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Resumen del proyecto

La difusion es el movimiento neto de particulas desde regiones de mayor concentracién hacia regiones de menor
concentracion. Cuando el proceso estocdstico subyacente no es browniano, la difusién se dice andmala. En
particular, la superdifusiéon anémala se modela mediante operadores de diferenciacion espacial de orden no-
entero, que son no-locales y de cardcter integro-diferencial. En este proyecto, estudiamos propiedades analiticas y
desarrollamos y analizamos herramientas computacionales para el tratamiento de problemas con operadores de
este tipo sobre dominios acotados.

Motivados por diversas aplicaciones, tratamos con problemas no-lineales para operadores no-locales. En estas
aplicaciones, el relajamiento causado por la incorporaciéon de modelos no-locales permitiria capturar fendémenos
gue sus contrapartes locales no logran capturar completamente.

La no-localidad conlleva desafios tanto analitica como computacionalmente. El desarrollo de métodos numéricos se
ve dificultado por la presencia de nucleos hipersingulares y la necesidad de integrar sobre dominios no acotados.
Mostramos que las soluciones de los problemas correspondientes sean poco regulares, fundamentalmente debido a
un pobre comportamiento cerca de la frontera del dominio. Esta regularidad de soluciones es un elemento
fundamental a tener en cuenta para el andlisis de los métodos numéricos que desarrollamos y juega un papel
preponderante en nuestra obtencidn de estimaciones de error.

Ciencias Naturales y Exactas / Matemdticas / Matemadtica Aplicada / Andlisis, Andlisis Numérico

Palabras clave: difusién fraccionaria / método de elementos finitos / /
Antecedentes, problema de investigacidn, objetivos y justificacidn.

Este proyecto trata sobre el estudio analitico y el computo numérico de Ecuaciones en Derivadas Parciales (EDPs)
e integro-diferenciales. Se entiende por difusion al movimiento neto de particulas desde regiones de mayor
concentracion hacia regiones de menor concentracion. Los modelos cldsicos de difusién conducen a ecuaciones
bien estudiadas. Sin embargo, desde hace un tiempo ha quedado claro que varias de las hipétesis que conducen a
estos modelos no siempre son satisfechas [52, 51]. Cuando el proceso subyacente no es browniano, la difusién se
dice anémala. La superdifusion andmala se modela mediante operadores de diferenciacion espacial de orden no
entero (se utiliza el término “fraccionario”, aunque el orden sea cualquier real positivo). Estos operadores son no
locales, de cardcter integro-diferencial. Un ejemplo emblematico es el laplaciano fraccionario de orden s (0 <s < 1)
en Rd [39].

Algunos desafios en la discretizacion de este operador incluyen la presencia de un nudcleo hipersingular y la
integracién sobre dominios no acotados. El andlisis de problemas con difusiéon fraccionaria en dominios acotados,
tanto desde el punto de vista teérico como numérico, es dificil debido al comportamiento no local de las normas
fraccionarias y a la baja regularidad de soluciones. El desarrollo de capas limite, fendémeno tipico de las soluciones
de estos problemas, limita los drdenes de convergencia esperables.

Entre los recientes e importantes avances tedricos en el andlisis de problemas no locales, destacamos la extensidn
de Caffarelli-Silvestre [35] y su utilizacién en el estudio de regularidad de soluciones [32, 34], y el uso de
herramientas de teoria del potencial [33, 57] o de andlisis pseudodiferencial [45]. Asimismo, para problemas
lineales, la caracterizacion de regularidad Holder de soluciones de [57] nos permitié obtener estimaciones de
regularidad Sobolev [4]. Mds recientemente, en [22] obtuvimos resultados de regularidad Besov dptimos
extendiendo una técnica introducida en [58] para problemas locales, consistente en una localizacién del método de
cocientes incrementales de Nirenberg [54].

Paralelamente al avance tedrico, el desarrollo de métodos numéricos para problemas lineales fue intenso. Para
problemas en dimensidén mayor o igual a 2, se han propuesto diversos métodos de diferencias finitas [42, 46, 47,
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53], y de elementos finitos [2, 4, 5, 8, 11]. Se tiene una gama de discretizaciones para operadores no locales y que
preservan distintas caracteristicas del problema continuo. Por ejemplo, en general los métodos de elementos
finitos no admiten un principio del mdaximo discreto —para s cercano a 0 las matrices de rigidez se aproximan a
matrices de masa correspondientes a un producto interno en L2—, mientras que si se tiene un principio del mdximo
discreto si se utilizan métodos de diferencias finitas. En cambio, los métodos de elementos finitos tienen la ventaja
de preservar la estructura variacional del problema y de ser permeables a andlisis con menos requerimientos de
regularidad que los de diferencias finitas.

Por otra parte, existen numerosas aplicaciones en las que los modelos cldsicos no logran capturar completamente
los fendmenos a estudiar, por lo que resulta de interés explorar modelos no locales; en este proyecto, la
interaccién entre no localidad y no linealidad es de especial interés. Dada la relacién entre suavidad y
aproximabilidad de soluciones, para obtener estimaciones de error realistas necesariamente el estudio numérico
debe ser complementado por un andlisis tedrico correspondiente.

Este proyecto investigé en las siguientes cuatro lineas.

(1) Modelos acoplados locales y no locales. En electromagnetismo, la presencia de un metamaterial (material con
permitividad o permeabilidad negativa) rodeado de un material cldsico da lugar a problemas de transmisiéon con
coeficientes que cambian de signo. Dicho cambio de signo implica que no se pueda asegurar el buen planteo del
problema asociado en H1. El buen planteo del problema se puede caracterizar segun el cociente entre los
coeficientes de permitividad/permeabilidad en ambos materiales: los problemas quedan mal planteados si este
cae dentro de un cierto intervalo critico [13, 14, 15]. Cuando la interfase entre los materiales no es plana, en [18]
mostramos que dicho intervalo critico se reduce si uno reemplaza la forma habitual en H1 por una en Hs,
correspondiente a la formulacién débil del laplaciano fraccionario de orden s.

El costo computacional de resolver las interacciones no locales puede ser alto, por lo que interesa limitar el
modelo no local a un entorno de la interfase y mantener el modelo cldsico en el resto del dominio. En [3, 38], para
problemas coercivos, se proponen ciertos modelos acoplados entre problemas locales y no locales. Como primera
etapa hacia el tratamiento de métodos para problemas con cambio de signo, interesa desarrollar modelos en los
que el acoplamiento tenga lugar a nivel de la energia.

(2) Computo estable de formulaciones mixtas para el laplaciano fraccionario. Los métodos de elementos finitos
mixtos permiten la aproximacién de dos o mds variables de interés en forma simultdnea. Por ejemplo, para el
problema de Poisson, permiten aproximar tanto la solucién como su gradiente, tipicamente referido como flujo. No
existen antecedentes en la literatura respecto al uso de métodos mixtos para problemas fraccionarios. Esto se
debe a que este tipo de formulaciones pierden la coercividad, y su estabilidad queda sujeta al diseno de espacios
de funciones discretas adecuados. En el marco no local, estos espacios no parecen accesibles. Por otra parte, para
problemas locales existen métodos estabilizados que permiten considerar aproximaciones por elementos de
Lagrange lineales [50].

El proyecto descrito arriba sirve como punto de partida para el estudio de formulaciones que involucren
operadores diferenciales fraccionarios (generalizaciones de los operadores de gradiente, divergencia y rotor). En
particular, esto es de interés para el tratamiento de un modelo de Oseen-Frank generalizado para cristales
liguidos nematicos. El modelo mds sencillo para representar la orientacidn media de las moléculas de cristales
liquidos nematicos es el de Oseen-Frank [27, 60], que en su formulacién mds simple corresponde a minimizar una
energia de Dirichlet bajo una restriccion de largo. Una caracteristica sobresaliente de estos materiales es la
presencia de defectos, que son singularidades en el campo de orientaciones. El modelo de Oseen-Frank no es
capaz de capturar este fendmeno: defectos de codimensiéon menor o igual a 2 tienen energia infinita. Un
relajamiento poco explorado de la energia de Oseen-Frank [7] consiste en disminuir los requerimientos de
diferenciabilidad del campo de orientaciones y reemplazar la seminorma en H1 por una seminorma en Hs. Algunas
preguntas importantes estdn abiertas; en [7] se toma la llamada energia a una constante, que es sencilla
analiticamente pero no necesariamente la mds relevante en aplicaciones. La formulaciéon completa de la energia
de Oseen-Frank incluye los llamados mddulos de splay, twist y bend. La extensidn de estos mddulos al marco no
local requiere el uso de cdlculo vectorial [41].

(3) Problemas cuasilineales. En el contexto local, el operador p-laplaciano (p > 1) es una generalizacién no lineal del
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laplaciano cldsico, y es prototipico de procesos de difusion singulares (1 < p < 2) o degenerados (p > 2). Por esta
razon, este operador surge en diversos contextos fisicos, como fluidos no newtonianos [9] y flujos turbulentos en
medios porosos [40].

A pesar de los avances recientes para problemas lineales, el tratamiento de difusion anémala cuasilineal es
incipiente. Al momento de iniciar el proyecto, para el problema de Dirichlet para el llamado (p,s)-laplaciano —
generalizacién del p-laplaciano al marco no local—, se contaban con algunos resultados parciales de regularidad
[29, 30, 48]. Sin embargo, estos no son del todo satisfactorios para un andlisis de elementos finitos, ya que para ese
fin es necesario contar con una teoria de regularidad Sobolev hasta el borde del dominio.

Por otra parte, el tratamiento numérico de este tipo de problemas conlleva, ademads de las dificultades propias de
la no localidad, aquellas asociadas con la no linealidad. El antecedente mds cercano involucra discretizaciones por
elementos finitos para problemas de superficies minimas fraccionarias [20, 21], pero no es claro que los métodos
de flujo de gradiente alli desarrollados permitan lidiar de forma satisfactoria con la no linealidad de las
ecuaciones resultantes para el (p,s)-laplaciano.

(4) Problemas de obstdculo. La ejecucion de opciones americanas en finanzas da lugar a desigualdades
variacionales. Las EDPs resultantes se llaman problemas de obstdculo, donde el obstdculo es la funcién de pago.
Estos son problemas de frontera libre; ademads de la funcién incégnita, se desconoce la regidn de contacto con el
obstdculo. Si los activos se modelan mediante procesos de Lévy, se obtienen ecuaciones integro-diferenciales [28].
En [12, 23, 31, 56] se proponen diversos métodos de elementos finitos para problemas de obstdculo fraccionarios.
Estos trabajos obtienen aproximaciones de igual orden que para problemas lineales: la regularidad de soluciones
estd dictada por el comportamiento cerca de la frontera del dominio y no por la frontera libre. Sin embargo, la falta
de un principio del mdximo discreto impide obtener estimaciones de aproximaciéon para dicha frontera libre. Un
camino viable para lograr esto son los métodos de diferencias finitas [46].

Finalmente, los problemas en dimensiones altas son relevantes en aplicaciones (en finanzas, usualmente cada
dimensidn corresponde a un activo en el portafolio a valuar), y en ellos el costo de métodos estructurados
(elementos finitos, diferencias finitas) es prohibitivo. Las redes neuronales ofrecen una interesante alternativa. En
anos recientes surgieron diversas técnicas no estructuradas para el tratamiento de EDPs [36, 43, 49, 59]; en [10]
obtuvimos una demostracién de la convergencia casi segura de ellas. El método que proponemos en [10] utiliza un
funcional de minimos cuadrados, que podria adaptarse a problemas de obstdculo siguiendo ideas de [44].

El objetivo general de este proyecto fue el estudio de propiedades tedricas y el desarrollo de técnicas
computacionales para el estudio de operadores integro-diferenciales. Como disparador, se utilizaron los cuatro
problemas especificos mencionados arriba. Dada la relacién entre suavidad y aproximabilidad de soluciones, para
obtener estimaciones de error realistas los estudios numéricos deben estar necesariamente complementados por
el andlisis tedrico de soluciones. Concretamente, la regularidad de soluciones débiles es un aspecto fundamental a
considerar. Asimismo, es relevante el diseno de métodos numéricos que preserven propiedades tedricas de
interés en cada problema. Por otra parte, mds alld del contenido académico, este proyecto se puso como prioridad
el impulso de la formacién de un grupo de trabajo en el pais en el drea de andlisis numérico de EDPs y fortalecer
vinculos ya existentes con investigadores en el exterior.

Respecto a las cuatro lineas mencionadas anteriormente, marcamos los siguientes objetivos especificos.

(1) Para modelos acoplados locales y no locales, buscamos formulaciones que realicen el acoplamiento a nivel de la
energia, para las que podamos probar el buen planteo y obtener la formulaciéon de la forma fuerte de las
ecuaciones de Euler-Lagrange asociadas. Se procura realizar simulaciones numéricas que permitan clarificar el
comportamiento de soluciones cerca de la interfase, y establecer resultados de regularidad de soluciones que
permitan aplicar herramientas de andlisis numérico para obtener estimaciones de error. Un objetivo posterior es,
para el caso no coercivo, demostrar que el intervalo critico se reduce al utilizar modelos no locales, y estudiar el
buen planteo del acoplamiento entre modelos locales y no locales en este contexto.

(2) Formulaciones mixtas y energia de Oseen-Frank no local. Aqui, el objetivo a largo plazo consiste en generalizar
la energia de Oseen-Frank al contexto no local, comparar el modelo resultante con su contraparte cldsica y
desarrollar métodos numéricos para su simulacién computacional. Como etapa intermedia, se apunta al estudio de
formulaciones mixtas fraccionarias, su andlisis tedrico e implementacidn prdctica usando elementos finitos de
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Lagrange de primer orden.

(3) Para problemas cuasilineales, se apunta a obtener estimaciones de regularidad Sobolev hasta el borde del
dominio involucrando operadores del tipo (p,s)-laplaciano. Discretizar problemas de este tipo, y desarrollar nuevas
técnicas para llegar a estimaciones dptimas de error.

(4) Respecto a problemas de obstdculo, este proyecto se propone desarrollar y analizar nuevos métodos numéricos
para la versién fraccionaria, obtener estimaciones de convergencia para la frontera libre a partir de estimaciones
en norma del mdximo y el uso de barreras discretas. Asimismo, para problemas de obstdculo cldsicos, desarrollar
algoritmos no estructurados para tratar con problemas en dimensién alta y establecer su Gamma-convergencia
casi segura.

Metodologia/Disefio del estudio

Al tratarse de un proyecto de matemadtica, la metodologia de trabajo se centra en el andlisis tedrico, la formulacién
de modelos, y la demostraciéon de resultados; ademds, en la investigacion en andlisis numérico de EDPs la
validaciéon computacional juega un papel preponderante. Concretamente, la estrategia general de investigacion de
este proyecto consiste en acompanar el estudio tedrico de los problemas a tratar con su simulacién numérica. Esto
tiene como fines tanto la validacién de resultados tedricos como fomentar un mayor entendimiento de los
problemas (por ejemplo, realizando experimentos bajo condiciones que vayan mds alld de las utilizadas en el
marco tedrico). Una componente fundamental en el trabajo es el intercambio con otros investigadores, comunicar
resultados preliminares en congresos y eventos, y estar en contacto con nuevas ideas y aplicaciones. En el trabajo
con estudiantes, se mantuvieron reuniones periédicas (en general, semanales) para intercambiar ideas, presentar
avances y explorar nuevos caminos de investigacién.

A continuacion, presentamos las estrategias seguidas para perseguir los cuatro objetivos especificos mencionados
anteriormente.

(1) Realizaremos el acoplamiento de modelos locales y no-locales a nivel de la energia, obteniendo asi problemas
con estructura variacional que puedan ser discretizados con el método de elementos finitos. Se realizaron
simulaciones tomando como punto de partida nuestro cddigo [2] para verificar los resultados y estudiar el efecto
gue tiene la interaccidn entre los dos materiales.

(2) El primer paso hacia este objetivo consiste en desarrollar un cdlculo vectorial fraccionario discreto [37, 41].
Dado que se considerd poco probable que se pudieran obtener resultados satisfactorios trabajando con las formas
fuertes (puntuales) de estos operadores, la estrategia consistié en utilizar métodos de elementos finitos y trabajar
sobre formas débiles.

(3) En [22], obtuvimos estimaciones de regularidad para problemas lineales en dominios Lipschitz mediante una
técnica puramente variacional. Explotamos el hecho de que las soluciones de los problemas a estudiar son minimos
de ciertos funcionales de energia, una caracterizacién de espacios de Besov en términos de moédulos de
continuidad, y una técnica de localizacidn [58] que es afin con la convexidad del problema. Extender esta técnica al
contexto cuasi-lineal fue el primer paso a seguir para alcanzar el tercer objetivo especifico mencionado arriba.
Para discretizaciones por elementos finitos, una vez que se tienen estimaciones de regularidad de soluciones, se
pueden utilizar argumentos estandar para obtener cotas de error en la norma de energia.

Por otra parte, el operador asociado a la primera variacidn de las seminormas de Lions-Calderén comparte varios
aspectos analiticos con el (p,s)-laplaciano fraccionario mencionado anteriormente. Los operadores asociados a
seminormas de Lions-Calderén pueden ser aproximados mediante métodos de Lagrangianos aumentados.

(4) Las técnicas conocidas para la aproximacion de fronteras libres [55] requieren de la no-degeneracion de estos
conjuntos y del uso de principio del mdximo discretos. Para el problema del obstdculo para el laplaciano
fraccionario, se tienen resultados positivos para el primer requerimiento (ver [34], por ejemplo). Sin embargo, es
sabido que utilizar discretizaciones con métodos de elementos finitos continuos no preserva el principio del
mdximo en general. Por esta razén, utilizamos un método de diferencias finitas [46]. Para evitar caer en
requerimientos no realistas de regularidad de soluciones para asegurar la consistencia del método, la estrategia
seguida consistié en descomponer el laplaciano fraccionario como la suma de un operador de orden cero escalado
y un término integral (correspondiente a interacciones de largo rango), y utilizar dos escalas discretas.
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Por otra parte, para el tratamiento de problemas en dimensién alta, utilizamos un enfoque de tipo minimos
cuadrados y realizamos aproximaciones mediante redes neuronales en mallas no estructuradas.

Resultados, andlisis y discusion

Considero que el proyecto ha dado muy buenos resultados, tanto en cuanto a la calidad de las publicaciones a las
gue ha dado lugar, como en el estimulo a la formacién de un grupo de trabajo local en el drea. Entiendo que se han
abierto algunas lineas nuevas muy prometedoras para seguir investigando y apuntalando la formacidn de
investigadores. Respecto a los cuatro problemas/lineas que configuran al proyecto, listamos brevemente los
resultados obtenidos.

(1) Conseguimos avances en el buen planteo y formulacién de la forma fuerte de las ecuaciones de Euler-Lagrange
asociadas a ciertos problemas de minimizacién de energia con componentes locales y no-locales. Realizamos
simulaciones numéricas que van en linea con ciertos resultados tedricos un tanto sorpresivos respecto al
comportamiento de soluciones cerca de la interfase. Obtuvimos estimaciones de regularidad de soluciones para
subdominios de clase Lipschitz (en particular, esto permite el tratamiento de interfases con dngulos, que es de
interés en la prdctica), y de convergencia para discretizaciones con elementos finitos lineales. Estos resultados
fueron recolectados en el articulo [17], sometido a publicacién, y presentados oralmente en el congreso Nonlocality:
challenges in modeling and simulation, en Providence (EEUU), en abril de 2024.

(2) Esta linea nos fue llevando hacia el estudio del problema de Darcy fraccionario. Ademads del trabajo tedrico de
ese problema, nuestro interés principal estaba en su implementacién computacional en dimensidn 2 con elementos
finitos lineales, que logré llevar adelante el estudiante de maestria Nahuel de Ledn. Hemos terminado el desarrollo
tedrico y realizado simulaciones numéricas que van en linea con nuestras predicciones, y estamos terminando la
redaccion del articulo [19] al respecto.

Los resultados preliminares que obtuvimos fueron presentados por Nahuel en el XL Congreso Argentino de
Mecdnica Computacional, en Rosario (Argentina) en noviembre de 2024 [6] y mediante un pdster en el evento
Nonlocal Equations: Analysis and Numerics en Bielefeld (Alemania) en marzo de 2025. Nahuel también dard una
presentacion oral en el III Encuentro Conjunto RSME-UMA en Bariloche (Argentina) en diciembre de 2025.

(3) Desde el punto de vista tedrico, hemos obtenido un resultado que considero es muy bueno y que ha sido
aceptado en una revista de primer nivel en el drea de andlisis de EDPs. En [16] probamos, para problemas de
Dirichlet involucrando a operadores no-locales cuasi-lineales en una amplia clase que incluye al (p,s)-laplaciano,
estimaciones de regularidad Besov globales en dominios de clase Lipschitz. Estas estimaciones nos permitieron
obtener cotas de error para aproximaciones por elementos finitos. Junto al estudiante de doctorado José Camilo
Rueda y su co-orientador Leandro Del Pezzo, conseguimos adaptar esta técnica para el estudio de regularidad de
soluciones de problemas andlogos involucrando el (p,s)-laplaciano de Lions-Calderdn [25]. Por otra parte, hemos
desarrollado un método de descomposicidn-coordinacién para el cémputo eficiente de soluciones de elementos
finitos, y finalizado un primer abordaje tedrico con estimaciones de error a priori [26].

Los resultados que obtuvimos en esta linea de trabajo fueron presentados por José Camilo mediante un pdster en
el evento Nonlocal Equations: Analysis and Numerics en Bielefeld (Alemania) en marzo de 2025, y por el
responsable del proyecto mediante una presentacidn oral en The 15th International Conference on Spectral and
High Order Methods en Montréal (Canadd) en julio de 2025. José Camilo dard una presentacion oral en el III
Encuentro Conjunto RSME-UMA en Bariloche (Argentina) en diciembre de 2025 y por mi en el Symposium on
Analysis, Partial Differential Equations And Applications a desarrollarse en Séo Paulo (Brasil) en octubre del
corriente ano.

(4) En primer lugar, desarrollamos un método a dos escalas y que posee un principio del mdximo discreto para el
tratamiento de una clase de operadores integrodiferenciales [24]. Esto nos permitio obtener estimaciones de error
en norma del mdximo para problemas lineales (en concordancia con resultados obtenidos por otros investigadores
recientemente), asi como para el problema del obstdculo y, mds interesantemente, para la aproximacion de la
frontera libre en dicho problema; adaptando una idea conocida para problemas locales, nuestros resultados
permiten generar discretizaciones mondétonas y convergentes para problemas de tipo Hamilton-Jacobi-Bellman no
locales. Por otra parte, en [1] hemos desarrollado un método no estructurado usando redes neuronales para
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desigualdades variacionales cldsicas (locales), y tenemos un resultado de Gamma-convergencia casi segura para
nuestras discretizaciones.

Presenté, en forma oral, los resultados obtenidos en esta linea en los congresos Seventh Chilean Workshop on
Numerical Analysis of Partial Differential Equations y Free Boundary Problems, realizados en Concepcion (Chile) en
enero de 2024 y en Jodo Pessoa (Brasil) en agosto de 2024, respectivamente.

Un resultado longitudinal a las lineas (1), (2), (3), es el de un incipiente desarrollo en el tratamiento computacional
de operadores del cdlculo no local que surgen al tomar potenciales de Riesz de operadores cldsicos. Estos
operadores estdn asociados a interpolaciones complejas entre espacios de Sobolev, en contraposicién con los
asociados a interpolaciones reales, bastante mds explorados en la literatura. Los resultados obtenidos en este
proyecto servirdn como punto de partida para futuras investigaciones tanto a nivel teérico como en aplicaciones.
Profundizamos en este punto en la seccién de Conclusiones y Recomendaciones.

Conclusiones y recomendaciones

Este proyecto ha generado contribuciones tanto en el avance del conocimiento como en la formacién de
investigadores y de nuevas capacidades en el pais.

En cuanto al avance del conocimiento, esta propuesta logré avances en una temdtica de interés en la comunidad
matemadtica, como es el estudio de operadores no locales y la relacidn entre no localidad y no linealidad. En los
ultimos anos, el andlisis y el andlisis numérico de operadores fraccionarios ha visto un creciente interés debido a
su mayor flexibilidad de modelado respecto a los modelos cldsicos y, en algunas aplicaciones, a la mayor
estabilidad de soluciones que permite capturar fendmenos que sus contrapartes cldsicas no logran modelar
satisfactoriamente. Este proyecto ha conseguido resultados que avanzan el entendimiento tedrico y la
aproximacién computacional de problemas de este tipo. Estos resultados se han presentado tanto en forma de
articulos publicados y sometidos a publicacién en revistas especializadas, en comunicaciones en congresos y
seminarios locales.

En cuanto a la generacidn de nuevas capacidades cientifico-tecnoldgicas, se fomenté la formacidn de un grupo de
trabajo en el pais en el drea de andlisis numérico de EDPs. El involucramiento de estudiantes, ademds de
potenciar la investigacidn especifica del proyecto, ha servido como combustible para la generacién de espacios —
cursos y seminarios de posgrado— en el drea. Ademds, desde marzo de 2023 tenemos un seminario estable, de
frecuencia bisemanal, sobre Ecuaciones en Derivadas Parciales y Afines, que ha servido como foro tanto para que
visitantes puedan comunicar sus ideas a nuestra comunidad, como para exponer e intercambiar sobre ideas en
progreso. El publico habitual de dicho seminario estd formado mayoritariamente por estudiantes de posgrado en
matemadtica. Al tener contacto con investigadores en el exterior, nuestros estudiantes van consiguiendo nuevas
oportunidades y abriendo sus propios caminos.

Este proyecto ha dado marco teérico al trabajo de dos estudiantes de posgrado en matemadtica: Nahuel De Leén
(maestria) y José Camilo Rueda (doctorado, co-orientado con Leandro Del Pezzo). Ademds, ambos se han
beneficiado del proyecto recibiendo apoyo para presentar sus avances, tanto en eventos regionales como
internacionales, lo que les ha dado visibilidad y la posibilidad de establecer nuevos contactos académicos.
Respecto a aspectos técnicos del proyecto y futuras lineas de trabajo, los resultados han sido auspiciosos. El
proyecto ha dado lugar a nuevas ideas respecto al tratamiento de problemas asociados a espacios de Lions-
Calderdn; estos espacios permiten una interpretacién mds transparente de objetos del cdlculo diferencial
estdndar y cumplen el mismo objetivo de relajar formulaciones cldsicas que los espacios de Gagliardo-Slobodeckij.
No obstante, su tratamiento numérico es un poco mds dificultoso e incluso mds costoso: en lenguaje simple, para
obtener un operador de derivacidn (gradiente, divergencia, rotor y sus composiciones, tanto lineales como no
lineales) en los espacios de Gagliardo-Slobodeckij uno realiza todas las operaciones bdsicas involucradas
(cocientes incrementales, aplica funciones lineales o no sobre ellos) y luego integra todo junto; en los espacios de
Lions-Calderdn, uno integra luego de cada operacién bdsica, aplica las funciones necesarias sobre los operadores
integrados, y vuelve a integrar. Esto da lugar a un mucho mayor costo computacional asociado a los operadores en
la escala de Lions-Calderén.

Es de destacar que los operadores laplaciano asociados en ambos casos coinciden (en el fondo, esto es una
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manifestacion del hecho de que la transformada de Fourier es un isomorfismo en L2) y por lo tanto se puede usar
la formulacién de Gagliardo-Slobodeckij para tal operador en espacios de Lions-Calderdn. Esto resulta ser clave
porque habilita el uso de métodos de lagrangiano aumentado que venimos explorando en la etapa final del
proyecto. En el mes de mayo de este afo, realicé una estadia de trabajo en ENSTA (Paris, Francia) en la que
discutimos varias aplicaciones y extensiones posibles de esta idea. En este nuevo camino, he involucrado a dos
nuevos investigadores y una postdoc de dicha institucidon. Es de esperar que los objetivos que fueron marcados
como ‘parcialmente cumplidos’ en el apartado ‘Objetivos y Resultados’ del informe se puedan completar con esta
nueva perspectiva.

Por ultimo, quiero destacar la calidad del apoyo administrativo que tuvo el proyecto, tanto desde la Facultad de
Ingenieria como desde la ANIL. Todas mis preguntas e inquietudes siempre fueron atendidas de forma muy
eficiente y con amabilidad.

A modo de sintesis, este proyecto ha logrado sus dos objetivos centrales: por un lado, realizé contribuciones
significativas y de vanguardia al conocimiento tedrico y numérico en el andlisis de operadores no locales, y por el
otro, consolid6 y fomenté la formacidn de un grupo de trabajo y de nuevos investigadores en el pais, creando un
ecosistema académico dindmico y con proyeccién internacional. Los auspiciosos resultados obtenidos, las
colaboraciones establecidas y las nuevas lineas de investigacion abiertas son muestra del impacto del trabajo
realizado.
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