

Informe final publicable de proyecto Circuito integrado según norma ISO11784/5 para lectura RFID en agroindustria

Código de proyecto ANII: FMV_1_2021_1_168342

Fecha de cierre de proyecto: 01/03/2025

MIGUEZ DE MORI, Matias Rafael (Responsable Técnico - Científico)
BARBIERI MARTÍNEZ, Lucio Gabriel (Investigador)
GAK SZOLLOSY, Joel (Investigador)

UNIVERSIDAD CATÓLICA DEL URUGUAY DÁMASO ANTONIO LARRAÑAGA. DEPARTAMENTO DE INGENIERÍA (Institución Proponente) \\
BQN \\ UNIVERSIDAD CATÓLICA DEL URUGUAY DÁMASO ANTONIO LARRAÑAGA

Resumen del proyecto

El objetivo del proyecto fue desarrollar un circuito integrado de aplicación específica (ASIC), en tecnología CMOS-HV, con un motor de lectura de RFID en baja frecuencia según la norma ISO11784/5. Esta norma es la que se aplica a caravanas y tags implantables para identificación animal. Sería el primer circuito integrado en implementar este protocolo en forma completa (incluyendo las ambas opciones HDX y FDX que prevé la norma), lo que es necesario para lectores comerciales y/o certificados. A su vez un lector dentro de un circuito integrado permitirá implementar lectores de RFID innovadores, multicanal, y sincronizados.

En este proyecto se aplicaron un conjunto de técnicas innovadoras de circuito para bajo ruido, detección síncrona y se optimizo el procesamiento de señal, dado que no se tendrá las limitaciones de la electrónica discreta. Se integraron los drivers, circuitos de sintonización, pre-amplificadores y filtros, entre otros.

El proyecto fue apoyado por la empresa BQN Uruguay con más de 10 años de experiencia en fabricación de lectores de RFID para trazabilidad animal.

Ingeniería y Tecnología / Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información / Ingeniería Eléctrica y Electrónica / Microelectronica

Palabras clave: RFID ISO11784/5 / circuito integrado / agroindustria /

Antecedentes, problema de investigación, objetivos y justificación.

Antecedentes:

Desde 2004, el Grupo de Microelectrónica de la Universidad Católica del Uruguay (microDIE) ha desarrollado actividades de investigación, diseño, consultoría y formación de recursos humanos en el área de circuitos integrados analógicos y mixtos, con especial énfasis en tecnología de alto voltaje (HV) [1][2][7], amplificadores y filtros para aplicaciones médicas [6][7][8][9]. A lo largo de estos años, el grupo ha fabricado y medido múltiples circuitos integrados en tecnologías como 0.6 um CMOS-SOI y CMOSHV, 0.35 um-HV y 0.18 um-HV, consolidándose como referente nacional e internacional. También ha graduado maestrandos y doctorandos, desarrollado más de diez proyectos de grado en diseño de ASICs analógicos y mixtos, y establecido cooperación académica con grupos de Brasil (LCI-UFSC), Francia (IES-UM2), Argentina (DIEC-UNS), España (CNM) y Costa Rica (DCILab-TEC).

Por otro lado, la empresa BQN Uruguay, fundada en 2003, se dedica al diseño y manufactura de dispositivos electrónicos, destacándose por el desarrollo del lector Baqueano® de RFID para ganadería, producto que recibió el premio Nova/TICs de ANII (2014) y el premio Synopsys al mejor producto de electrónica en América Latina, presentado en Japón (MPSOC'16) [12]. Uruguay, como primer país en tener la totalidad de su ganado identificado electrónicamente [14], representa un entorno ideal para la implementación de este tipo de tecnologías. El lector Baqueano® surgió para cumplir con la normativa de trazabilidad obligatoria [13] y ha sido exitoso en el mercado local gracias a su integración con balanzas, aplicaciones móviles y servicio postventa. Sin embargo, su penetración internacional aún es limitada debido a la competencia global.

Las colaboraciones previas entre la Universidad Católica del Uruguay y BQN incluyen maestrías [18][19][20], publicaciones conjuntas [5][17] y proyectos de grado. Esta historia común sentó las bases para el proyecto de investigación aplicada aquí reportado, cuyo objetivo fue diseñar el primer ASIC comercial que implemente la norma ISO11784/5 en forma completa (FDX y HDX), mejorando así la eficiencia, reduciendo costos y habilitando innovaciones disruptivas en el mercado de lectores RFID.

A nivel global, si bien existen ASICs y módulos comerciales para RFID en ultra-alta frecuencia (UHF) [10] y alta frecuencia (HF) [11], no hay hasta el momento circuitos integrados que cumplan con la norma ISO11784/5 completa (ASK + FSK) para baja frecuencia (LF, 134.2 kHz), lo cual genera una importante oportunidad tecnológica y comercial.

Problema de investigación:

El problema central que motivó este proyecto surge de la ausencia, a nivel mundial, de un circuito integrado específico (ASIC) que implemente la lectura completa de tags RFID duales (FDX/HDX) conforme a la norma ISO11784/5. Actualmente, los lectores RFID de baja frecuencia utilizados en la agroindustria requieren de arquitecturas basadas en componentes discretos, lo que incrementa costos, reduce la eficiencia y limita la capacidad de innovación.

La lectura RFID para trazabilidad ganadera requiere superar desafíos técnicos como la decodificación de señales ASK de baja amplitud (alrededor de 10 mV) superpuestas a señales de cientos de volts [17] entre otros. Aunque algunos fabricantes han desarrollado lectores con FDX o HDX por separado, no existen soluciones integradas que combinen ambos modos en un único ASIC. Las razones son múltiples: el carácter de nicho del mercado (alrededor de 10.000—40.000 lectores vendidos por año a nivel global) [4] y la viabilidad de resolver el problema con electrónica discreta [22]. Sin embargo, esto ha llevado a que los precios de los lectores de alta gama superen los 700 USD en Uruguay y se mantengan elevados internacionalmente.

El proyecto buscó resolver esta brecha tecnológica, diseñando un ASIC que permita a fabricantes de lectores RFID como BQN diferenciarse de la competencia, reducir costos de producción, aumentar velocidad y distancia de lectura, y explorar nuevas funcionalidades no viables con soluciones discretas.

Objetivo general:

Diseñar un circuito integrado de aplicación específica (ASIC) que permita leer tags RFID duales (FDX/HDX) conforme a la norma ISO11784/5.

Objetivos específicos:

- Diseñar e implementar un prototipo discreto RFID+ capaz de leer tags RFID dual (FDX/HDX), según la norma ISO11784/5.
- Diseño de circuitos novedosos que permitan implementar un ASIC permita leer tags RFID dual (FDX/HDX) de acuerdo con la norma ISO 11784/5.
- Formar recursos humanos especializados en el area.

Justificación

Este proyecto se justifica por la convergencia de oportunidades tecnológicas, económicas, académicas.

Desde el punto de vista tecnológico, constituye una innovación global: hasta la fecha no existe un ASIC comercial que implemente la norma ISO11784/5 completa [17]. El desarrollo de este chip permitiría integrar en un solo dispositivo las funciones necesarias para la lectura FDX y HDX, reemplazando arquitecturas discretas costosas y propensas a fallos, con beneficios directos en reducción de tamaño, menor consumo, mayor velocidad y distancia de lectura, y posibilidad de implementar arquitecturas multicanal [3].

Económicamente, permitiría a BQN fortalecer su posición de liderazgo en el mercado uruguayo, incrementar su competitividad internacional y explorar nuevos mercados en América Latina y otras regiones. También se reducirían costos a largo plazo al disminuir la dependencia de componentes externos como PSOC, cristales, puentes H y otros elementos [21]. Esto ayudaría a contrarrestar riesgos de discontinuación de componentes y a actualizar la arquitectura de productos que hoy necesitan revisión para mantenerse competitivos.

En el plano académico, el proyecto permitió aplicar y ampliar el know-how acumulado por el grupo microDIE en circuitos HV, bajo ruido y diseño mixto [1][2][6][8]. Los desafíos del proyecto (como la demodulación en alto voltaje, la sincronización de señales y la decodificación precisa) ofrecieron oportunidades de avance científico, generando publicaciones arbitradas y fortaleciendo las capacidades del equipo. Además, se formaron nuevos recursos humanos en áreas críticas para el país, con un estudiante de maestría y uno de grado trabajando en el proyecto. Finalmente, la estrategia de vinculación entre la universidad y la empresa fue clave: BQN aportó know-how,

documentación, esquemáticos, equipos de prueba e instrumentos, mientras que el equipo académico se ocupó del diseño y caracterización.

Metodología/Diseño del estudio

El diseño metodológico de este proyecto combinó un enfoque iterativo, teórico-práctico y experimental, adaptado a las necesidades específicas del desarrollo de circuitos integrados para lectura RFID conforme a la norma ISO11784/5 [15][16].

El proyecto se estructuró en varias fases, con ciclos de retroalimentación entre etapas, siguiendo las mejores prácticas del diseño de circuitos integrados analógicos y mixtos, y buscando la aplicabilidad industrial.

1. Caracterización inicial del sistema discreto existente

La primera fase consistió en la caracterización experimental del motor de lectura RFID actualmente usado en los lectores Baqueano® de BQN. Para ello se realizaron mediciones precisas usando equipamiento avanzado, incluyendo el osciloscopio de 16 bits (PicoScope® 4262) que se compro con el proyecto, generadores de señales y amplificadores, entre otros. Las mediciones permitieron identificar las limitaciones del diseño discreto en términos de distancia de lectura, velocidad, sensibilidad y robustez frente a interferencias. Esto permitió definir las especificaciones preliminares tanto para el prototipo discreto RFID+ como para el ASIC final.

2. Diseño e implementación del prototipo discreto RFID+

En la segunda fase, se desarrolló un prototipo experimental utilizando componentes discretos (RFID+), pensado como plataforma de prueba para validar conceptos y explorar innovaciones de circuito. Se implementaron y evaluaron: amplificadores de bajo ruido, filtros analógicos, módulos de procesamiento digital, y análisis de algoritmos desde el computador.

Este prototipo permitió realizar pruebas comparativas y optimizaciones, definiendo las arquitecturas y bloques críticos a integrar en el ASIC.

3. Diseño y simulación del circuito integrado (ASIC)

Con las especificaciones refinadas, comenzó el diseño del ASIC, dividendo el proyecto en bloques funcionales. En particular se trabajo en el front-end analógico (preamplificadores de bajo ruido), bloques digitales (máquinas de estado, controladores, filtros digitales). Se dejo para la segunda fabricación el manejo de alto voltaje (llaves, puentes H) y el ADC.

El diseño se realizó utilizando software especializado, seleccionando la tecnología de fabricación más adecuada. Se realizaron simulaciones de esquema, post-layout y análisis Monte Carlo para validar comportamiento, robustez y variabilidad de proceso. Esto finalizo con la fabricación del primer ASIC.

4. Preparación del banco de pruebas

Mientras se esperaba la llegada de los chips, se desarrolló un banco de pruebas para caracterización, incluyendo montaje de placas, diseño de firmware y desarrollo de procedimientos de test. Debido a que esto demoro mas de lo esperado, se trabajo en el segundo ASIC, antes de poder realizar toda la caracterización.

5. Diseño y simulación del 2do circuito integrado (ASIC)

Se diseño un segundo ASIC que incluía el puente H para poder transmitir y el ADC necesario como interfase las partes analógicas y las digitales. El mismo se mando a fabricar sobre el final del proyecto.

6. Caracterización del primer ASIC

Se caracterizo el primer ASIC, tanto las partes digitales como analógicas.

7. Publicación de resultados

Se publico los resultados obtenidos en congresos y revistas indexadas [23][24][25][26].

Resultados, análisis y discusión

El proyecto alcanzó resultados significativos en términos de desarrollo tecnológico, formación de recursos humanos, generación de conocimiento y producción académica. A continuación se presentan los principales logros. Se diseñó, fabricó y caracterizó un circuito integrado de aplicación específica (ASIC) conforme a la norma ISO11784/5.

El proyecto avanzó a través de un prototipo discreto y dos versiones de ASIC:

Prototipo Discreto: permitió validar la arquitectura básica.

Primer ASIC: Valido el analog front end (AFE) y los filtros digitales.

Segundo ASIC: Incluyo el manejo del puente H, y el ADC que comunica el AFE con los filtros digitales.

De esta manera se logro fabricar en silicio todos los componentes de un lector de caravanas.

Además, se avanzó en el desarrollo de un tag semi-activo LF/BLE con rango extendido para aplicaciones en ganadería, como parte de la línea de innovación complementaria del equipo.

Producción académica

El proyecto generó producción académica, que incluye publicaciones ya finalizadas y otras en proceso:

Publicaciones en eventos internacionales [22][23]:

An ISO 11784/5 compliant analysis for a mixed-signal ASIC, for animal RFID readers' frontends (Barbieri, Miguez de Mori, Gak Szollosy, Pinheiro Camacho, Arnaud Maceira) ? https://liberi.ucu.edu.uy/xmlui/handle/10895/4752

A mixed-signal ASIC for ISO 11784/5 compliant animal RFID readers (Barbieri, Miguez de Mori, Gak Szollosy, Arnaud Maceira) ? https://liberi.ucu.edu.uy/xmlui/handle/10895/4753

Artículos científicos en proceso de segunda revision [24][25]:

An analysis for an ISO 11784/5 compliant mixed-signal ASIC, for animal RFID readers' frontends (Barbieri, Miguez de Mori, Gak Szollosy, Pinheiro Camacho, Calarco, González, Arnaud Maceira)? https://liberi.ucu.edu.uy/xmlui/handle/10895/4750

A semi-active LF/BLE tag with 14× extended reading range for livestock RFID (Sapriza, Martínez, Miguez de Mori, Arnaud Maceira) ? https://liberi.ucu.edu.uy/xmlui/handle/10895/4751

Estas publicaciones no solo reflejan la calidad y relevancia científica de los resultados, sino que también posicionan al equipo uruguayo en la frontera del desarrollo tecnológico en RFID para agroindustria.

Luego de que arribe el segundo ASIC, se esperan nuevas publicaciones.

Resultados en formación de recursos humanos

El proyecto tuvo un impacto concreto en la formación y consolidación de capacidades locales:

Lucio Barbieri (maestría) ? desarrolló su tesis en el marco del proyecto, finalizando los cursos de posgrado.

Santiago Pinheiro (grado) ? realizó una estancia de iniciación a la investigación, ganando experiencia en diseño y pruebas.

Ismael González (grado) ? actualmente realiza su tesis de grado, surgida directamente a partir de los desafíos del proyecto.

Conclusiones y recomendaciones

El proyecto se realizo en general de manera satisfactoria.

Algunos cambios en las fechas de fabricación llevaron a que el proyecto se demorara, pero se logro realizar de manera total o parcial todos los objetivos planteados.

Productos derivados del proyecto

Tipo de producto	Título	Autores	Identificadores	URI en repositorio de Silo	Estado				
Publicación de trabajo en evento (artículo de conferencia)	An ISO 11784/5 compliant analysis for a mixedsignal ASIC, for animal RFID readers' frontends	Barbieri, Lucio; Miguez de Mori, Matías Rafael; Gak Szollosy, Joel; Pinheiro Camacho, Santiago; Arnaud Maceira, Alfredo		https://liberi.ucu.edu.uy/xmlui/handle/10895/4752	Finalizado				
Publicación de trabajo en evento (artículo de conferencia)	A mixed- signal ASIC for ISO 11784/5 compliant animal RFID readers	Barbieri, Lucio; Miguez de Mori, Matías Rafael; Gak Szollosy, Joel; Arnaud Maceira, Alfredo		https://liberi.ucu.edu.uy/xmlui/handle/10895/4753	Finalizado				
Artículo científico	An analysis for an ISO 11784/5 compliant mixed- signal ASIC, for animal RFID readers' frontends	Barbieri, Lucio; Miguez de Mori, Matías Rafael; Gak Szollosy, Joel; Pinheiro Camacho,		https://liberi.ucu.edu.uy/xmlui/handle/10895/4750	En				

Tipo de producto	Título	Autores	Identificadores	URI en repositorio de Silo	Estado
		Santiago;			
		Calarco,			
		Nicolás;			
		González,			
		Ismael;			
		Arnaud			
		Maceira,			
		Alfredo			
Artículo	A semi-	Sapriza		https://liberi.ucu.edu.uy/xmlui/handle/10895/4751	En
científico	active	Araújo,			proceso
	LF/BLE tag	Juan;			
	with 14×	Martínez			
	extended	Mautone,			
	reading	Natalia;			
	range for	Miguez			
	livestock	de Mori,			
	RFID	Matías			
		Rafael;			
		Arnaud			
		Maceira,			
		Alfredo			

Referencias bibliográficas

- [1] J. Gak, M. Miguez, A. Arnaud, "CMOS level shifters from 0 to 18V output", Analog Integrated Circuits and Signal Processing 107(3), 2021.
- [2] F. Torres, et al., "An Integrated 350V Dimmer", Argentine Conference on Electronics, 2020.
- [3] A. Diet, et al., "Flexible Serialized Complementary Coils for the Detection of Moving LF RFID Tags", IEEE Journal of Radio Frequency Identification, 2019.
- [4] Población mundial de ganado: https://beef2live.com/story-world-cattle-inventory-ranking-countries-0-106905
- [5] A. Arnaud, et al., "Ultra low-cost sensors using RFID standards for data collection, for IoT systems in food production and logistics", IEEE-LASCAS, 2020.
- [6] M. Miguez, et al., "A current-reuse biomedical amplifier with a NEF<1", Analog Integrated Circuits and Signal Processing 95(2), 2018.
- [7] A. Arnaud, et al., "A RISC-V based medical implantable SoC for high voltage and current tissue stimulus", IEEE LASCAS, 2020.
- [8] J. Gak, M. Miguez, A. Arnaud, "Nanopower OTAs with improved linearity and low input offset using bulk degeneration", IEEE Transactions on Circuits and Systems I, 2013.
- [9] E. Alvarez, et al., "Nano—power-integrated precision rectifiers for implantable medical devices", International Journal of Circuit Theory and Applications, 2020.
- [10] Chip lectores de RFID-UHF: https://www.impinj.com/products/reader-chips

- [11] Chip lector HF@13.56MHz, TRF7963A, Texas Instruments: https://www.ti.com/
- [1 2] MPSOC Forum, Japón, 2016.http://mpsoc-forum.org/archive/2016/speakers/Victor_Grimblatt_Alfredo_Arnaud.html
- [13] Ley Nº 17.997, SISTEMA DE IDENTIFICACIÓN Y REGISTRO ANIMAL, Uruguay. http://legislativo.parlamento.gub.uy
- [14] Walter Oyhantcabal, Equipos Consultores, "10 años del sistema de trazabilidad individual obligatorio: ¿Qué opinan los productores ganaderos?"
- [15] ISO11784:1996 Radio frequency identification of animals Code structure https://www.iso.org/standard/25881.html
- [16] ISO11785:1996 Radio frequency identification of animals Technical concept https://www.iso.org/standard/19982.html
- [17] A. Arnaud, B. Bellini, "Full ISO 11784/11785 compliant RFID reader in a programmable analog-digital, integrated circuit", EAMTA, 2010.
- [18] Bruno Bellini, "DIEstro: Plataforma sensora de movimiento para detección del celo bovino", Universidad Católica del Uruguay, 2016.
- [19] Guillermo Costa, "Low-frequency RFID active devices for applications in the agribusiness industry", Universidad Católica del Uruguay, 2013.
- [20] Fabián Torres, "Ultra High Voltage IC design", Universidad Católica del Uruguay, 2020.
- [21] Ejemplo de PSOC (programmable system on a chip): https://www.cypress.com/products/psoc-analog-coprocessor
- [22] Productos en Alibaba: https://www.alibaba.com/

Publicaciones del proyecto (nuevas referencias)

- [23] Barbieri, L., Miguez de Mori, M. R., Gak Szollosy, J., Pinheiro Camacho, S., Arnaud Maceira, A., An ISO 11784/5 compliant analysis for a mixed-signal ASIC, for animal RFID readers' frontends. Disponible en: https://liberi.ucu.edu.uy/xmlui/handle/10895/4752
- [24] Barbieri, L., Miguez de Mori, M. R., Gak Szollosy, J., Arnaud Maceira, A., A mixed-signal ASIC for ISO 11784/5 compliant animal RFID readers. Disponible en: https://liberi.ucu.edu.uy/xmlui/handle/10895/4753
- [25] Barbieri, L., Miguez de Mori, M. R., Gak Szollosy, J., Pinheiro Camacho, S., Calarco, N., González, I., Arnaud Maceira, A., An analysis for an ISO 11784/5 compliant mixed-signal ASIC, for animal RFID readers' frontends. En proceso. Disponible en: https://liberi.ucu.edu.uy/xmlui/handle/10895/4750
- [26] Sapriza, J., Martínez, N., Miguez de Mori, M. R., Arnaud Maceira, A., A semi-active LF/BLE tag with 14× extended reading range for livestock RFID. En proceso. Disponible en: https://liberi.ucu.edu.uy/xmlui/handle/10895/4751

Licenciamiento

Reconocimiento-NoComercial-Compartir Igual 4.0 Internacional. (CC BY-NC-SA)