environ. Microbiol. 62, 309-315. https://doi.org/10.1128/aem.62.2.309-315.1996                |
| 359 | Treeby, M.T., Holzapfel, B.P., Walker, R.R., Nicholas, P.R. 1998. Profiles of free amino acids      |
| 360 | in grapes of grafted Chardonnay grapevines. Aust. J. Grape and Wine Res., 4(3), 121-126.            |
| 361 | https://doi.org/10.1111/j.1755-0238.1998.tb00140.x                                                  |
| 362 | Valera, M.J., Olivera, V., Boido, E., Dellacassa, E., Carrau, F., 2021. Wine aroma                  |
| 363 | characterization of the two main fermentation yeast species of the apiculate genus Hanseniaspora.   |
| 364 | Fermentation 7. https://doi.org/10.3390/fermentation7030162                                         |
| 365 | Viana, F., Belloch, C., Vallés, S., Manzanares, P., 2011. Monitoring a mixed starter of             |
| 366 | Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: Impact on 2-phenylethyl acetate      |
| 367 | production. Int. J. Food Microbiol. 151, 235–240. https://doi.org/10.1016/j.ijfoodmicro.2011.09.005 |
| 368 | Zhang, B., Xu, D., Duan, C., Yan, G., 2020. Synergistic effect enhances 2-phenylethyl acetate       |
| 369 | production in the mixed fermentation of Hanseniaspora vineae and Saccharomyces cerevisiae. Process  |
| 370 | Biochem. 90, 44–49. https://doi.org/10.1016/j.procbio.2019.11.007                                   |

372 Figure captions: 373 Fig. 1. Biosynthesis of 2-phenylethanol and 2-phenylethyl acetate in yeasts. Genes involved and their 374 corresponding copy numbers are specified for H. vineae (yellow) and S. cerevisiae (orange) in the 375 different reactions. 376 Fig. 2. Sensory characteristics of wines elaborated from Chardonnay must (green) and must with 377 phenylalanine added (orange) fermented with three different H. vineae strains. A) Secondary aroma 378 description for each strain. B) Absolute frequency of descriptors considered fruity or floral among the 379 terms used by the panel. Different letters represent significant differences according to a Tukey test. 380 Fig. 3. Sum of alcohols and their corresponding acetates derived from aromatic amino acids obtained 381 in two different conditions. Different letters represent significant differences according to a Fisher LSD 382 test. 383 Fig. 4. Labelling results. Percentage of labelled fragments in those compounds containing labelled Tyr-<sup>13</sup>C<sub>6</sub> and Phe-<sup>13</sup>C<sub>6</sub> compared with the corresponding proportion of the same fragment sizes in 384 385 control synthetic wine without labelling. Bars represent standard deviation. 386 387 388

**Table S1.** Concentration of amino acids and inorganic ammonium source in the synthetic must media.

|                                   | Phe+Tyr | <sup>13</sup> Phe+Tyr | <sup>13</sup> Tyr+Phe | <sup>13</sup> Phe | <sup>13</sup> Tyr |
|-----------------------------------|---------|-----------------------|-----------------------|-------------------|-------------------|
| Amino acid                        | (mg/L)  | (mg/L)                | (mg/L)                | (mg/L)            | (mg/L)            |
| PRO                               | 60.3    | 60.3                  | 60.3                  | 60.3              | 60.3              |
| ALA                               | 12.1    | 12.1                  | 12.1                  | 12.1              | 12.1              |
| ARG                               | 90.4    | 90.4                  | 90.4                  | 90.4              | 90.4              |
| ASN                               | 18.1    | 18.1                  | 18.1                  | 18.1              | 18.1              |
| ASP                               | 42.2    | 42.2                  | 42.2                  | 42.2              | 42.2              |
| GLN                               | 24.1    | 24.1                  | 24.1                  | 24.1              | 24.1              |
| GLU                               | 60.3    | 60.3                  | 60.3                  | 60.3              | 60.3              |
| GLY                               | 6.0     | 6.0                   | 6.0                   | 6.0               | 6.0               |
| HIS                               | 18.1    | 18.1                  | 18.1                  | 18.1              | 18.1              |
| ILE                               | 24.1    | 24.1                  | 24.1                  | 24.1              | 24.1              |
| LEU                               | 36.2    | 36.2                  | 36.2                  | 36.2              | 36.2              |
| LYS                               | 30.1    | 30.1                  | 30.1                  | 30.1              | 30.1              |
| MET                               | 18.1    | 18.1                  | 18.1                  | 18.1              | 18.1              |
| PHE                               | 9.0     | 0                     | 9.0                   | 0                 | 0                 |
| PHE- <sup>13</sup> C <sub>6</sub> | 0       | 9.0                   | 0                     | 10                | 0                 |
| SER                               | 48.2    | 48.2                  | 48.2                  | 48.2              | 48.2              |
| THR                               | 42.2    | 42.2                  | 42.2                  | 42.2              | 42.2              |
| TRP                               | 12.1    | 12.1                  | 12.1                  | 12.1              | 12.1              |
| TYR                               | 1.2     | 1.2                   | 0                     | 0                 | 0                 |
| TYR- <sup>13</sup> C <sub>6</sub> | 0       | 0                     | 1.2                   | 0                 | 11                |
| VAL                               | 24.1    | 24.1                  | 24.1                  | 24.1              | 24.1              |
| Inorganic amonium source          | (mg/L)  | (mg/L)                | (mg/L)                | (mg/L)            | (mg/L)            |
| DAP                               | 60.3    | 60.3                  | 60.3                  | 60.3              | 60.3              |

Table S2. Colony forming units (cfu/mL) obtained by WLN plating of S. cerevisiae and H. vineae in each treatment throughout the fermentation (day 4 and day10). Average and standard deviation from triplicates were calculated. 396 397

|           | 0.     | Sc | 5×10 <sup>7</sup> ±2×10 <sup>7</sup>                                                                                   | 5×10 <sup>7</sup> ±3×10 <sup>7</sup>                                                                           |
|-----------|--------|----|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Hv02/19AF | Day 10 | Ηv | 2×10 <sup>7</sup> ±1×10 <sup>7</sup> 1×10 <sup>6</sup> ±2×10 <sup>5</sup> 5×10 <sup>7</sup> ±2×10 <sup>7</sup>         | $2x10^7 \pm 1x10^7$ $1x10^6 \pm 7x10^5$ $5x10^7 \pm 3x10^7$                                                    |
|           | Day 4  | Ηv | 2×10 <sup>7</sup> ±1×10 <sup>7</sup>                                                                                   | 2×10 <sup>7</sup> ±1×10 <sup>7</sup>                                                                           |
|           | Day 10 | Sc | 5x10 <sup>7</sup> ±3x10 <sup>7</sup>                                                                                   | 6x10 <sup>7</sup> ±3x10 <sup>7</sup>                                                                           |
| Hv12/196F | Day    | Α  | 2×10 <sup>7</sup> ±1×10 <sup>7</sup> 2×10 <sup>6</sup> ±8×10 <sup>5</sup> 5×10 <sup>7</sup> ±3×10 <sup>7</sup>         | $2x10^7 \pm 4x10^6  1x10^6 \pm 4x10^5  6x10^7 \pm 3x10^7$                                                      |
|           | Day 4  | H\ | 2×10 <sup>7</sup> ±1×10 <sup>7</sup>                                                                                   | 2x10 <sup>7</sup> ±4x10 <sup>6</sup>                                                                           |
|           | Day 10 | Sc | 5×10 <sup>7</sup> ±4×10 <sup>7</sup>                                                                                   | 6x10 <sup>7</sup> ±2x10 <sup>7</sup>                                                                           |
| Hv02/05AF | Day    | Hv | 1x10 <sup>6</sup> ±4x10 <sup>5</sup>                                                                                   | 2x10 <sup>7</sup> ±4x10 <sup>6</sup> 2x10 <sup>6</sup> ±2x10 <sup>5</sup> 6x10 <sup>7</sup> ±2x10 <sup>7</sup> |
|           | Day 4  | Hv | Control 2x10 <sup>7</sup> ±5x10 <sup>6</sup> 1x10 <sup>6</sup> ±4x10 <sup>5</sup> 5x10 <sup>7</sup> ±4x10 <sup>7</sup> | 2×10 <sup>7</sup> ±4×10 <sup>6</sup>                                                                           |
| '         |        | '  | Control                                                                                                                | Phe<br>added                                                                                                   |

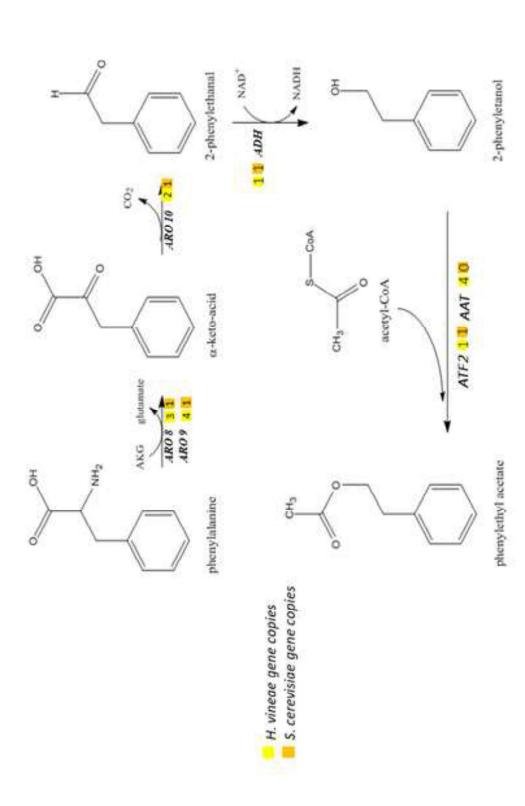



Fig 4.tif

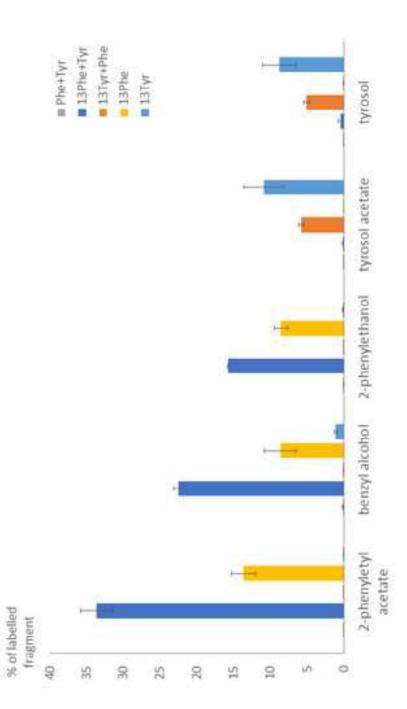
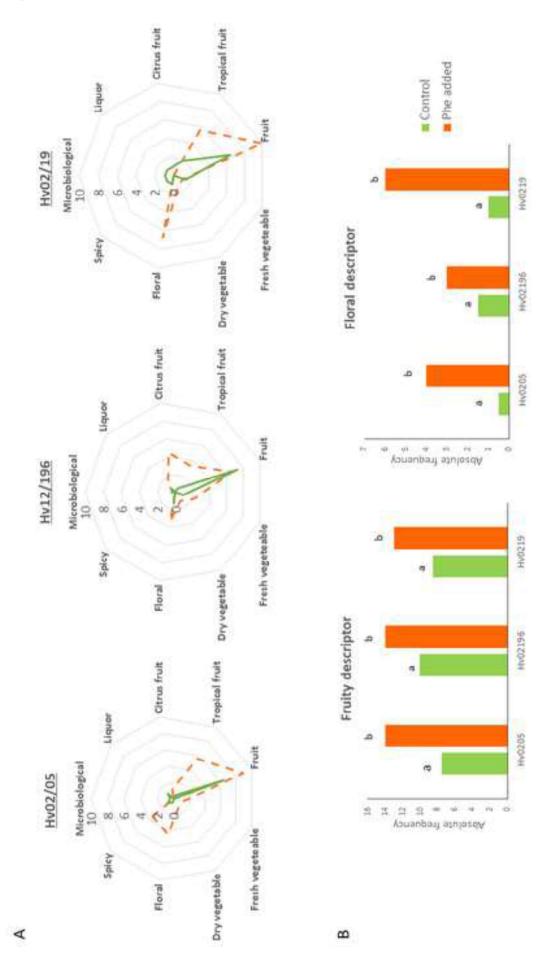
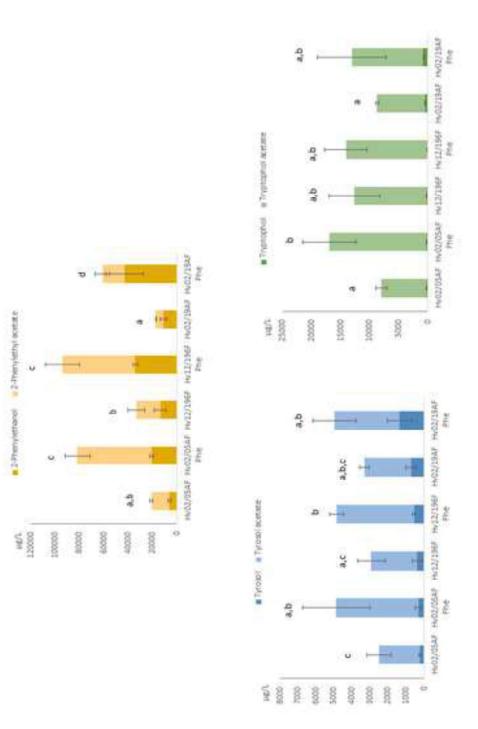





Fig 2.tif





# **Declaration of competing interest**

All authors of the manuscript declare no conflict of interest.