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ABSTRACT Addressing the ecological and evolutionary processes underlying biodi-
versity patterns is essential to identify the mechanisms shaping community structure
and function. In bacteria, the formation of new ecologically distinct populations (eco-
types) is proposed as one of the main drivers of diversification. New ecotypes arise
when mutations in key functional genes or acquisition of new metabolic pathways
by horizontal gene transfer allow the population to exploit new resources, permit-
ting their coexistence with the parental population. We previously reported the pres-
ence of microcystin-producing organisms of the Microcystis aeruginosa complex
(toxic MAC) through an 800-km environmental gradient ranging from freshwater to
estuarine-marine waters in South America. We hypothesize that the success of toxic
MAC in such a gradient is due to the existence of very closely related populations
that are ecologically distinct (ecotypes), each specialized to a specific arrangement
of environmental variables. Here, we analyzed toxic MAC genetic diversity through
quantitative PCR (qPCR) and high-resolution melting analysis (HRMA) of a functional
gene (mcyJ, microcystin synthetase cluster). We explored the variability of the mcyJ
gene along the environmental gradient by multivariate classification and regression
trees (mCART). Six groups of mcyJ genotypes were distinguished and associated with
different combinations of water temperature, conductivity, and turbidity. We propose
that each mcyJ variant associated with a defined environmental condition is an eco-
type (or species) whose relative abundances vary according to their fitness in the
local environment. This mechanism would explain the success of toxic MAC in such
a wide array of environmental conditions.

IMPORTANCE Organisms of the Microcystis aeruginosa complex form harmful algal
blooms (HABs) in nutrient-rich water bodies worldwide. MAC HABs are difficult to
manage owing to the production of potent toxins (microcystins) that resist water
treatment. In addition, the role of microcystins in the ecology of MAC organisms is
still elusive, meaning that the environmental conditions driving the toxicity of the
bloom are not clear. Furthermore, the lack of coherence between morphology-based
and genomic-based species classification makes it difficult to draw sound conclu-
sions about when and where each member species of the MAC will dominate the
bloom. Here, we propose that the diversification process and success of toxic MAC
in a wide range of water bodies involves the generation of ecotypes, each special-
ized in a particular niche, whose relative abundance varies according to its fitness in
the local environment. This knowledge can improve the generation of accurate
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prediction models of MAC growth and toxicity, helping to prevent human and ani-
mal intoxication.

KEYWORDS ecotypes, multivariate CART,mcyJ,Microcystis aeruginosa complex, HRMA

When a group of closely related bacteria dominates a broad diversity of habitats,
two possibilities emerge to explain the group’s success. First, each individual

organism may be a generalist, able to succeed in a broad range of environments (1),
possibly with some help by environmentally induced plasticity (2). The other possi-
bility is that the group of organisms is an amalgam of populations that are ecologi-
cally distinct yet very closely related (3). Some studies have identified closely related
groups of bacterial generalists, based on the abundance of the group in disparate
habitats (1). However, these cases can be misleading when the group claimed to be
an ecological generalist is broadly defined by membership in a species taxon. This is
because the species taxa recognized by systematics frequently contain a diversity of
ecologically distinct populations known as ecotypes (3). To determine whether a
bacterial clade dominating diverse habitats is composed of interchangeable gener-
alists or is an amalgam of specialists, we require a classification that delves below
the species taxon level and focuses on the ecological preferences of individual
ecotypes.

In the cyanobacteria, studies of ecological diversification have favored the specialist
hypothesis. The picoplankton marine species Prochlorococcus marinus is found at a di-
versity of latitudes, temperatures, and light and nutrient levels, but these organisms
are not individually generalists; the species taxon consists of many ecotypes that are
specialized to different combinations of these environmental dimensions (4), such as
temperature (5) and light intensities (6). This strategy allows this group of specialists to
occupy the entire euphotic zone, together accounting for 50% of the total chlorophyll
and 4 gigatons of carbon fixed per year in vast areas of the surface ocean (7). Also,
extremely closely related hot spring bacteria of Synechococcus thrive in a diversity of
temperatures and light levels in the spring mats, but they are not generalists either;
colonization and success in different habitats is due to specialization among ecotypes
adapted to different conditions and resources (8).

Slowly evolving phylogenetic markers, such as ribosomal genes, do not allow us to
elucidate changes occurring at the rapid interface between ecological and evolution-
ary processes. The ecotype theory of bacterial species (3, 9) defines the ecotype as a
clade of phylogenetically related microorganisms that differ in their ecological charac-
teristics. An ecotype generates after a single individual experiences a mutation or
recombination event that changes its autoecology, allowing the utilization of a new
set of resources or the ability to thrive under a particular environmental condition (10),
and has been proposed as a main driver of bacterial speciation (11, 12). Under this
framework, ecotypes are defined to be ecologically distinct from one another, while
each is ecologically homogeneous, and the species taxa recognized by bacterial sys-
tematics often contain multiple ecotypes.

The Microcystis aeruginosa complex (MAC) comprises the monophyletic clade of all the
species of the Microcystis genus and related genera (e.g., Radiocystis and Sphaerocavum)
that share phenotypic and phylogenetic characteristics with the species Microcystis aerugi-
nosa (13–15). They are the most common bloom-forming cyanobacteria worldwide, able
to develop large blooms in freshwater and brackish ecosystems (16–20) and produce
microcystin, a toxin known to cause serious liver and neural damage in humans and other
vertebrate and invertebrate animals (21–26). Ten genes spanning 55 kb have been
described as involved in microcystin production, mcyA to mcyJ (27). The use of mcy genes
to analyze toxic MAC diversity has been previously reported by several authors (28–30).
For example, Kim et al. (29) used a mcyJ gene fragment as a surrogate to detect toxic
Microcystis and to characterize and address the dynamics of different mcyJ genotypes
using denaturing gradient gel electrophoresis (DGGE) (29). Similarly, Hu et al. (30) per-
formed DGGE, but using mcyA amplicons, and found that the dynamics of toxin
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production was related to Microcystis community structure (30). However, multiple recom-
bination events, gene loss, or horizontal gene transfer have been detected within the N-
methyltransferase-domain of mcyA and the adenylation-domain of mcyB and mcyC
sequences (31, 32). In the case of the mcyJ gene, it has been found as a single copy in the
genome of toxic strains, and no recombination has been detected, meaning that it could
be suitable for studying a toxic population's variability (33).

There are several morphologically distinct groups within the MAC sharing nearly
identical 16S rRNA gene sequences but exhibiting ecological distinctness and different
toxicity potentials (27, 34, 35), which have been classified as different species of the
Microcystis genus. These morphology-based species assignments are not always
genomically or phylogenetically coherent (36), making it difficult to better understand
their ecological features in order to predict their presence and toxicity based only on
the 16S rRNA gene. So, in order to understand MAC success across aquatic ecosystems
worldwide, an adequate and sensitive approach to define and detect phylogenetic and
ecologically coherent taxa (or ecotypes) is needed. Recently, we published evidence
that the Microcystis aeruginosa complex thrives along an extended environmental gra-
dient in the Uruguay River-Río de la Plata estuary, from its headwaters to its brackish
estuary (37). As a result, mcyB, mcyD, mcyE, and mcyJ genes were detected by quantita-
tive PCR (qPCR) throughout the ecosystem. The highest number of mcy gene copies
was detected in summer (2 � 104 to 22 � 104 copies/mL) and spatially decreased from
the reservoir to the marine sites (7 to 250 copies/mL). Moreover, the abundance of mcy
genes was correlated positively with traditional phytoplankton indicators such as chlo-
rophyll a, total phytoplankton biovolume, and cyanobacterial biovolume. Therefore, as
there is no evidence of recombination in the mcyJ gene, it is present in all the assessed
genomes of toxic MAC, and there are primers available to study its variability (29) that
were already applied to our study system (37), we selected the mcyJ gene as a genetic
marker to address toxic Microcystis diversification.

Here, we investigate whether the success of the MAC group across disparate habitats
along the Uruguay River is due to ecological diversification into multiple ecotypes speci-
alized on different conditions. The methods and algorithms used to identify bacterial
ecotypes are related to PCR amplification of phylogenetic marker genes and posterior
analysis of the amplicons, either by fingerprinting methods (e.g., DGGE, temperature gra-
dient gel electrophoresis [TGGE]) (38) or by sequencing (4, 5). Fingerprinting-based
methods allow distinction of sequences differing by as little as a single nucleotide, and
in the case of sequencing (e.g., amplicon sequencing of 16S genes or functional genes
such as phycocyanin operon), a similarity cutoff is usually applied to define taxa at differ-
ent phylogenetic levels. This cutoff can produce different results, depending on how
broadly the taxa are defined. Thus, identifying ecotypes by this approach depends on
the stringency of taxon assignment (4). High resolution melting analysis (HRMA) is a fin-
gerprinting-based method that has been used to study diversity at the genotype level
(39, 40). The HRMA denaturation curves give information about the whole amplicon
sequence, detecting single nucleotide polymorphisms (SNPs). Due to great precision at
high throughput and relatively low cost, it has been applied to genotyping, mutation
scanning, and SNP detection in human diseases (41) and bacterial populations (42–45)
and to address the diversity of microbial communities (39, 40, 46). The output of HRMA
denaturation curves presents infinite dimensionality and autocorrelation, which require
the use of functional data approaches. HRMA curves reflect the nonlinear adaptive
response of microbial communities to environmental conditions amenable to analysis by
robust machine learning techniques (47).

We developed, tested, and applied an approach to detect microbial ecotypes by
combining molecular and machine learning tools to evaluate the hypothesis that toxic
MAC is composed of multiple ecotypes adapted to thrive in environmental conditions
ranging from freshwater to a brackish estuary and from warm to cold water. We used
water samples taken from a large environmental and spatial gradient (;800 km), rang-
ing from a freshwater reservoir (Salto Grande reservoir in the Uruguay River) to the

Microcystis Ecotypes as Drivers of Ecological Success Applied and Environmental Microbiology

February 2022 Volume 88 Issue 3 e01475-21 aem.asm.org 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

em
 o

n 
08

 F
eb

ru
ar

y 
20

22
 b

y 
18

6.
54

.7
1.

14
2.

https://aem.asm.org


mouth of the largest South American estuary (Río de la Plata). Under the working hy-
pothesis that the success of toxic MAC in such a gradient is due to the existence of
very closely related populations that are ecologically distinct (ecotypes), we used
large-scale microbial data obtained from the samples to detect different genotypes of
toxic MAC using the HRMA curves generated by amplicons of a gene involved in
microcystin biosynthesis (mcyJ). First, we validated the rationale of the method using
in silico simulated data (see below in Materials and Methods). Then the method was
applied to natural samples from the gradient, and the genotypes were classified based
on sequence differences and environmental variables by a multivariate classification
and regression trees approach (mCART). We discuss the results in the framework of the
ecotype theory and its impact to detect processes at the interface between ecology
and evolution.

RESULTS
mcyJ as a tool for ecotype identification. In order to confirm the suitability of the

gene mcyJ as a phylogenetic marker of toxic MAC, we first analyzed the average nucle-
otide identity (ANI) between all of the published genomes of MAC and found that it
ranged from 0.95 (60.02) to 1.00 (60.53), indicating that according to standard criteria,
all the available Microcystis genomes belong to the same species (48, 49). The esti-
mated nucleotide distance of mcyJ sequences taken from the available genomes of
toxic MAC species was positively and significantly correlated with the average nucleo-
tide distance for the whole genomes, measured as 1 – ANI (used as a dissimilarity mea-
sure) (rs = 0.78, P , 0.05) (Fig. 1). A maximum likelihood phylogenetic tree was built for
mcyJ and then compared with a reference tree built based on the concatenated align-
ment of 28 highly conserved ribosomal proteins from the same genomes. The esti-
mated global distance between both phylogenetic trees was 0.53, and when the simi-
larity between both trees was calculated for each node we found that the most recent
ones tend to have a higher similarity than most basal ones (see Fig. S1 and S2 in the
supplemental material).

Rationale for ecotype identification. To explain the basic ideas on how the eco-
types of toxic MAC were identified, we give a synthetic example with the operative
steps of the method. First, we assumed that the mcyJ melting profile obtained from a

FIG 1 Spearman correlation between the nucleotide distances of the mcyJ gene and the whole genomic
distance, measured as 1 – ANI, for the toxic MAC species (rs = 0.78, P , 0.05).
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natural water sample containing MAC organisms (e.g., a sample with three different
mcyJ genotypes) represents the abundance-weighted average profile of the genotypes
present in that sample. Here, we used three mcyJ genotypes (J1, J2, and J3) belonging
to previously obtained mcyJ clones showing different melting curves (Fig. 2B) (34) to
generate a synthetic MAC community. After running simulations and in agreement
with our assumption, the combination of the hypothetical environmental drivers I and
II (e.g., temperature and salinity) (Fig. 2a) deterministically defined the relative

FIG 2 Synthetic example with the rationale and operative steps followed in the proposed methodology. (A) Abundance and distribution of three simulated
mcyJ genotypes (J1, J2, and J3) according to environmental characteristics (e.g., temperature and salinity). (B) Normalized melting curves from the three
HRMA curves obtained from three cloned mcyJ genes individually analyzed—J1 (solid line), J2 (dashed line), and J3 (dotted line). (C) Normalized HRMA
curves obtained from a community composed of J1, J2, and J3 genotypes. Upper left, curve obtained from freshwater at 33°C and its derivative below;
upper right, curve obtained from marine water (salinity 33) at 13°C with its derivative below. (D) Optimal multivariate regression tree defining ecotypes
sampled from specific environmental conditions. In each node, the environmental variable and its threshold value are shown. Water temperature (WT) and
salinity are shown. At the end of each branch the average melting peak (solid line) and its standard deviation (dashed line) representing the toxic
genotype community are shown.
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abundance of the three mcyJ genotypes, which is revealed in their individual melting
profiles (Fig. 2B). So, under a particular environmental condition (I1 and II1), we expect
to find a particular combination of genotype relative abundances in the sample (Fig.
2C). The relative abundance of each genotype under each environmental array of con-
ditions determines a distinctive melting profile of that sample, which accounts for the
dominant ecotype (Fig. 2C; dashed line). To put it another way, the melting profile of a
given sample results from an assemblage of distinct melting profiles whose relative
abundances will depend on the values of the environmental variables. For our simula-
tion, the relationship between abundance and environmental conditions was con-
structed from bivariate normal distributions with average m i = {m I,m II} and covariance
matrix s i specified for each genotype, where i = 1:3. After obtaining the melting curves
from each genotype, we randomly sampled environmental conditions 50 times, and
for each condition (defined by the pair {I,II}), the relative abundance of each genotype
was estimated and the melting profile was constructed. Under our hypothesis, each
region in the environmental space should be characterized by an identical melting pro-
file corresponding to the dominant toxic ecotype (Fig. 2D). It is important to recall that
environmental drivers can be continuous or categorical and explicitly include biotic
interactions among the defining variables. Therefore, the ecotypes can be either com-
pletely specialized into different environments or just quantitatively specialized, where
ecotypes differ in their preferences but overlap in the environmental distributions. In
the extreme case where the abundances of the three mcyJ amplicons are not deter-
mined by the environmental variables selected (m i = m j and s i = s j for all i, j), a single
ecotype is expected. Under this situation, the multivariate CART would not partition
the data into separated ecotypes, and the tree will remain as a root tree.

Defining ecotypes of MAC. The analysis of HRMA profiles using the mCART tech-
nique yielded the responses of the toxic MAC community to a wide environmental gradi-
ent, splitting the data into 6 groups of mcyJ genotypes with distinct and specific environ-
mental preferences. We propose these groups as toxic MAC ecotypes. These ecotypes
(named A to F) were detected using 72 normalized melting profiles. Three environmental
variables were selected by the model as the most relevant explaining the differences
between the ecotypes: temperature, salinity, and turbidity (Fig. 3; Table 1). The variables
wind intensity, total nitrogen (TN), and total phosphorus (TP) were not selected by the
model. Figure 4 shows the average prediction error obtained from the optimal tree (Fig. 3)
and the prediction errors from each permuted tree (see “Multivariate CART for functional
analysis,” below). The average prediction error of the optimal tree is represented as a line,
and the prediction errors from permuted trees are represented as a density plot (Fig. 4).
The optimal tree had an average prediction error significantly lower than the average error
obtained from permuted trees (log-likelihood ratio test [LRT], P, 0.05; Fig. 4).

Water temperature was the first selected variable, splitting groups of toxic MAC into
those thriving at temperatures higher (above) or lower (below) than 14.5°C (Fig. 3). The
next two selected variables were water turbidity and conductivity, with threshold values
of 14.2 nephelometric turbidity units (NTU) and 0.104 millisiemens (mS) cm21, respec-
tively. Then, intermediate conductivity values (9.16 mS cm21) and high water tempera-
ture (23.8°C) were selected as splitting variables. Total nutrients (nitrogen and phospho-
rus mean values of 0.74 mg L21, 52 ug L21, respectively) and wind intensity were not
relevant to define toxic ecotypes. Ecotype A was present in brackish waters at tempera-
tures higher than 14.5°C and more than 14.2 turbidity units, while ecotype B was found
under the same turbidity conditions as A but in freshwater and at high water tempera-
ture (.23.8°C; Table 1). Ecotype C was the most frequent; it preferred warm freshwaters
and had a large amount of potential toxicity (assessed by qPCR as the number of mcyJ
copies per mL), conditions found at the reservoir. On the other hand, ecotype D inhabits
water with a temperature of .14.5°C but has a wide range of conductivity preferences.
Finally, ecotypes E and F occurred in cold water (water temperature, ,14.5°C) but
slightly differed in their conductivity preferences (0.104 mS cm21 conductivity threshold)
(Fig. 3). Ecotypes B and C, which belong to the reservoir, were those with a higher
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abundance of toxic cells per mL, as evidenced by qPCR. In contrast, ecotype E, belonging
to the middle and outer estuary, exhibited the lowest number of toxic cells (Table 1).

DISCUSSION

Microbial species can be seen as genetically, phenotypically, and ecologically similar
units that are selectively optimized to either coexist occupying different niches or to
overlap, not only genetically but also ecologically (50). Here, we used the communities

FIG 3 Ecotypes defined by the multivariate regression tree (mCART). Multivariate regression tree showing the main environmental variables explaining the
profile diversity of toxic genotypes. The selected environmental variable and its threshold value are shown at each node—water temperature (WT),
turbidity (Tur), and conductivity (K). At the end of each branch, the abundance-weighted average melting curves for each toxic MAC sample (solid lines)
and its standard deviation (dashed lines) are shown.
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of toxic Microcystis spp. as model organisms to determine whether this clade, able
to succeed in water bodies around the world (from freshwater lakes to estuaries), is
composed of interchangeable generalists or is a combination of ecologically distinct
specialists that proliferate when the environmental conditions are ideal for each speci-
alized lineage.

Because the identification of toxic MAC species using classical molecular marker
genes such as the 16S rRNA gene is not always possible (51, 52), the present approach
involved the analysis of the variability of a functional gene related to microcystin syn-
thesis (mcyJ) as a molecular marker to differentiate between toxic taxa. Here, we com-
bined a molecular method for genotyping (HRMA of mcyJ gene amplicons) with
machine learning techniques (mCART) to achieve a high discriminatory power and to
discover the relationships between MAC community structure and the environment.

We used two criteria to determine ifmcyJ could yield an accurate measure of the evolu-
tionary history of this group. First, we found a significant correlation between the pairwise
distances of mcyJ genes with the average genomic distances (1-ANI), and second, we per-
formed a comparison between the phylogeny constructed from orthologous genes (highly
conserved ribosomal-protein sequences) and the mcyJ-based phylogeny. We found that
the evolution of the mcyJ gene mirrors the evolution of the different analyzed lineages
(Fig. S2). Since the global distance between the trees was 53%, we analyzed the similarity
node by node and found that is generally higher at the tips of the trees, implying that

FIG 4 Errors obtained for multivariate regression trees. The density of the tree-error performed by
randomly switching the values of environmental variables and vertical line denotes the mean value
of the error obtained using the original data.

TABLE 1 Description of niche and main traits of each ecotype of toxic MACa

Ecotype Niche Zone Temp (°C) Cond (mS cm21) Tur (NTU)
mcyJ gene
(copies ml21)

Frequency of
occurrence

A Warm brackish-
marine water

Middle and outer
estuary

19.1 (14.8–22.9) 36.4 (18.2–52.0) 40.9 (15.4–89.6) 34.9 (BDL–96.0) 0.14

B Hot freshwater Reservoir and riverine
freshwater

27.2 (24.3–33.6) 0.041 (0.023–0.054) 28.5 (14.3–47.9) 2.30E4 (BDL–1.14E5) 0.14

C Warm freshwater Reservoir and riverine
freshwater

20.5 (15.6–23.4) 0.074 (0.033–0.113) 56.0 (19.9–127.0) 1.21E4 (BDL–4.54E4) 0.31

D Warm water and
low turbidity

Inner and middle
estuary

20.9 (16.1–25.9) 14.02 (0.048–52.7) 7.6 (BDL–14.2) 46.2 (BDL–148.7) 0.20

E Cold brackish-
marine water

Middle and outer
estuary

11.9 (11.2–12.3) 29.13 (0.113–55.8) 20.8 (BDL–49.0) 11.7 (BDL–44.7) 0.11

F Cold freshwater Reservoir and riverine
freshwater

12.7 (11.0–14.2) 0.061 (0.036–0.095) 17.5 (0.9–42.2) 192.7 (0.3–437.2) 0.09

aMean values and ranges of environmental variables associated with each ecotype: temperature (Temp, °C), conductivity (Cond, mS cm21), turbidity (Tur, NTU),mcyJ gene
abundance (copies ml21), and the relative frequency of occurrence of each ecotype. BDL, below detection limit.
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mcyJ is a suitable phylogenetic marker for this group, especially for recently divergent
lineages of Microcystis. Other well-known markers, such as 16S rRNA or ribosomal protein-
coding genes (data not shown) were also tested, but these genes were found to be too
conserved for this clade. As a result, the resolution power of these markers for this genus
when used independently is marginal. This is why we explored other phylogenetically in-
formative genes in order to detect ecologically coherent genotypes. Rinta-Kanto and
Wilhelm used the mcyA gene to address the genetic diversity of potentially toxic
Microcystis (28). Similarly, Hu et al. applied DGGE tomcyA amplicons and found that micro-
cystin variants were related to the obtained band pattern, implying that the composition
of the Microcystis community determined the type of microcystin produced (30). However,
it has been shown that mcyA has several recombination regions (32), and multiple recom-
bination events were detected within the N-methyltransferase domain of mcyA and the
adenylation-domain of mcyB and mcyC sequences, suggesting genetic exchange within
and between mcy genes. This would hinder the use of mcyA to mcyC genes as phyloge-
netic markers for toxic populations. On the other hand, no recombination was detected in
the mcyJ gene, which is present at a single copy in toxic strains and is conserved enough
to address the variability of toxic populations (32).

Different roles related to the abiotic and biotic environment have been proposed
for microcystin toxins, among them to increase organisms’ fitness by adaptation to low
CO2 levels (53, 54), a protein-modulating role (55), for colony formation (56), and as a
protection against oxidative stress (57). Thus, genetic variation in the microcystin syn-
thesis genes might reflect different adaptations to the local environment. In this con-
text, the present approach is a novel way to gain insight into MAC diversity and to
objectively define groups with a genetic signature underlying the worldwide success
of this bloom-forming cyanobacterium. An advantage of using an HRMA-based
method to explore sequence diversity instead of amplicon sequencing and further
analysis of the reads relies on the fact that, although both are based on PCR of a target
gene, the former is faster (real-time data acquisition) and does not depend on identity
cutoffs to define operational taxonomic or phylogenetically coherent units (58). This
study complements and expands on previous work using HRMA to analyze the diver-
sity of natural microbial communities (based on the 16S rRNA gene) (39, 40, 46) by
combining new genetic regions as diversity markers and machine learning tools. In
addition, mCART provides a nonarbitrary cutoff that is related to the ecological dis-
tinctness of the genotypes.

The present research shows that natural communities of MAC along the studied
gradient are composed of genotypes that are ecologically coherent specialists or eco-
types. This suggests that the mechanism of the MAC’s success over diverse habitats
has been the generation of a number of ecotypes with distinct and specific niches and
agrees with previous work showing that communities of toxic MAC cyanobacteria are
able to inhabit a wide range of environmental conditions (37). It is also consistent with
the worldwide distribution and current proliferation of the MAC and has been found
for other cyanobacteria such as Prochlorococcus (59), for which at least six ecotypes dif-
fering in physiology and occupying distinct niches in the ocean have been found (4,
59, 60). Different ecotypes of Cylindrospermopsis raciborskii have also been described
based on phylogenetic markers, morphology, tolerance to different light intensities,
affinities to low or high phosphate concentrations, and toxicity (61–63). Altogether, the
findings suggest that the generation of ecotypes might be a common cyanobacterial
strategy to proliferate and succeed in aquatic ecosystems all over the world.

We found that variability in physical and hydrological variables (temperature, salin-
ity, and turbidity) defined MAC ecotypes, while nutrient concentrations did not, sug-
gesting a prominent role of local conditions over trophic state, probably due to the
high availability of nutrients at all sites and sampling times (TP, ;60 mg L21; TN,
;0.9 mg L21) (Fig. 3, Table 1). These variables are directly related to the physical
aspects that characterize ecosystem dynamics in space and time. For example, turbid-
ity and conductivity define the estuarine portion of the system, while temperature
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defines seasonal changes. The ecotypes of toxic MAC that were associated with brack-
ish water (A and E) had a small number of toxic cells, meaning that toxic MAC are rare
in the estuary. These results agreed with the general decrease of MAC biomass and
abundance of mcy-harboring cells found from fresh to marine water (37, 64). Salinity
concentration above the organisms’ optimum causes osmotic stress, decreases photo-
synthesis rates, and might induce cell lysis (65–68), leading to a decrease in abundance
and biomass and precluding their detection by classical microscopy counts (69).
Recent studies demonstrated that some M. aeruginosa strains acquired the ability to
produce an osmoprotectant (such as sucrose) by horizontal gene transfer, generating
salt-tolerant genotypes (70). Thus, toxic MAC ecotypes found in the estuary may be
composed by this kind of salt-tolerant organism.

Several studies identified different toxic MAC genotypes along temporal and spatial
gradients in freshwater ecosystems, related mainly to nutrient availability (71–74).
However, under eutrophic or hypereutrophic conditions, such as in the ecosystems
studied here, nutrients are no longer shaping genotype richness. Kim et al. found that
mcyJ gene diversity assessed by DGGE was reduced during summer compared with
spring and autumn, pointing to an effect of water temperature in the selection of dif-
ferent toxic populations, as found here (29).

The six ecotypes of toxic MAC associated with different environmental settings
through the assessed environmental and spatial (;800 km) gradient led us to
hypothesize that the reservoir, which displays high MAC biomass and diversity through
the whole year, might act as a source or seed bank of toxic ecotypes. As toxic MAC
organisms are transported downstream through the Uruguay River and into the Río de
la Plata estuary, populations would be locally selected by environmental conditions,
allowing the dominance of different ecotypes. Sabart et al. studied spatial-temporal
changes of Microcystis diversity in interconnected freshwater ecosystems (reservoirs,
ponds, and a river) based on the internal transcribed spacer (ribosomal ITS) (66). They
found that Microcystis populations were genetically different over short distances
(;20 km) and that populations observed in the main reservoir were different from
those found downstream. However, at a larger, global geographical scale, the connec-
tions between phylogenetic relationships of Microcystis communities and the environ-
mental conditions were not detected (75). A possible explanation is that fast-evolving
molecules, such as ribosomal ITS, can exhibit high levels of homoplasy, which increases
the noise in the phylogenetic signal and avoids pattern detection. Here, the same eco-
types were detected in sites as far as ;500 km away, revealing that local environmen-
tal conditions are more relevant than distance for selection. This rules out alternative
hypotheses of ecotype generation in subsidiary ecosystems. Nevertheless, more work
will be needed to describe these ecotypes genomically and phylogenetically to eluci-
date the relative ages of the lineages’ splitting.

In sum, by combining a high-resolution molecular method with a machine learning
technique, we identified six ecotypes of cyanobacteria from the Microcystis genus,
which are increasingly found in freshwater to brackish water blooms worldwide. This
finding provides new insight into the ecological and evolutionary strategy that makes
this taxon so successful across a range of environmental conditions.

MATERIALS ANDMETHODS
Study site. The study area is located in the subtropical region of South America and covers an exten-

sion of ca. 800 km, from the Salto Grande reservoir in the Uruguay River (31° 119 latitude, 57° 529 longi-
tude) to Punta del Este (34° 579 latitude, 55° 029 longitude) at the marine end of the Río de la Plata estu-
ary. Six sites were sampled every 2 months for 1 year (from January 2013 to March 2014), and
subsurface (;0.5 m) samples were taken at coastal stations (0.01 to 0.5 km) (for more details see referen-
ces 37 and 64). In total, 36 water samples were analyzed. The system presents strong temporal and spa-
tial gradients in terms of temperature, conductivity (a proxy of salinity), and turbidity (37, 76–78). The
highest surface water temperatures in the Salto Grande reservoir are usually recorded during summer
(January to March, 33°C), while the lowest temperatures belong to the outer marine zone of the Río de
la Plata during winter to early spring (June to October, 11°C). Conductivity is at a minimum at the fresh-
water sites (0.023 mS cm21; Salto, Fray Bentos, Carmelo, and Colonia) and maximum at the marine end
of the estuary (55 mS cm21; Montevideo and Punta del Este). Turbidity ranged from 0 to 187 NTU, with
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higher values at the middle of the gradient (Carmelo and Colonia). Higher concentrations of nutrients
were measured in the Salto Grande reservoir and Montevideo (total phosphorus, 60 mg L21; total nitro-
gen, 0.9 mg L21). MAC biovolume, calculated by multiplying mean individual volume by its abundance
in each sample measured by microscopy (see reference 37 for further information) was highest in the
Salto Grande reservoir during summer and decreased toward the marine end (Punta del Este).

Strategy. High-resolution melting analysis (HRMA) is a post-real-time PCR method used to identify
genotypes based on the detection of single nucleotide polymorphisms (SNPs). After real-time PCR, a
melting analysis is performed by gradually heating the amplicons at 0.1°C steps. During this process, as
the temperature increases, the melting point of the amplicon is reached and amplicon DNA denatures,
melting apart the double strand and causing the fluorescence of the attached dye, used to visualize the
amplification, to fade away. This melting behavior and concomitant fluorescence decay are represented
as melting curves (fluorescence decay during melting temperature increase) and are distinctive of each
sequence within a mixed sample. Thus, they can discriminate samples according to their sequence
length, GC content, and strand complementarity. This is the case when analyzing sequences from single
isolates; however, in this work our goal was to detect variations between melting curves of the mcyJ
gene from different MAC lineages that could be present in an environmental, complex sample.
Therefore, the resulting melting curve corresponds to the abundance-weighted average melting profile
of all the mcyJ gene sequences present in the sample. The relationships between these melting profiles
and the environmental variables were evaluated with multivariate classification and regression trees
(mCART) (79, 80).

Classification and regression trees (CART) is a machine learning technique based on computational
statistical methods (81, 82). A classification or regression tree is constructed by recursive binary partition-
ing of the response variable into regions that are increasingly homogeneous (i.e., nodes) until no
improvement is possible, and the final nodes are called leaves. In regression trees, each node contains
the predictor variable (e.g., an environmental variable) that results in the most homogeneous partition
of the response variable (e.g., a biological variable) measured by the sum of squared errors (SSE), whose
selection is based on an optimization process (83). This keeps on going until no more reduction of SSE is
achieved. These methods are easily interpretable and provide simple above (.) or below (,) decision
trees (78). Multivariate CART (mCART) is an extension of classical CART used in ecology (79, 80, 84). In
mCART, the response variable is no longer an individual value but a variety of independent values (80).
In the present context, the response variables are the coefficients of the melting curve functions. This
method was used to evaluate the relation of environmental variables and toxic genotypes and identify
groups of closely related toxic genotypes of MAC (ecotypes) exhibiting the same environmental
preferences.

mcyJ gene variation analysis.We performed further analyses to support the use of mcyJ as a proxy
for the whole-genome divergence. First, we compared mcyJ variability with that of the Microcystis ge-
nome using the genomes available at the NCBI assembly database (Table S1). We found mcyJ genes in
91 of 165 available genomes. The pairwise two-way ANI score was computed among Microcystis
genomes using the ani.rb script (71) available at enveomics.blogspot.com. The ANI score is the average
nucleotide identity across the part of the genome that is orthologous between two organisms. Then,
the mcyJ sequences were retrieved from each genome using the tblastn tool (85), and the pairwise
genetic distances were calculated using the Kimura two-parameter substitution model with gamma dis-
tribution rate variation among sites in MEGA7 software (86). The two measures of genetic distance were
compared by means of the Spearman correlation coefficient (rs). We also compared the phylogenetic
tree generated with mcyJ with a reference tree generated with a concatenated alignment of 28 highly
conserved ribosomal-protein sequences (Fig. S1). In brief, alignments were performed with Clustal
Omega (87). Model selection and phylogenetic analyses were performed using IQ-Tree (88) under ultra-
fast bootstrap modality (89). The model selected by IQ-Tree was JTTDCMut1F1I1G4, that is, the revised
JTT matrix published by Kosiol and Goldman (90), plus empirical amino acid frequency, invariable sites,
and discrete Gamma model (91) with default 4 rate categories.

Comparisons between the two generated trees were performed with the treeDistance function of
the TreeDist package in R. This function calculates the global distance based on the amount of phyloge-
netic information that both trees hold in common as proposed by Smith (92). The similarity between dif-
ferent lineages was calculated and visualized using the phylo.io server (93).

DNA extraction. For the DNA extraction, 250- to 300-mL amounts of the subsurface water samples
were collected with clean plastic 20-L carboys and then filtered through a 0.22-mm sterile polycarbonate
membrane (Millipore, Darmstadt, Germany), which was immediately frozen at 220°C until processing.
Procedures for nucleic acid extraction were performed as described in reference 94.

Real-time PCR. (i) Quantification of the mcyJ gene in the environmental samples. The density of
toxic cells in each ecotype was quantified based on the amount of mcyJ amplified in qPCR. First, 2 mL of
DNA extracts from each sample (ca. 50 ng DNA) were applied to the Power SYBR green PCR kit
(Invitrogen) with a final reaction mixture volume of 20 mL. Primers for the mcyJ gene were those from
Kim et al. (29). Cycling conditions were 2 min at 50°C, 15 min at 95°C, and 40 cycles of 15 s at 94°C, 30 s
at 60°C, and 30 s at 72°C, including a final melting step from 65 to 95°C, at increases of 1°C each 4 s (34).
A 96 FLX Touch TM thermal cycler (Bio-Rad) was used. To quantify the abundance of the mcyJ gene,
cloned amplicons (34) were used to perform the calibration curves. Curves were achieved using five se-
rial dilutions from 1/10 to 1/100,000 of the cloned genes (in quintuplicate) and applied to qPCR in the
same PCR plate where the samples were assayed. Samples were run in triplicate.

(ii) High-resolution melting analysis (HRMA) of mcyJ amplicons. Amplification of the mcyJ gene
was performed using the HRMA primers described in the literature (83). PCR amplification was
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conducted using a 96 FLX Touch TM thermal cycler (Bio-Rad, California, USA). First, 2 mL of DNA extracts
from each sample (ca. 50 ng DNA) were applied to the MeltDoctor HRM master mix (Applied Biosystems,
California, USA) with a final reaction mixture volume of 20 ml. Cycling conditions were 2 min at 50°C,
15 min at 95°C, and 40 cycles of 15 s at 94°C, 30 s at 60°C, and 30 s at 72°C. To generate the HRMA melt-
ing profiles, the fluorescence obtained from each sample (in relative fluorescence units [RFU]) was
recorded at 0.02°C/s increases within a melting region of 65°C to 95°C. HRM data were acquired using
Bio-Rad precision melt analysis, and each sample was run in duplicate. All the samples were run in the
same PCR plate. Melting curves were normalized to the same fluorescence level (RFU) using the pre- and
postmelt regions (before and after the melting region, respectively), which were selected based on the
specific melt region of the mcyJ amplicon (75°C to 82°C; melting temperature [Tm], 79.5°C). These RFU
values were used for the statistical analysis.

Multivariate CART for functional analysis. The melting curves (RFU) were first represented in a
functional basis using a nonperiodic b-splin basis of order 4 (this was the optimal choice after several
experiments). The multivariate CART (77, 81) was used to model these coefficients (output variables)
using the following explanatory variables as input: total nutrients (total nitrogen [TN] and total phospho-
rus [TP]), wind intensity (WI), water temperature (WT), turbidity (Turb), and conductivity (K). Cross-valida-
tion was used to optimize the size (number of leaves) of the final tree. To assess the performance (pre-
diction error) and the reliability of such an optimal tree, we repeated the following steps 100 times: (i)
random split of the data in two parts, learning and test sample (in proportion 2/3 and 1/3, respectively),
(ii) building of an optimal tree over the learning sample, (iii) random permutation of the observed input
variable and building of another optimal tree over the permuted data set, and (iv) computing prediction
error of optimal and permuted trees separately. If both trees (optimal and permuted) are similar, it indi-
cates that the optimal tree was generated randomly and no classification was achieved. In order to test
that, the error distributions obtained from both trees (100 errors calculated per tree) were compared
using a log-likelihood ratio test (LRT). Once an optimal tree was obtained, a test was applied to detect if
the counts of mcyJ gene differed between the groups of samples given by the tree using LRT and
Tukey’s pairwise post hoc comparisons. All statistical analyses were performed with the free software R,
version 3.6.1 using the fda, rpart, nlme, and PMCMR packages (95–99).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.02 MB.
SUPPLEMENTAL FILE 2, PDF file, 0.8 MB.
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