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La difusión es el movimiento neto de partículas desde regiones de mayor concentración hacia regiones de menor
concentración. Cuando el proceso estocástico subyacente no es browniano, la difusión se dice anómala. En
particular, la superdifusión anómala se modela mediante operadores de diferenciación espacial de orden no-
entero, que son no-locales y de carácter integro-diferencial. En este proyecto, estudiamos propiedades analíticas y
desarrollamos y analizamos herramientas computacionales para el tratamiento de problemas con operadores de
este tipo sobre dominios acotados.

Motivados por diversas aplicaciones, tratamos con problemas no-lineales para operadores no-locales. En estas
aplicaciones, el relajamiento causado por la incorporación de modelos no-locales permitiría capturar fenómenos
que sus contrapartes locales no logran capturar completamente. 

La no-localidad conlleva desafíos tanto analítica como computacionalmente. El desarrollo de métodos numéricos se
ve dificultado por la presencia de núcleos hipersingulares y la necesidad de integrar sobre dominios no acotados.
Mostramos que las soluciones de los problemas correspondientes sean poco regulares, fundamentalmente debido a
un pobre comportamiento cerca de la frontera del dominio. Esta regularidad de soluciones es un elemento
fundamental a tener en cuenta para el análisis de los métodos numéricos que desarrollamos y juega un papel
preponderante en nuestra obtención de estimaciones de error.

Ciencias Naturales y Exactas / Matemáticas / Matemática Aplicada / Análisis, Análisis Numérico
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Este proyecto trata sobre el estudio analítico y el cómputo numérico de Ecuaciones en Derivadas Parciales (EDPs)
e integro-diferenciales. Se entiende por difusión al movimiento neto de partículas desde regiones de mayor
concentración hacia regiones de menor concentración. Los modelos clásicos de difusión conducen a ecuaciones
bien estudiadas. Sin embargo, desde hace un tiempo ha quedado claro que varias de las hipótesis que conducen a
estos modelos no siempre son satisfechas [52, 51]. Cuando el proceso subyacente no es browniano, la difusión se
dice anómala. La superdifusión anómala se modela mediante operadores de diferenciación espacial de orden no
entero (se utiliza el término “fraccionario”, aunque el orden sea cualquier real positivo). Estos operadores son no
locales, de carácter integro-diferencial. Un ejemplo emblemático es el laplaciano fraccionario de orden s (0 < s < 1)
en Rd [39].
Algunos desafíos en la discretización de este operador incluyen la presencia de un núcleo hipersingular y la
integración sobre dominios no acotados. El análisis de problemas con difusión fraccionaria en dominios acotados,
tanto desde el punto de vista teórico como numérico, es difícil debido al comportamiento no local de las normas
fraccionarias y a la baja regularidad de soluciones. El desarrollo de capas límite, fenómeno típico de las soluciones
de estos problemas, limita los órdenes de convergencia esperables.
Entre los recientes e importantes avances teóricos en el análisis de problemas no locales, destacamos la extensión
de Caffarelli-Silvestre [35] y su utilización en el estudio de regularidad de soluciones [32, 34], y el uso de
herramientas de teoría del potencial [33, 57] o de análisis pseudodiferencial [45]. Asimismo, para problemas
lineales, la caracterización de regularidad Hölder de soluciones de [57] nos permitió obtener estimaciones de
regularidad Sobolev [4]. Más recientemente, en [22] obtuvimos resultados de regularidad Besov óptimos
extendiendo una técnica introducida en [58] para problemas locales, consistente en una localización del método de
cocientes incrementales de Nirenberg [54].
Paralelamente al avance teórico, el desarrollo de métodos numéricos para problemas lineales fue intenso. Para
problemas en dimensión mayor o igual a 2, se han propuesto diversos métodos de diferencias finitas [42, 46, 47,
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53], y de elementos finitos [2, 4, 5, 8, 11]. Se tiene una gama de discretizaciones para operadores no locales y que
preservan distintas características del problema continuo. Por ejemplo, en general los métodos de elementos
finitos no admiten un principio del máximo discreto –para s cercano a 0 las matrices de rigidez se aproximan a
matrices de masa correspondientes a un producto interno en L2–, mientras que sí se tiene un principio del máximo
discreto si se utilizan métodos de diferencias finitas. En cambio, los métodos de elementos finitos tienen la ventaja
de preservar la estructura variacional del problema y de ser permeables a análisis con menos requerimientos de
regularidad que los de diferencias finitas.
Por otra parte, existen numerosas aplicaciones en las que los modelos clásicos no logran capturar completamente
los fenómenos a estudiar, por lo que resulta de interés explorar modelos no locales; en este proyecto, la
interacción entre no localidad y no linealidad es de especial interés. Dada la relación entre suavidad y
aproximabilidad de soluciones, para obtener estimaciones de error realistas necesariamente el estudio numérico
debe ser complementado por un análisis teórico correspondiente.
Este proyecto investigó en las siguientes cuatro líneas.
(1) Modelos acoplados locales y no locales. En electromagnetismo, la presencia de un metamaterial (material con
permitividad o permeabilidad negativa) rodeado de un material clásico da lugar a problemas de transmisión con
coeficientes que cambian de signo. Dicho cambio de signo implica que no se pueda asegurar el buen planteo del
problema asociado en H1. El buen planteo del problema se puede caracterizar según el cociente entre los
coeficientes de permitividad/permeabilidad en ambos materiales: los problemas quedan mal planteados si este
cae dentro de un cierto intervalo crítico [13, 14, 15]. Cuando la interfase entre los materiales no es plana, en [18]
mostramos que dicho intervalo crítico se reduce si uno reemplaza la forma habitual en H1 por una en Hs,
correspondiente a la formulación débil del laplaciano fraccionario de orden s.
El costo computacional de resolver las interacciones no locales puede ser alto, por lo que interesa limitar el
modelo no local a un entorno de la interfase y mantener el modelo clásico en el resto del dominio. En [3, 38], para
problemas coercivos, se proponen ciertos modelos acoplados entre problemas locales y no locales. Como primera
etapa hacia el tratamiento de métodos para problemas con cambio de signo, interesa desarrollar modelos en los
que el acoplamiento tenga lugar a nivel de la energía.
(2) Cómputo estable de formulaciones mixtas para el laplaciano fraccionario. Los métodos de elementos finitos
mixtos permiten la aproximación de dos o más variables de interés en forma simultánea. Por ejemplo, para el
problema de Poisson, permiten aproximar tanto la solución como su gradiente, típicamente referido como flujo. No
existen antecedentes en la literatura respecto al uso de métodos mixtos para problemas fraccionarios. Esto se
debe a que este tipo de formulaciones pierden la coercividad, y su estabilidad queda sujeta al diseño de espacios
de funciones discretas adecuados. En el marco no local, estos espacios no parecen accesibles. Por otra parte, para
problemas locales existen métodos estabilizados que permiten considerar aproximaciones por elementos de
Lagrange lineales [50].
El proyecto descrito arriba sirve como punto de partida para el estudio de formulaciones que involucren
operadores diferenciales fraccionarios (generalizaciones de los operadores de gradiente, divergencia y rotor). En
particular, esto es de interés para el tratamiento de un modelo de Oseen-Frank generalizado para cristales
líquidos nemáticos. El modelo más sencillo para representar la orientación media de las moléculas de cristales
líquidos nemáticos es el de Oseen-Frank [27, 60], que en su formulación más simple corresponde a minimizar una
energía de Dirichlet bajo una restricción de largo. Una característica sobresaliente de estos materiales es la
presencia de defectos, que son singularidades en el campo de orientaciones. El modelo de Oseen-Frank no es
capaz de capturar este fenómeno: defectos de codimensión menor o igual a 2 tienen energía infinita. Un
relajamiento poco explorado de la energía de Oseen-Frank [7] consiste en disminuir los requerimientos de
diferenciabilidad del campo de orientaciones y reemplazar la seminorma en H1 por una seminorma en Hs. Algunas
preguntas importantes están abiertas; en [7] se toma la llamada energía a una constante, que es sencilla
analíticamente pero no necesariamente la más relevante en aplicaciones. La formulación completa de la energía
de Oseen-Frank incluye los llamados módulos de splay, twist y bend. La extensión de estos módulos al marco no
local requiere el uso de cálculo vectorial [41].
(3) Problemas cuasilineales. En el contexto local, el operador p-laplaciano (p > 1) es una generalización no lineal del
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laplaciano clásico, y es prototípico de procesos de difusión singulares (1 < p < 2) o degenerados (p > 2). Por esta
razón, este operador surge en diversos contextos físicos, como fluidos no newtonianos [9] y flujos turbulentos en
medios porosos [40].
A pesar de los avances recientes para problemas lineales, el tratamiento de difusión anómala cuasilineal es
incipiente. Al momento de iniciar el proyecto, para el problema de Dirichlet para el llamado (p,s)-laplaciano –
generalización del p-laplaciano al marco no local–, se contaban con algunos resultados parciales de regularidad
[29, 30, 48]. Sin embargo, estos no son del todo satisfactorios para un análisis de elementos finitos, ya que para ese
fin es necesario contar con una teoría de regularidad Sobolev hasta el borde del dominio.
Por otra parte, el tratamiento numérico de este tipo de problemas conlleva, además de las dificultades propias de
la no localidad, aquellas asociadas con la no linealidad. El antecedente más cercano involucra discretizaciones por
elementos finitos para problemas de superficies mínimas fraccionarias [20, 21], pero no es claro que los métodos
de flujo de gradiente allí desarrollados permitan lidiar de forma satisfactoria con la no linealidad de las
ecuaciones resultantes para el (p,s)-laplaciano.
(4) Problemas de obstáculo. La ejecución de opciones americanas en finanzas da lugar a desigualdades
variacionales. Las EDPs resultantes se llaman problemas de obstáculo, donde el obstáculo es la función de pago.
Estos son problemas de frontera libre; además de la función incógnita, se desconoce la región de contacto con el
obstáculo. Si los activos se modelan mediante procesos de Lévy, se obtienen ecuaciones integro-diferenciales [28].
En [12, 23, 31, 56] se proponen diversos métodos de elementos finitos para problemas de obstáculo fraccionarios.
Estos trabajos obtienen aproximaciones de igual orden que para problemas lineales: la regularidad de soluciones
está dictada por el comportamiento cerca de la frontera del dominio y no por la frontera libre. Sin embargo, la falta
de un principio del máximo discreto impide obtener estimaciones de aproximación para dicha frontera libre. Un
camino viable para lograr esto son los métodos de diferencias finitas [46].
Finalmente, los problemas en dimensiones altas son relevantes en aplicaciones (en finanzas, usualmente cada
dimensión corresponde a un activo en el portafolio a valuar), y en ellos el costo de métodos estructurados
(elementos finitos, diferencias finitas) es prohibitivo. Las redes neuronales ofrecen una interesante alternativa. En
años recientes surgieron diversas técnicas no estructuradas para el tratamiento de EDPs [36, 43, 49, 59]; en [10]
obtuvimos una demostración de la convergencia casi segura de ellas. El método que proponemos en [10] utiliza un
funcional de mínimos cuadrados, que podría adaptarse a problemas de obstáculo siguiendo ideas de [44].
El objetivo general de este proyecto fue el estudio de propiedades teóricas y el desarrollo de técnicas
computacionales para el estudio de operadores integro-diferenciales. Como disparador, se utilizaron los cuatro
problemas específicos mencionados arriba. Dada la relación entre suavidad y aproximabilidad de soluciones, para
obtener estimaciones de error realistas los estudios numéricos deben estar necesariamente complementados por
el análisis teórico de soluciones. Concretamente, la regularidad de soluciones débiles es un aspecto fundamental a
considerar. Asimismo, es relevante el diseño de métodos numéricos que preserven propiedades teóricas de
interés en cada problema. Por otra parte, más allá del contenido académico, este proyecto se puso como prioridad
el impulso de la formación de un grupo de trabajo en el país en el área de análisis numérico de EDPs y fortalecer
vínculos ya existentes con investigadores en el exterior.
Respecto a las cuatro líneas mencionadas anteriormente, marcamos los siguientes objetivos específicos.
(1) Para modelos acoplados locales y no locales, buscamos formulaciones que realicen el acoplamiento a nivel de la
energía, para las que podamos probar el buen planteo y obtener la formulación de la forma fuerte de las
ecuaciones de Euler-Lagrange asociadas. Se procura realizar simulaciones numéricas que permitan clarificar el
comportamiento de soluciones cerca de la interfase, y establecer resultados de regularidad de soluciones que
permitan aplicar herramientas de análisis numérico para obtener estimaciones de error. Un objetivo posterior es,
para el caso no coercivo, demostrar que el intervalo crítico se reduce al utilizar modelos no locales, y estudiar el
buen planteo del acoplamiento entre modelos locales y no locales en este contexto.
(2) Formulaciones mixtas y energía de Oseen-Frank no local. Aquí, el objetivo a largo plazo consiste en generalizar
la energía de Oseen-Frank al contexto no local, comparar el modelo resultante con su contraparte clásica y
desarrollar métodos numéricos para su simulación computacional. Como etapa intermedia, se apunta al estudio de
formulaciones mixtas fraccionarias, su análisis teórico e implementación práctica usando elementos finitos de
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Lagrange de primer orden.
(3) Para problemas cuasilineales, se apunta a obtener estimaciones de regularidad Sobolev hasta el borde del
dominio involucrando operadores del tipo (p,s)-laplaciano. Discretizar problemas de este tipo, y desarrollar nuevas
técnicas para llegar a estimaciones óptimas de error.
(4) Respecto a problemas de obstáculo, este proyecto se propone desarrollar y analizar nuevos métodos numéricos
para la versión fraccionaria, obtener estimaciones de convergencia para la frontera libre a partir de estimaciones
en norma del máximo y el uso de barreras discretas. Asimismo, para problemas de obstáculo clásicos, desarrollar
algoritmos no estructurados para tratar con problemas en dimensión alta y establecer su Gamma-convergencia
casi segura.

Al tratarse de un proyecto de matemática, la metodología de trabajo se centra en el análisis teórico, la formulación
de modelos, y la demostración de resultados; además, en la investigación en análisis numérico de EDPs la
validación computacional juega un papel preponderante. Concretamente, la estrategia general de investigación de
este proyecto consiste en acompañar el estudio teórico de los problemas a tratar con su simulación numérica. Esto
tiene como fines tanto la validación de resultados teóricos como fomentar un mayor entendimiento de los
problemas (por ejemplo, realizando experimentos bajo condiciones que vayan más allá de las utilizadas en el
marco teórico). Una componente fundamental en el trabajo es el intercambio con otros investigadores, comunicar
resultados preliminares en congresos y eventos, y estar en contacto con nuevas ideas y aplicaciones. En el trabajo
con estudiantes, se mantuvieron reuniones periódicas (en general, semanales) para intercambiar ideas, presentar
avances y explorar nuevos caminos de investigación.
A continuación, presentamos las estrategias seguidas para perseguir los cuatro objetivos específicos mencionados
anteriormente.
(1) Realizaremos el acoplamiento de modelos locales y no-locales a nivel de la energía, obteniendo así problemas
con estructura variacional que puedan ser discretizados con el método de elementos finitos. Se realizaron
simulaciones tomando como punto de partida nuestro código [2] para verificar los resultados y estudiar el efecto
que tiene la interacción entre los dos materiales.
(2) El primer paso hacia este objetivo consiste en desarrollar un cálculo vectorial fraccionario discreto [37, 41].
Dado que se consideró poco probable que se pudieran obtener resultados satisfactorios trabajando con las formas
fuertes (puntuales) de estos operadores, la estrategia consistió en utilizar métodos de elementos finitos y trabajar
sobre formas débiles.
(3) En [22], obtuvimos estimaciones de regularidad para problemas lineales en dominios Lipschitz mediante una
técnica puramente variacional. Explotamos el hecho de que las soluciones de los problemas a estudiar son mínimos
de ciertos funcionales de energía, una caracterización de espacios de Besov en términos de módulos de
continuidad, y una técnica de localización [58] que es afín con la convexidad del problema. Extender esta técnica al
contexto cuasi-lineal fue el primer paso a seguir para alcanzar el tercer objetivo específico mencionado arriba.
Para discretizaciones por elementos finitos, una vez que se tienen estimaciones de regularidad de soluciones, se
pueden utilizar argumentos estándar para obtener cotas de error en la norma de energía.
Por otra parte, el operador asociado a la primera variación de las seminormas de Lions-Calderón comparte varios
aspectos analíticos con el (p,s)-laplaciano fraccionario mencionado anteriormente. Los operadores asociados a
seminormas de Lions-Calderón pueden ser aproximados mediante métodos de Lagrangianos aumentados.
(4) Las técnicas conocidas para la aproximación de fronteras libres [55] requieren de la no-degeneración de estos
conjuntos y del uso de principio del máximo discretos. Para el problema del obstáculo para el laplaciano
fraccionario, se tienen resultados positivos para el primer requerimiento (ver [34], por ejemplo). Sin embargo, es
sabido que utilizar discretizaciones con métodos de elementos finitos continuos no preserva el principio del
máximo en general. Por esta razón, utilizamos un método de diferencias finitas [46]. Para evitar caer en
requerimientos no realistas de regularidad de soluciones para asegurar la consistencia del método, la estrategia
seguida consistió en descomponer el laplaciano fraccionario como la suma de un operador de orden cero escalado
y un término integral (correspondiente a interacciones de largo rango), y utilizar dos escalas discretas.

Metodología/Diseño del estudio
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Por otra parte, para el tratamiento de problemas en dimensión alta, utilizamos un enfoque de tipo mínimos
cuadrados y realizamos aproximaciones mediante redes neuronales en mallas no estructuradas.

Considero que el proyecto ha dado muy buenos resultados, tanto en cuanto a la calidad de las publicaciones a las
que ha dado lugar, como en el estímulo a la formación de un grupo de trabajo local en el área. Entiendo que se han
abierto algunas líneas nuevas muy prometedoras para seguir investigando y apuntalando la formación de
investigadores. Respecto a los cuatro problemas/líneas que configuran al proyecto, listamos brevemente los
resultados obtenidos.
(1) Conseguimos avances en el buen planteo y formulación de la forma fuerte de las ecuaciones de Euler-Lagrange
asociadas a ciertos problemas de minimización de energía con componentes locales y no-locales. Realizamos
simulaciones numéricas que van en línea con ciertos resultados teóricos un tanto sorpresivos respecto al
comportamiento de soluciones cerca de la interfase. Obtuvimos estimaciones de regularidad de soluciones para
subdominios de clase Lipschitz (en particular, esto permite el tratamiento de interfases con ángulos, que es de
interés en la práctica), y de convergencia para discretizaciones con elementos finitos lineales. Estos resultados
fueron recolectados en el artículo [17], sometido a publicación, y presentados oralmente en el congreso Nonlocality:
challenges in modeling and simulation, en Providence (EEUU), en abril de 2024.
(2) Esta línea nos fue llevando hacia el estudio del problema de Darcy fraccionario. Además del trabajo teórico de
ese problema, nuestro interés principal estaba en su implementación computacional en dimensión 2 con elementos
finitos lineales, que logró llevar adelante el estudiante de maestría Nahuel de León. Hemos terminado el desarrollo
teórico y realizado simulaciones numéricas que van en línea con nuestras predicciones, y estamos terminando la
redacción del artículo [19] al respecto.
Los resultados preliminares que obtuvimos fueron presentados por Nahuel en el XL Congreso Argentino de
Mecánica Computacional, en Rosario (Argentina) en noviembre de 2024 [6] y mediante un póster en el evento
Nonlocal Equations: Analysis and Numerics en Bielefeld (Alemania) en marzo de 2025. Nahuel también dará una
presentación oral en el III Encuentro Conjunto RSME-UMA en Bariloche (Argentina) en diciembre de 2025.
(3) Desde el punto de vista teórico, hemos obtenido un resultado que considero es muy bueno y que ha sido
aceptado en una revista de primer nivel en el área de análisis de EDPs. En [16] probamos, para problemas de
Dirichlet involucrando a operadores no-locales cuasi-lineales en una amplia clase que incluye al (p,s)-laplaciano,
estimaciones de regularidad Besov globales en dominios de clase Lipschitz. Estas estimaciones nos permitieron
obtener cotas de error para aproximaciones por elementos finitos. Junto al estudiante de doctorado José Camilo
Rueda y su co-orientador Leandro Del Pezzo, conseguimos adaptar esta técnica para el estudio de regularidad de
soluciones de problemas análogos involucrando el (p,s)-laplaciano de Lions-Calderón [25]. Por otra parte, hemos
desarrollado un método de descomposición-coordinación para el cómputo eficiente de soluciones de elementos
finitos, y finalizado un primer abordaje teórico con estimaciones de error a priori [26].
Los resultados que obtuvimos en esta línea de trabajo fueron presentados por José Camilo mediante un póster en
el evento Nonlocal Equations: Analysis and Numerics en Bielefeld (Alemania) en marzo de 2025, y por el
responsable del proyecto mediante una presentación oral en The 15th International Conference on Spectral and
High Order Methods en Montréal (Canadá) en julio de 2025. José Camilo dará una presentación oral en el III
Encuentro Conjunto RSME-UMA en Bariloche (Argentina) en diciembre de 2025 y por mí en el Symposium on
Analysis, Partial Differential Equations And Applications a desarrollarse en São Paulo (Brasil) en octubre del
corriente año.
(4) En primer lugar, desarrollamos un método a dos escalas y que posee un principio del máximo discreto para el
tratamiento de una clase de operadores integrodiferenciales [24]. Esto nos permitió obtener estimaciones de error
en norma del máximo para problemas lineales (en concordancia con resultados obtenidos por otros investigadores
recientemente), así como para el problema del obstáculo y, más interesantemente, para la aproximación de la
frontera libre en dicho problema; adaptando una idea conocida para problemas locales, nuestros resultados
permiten generar discretizaciones monótonas y convergentes para problemas de tipo Hamilton-Jacobi-Bellman no
locales. Por otra parte, en [1] hemos desarrollado un método no estructurado usando redes neuronales para
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desigualdades variacionales clásicas (locales), y tenemos un resultado de Gamma-convergencia casi segura para
nuestras discretizaciones.
Presenté, en forma oral, los resultados obtenidos en esta línea en los congresos Seventh Chilean Workshop on
Numerical Analysis of Partial Differential Equations y Free Boundary Problems, realizados en Concepción (Chile) en
enero de 2024 y en João Pessoa (Brasil) en agosto de 2024, respectivamente.
Un resultado longitudinal a las líneas (1), (2), (3), es el de un incipiente desarrollo en el tratamiento computacional
de operadores del cálculo no local que surgen al tomar potenciales de Riesz de operadores clásicos. Estos
operadores están asociados a interpolaciones complejas entre espacios de Sobolev, en contraposición con los
asociados a interpolaciones reales, bastante más explorados en la literatura. Los resultados obtenidos en este
proyecto servirán como punto de partida para futuras investigaciones tanto a nivel teórico como en aplicaciones.
Profundizamos en este punto en la sección de Conclusiones y Recomendaciones.

Este proyecto ha generado contribuciones tanto en el avance del conocimiento como en la formación de
investigadores y de nuevas capacidades en el país.
En cuanto al avance del conocimiento, esta propuesta logró avances en una temática de interés en la comunidad
matemática, como es el estudio de operadores no locales y la relación entre no localidad y no linealidad. En los
últimos años, el análisis y el análisis numérico de operadores fraccionarios ha visto un creciente interés debido a
su mayor flexibilidad de modelado respecto a los modelos clásicos y, en algunas aplicaciones, a la mayor
estabilidad de soluciones que permite capturar fenómenos que sus contrapartes clásicas no logran modelar
satisfactoriamente. Este proyecto ha conseguido resultados que avanzan el entendimiento teórico y la
aproximación computacional de problemas de este tipo. Estos resultados se han presentado tanto en forma de
artículos publicados y sometidos a publicación en revistas especializadas, en comunicaciones en congresos y
seminarios locales.
En cuanto a la generación de nuevas capacidades científico-tecnológicas, se fomentó la formación de un grupo de
trabajo en el país en el área de análisis numérico de EDPs. El involucramiento de estudiantes, además de
potenciar la investigación específica del proyecto, ha servido como combustible para la generación de espacios –
cursos y seminarios de posgrado– en el área. Además, desde marzo de 2023 tenemos un seminario estable, de
frecuencia bisemanal, sobre Ecuaciones en Derivadas Parciales y Afines, que ha servido como foro tanto para que
visitantes puedan comunicar sus ideas a nuestra comunidad, como para exponer e intercambiar sobre ideas en
progreso. El público habitual de dicho seminario está formado mayoritariamente por estudiantes de posgrado en
matemática. Al tener contacto con investigadores en el exterior, nuestros estudiantes van consiguiendo nuevas
oportunidades y abriendo sus propios caminos.
Este proyecto ha dado marco teórico al trabajo de dos estudiantes de posgrado en matemática: Nahuel De León
(maestría) y José Camilo Rueda (doctorado, co-orientado con Leandro Del Pezzo). Además, ambos se han
beneficiado del proyecto recibiendo apoyo para presentar sus avances, tanto en eventos regionales como
internacionales, lo que les ha dado visibilidad y la posibilidad de establecer nuevos contactos académicos.
Respecto a aspectos técnicos del proyecto y futuras líneas de trabajo, los resultados han sido auspiciosos. El
proyecto ha dado lugar a nuevas ideas respecto al tratamiento de problemas asociados a espacios de Lions-
Calderón; estos espacios permiten una interpretación más transparente de objetos del cálculo diferencial
estándar y cumplen el mismo objetivo de relajar formulaciones clásicas que los espacios de Gagliardo-Slobodeckij.
No obstante, su tratamiento numérico es un poco más dificultoso e incluso más costoso: en lenguaje simple, para
obtener un operador de derivación (gradiente, divergencia, rotor y sus composiciones, tanto lineales como no
lineales) en los espacios de Gagliardo-Slobodeckij uno realiza todas las operaciones básicas involucradas
(cocientes incrementales, aplica funciones lineales o no sobre ellos) y luego integra todo junto; en los espacios de
Lions-Calderón, uno integra luego de cada operación básica, aplica las funciones necesarias sobre los operadores
integrados, y vuelve a integrar. Esto da lugar a un mucho mayor costo computacional asociado a los operadores en
la escala de Lions-Calderón.
Es de destacar que los operadores laplaciano asociados en ambos casos coinciden (en el fondo, esto es una
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manifestación del hecho de que la transformada de Fourier es un isomorfismo en L2) y por lo tanto se puede usar
la formulación de Gagliardo-Slobodeckij para tal operador en espacios de Lions-Calderón. Esto resulta ser clave
porque habilita el uso de métodos de lagrangiano aumentado que venimos explorando en la etapa final del
proyecto. En el mes de mayo de este año, realicé una estadía de trabajo en ENSTA (París, Francia) en la que
discutimos varias aplicaciones y extensiones posibles de esta idea. En este nuevo camino, he involucrado a dos
nuevos investigadores y una postdoc de dicha institución. Es de esperar que los objetivos que fueron marcados
como ‘parcialmente cumplidos’ en el apartado ‘Objetivos y Resultados’ del informe se puedan completar con esta
nueva perspectiva.
Por último, quiero destacar la calidad del apoyo administrativo que tuvo el proyecto, tanto desde la Facultad de
Ingeniería como desde la ANII. Todas mis preguntas e inquietudes siempre fueron atendidas de forma muy
eficiente y con amabilidad.
A modo de síntesis, este proyecto ha logrado sus dos objetivos centrales: por un lado, realizó contribuciones
significativas y de vanguardia al conocimiento teórico y numérico en el análisis de operadores no locales, y por el
otro, consolidó y fomentó la formación de un grupo de trabajo y de nuevos investigadores en el país, creando un
ecosistema académico dinámico y con proyección internacional. Los auspiciosos resultados obtenidos, las
colaboraciones establecidas y las nuevas líneas de investigación abiertas son muestra del impacto del trabajo
realizado.
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