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ABSTRACT

We propose a new active learning algorithm for PDFA based on three main aspects: a congruence
over states which takes into account next-symbol probability distributions, a quantization that copes
with differences in distributions, and an efficient tree-based data structure. Experiments showed
significant performance gains with respect to reference implementations.

Keywords Active learning · PDFA · Quantization

1 Introduction

We are interested in the problem of efficiently learning probabilistic deterministic finite automata (PDFA) in the
context of the general active MAT-learning framework proposed in [1] where a learner and a so-called minimum
adequate teacher interact by asking and responding questions, respectively. The learner’s purpose is to unveil the
hidden target automaton only known to the teacher. The latter allows the former to ask two kinds of questions, namely
membership (MQ) and equivalence (EQ) queries.

MQ seeks to discover the automaton’s outcome for a particular string. Originally, the purpose of MQ is to know
whether a string belongs to the language to be learnt or, equivalently, whether it is accepted by the associated automa-
ton. This name has been kept in later applications to other classes of automata. In [2,3], the framework is used to prove
learnability of multiplicity automata which compute functions mapping strings to elements of a field. In this case, the
name MQ is retained even when the answer is the value of the computed function, which may not be Boolean. The
same approach is followed in [15] where MQ is used to refer to the function that returns the probability of the last
symbol in a string.

EQ provides means for determining to what extent the hypothesis automaton produced by the learner approximates
the target one. In the case of exact learning, this query checks whether they both produce the same outcome to MQ
for all strings. When MQ are not binary, such as for PDFA, it could be useful to relax equality in order to learn similar
hypotheses that tolerate small discrepancies. For instance, in [5, 12, 15] equality is replaced by a similarity relation.
However, that similarity relation is not an equivalence as it lacks transitivity.

In the context of DFA, it is known that using appropriate data structures, such as trees, and efficiently processing
counterexamples lead to significant gains in terms of computation time [8, 10]. To the best of our knowledge, these
approaches have not yet been explored for active learning of PDFA. The algorithms proposed in [2, 9] rely on MQ
that compute the probability of a string and on an observation table to store the results. In [14], MQ return state
distributions, that is, the probability that the target probabilistic automaton enters a state after reading an input string.
This requires knowing the number of states of the target in advance. These works focused on theoretical results without
implementations of them being publicly available. In [7], learning PDFA is a building block of an assume-guarantee
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framework for verification of probabilistic systems. MQ asks for the probability of accepting a string and results are
stored in an observation table. However, the overall goal is not to learn a PDFA equivalent to a hidden target but only
an appropriate assumption for doing a compositional proof of correctness. To achieve this, the algorithm uses an EQ
that relies on language inclusion of PDFA and probabilistic model-checking. All these works rely on exact equality of
MQ outcomes. To deal with noise in distributions, WL∗ [15] proposes a non-equivalence similarity relation between
probability distributions and develops an algorithm to learn similar hypotheses according to it. Note that WL∗ uses
clustering to group responses to MQ stored in the table.

Based on these observations, we formulate a learning framework for PDFA where the teacher’s answers to MQ are
probability distributions over the symbols a string could be continued with. These are called next-symbol probability
distributions. Besides, in the case the learner is allowed to produce hypotheses whose next-symbol probability distri-
butions are approximations of the target ones, we propose to resort to quantization as an abstraction which allows us
to define a coarser equivalence relation than the latter. This ensures the learnt automaton to be equivalent to the target
one modulo this relation. Finally, we propose and implement QuaNT, a learning algorithm for PDFA that uses an
adaptation of the tree structure of [10]. In order to assess its performance, we compared QuaNT to a clustering-based
algorithm that uses an observation table and a tolerance-based non-equivalence similarity relation, similar to WL∗.
The experiments carried out showed that QuaNT was orders of magnitude more efficient.

The paper is organized as follows. Section 2 gives core definitions and results of interest. Section 3 presents our PDFA
learning algorithm QuaNT. Section 4 discusses experimental results. Section 5 summarizes the contributions.

2 PDFA

Let Σ be a finite alphabet and Σ$ to be the set Σ ∪ {$}, where $ is a special terminal symbol not in Σ. ∆(Σ$) is
probability simplex over Σ$. A PDFA A over Σ is a tuple (Q, qin, π, τ), where Q is a finite set of states, qin ∈ Q is
an initial state, π : Q→ ∆(Σ$) associates a probability distribution over Σ$ to each state, and τ : Q× Σ→ Q is the
transition (total) function. Fig. 1(a-b) depicts an example. Let Pq be the probability distribution over Σ∗, such that
Pq = P (s|q) is the probability of s ∈ Σ∗ from state q ∈ Q, defined as:

P (λ|q) = π(q)($), λ is the empty string, P (σs|q) = π(q)(σ) · P (s|τ(q, σ)), σ ∈ Σ, s ∈ Σ∗

A PDFA A computes a function fA from Σ∗ to [0, 1]. For any string s ∈ Σ∗, fA(s) = Pqin(s). For instance, the
PDFA in Fig. 1 maps the empty string λ to 0 and every string an, n ≥ 1, to 0.5n. We define τ∗(q, s) to be the natural
extension of τ to strings, that is, the state reached by A when going through s starting at state q:

τ∗(q, λ) = q τ∗(q, σs) = τ∗(τ(q, σ), s)

Similarly, we define π∗(s|q) to be the probability distribution of the state reached by A when going through s from
state q:

π∗(s|q) = π(τ∗(q, s))

We denote by τ∗(s) and π∗(s) the state reached when going through s from the initial state qin and the associated
distribution, respectively.

2.1 State equivalence

We define the relation ≡ as follows: for every q, q′ ∈ Q, q ≡ q′ if for every s ∈≡, π∗(s|q) = π∗(s|q′). Clearly, ≡ is
an equivalence relation between states.
Proposition 1. ∀q1 ≡ q2 ∈ Q, 1) π(q1) = π(q2), and 2) ∀σ ∈ Σ, τ(q1, σ) ≡ τ(q2, σ). That is, ≡ is a congruence.

It follows that≡ induces a quotient PDFA A/≡ = (Q/≡, [qin] , π/≡, τ/≡), where Q/≡ is the set of equivalence classes,
[q] ∈ Q/≡ denotes the class of q ∈ Q, and for any q ∈ Q, the probability distribution is π/≡([q]) = π(q), and the
transition function is τ/≡([q] , σ) = [τ(q, σ)] for any σ ∈ Σ. 2

Proposition 2. For every PDFA A, A/≡ computes the same function as A.

Therefore, ≡ can be extended to PDFA. For every PDFA A and B, A ≡ B if their respective initial states qAin and qBin
are equivalent, that is, qAin ≡ qBin.
Corollary 1. A ≡ B implies fA = fB . The converse does not hold in general.

2This quotient is different from [13] defined by a partition resulting from merging states according to a compatibility criterion
which is not an equivalence relation.
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2.2 Minimality

A PDFA is minimal if any other PDFA that computes the same function has no less states [2]. The simple PDFA in
Fig. 1 is minimal since clearly the function cannot be computed by a PDFA with a single state. Based on ≡ we define
a weaker notion of minimality as follows. A PDFA A is said to be weakly minimal if for every q, q′ ∈ Q, q ̸≡ q′.By
definition, for every PDFA A, A/≡ is weakly minimal.
Proposition 3. Every minimal PDFA A is also weakly minimal. The converse does not hold in general.

An example of Proposition 3 is the PDFA in Fig. 1. However, the converse is not true, that is, there are weakly
minimal PDFA which are not minimal. Consider for instance PDFA A and B in Fig. 2. We have that fB((ab)n+1) =
(0.1 · 0.2)(0.2 · 0.1)n · 0.3 = (0.1 · 0.2)n+1 · 0.3 = fA((ab)

n+1), for n ≥ 0. For any other string s ̸= (ab)n+1,
fA(s) = fB(s) = 0. Hence, A and B compute the same function. Moreover, they are both weakly minimal because
π∗(λ|q) ̸= π∗(λ|q′) for every pair of states q, q′ ∈ Q, for each one of the automata, respectively. But B is certainly
not minimal because it has more states than A. This example also shows that fA = fB does not entail A ≡ B.

2.3 Similarity of distributions

The equivalence defined above is not robust in the sense that two states whose probability distributions differ very
slightly are not equivalent. Consider the PDFA Aε (c) in Fig. 1, where ε ∈ (0, 0.5]. It maps every string an, n ≥ 1,
to (0.5 − ε)n−1(0.5 + ε). This PDFA is not equivalent to PDFA A in Fig. 1. However, fAε

tends to fA as ε tends to
0. Moreover, π(q′1) tends to π(q1). Previous works have addressed this issue by introducing a tolerance parameter t.
In [15], states are compared using the probability of the last symbol of a non-empty string defined as:

πℓ
q(sσ) = π∗(s|q)(σ) where σ ∈ Σ$, s ∈ Σ∗, q ∈ Q (1)

It is said that q, q′ are t-equal, for t ∈ [0, 1], denoted q ≈t q
′, if L∞(πℓ

q, π
ℓ
q′) ≤ t where L∞(v, v′) = maxx |v(x) −

v′(x)|. PDFA A and B are t-equal, denoted A ≈t B, if qAin ≈t qBin. However, this approach does not lead to an
equivalence relation between states. That is why, to cope with small perturbations in probabilities while preserving
equivalence between states, we propose to resort to a quantization defined over π∗as follows.

Let κ ∈ N, κ ≥ 1, be a quantization parameter. For n ∈ N, 0 ≤ n < κ − 1, we define Inκ to be the left-closed
right-open interval

[
nκ−1, (n+ 1)κ−1

)
, and for n = κ−1, the closed interval

[
nκ−1, 1

]
. Now, for every real number

x ∈ [0, 1], we define ⟨x⟩κ = Inκ such that x ∈ Inκ . For instance, for κ = 2, we have the quantization [0, 0.5), [0.5, 1].
Two numbers x, y ∈ R are κ-equivalent, denoted x =κ y if ⟨x⟩κ = ⟨y⟩κ. This definition extends naturally to ∆(Σ$).
We denote ⟨∆(Σ$)⟩κ the partition of ∆(Σ$) induced by κ. For δ ∈ ∆(Σ$), ⟨δ⟩κ is called the quantization vector of
δ. For example, ⟨(0.1, 0.3, 0.6)⟩2 = (I02 , I

0
2 , I

1
2 ).

Being =κ an equivalence relation, we can define a quantized version of ≡ as follows: q ≡κ q′ if for every s ∈ Σ∗,
π∗(s|q) =κ π∗(s|q′). This induces a unique quotient over states Q/≡κ . Moreover, ≡κ can be extended to PDFA: for
every PDFA A and B, A ≡κ B if qAin ≡κ qBin. This allows extending the notion of weakly minimality defined over ≡
to ≡κ: A is said to be κ-weakly minimal if for every q, q′ ∈ Q, q ̸≡κ q′. However, unlike ≡, its quantized version ≡κ

does not induce a unique quotient PDFA because π/≡κ
([q]κ) can be any distribution in ⟨π(q)⟩κ. Therefore, we define

A/≡κ
= {B | A ≡κ B ∧ |QA/≡κ

| = |QB |}, that is, the set of κ-weakly minimal PDFA which are κ-equivalent to A.

To illustrate quantization, consider the PDFA A (a) and Aε (c) in Fig. 1. Suppose ε ∈ (0, 0.1). For κ = 5, we have
the quantization [0, 0.2), . . . , [0.8, 1]. Then, ⟨π(q1)(a)⟩5 = I25 = [0.4, 0.6) = ⟨π(q′1)(a)⟩5, since 0.4 < 0.5− ε < 0.5,
and ⟨π(q1)($)⟩5 = I25 = [0.4, 0.6) = ⟨π(q′1)($)⟩5, since 0.5 < 0.5 + ε < 0.6. Thus, we have that qi ≡5 q′i. Hence,
A ≡5 Aε.
Proposition 4. For every q, q′, if q ≡κ q′ then q ≈κ−1 q′.

3 PDFA Learning: QuaNT

QuaNT is a learning algorithm that constructs a PDFA by interacting with a teacher which makes use of oracles
MQQuaNT and EQQuaNT. It has three major differences with WL∗. First, MQQuaNT returns the next-symbol
probability simplex of a string, that is MQQuaNT(s) = π∗(s) for s ∈ Σ∗; while MQWL∗(s) returns πℓ

qin(s), where
πℓ is defined in (1). Second, it relies on quantization rather than on tolerance for comparing probability distributions.
Since our quantization method induces a congruence, there is no need for clustering states. Third, along the lines
of [10] and [8] algorithms, QuaNT builds a classification tree instead of a table. Similarly to these algorithms, tree
leafs are PDFA states identified by so-called access strings and inner nodes are distinguishing suffixes. Nevertheless,
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in QuaNT the tree is not binary but n-ary, where n is the number of different classes which ∆(Σ$) is partitioned into,
and tree arcs and leafs are labelled with elements of ⟨∆(Σ$)⟩κ and ∆(Σ$), respectively.

N-ary classification tree Given s ∈ Σ∗, we denote [s]κ the class of the state reached by traversing s in the target
PDFA A, i.e., [τ∗(s)]κ. Hereinafter, we omit the quantization parameter κ when clear from context. The tree TAcc,Dis

maintains a set Acc of access strings and a set Dis of distinguishing strings where for every pair of distinct strings
s, s′ ∈ Acc: (1) [s] ̸= [s′], (that is, τ∗(s) ̸≡κ τ∗(s′)), and (2) ∃d ∈ Dis s.t. π∗(sd) ̸=κ π∗(s′d). The distinguishing
string that labels the root of the tree is always λ which is also an access string, so that the initial state of the PDFA can
be accessed.
Proposition 5. The number of leaves of T is at most |Q/≡κ

|.

Fig. 3 (left) shows an example of n-ary classification tree. The quantization parameter is κ = 10. Tree leafs correspond
to the states of the PDFA shown on the right, identified with their associated access strings: Acc = {λ, 0, 1, 10}. Every
leaf is labeled with a vector corresponding to the probability distribution of the state, where the first element is the
probability of $, the second element is the probability of 0, and the last element is the probability of 1. For example:
π(qλ) = (0, 0.5, 0.5). Tree arcs are labeled with quantization vectors. To simplify the visualization, only partition
indexes are shown. For instance, (0, 5, 5) corresponds to the quantization vector (I010, I

5
10, I

5
10). The root λ of the

tree has an arc for each one of the classes in which quantization partitions the set of probability distributions of
the states of the PDFA. In the example, there are three, namely quantization vectors (0, 5, 5), (1, 6, 3), and (1, 3, 6),
corresponding to distributions (0, 0.5, 0.5), (0.1, 0.6, 0.3), and (0.1, 0.3, 0.6), respectively. The tree explains that
states qλ and q1 are not equivalent, i.e., [λ] = qλ ̸≡ q1 = [1], because π∗(λ|qλ) = π(qλ) ̸= π(q1) = π∗(λ|q1),
and they are distinguished by λ ∈ Dis. They are also not equivalent to q0 and q10 for the same reason. These
two states, which have the same probability distribution, are indeed distinguished by the string 1 ∈ Dis because
π∗(1|q0) = π(q10) ̸= π(q1) = π∗(1|q10).

Finding the class of a state (sifting) Given a string s′ ̸∈ Acc, the tree allows to efficiently determine its class [s′].
That means either finding an access string s ∈ Acc such that [s′] = [s] or creating a new class by adding s′ to Acc.
To this end, we define the sifting operation as follows. Sift starts at the root of T . Let d ∈ Dis be the distinguishing
string at the current node of the tree. In this case, we perform a membership query to get

〈
MQQuaNT(s

′d)
〉

and then
we descend to the subtree labeled with such quantization vector. Sift continues in this manner until a leaf s ∈ Acc
is reached, in which case, [s] = [s′]. If there is no arc labeled with the same quantization vector, we have discovered
a new class and must update the tree (sift-update) by adding s′ to Acc with probability MQQuaNT(s

′) and a new
arc (d,

〈
MQQuaNT(s

′d)
〉
, s′). Sifting can be efficiently implemented because the number of membership queries is

bounded by the depth of T , and finding quantization vectors and asking membership queries can be cached to minimize
the number of vector comparisons and queries to the target system, respectively.

Building a tentative hypothesis Â Given a tree T , it is easy to construct Â using sift. Each state of Â is uniquely
identified with an access string in Acc. For each state qs, s ∈ Acc, and symbol σ ∈ Σ, τ(qs, σ) = qs′ , where
s′ = sift(sσ), and π(qs) is the probability distribution associated with the leaf node s. In the case that sift generates
an update, the building process is restarted. Because of Prop. 5, this eventually terminates. Moreover, by construction,
Â is a PDFA.

Equivalence queries For EQQuaNT we use an adaptation of Hopcroft-Karp where states are compared as follows:
⟨π(q̂)⟩κ = ⟨π(q)⟩κ, where q is a state of the target PDFA A and q̂ is a state of the hypothesis PDFA Â.

Processing a counterexample Let γ be a counterexample returned by EQQuaNT, that is π∗
A(γ) ̸=κ π∗

Â
(γ). Let

γi be the i-th symbol of γ, γ[i] be the prefix of γ of length i, i.e., γ[i] = γ1...γi, si = sift(γ[i]), and ŝi the string
associated to the state τ∗

Â
(γ[i]). Let 1 ≤ j ≤ |γ| be the first index such that ŝj ̸= sj . This means that [ŝj ] ̸= [sj ] and

ŝj−1 = sj−1, but the states reached by Â and A after traversing γ[j− 1] are not equivalent since when continued with
γj they reach non-equivalent states. That is, [sj−1] ̸= [γ[j − 1]]. Therefore, T has to be updated by adding a new
leaf node γ[j − 1] representing the newly discovered class. Then, γ[j − 1] is added to Acc. Now, let d ∈ Dis be the
least common ancestor in T of ŝj and sj . Then γjd is a distinguishing string for sj−1 and γ[j − 1]. In terms of tree
operations, the leaf sj−1 is replaced by an inner node γjd and two children, namely sj−1 and γ[j − 1].

Complete algorithm Algorithm 1 shows QuaNT pseudocode. The algorithm begins by executing BuildSin-
gleStatePDFA which creates an initial hypothesis Â, with a single state qλ with a loop for each symbol and executes
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Algorithm 1: QuaNT

Parameter: Quantization Parameter κ
Output : PDFA Â

1 Â← BuildSingleStatePDFA(κ);
2 γ ← EQQuaNT(Â, κ);
3 if γ = ⊥ then
4 return Â;
5 T ← InitializeTree(γ, κ);
6 while γ ̸= ⊥ do
7 Â← BuildAutomaton(T );
8 γ ← EQQuaNT(Â, κ);
9 if γ ̸= ⊥ then

10 T ← UpdateTree(T, γ, κ);

11 return Â;

MQQuaNT(λ) to get the probability distribution for the state. Then, it calls EQQuaNT(Â, κ), which either returns ⊥
and terminates or a counterexample γ enabling the initialization of the tree. The first tree T has a root labeled with the
distinguishing string λ and two children, one with the access string λ and the other with the counterexample γ. Once
T is initialized, the main loop of the algorithm begins. It consists in using T to build a PDFA Â, then using EQQuaNT
to compare it with the target PDFA A. If a counterexample is returned, T is updated, resulting in new states being
discovered. Otherwise it means all states in Q/≡κ

have been found which implies Â ≡κ A.

Proposition 6. For any PDFA A, QuaNT terminates and computes a PDFA Â ∈ A/≡κ
.

4 Experiments

In this section we present the results of the experiments carried out to compare QuaNT with a clustering-based
algorithm that uses an observation table and a tolerance-based non-equivalence similarity relation, similar to WL∗,
that we call L∗

p (see Appendix A). We compared the learning algorithms on randomly generated PDFA. The generation
technique works in two steps. First, it constructs random DFA over Σ. Second, DFA are transformed into PDFA by
assigning a probability distribution over Σ$ to every state. The first step uses the method described in [11] based
on results from [4]. Let n be the desired number of reachable states of a DFA, called its nominal size. The method
consists in randomly generating DFA of a total of n · m · ρ−1

m possibly unreachable states, for m = |Σ|, where
ρm = m − W0 · m · e−m and W0 is the Lambert-W function, and then computing its accessible part by a depth-
first traversal. It is important to remark that this method does not guarantee the actual size of the accessible part to
be exactly n, but to be normally distributed around n. To obtain exactly n accessible states, the method could be
repeated using a rejection algorithm. However, in practice, this proved to be very inefficient, being almost impossible
to generate DFA of accessible size bigger than 100 in reasonable time. All experiments threw perfect scores for
all computed metrics (word error rate, normalized discounted cumulative gain, log probability error [15]) for all
algorithms on the same test set of strings. Therefore, the analyses of the experimental results are mainly focused on
execution time and structure size. For ease of comparison, figures show trend lines.

4.1 Experiment 1

In this experiment we compared QuaNT and L∗
p. For this, 10 random PDFA over a binary alphabet (m = 2) of

nominal sizes n = 100, 200, 300 were generated, and each algorithm was run 10 times for each PDFA. For QuaNT
κ = 1000, and for L∗

p, t = κ−1 (Prop 4). Fig. 4a shows learning time medians for every actual size. Notably,
L∗
p execution time grows much faster than QuaNT’s. Indeed, QuaNT achieves a speedup of approximately 0.2n,

reaching around 60x for the biggest PDFA (see Fig. 6a). This experiment also showed that the size of L∗
p’s observation

table grows bigger than QuaNT’s tree which partly explains the gains in execution time (Fig. 4b).
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4.2 Experiment 2

In this experiment 10 random PDFA of nominal size n = 100 were generated for alphabet size m = 2, 4, 8, 16, 32.
We compared QuaNT and L∗

p with κ = 1000 and t = κ−1. Each algorithm was run 10 times for each PDFA. Fig. 5a
shows the learning time medians for every alphabet size. As it can be seen L∗

p seems to be more sensitive to the growth
in the alphabet size.

4.3 Experiment 3

In this experiment, we compare the algorithms for different values of tolerance and quantization parameter: κ =
10, 100, 500, 1000, 2000, 3000, with t = κ−1. For every parameter configuration 10 random PDFA of nominal size
n = 300 and alphabet size m = 2 were generated, and each algorithm was run 10 times for each PDFA. Fig. 5b
shows the median learning times. As it can be seen both algorithms appear to stabilize its execution time after some
parameters sizes (κ = 500, t = 1/1000).

4.4 Experiment 4

Here, QuaNT was evaluated on bigger nominal sizes n = 1000, 2000, 5000, fixing κ = 1000 and m = 2. For
every parameter configuration, 10 random PDFA were generated and each algorithm was run 10 times for each PDFA.
Fig. 6b shows median learning times. Clearly, QuaNT still manages to learn PDFA from systems that are intractable
for L∗

p. Assuming a linear speedup of 0.2n from Experiment 4.1, the learning time of a PDFA of size 5000 would be
almost a month for L∗

p.

4.5 Experiment 5

In previous experiments it is noted that nearly all states in the randomly generated PDFA have distinct next symbol
distributions, that is, most states are distinguished by λ, thus producing shallow tree structures (depth 1 or 2). In order
to analyze cases where states share next symbol distributions we parameterized the PDFA random generation by a
number d of distributions to use. The algorithm first randomly generates a set of d distributions and then labels each
state by uniformly picking one in this set.

For this experiment, 10 random PDFA over a binary alphabet (m = 2) of nominal size n = 300 were generated
for different values of d (ranging from 2 to 16). Each algorithm was run 10 times for each PDFA. For QuaNT,
κ = 1000, and for L∗

p, t = κ−1 (Prop 4). Fig. 7a shows learning time medians for every d value. Notably, L∗
p

execution time still grows faster than QuaNT’s. The only case where QuaNT achieves worse learning time than
L∗
p is for d = 2. Otherwise, QuaNT significantly benefits from the increase in d. Regarding structure sizes, L∗

p’s
observation table grows bigger than previous experiments, being negatively affected by smaller values of d. However
QuaNT maintains similar sizes to those observed in experiment 1 (Fig. 7b).

5 Conclusions

We defined a robust notion of similarity of states in PDFA based on a congruence over states and a quantization of
their probability distributions. This induces a precisely defined inductive bias for PDFA learning as a set of quantized
weakly minimal PDFA. Based on this, we developed a new PDFA active MAT-learning algorithm called QuaNT which
uses an n-ary tree to efficiently learn a PDFA in the hypothesis space. In order to empirically assess the efficiency
of QuaNT, we presented an adaptation of WL∗, namely L∗

p, which works with a non-equivalence similarity relation
over distributions and an observation table. Algorithms were compared on a number of randomly generated PDFA.
The experiments confirmed notable execution time gains achieved by QuaNT.
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A L∗
p

Here we present L∗
p, a variant of WL∗ [15]. Similarly, it uses an observation table OPre,Suf for storing outcomes of

MQL∗
p
, where Pre ⊂ Σ∗ is the set of prefixes (stored in row indices) and Suf ⊂ {$} ∪ Σ+ is the set of suffixes

(stored in column indices). For every p ∈ Pre and s ∈ Suf , OPre,Suf [p, s] = MQL∗
p
(ps) = πℓ

qin(ps), where πℓ

is defined in (1). Unlike WL∗, Pre is divided in two parts [6], namely RED which are the rows used to construct
states, and BLUE which are the rows representing continuations. The algorithm ensures that for every row in RED
all its continuations are in Pre. L∗

p consists of three main steps. The first one expands OPre,Suf through the use
of MQL∗

p
until it becomes closed and consistent. The second one constructs a hypothesis automaton using a greedy

clustering technique rather than DBScan. The third one calls EQL∗
p

with the proposed hypothesis. For this we adapted

Hopcroft-Karp algorithm for checking t-similarity. When A and Â are found to be not t-similar, EQL∗
p

returns a
counterexample which is added to RED together with all its prefixes, and all their continuations to BLUE (provided
they are not already in RED). These steps are repeated as long as EQL∗

p
yields a counterexample, otherwise it stops

and returns the last hypothesis.

B Proofs

Proof of Proposition 1

1. By hypothesis, π∗(λ|q1) = π∗(λ|q2). By definition, π∗(λ|qi) = π(qi), i = 1, 2. Therefore, π(q1) = π(q2).

2. By hypothesis, ∀s ∈ Σ∗, π∗(σs|q1) = π∗(σs|q2). By definition, π∗(σs|qi) = π∗(s|τ(qi, σ)), i = 1, 2. Thus,
∀s ∈ Σ∗, π∗(s|τ(q1, σ)) = π∗(s|τ(q2, σ)). Hence, τ(q1, σ) ≡ τ(q2, σ).

7
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Proof of Proposition 2 Clearly, for all q, q′ ∈ Q, if q ≡ q′ then P (s|q) = P (s|q′) for every s ∈ Σ∗. Hence,
P (s| [qin]) = P (s|qin).

Proof of Proposition 3 Suppose that A is not weakly minimal. Then, there are states in A which are equivalent.
Thus, A/≡, which computes the same function as A, has strictly less states than A, which contradicts the hypothesis.

Proof of Proposition 4 q ≡κ q′ implies π∗(s|q) =κ π∗(s|q′) for all s ∈ Σ∗. Therefore, πℓ
q(sσ) =κ πℓ

q′(sσ) for all
s ∈ Σ∗, σ ∈ Σ$. Then, |πℓ

q(sσ)− πℓ
q′(sσ)| ≤ κ−1 for all s ∈ Σ∗, σ ∈ Σ$. Hence, q ≈κ−1 q′.

Proof of Proposition 5 If s, s′ ∈ Acc then [s] ̸= [s′], hence |Acc| ≤ |Q/≡κ
|.

Proof of Proposition 6
Termination First notice that all inner operations terminate. Second, when a counterexample is returned, the number
of leaves of T increases by at least 1. Therefore by Proposition 5 and the fact that |Q/≡κ | ≤ |Q|, QuaNT terminates.
Correctness When QuaNT terminates, the hypothesis Â constructed is such that Q̂ = Q/≡κ

, π̂ = π/≡κ
, τ̂ = τ/≡κ

.
Therefore Â ≡κ A.

C Figures
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Figure 1: (a-b) PDFA over Σ = {a} with qin = q0. (c) PDFA Aε.
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Figure 2: PDFA A (left) and B (right).
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Figure 3: An n-ary classification tree (left), and the corresponding PDFA (right)

(a) Execution time. (b) Structure size.

Figure 4: Experiment 1
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(a) Experiment 2. (b) Experiment 3.

Figure 5: Experiments 2 and 3.

(a) Experiment 1 (Speedup).

(b) Experiment 4.

Figure 6: Experiments 1 (Speedup) and 4.
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(a) Execution time. (b) Structure size.

Figure 7: Experiment 5.
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