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A B S T R A C T

The operation of a system, such as a vehicle, communication network or automatic process, heavily depends on
the correct operation of its components. A Stochastic Binary System (SBS) mathematically models the behavior
of on-off systems, where the components are subject to probabilistic failures. Our goal is to understand the
reliability of the global system.

The reliability evaluation of an SBS belongs to the class of NP-Hard problems, and the combinatorics of
SBS imposes several challenges. In a previous work by the same authors, a special sub-class of SBSs called
separable systems was introduced. These systems accept an efficient representation by a linear inequality on
the binary states of the components. However, the reliability evaluation of separable systems is still hard.

A theoretical contribution in the understanding of separable systems is given. We fully characterize sepa-
rable systems under the all-terminal reliability model, finding that they admit efficient reliability evaluation
in this relevant context.
1. Introduction

Research on system reliability includes different models, metrics
and algorithms for analyzing how the possible failures of components
affect the behavior of a complex system. The practical applications of
system reliability analysis are steadily growing in frequency and diver-
sity. We mention just a few examples here. For instance, Johansson
et al. [1] considers a joint reliability/vulnerability analysis of critical
infrastructures, with a practical impact into electrical networks. The
article by Macchi et al. [2] develops a reliability model in order to iden-
tify critical elements in a railway system. The results have practical use
in the Italian public company Rete Ferroviaria Italiana. The work by Li
et al. [3] discusses two measures of infrastructure networks increasingly
dependent on information systems, namely connectivity reliability and
the topological controllability in terms of topology, robustness, and
node importance, taking eight city-level power transmission networks
and thousands of artificial networks to discuss the use of these mea-
sures to improve reliability-based design. The work by Muriel-Villegas
et al. [4] analyzes the impact of natural hazards on transportation
networks in Colombia, focusing on the connectivity reliability and
vulnerability of inter-urban transportation affecting remote populations
in the case of disasters such as floods.

Classical network analysis was developed taking into account a
system modeled as a graph, where either nodes or links (or both) are
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subject to failure, and where the system as a whole works correctly
when the subgraph resulting from deleting the failed components ver-
ifies some connectivity constraint (in general, that a given subset of
nodes is connected; this includes all terminal connectivity and source-
terminal connectivity as special cases). The theory of stochastic binary
systems can be seen as a generalization of network reliability models;
as the system structure function in an SBS can be any arbitrary boolean
function of the components, instead of a variant of a connectivity
function over a graph.

The mathematical understanding of SBS involves challenges in
terms of complexity, combinatorics, and reliability analysis. In the
most general setting, even the determination of operational or non-
operational configurations are algorithmically hard problems. Under a
realistic assumption of monotonicity or well-behavior, finding minimally
operational configurations accept efficient algorithms; see [5] for de-
tails. The interplay between static systems and dynamical stochastic
binary systems is also being explored, in terms of stochastic pro-
cesses [6]. The lifetimes of independent random variables govern a
stochastic process where the components fail, until a non-operational
system is obtained. An elegant interplay between these dynamical
systems provides a new approach to reliability estimation.

The reliability evaluation of SBS belongs to the class of -Hard
problems. Furthermore, reliability evaluation of special (well-behaved)
vailable online 5 September 2021
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SBS also belongs to this class. This fact promotes the need of dis-
tinguished sub-classes, and the development of novel approximative
techniques. In [7] the concept of separability in stochastic binary
systems was introduced. As discussed below, separable systems are
those whose structure function can be characterized by a hyperplane
separating operational from failure states. Separable systems have some
particular properties which can be of interest in the study of system
reliability.

This paper aims to advance in the analysis of separable system.
Specifically, the contributions of the present work can be summarized
as follows:

1. Useful characterization of separable systems are established.
2. A separable system under the all-terminal reliability model is

called a separable graph. We fully characterize separable graphs.
As a corollary, we conclude that the reliability evaluation of
separable graphs can be obtained in linear time.

3. A discussion of the level of separability for non-separable sys-
tems is presented.

The remainder of this paper is organized in this way. Section 2
resents the main definitions of stochastic binary systems and separa-
le systems. A theoretical analysis of separable systems is covered in
ection 3. A particular analysis of the all-terminal reliability model is
resented in Section 4. Generalizations of the concept of separability
y hyperplanes are studied in Section 5. Finally, Section 6 presents
oncluding remarks and trends for future work.

. Stochastic binary systems and separable systems

In this paper we will use the following definitions and notation.

efinition 1 (SBS). A stochastic binary system (SBS) is a triad  =
(𝑆, 𝑟, 𝜙):

• 𝑆: ground (finite) set of components, usually 𝑆 = {1,… , 𝑁}; a
configuration or a state of the system is an element of 𝛺 = {𝜎 ∶
𝑆 → {0, 1}}.

• 𝑟: probability measure on 𝛺.
• 𝜙 ∶ 𝛺 → {0, 1}: structure function.

Given a state 𝜎 ∈ 𝛺, 𝜙(𝜎) = 1 means that the system is in an
operational state; we call 𝜎 a pathset. Respectively, if 𝜙(𝜎) = 0 then
the system is in a failure state; we call 𝜎 a cutset.

The reliability of a SBS is its probability of correct operation:

𝑅 = 𝑃 (𝜙 = 1) =
∑

𝜎∈𝛺∶𝜙(𝜎)=1
𝑟(𝜎). (1)

The unreliability of  is 𝑈 = 1 − 𝑅 .
Two special configurations are the all-operational state, 𝟏 =

(1, 1,… , 1), and the all-failed state, 𝟎 = (0, 0,… , 0).
We will denote by < the usual partial order in 𝛺, where 𝜔 < 𝜎 iff

𝜔𝑖 ≤ 𝜎𝑖 for all 𝑖 ∈ 𝑆 and there exists 𝑗 ∈ 𝑆 such that 𝜔𝑗 < 𝜎𝑗 .

Definition 2 (SMBS). An SBS is monotone if the structure function 𝜙 is
monotonically increasing with respect to the usual partial order in 𝛺
(i.e, if 𝜔 < 𝜎 then 𝜙(𝜔) ≤ 𝜙(𝜎)), 𝜙(0) = 0 and 𝜙(1) = 1. We denote such
an SBS as a Stochastic Monotone Binary System (SMBS).

Definition 3 (Minpaths/Mincuts). Let  = (𝑆, 𝑟, 𝜙) be an SMBS:

• A pathset 𝜎 is a minpath if 𝜙(𝜔) = 0 for all 𝜔 < 𝜎.
• A cutset 𝜔 is a mincut if 𝜙(𝜎) = 1 for all 𝜎 > 𝜔.
• A 𝜎-ray is the set 𝑆𝜎 = {𝜔 ∈ 𝛺 ∶ 𝜔 ≥ 𝜎}.

An SMBS is fully characterized by its mincuts (or its minpaths). In
fact, if we are given the complete list of minpaths, then the complete
list of pathsets is precisely the union of the 𝜎-rays among all minpaths
2

𝜎.
As the class of SMBSs include the classical 𝐾-terminal graph relia-
bility problem, which is known to belong to the -Hard class [8],
the reliability evaluation of an SMBS belongs to the class of -
Hard problems. Of course the same applies for the (still more general)
problem of reliability evaluation of an SBS.

We consider in what follows 𝑆 = {1,… , 𝑁}, so that 𝛺 = {0, 1}𝑁 is
the set of the extremal points of the unit hypercube in R𝑁 .

A hyperplane in the Euclidean space R𝑁 is fully characterized by
its normal vector 𝑛 and a point 𝑃 that belongs to the hyperplane:
⟨𝑛,𝑋 − 𝑃 ⟩ = 0, where ⟨𝑥, 𝑦⟩ =

∑𝑁
𝑖=1 𝑥𝑖𝑦𝑖 is the inner product. If we

denote 𝑛 = (𝑛1,… , 𝑛𝑁 ) and ⟨𝑛, 𝑃 ⟩ = 𝛼0, the points of the hyperplane
are those satisfying the equation ∑𝑁

𝑖=1 𝑛𝑖𝑥𝑖 = 𝛼0. For ease of discussion
(and without losing generality) we will choose the representation of a
hyperplane so that any cutset 𝜔 lies on the hyperplane or in its negative
side (i.e. the geometric points that verify ∑𝑁

𝑖=1 𝑛𝑖𝜔𝑖 ≤ 𝛼0), and any
pathset 𝜎 lies on the positive side of the hyperplane (i.e. ∑𝑁

𝑖=1 𝑛𝑖𝜎𝑖 > 𝛼0).
Such representation is justified by the following observation: for any

separating hyperplane 𝐻 , there exists 𝐻 ′ ∼ 𝐻 (that is, a hyperplane
𝐻 ′ separating the same subset of cutsets and pathsets as 𝐻), with non-
negative components of the normal vector, such that ‖𝑛‖1 =

∑𝑁
𝑖=1 𝑛𝑖 =

1.

Definition 4 (Separable System). An SBS is separable if the cutsets/
pathsets can be separated by some hyperplane in R𝑁 .

Fig. 1 shows an example of a separable SBS with three components.
A generic state 𝜎 = (𝜎1, 𝜎2, 𝜎3) is operative if and only if at least two
components satisfy 𝜎𝑖 = 1. In that example a separating hyperplane
is defined by the equation ∑3

𝑖=1 𝑛𝑖𝑥𝑖 = 1
3 , where the normal vector is

𝑛 = ( 13 ,
1
3 ,

1
3 ).

It turns out that separable systems are a special sub-class of SMBSs.
However, in Section 3 we will build an infinite family of examples of
SMBSs that are not separable.

3. Analysis of separable systems

In this section we present results concerning the complexity and
characterization of separable systems. Even though separable systems
accept an efficient representation, their reliability evaluation is compu-
tationally hard.

Theorem 1 (Theor. 4, [5]). The reliability evaluation of separable systems
belongs to the class of -Hard problems.

Separable systems can be characterized using Hahn–Banach separa-
tion theorem for compact and convex sets [9]. If 𝐶𝐻() and 𝐶𝐻()
denote the convex hull of the pathsets and cutsets respectively, then
following result holds:

Theorem 2 (Prop. 3, [7]). An SBS is separable iff 𝐶𝐻() ∩ 𝐶𝐻() = ∅.

While the structure function of some SMBS can be defined by a
hyperplane, there exist SMBSs that are not separable. In fact, consider
an arbitrary number of components 𝑁 ≥ 4, and the SMBSs family 𝑁
characterized by two mincuts {𝜔1, 𝜔2} such that 𝜔2 = 1−𝜔1, and 𝜔1 is
defined as follows:

𝜔1
𝑖 = 1, ∀𝑖 = 1,… , ⌊𝑁∕2⌋,

𝜔1
𝑖 = 0, ∀𝑖 = ⌊𝑁∕2⌋ + 1,… , 𝑁.

Consider the states 𝜎1 and 𝜎2, such that 𝜎2 = 1 − 𝜎1, and

𝜎12𝑖−1 = 1, ∀𝑖 = 1,… , ⌊𝑁∕2⌋,

𝜎12𝑖 = 0, ∀𝑖 = 1,… , ⌊𝑁∕2⌋.

First, observe that 𝜎1 and 𝜎2 are not upper-bounded by 𝜔1 nor 𝜔2

(i.e., the inequalities 𝜎𝑖 ≤ 𝜔𝑗 do not hold, for any pair 𝑖, 𝑗 ∈ {1, 2}).
Therefore, 𝜎1 and 𝜎2 must be pathsets, since  is the SBS characterized
𝑁
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Fig. 1. States of the SBS are represented by the vertices of the cube. Blue and dashed lines correspond to the intersection of the separating plane (containing a point 𝑃 , and with
normal vector 𝑛) with the lateral faces of the cube. Red vertices are the non-operative states, and green vertices are the operative ones. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
by the mincuts 𝜔1 and 𝜔2. Further, 𝜎1+𝜎2
2 = 𝜔1+𝜔2

2 = 1
21. By Hahn–

Banach theorem, the infinite family of SMBSs {𝑁}𝑁≥4 is not separable
(see Theorem 2). By an exhaustive analysis, it can be observed that all
SMBS are separable systems when the number of components is not
greater than three. A geometric interpretation is also feasible in this
cases. However, the challenges arise in higher dimensions.

In the following, we consider an alternative characterization of
separable systems in terms of weighted cutsets and pathsets. Consider
an arbitrary assignment 𝑛1,… , 𝑛𝑁 of non-negative numbers to the
respective components of the system. The condition ∑

𝑖∶𝜎𝑖=1 𝑛𝑖 ≥ 𝛼0 for
all the pathsets is equivalent to finding the pathset 𝜎 with minimum-
cost, 𝑐(𝜎) =

∑

𝑖∶𝜎𝑖=1 𝑛𝑖, and testing if 𝑐(𝜎) ≥ 𝛼0. Analogously, the
condition ∑

𝑖∶𝜔𝑖=1 𝑛𝑖 < 𝛼0 for all the cutsets is equivalent to testing
whether the cutset 𝜔 with minimum cost, 𝑐(𝜔) =

∑

𝑖∶𝜔𝑖=0 𝑛𝑖, satisfies
the test 𝑆 − 𝑐(𝜔) < 𝛼0, where 𝑆 =

∑𝑁
𝑖=1 𝑛𝑖 is the cost of the global

system. Observe that, for convenience, the cost of a cutset is defined
as the sum of the components under failure. In particular, we get the
following characterization of separable systems:

Theorem 3. An SBS is separable if and only if there exists an assignment
of non-negative costs to the components {𝑛𝑖}𝑖=1,…,𝑁 such that 𝑆 < 𝑐(𝜎) +
𝑐(𝜔), where 𝑐(𝜎) and 𝑐(𝜔) denote pathset/cutset minimum-cost respectively.

Proof. First, let us assume that we have a separable SBS with hyper-
plane ∑𝑁

𝑖=1 𝑛𝑖𝑥𝑖 = 𝛼0. Using the previous reasoning, the assignment
{𝑛𝑖}𝑖=1,…,𝑁 verifies 𝑐(𝜎) ≥ 𝛼0 and 𝑆 − 𝑐(𝜔) < 𝛼0. Therefore, 𝑆 <
𝑐(𝜔) + 𝑐(𝜎).

For the converse, let us fix 𝛼0 = 𝑐(𝜎), the pathset with minimum
cost. Clearly, the specific pathset 𝜎 meets the condition ∑𝑁

𝑖=1 𝑛𝑖𝜎𝑖 ≥ 𝛼0;
in fact the equality is met. By its definition, the inequality holds for
the other pathsets. Finally, we use the fact that 𝑆 < 𝑐(𝜔)+𝑐(𝜎) to verify
that the cutset with minimum-cost, 𝜔, meets the inequality ∑𝑁

𝑖=1 𝑛𝑖𝜔𝑖 <
𝛼0. The inequality for the other cutsets is straight since 𝜔 is a cutset
with minimum-cost. Therefore, the SBS is separable, concluding the
proof. □

4. Separability in graphs

Our characterization of separable systems has a straightforward
reading in the all-terminal reliability model.

Definition 5 (Separable Graph). A graph 𝐺 = (𝑉 ,𝐸) is separable if there
exists an assignment of non-negative real numbers 𝑛1,… , 𝑛𝑚 to its 𝑚
links, and there exists a threshold 𝛼 such that 𝑐(𝐸′) ≥ 𝛼 if and only if

′ ′
3

the spanning subgraph 𝐺 = (𝑉 ,𝐸 ) is connected.
Let 𝐺 be a connected weighted graph. Recall the Kruskal algorithm
provides efficiently the cost of the minimum spanning tree, 𝑀𝑆𝑇 (𝐺).
Furthermore, the cutset with minimum-cost, 𝑚(𝐺), is obtained using
the Ford–Fulkerson algorithm. Therefore, the following corollary of
Theorem 3 holds for graphs:

Corollary 1. A graph is separable iff there exists a feasible assignment
{𝑛𝑖}𝑖=1,…,𝑁 to the links such that 𝑆 < 𝑀𝑆𝑇 (𝐺) + 𝑚(𝐺), where 𝑀𝑆𝑇 (𝐺)
is the cost of the minimum spanning tree, 𝑚(𝐺) the mincut with minimum
capacity, and 𝑆 =

∑𝑁
𝑖=1 𝑛𝑖 the sum of the link weights.

For example, trees and elementary cycles are separable graphs.
Indeed, if 𝑇𝑛 is a tree with 𝑛 nodes, a feasible assignment is an identical
unit-cost to all the links, since in that case 𝑀𝑆𝑇 (𝑇𝑛) = 𝑛 − 1, 𝑚(𝐺) = 1
and the global sum is 𝑆 = 𝑛− 1 < 𝑀𝑆𝑇 (𝑇𝑛) +𝑚(𝑇𝑛). Analogously, if 𝐶𝑛
denotes the elementary cycle with 𝑛 nodes, then 𝑆 = 𝑛 < (𝑛 − 1) + 2 =
𝑀𝑆𝑇 (𝐶𝑛) + 𝑚(𝐶𝑛), and the same unit-cost assignment works.

Intuitively, if the graph is dense enough, one would expect that
the combined cost of a minimum spanning tree and mincut should not
exceed 𝑆, the global cost of the graph.

Our first result deals with the extremal case of complete graphs:

Proposition 1. Complete graphs (𝐾𝑛)𝑛≥4 are nonseparable.

Proof. Consider an arbitrary assignment {𝑛𝑖}𝑖=1,…,𝑛(𝑛−1)∕2 to the links
of 𝐾𝑛, and an arbitrary star-graph 𝐾1,𝑛 contained in 𝐾𝑛. Since 𝐾1,𝑛
is connected, its cost is greater than, or equal to the cost of the
minimum spanning tree, so, 𝑐(𝐾1,𝑛) ≥ 𝑀𝑆𝑇 (𝐾𝑛). Furthermore, the
complementary links of 𝐾1,𝑛, or the complementary graph 𝐾𝐶

1,𝑛, is a
cutset (it isolates a single node), so the cost must exceed the mincut:
𝑐(𝐾𝐶

1,𝑛) ≥ 𝑚(𝐾𝑛). But then, the global cost is 𝑐(𝐾𝑛) = 𝑐(𝐾1,𝑛) + 𝑐(𝐾𝐶
1,𝑛) ≥

𝑀𝑆𝑇 (𝐾𝑛)+𝑚(𝐾𝑛). The conclusion is that 𝑆 = 𝑐(𝐾𝑛) ≥ 𝑀𝑆𝑇 (𝐾𝑛)+𝑚(𝐾𝑛)
for any feasible assignment, and 𝐾𝑛 is nonseparable. □

With the following lemmas, we will present a hereditary property
of separable graphs, stated in Theorem 4. Consider a simple connected
graph 𝐺 = (𝑉 ,𝐸). We will consider two different link additions:

• We denote 𝐺𝑖𝑛 = 𝐺 + 𝑒𝑖𝑛 to the resulting graph after the addition
of an internal link 𝑒𝑖𝑛 = {𝑢1, 𝑢2}, where 𝑢1, 𝑢2 ∈ 𝑉 .

• We denote 𝐺𝑜𝑢𝑡 = 𝐺+𝑒𝑜𝑢𝑡 to the resulting graph after the addition
of an external link 𝑒𝑜𝑢𝑡 = {𝑢1, 𝑢2}, where 𝑢1 ∈ 𝑉 but 𝑢2 ∉ 𝑉 .

Observe that 𝐺 + 𝑒𝑖𝑛 and 𝐺 share an identical node-set 𝑉 , while the
node-set for 𝐺 + 𝑒𝑜𝑢𝑡 is 𝑉 ∪ {𝑢2}.
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Lemma 1. If 𝐺 is nonseparable then 𝐺𝑜𝑢𝑡 is nonseparable.

Proof. Suppose for a moment that there exists a feasible assignment
{𝑛𝑖}𝑖=1,…,𝑁+1 for 𝐺𝑜𝑢𝑡. Then:

(
𝑁
∑

𝑖=1
𝑛𝑖) + 𝑛𝑁+1 < 𝑀𝑆𝑇 (𝐺𝑜𝑢𝑡) + 𝑚(𝐺𝑜𝑢𝑡)

= 𝑀𝑆𝑇 (𝐺) + 𝑛𝑁+1 + min{𝑚(𝐺), 𝑛𝑁+1}

≤ 𝑀𝑆𝑇 (𝐺) + 𝑛𝑁+1 + 𝑚(𝐺),

and {𝑛𝑖}𝑖=1,…,𝑁 would be a feasible assignment for 𝐺, which is a
ontradiction. Therefore, 𝐺𝑜𝑢𝑡 is nonseparable. □

emma 2. If 𝐺 is nonseparable then 𝐺𝑖𝑛 is nonseparable.

roof. Suppose for a moment that there exists a feasible assignment
𝑛𝑖}𝑖=1,…,𝑁+1 for 𝐺𝑖𝑛. Then:
𝑁
∑

𝑖=1
𝑛𝑖) + 𝑛𝑁+1 < 𝑀𝑆𝑇 (𝐺𝑖𝑛) + 𝑚(𝐺𝑖𝑛)

≤ 𝑀𝑆𝑇 (𝐺) + 𝑚(𝐺) + 𝑛𝑁+1,

and {𝑛𝑖}𝑖=1,…,𝑁 would be a feasible assignment for 𝐺, which is a
contradiction. Therefore, 𝐺𝑖𝑛 is nonseparable. □

Observe that Lemma 2 informally states that graphs with more
density are nonseparable. Using the contrapositive of Lemmas 1 and
2 we obtain the following:

Theorem 4. Separability is a hereditary property in graphs.

Proof. Reading the contrapositive of Lemma 2, we know that the dele-
tion of one or several links from a separable graph is also separable. By
Lemma 1, we also know that a node-deletion in a separable graph (with
the intermediate deletion of links using Lemma 2) is also separable.
Combining node and link deletions, an arbitrary subgraph is obtained,
and it must be separable as well. □

Lemma 3. If 𝐺 is separable, 𝐺𝑜𝑢𝑡 is also separable.

Proof. Consider a feasible assignment {𝑛𝑖}𝑖=1,…,𝑁 for 𝐺, where 𝑆 <
𝑀𝑆𝑇 (𝐺) + 𝑚(𝐺) holds. Let us consider an extended assignment with
𝑛𝑁+1 for the external link, such that 𝑛𝑁+1 > 𝑚(𝐺). Then:

𝑆 + 𝑛𝑁+1 < (𝑀𝑆𝑇 (𝐺) + 𝑛𝑁+1) + 𝑚(𝐺)

= 𝑀𝑆𝑇 (𝐺𝑜𝑢𝑡) + min{𝑚(𝐺), 𝑛𝑁+1}

= 𝑀𝑆𝑇 (𝐺𝑜𝑢𝑡) + 𝑚(𝐺𝑜𝑢𝑡),

and {𝑛𝑖}𝑖=1,…,𝑁+1 is a feasible assignment for 𝐺𝑜𝑢𝑡. □

We define a cycle with arborescences as a connected graph with a
single cycle. In a cycle with arborescences, each node either belongs
to the single cycle, or belongs to a tree ‘‘dangling’’ from a node in the
cycle.

It is interesting to observe that any connected graph with the
same number of nodes and links is either a cycle or a cycle with
arborescences.

Corollary 2. Cycles with arborescences are separable graphs

Proof. We know that elementary cycles are separable. The result
follows by the addition of one or several trees hanging to different
nodes from the first cycle. Supported by Lemma 3, the separability is
preserved by the addition of those links. □

Fig. 2 depicts Monma graphs. These graphs have two degree-3 nodes
connected by 3 node-disjoint paths. Every proper subgraph of a Monma
4

Fig. 2. Monma graph 𝑀𝑙1+1,𝑙2+1,𝑙3+1.

graph is either a unicyclic graph, a tree, or a disconnected graph.
Therefore, every proper subgraph of a Monma graph is separable. We
will see that Monma graphs are minimally nonseparable graphs. Clyde
Monma et al. used these graphs to design minimum cost biconnected
metric networks [10]. Some (but not all) of these graphs also attain the
maximum reliability among all the graphs with 𝑝 nodes and 𝑞 = 𝑝 + 1
links [11].

Lemma 4 (L. Stábile). Monma graphs are nonseparable

Proof. Consider an arbitrary order for the links of Monma graph, and
the rule 𝜙(𝜎) = 1 iff the Monma subgraph given by the links in subgraph
𝜎 is connected. We will show that the convex hull of pathsets and
cutsets meet at some point, and the result is established by Theorem 2.
Consider the four links 𝑒1 = {𝑢, 𝑎1}, 𝑒2 = {𝑎1, 𝑎2}, 𝑒3 = {𝑢, 𝑏1} and
𝑒4 = {𝑏1, 𝑏2} from Fig. 2. Let 1𝑒𝑖 ,𝑒𝑗 denote the binary word that is set to
1 in all the bits but 0 in the positions corresponding to the links 𝑒𝑖 and
𝑒𝑗 . Consider the following identity:

1
2
(1𝑒1 ,𝑒2 + 1𝑒3 ,𝑒4 ) =

1
4
(1𝑒1 ,𝑒3 + 1𝑒1 ,𝑒4 + 1𝑒2 ,𝑒3 + 1𝑒2 ,𝑒4 ) (2)

On one hand, we have a convex combination of cutsets. On the other,
a convex combination of pathsets. By Theorem 2, Monma graphs are
nonseparable. □

Recall that a node 𝑣 in a graph 𝐺 is a cut-point if 𝐺 − 𝑣 has
more components than 𝐺. A connected graph is biconnected if it has
no cut-points. The addition of an ear in a graph 𝐺 is the addition
of an external elementary path between two different nodes from 𝐺.
Whitney characterization theorem for biconnected graphs asserts that
there exists an ear decomposition of all biconnected graphs, such that
𝐺 = 𝐶𝑠 ∪ 𝐻1 ∪ 𝐻2 ∪ ⋯ ∪ 𝐻𝑟, 𝐶𝑠 is an elementary cycle and 𝐻𝑖 is the
addition of an ear to the previous graph [12]. A proof using modern
terminology is given in the classical graph theoretical book [13]. This
structural characterization of biconnected graphs leads us immediately
to the following:

Theorem 5. Biconnected graphs are nonseparable, except for elementary
cycles.

Proof. As the base-step, we know by Lemma 4 that Monma graphs
are nonseparable. If 𝐺 is biconnected and it is not an elementary cycle,
then it has the addition of at least one ear of a cycle. Therefore, it has
Monma as a subgraph. Therefore, Theorem 4 asserts that 𝐺 cannot be
separable. □

Recall that the link-connectivity of a graph 𝐺 is the least number
of links that must be removed in order to disconnect 𝐺. The Butterfly-
graph consists of two triangles meeting in a common point (see Fig. 3).
This is the smallest graph with link connectivity 2 that is not bicon-
nected, since the kissing-point is a cut-point. As a consequence, it is
natural to decide the separability of this graph:
Lemma 5. The Butterfly-graph 𝐵 is nonseparable
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Fig. 3. Butterfly-graph 𝐵.

Fig. 4. Glasses-graph 𝐵𝑒.

roof. Consider an arbitrary assignment {𝑛𝑖}𝑖=1,…,6 for the links. We
onsider an assignment 𝑛1 ≤ 𝑛2 ≤ 𝑛3 in the left triangle, and 𝑛4 ≤
𝑛5 ≤ 𝑛6 in the right triangle. Therefore 𝑀𝑆𝑇 (𝐵) = 𝑆 − 𝑛3 − 𝑛6, and
𝑚(𝐵) = min{𝑛1 + 𝑛2, 𝑛4 + 𝑛5} ≤ min{2𝑛2, 2𝑛5} ≤ 𝑛3 + 𝑛6. This implies that
𝑀𝑆𝑇 (𝐵) + 𝑚(𝐵) ≤ 𝑆 for all possible assignments in 𝐵, and 𝐵 has no
feasible assignment. □

An analogous reasoning leads to the following generalization:

Corollary 3. Two kissing cycles are nonseparable.

A further generalization recalls Whitney characterization for bridge-
less graphs: 𝐺 is a bridgeless graph if and only if 𝐺 = 𝐶𝑠 ∪𝐻1 ∪𝐻2 ∪
⋯ ∪𝐻𝑟, 𝐶𝑠 is an elementary cycle and 𝐻𝑖 is the addition of an ear or
a kissing cycle to the previous graph. The following result is analogous
to Theorem 5:

Corollary 4. Bridgeless graphs are nonseparable, except for elementary
cycles.

In order to fully characterize separable graphs, we need to study
graphs that have at least one bridge 𝑒 ∈ 𝐺. We already know that all the
links in a tree are bridges, and they are separable graphs. Furthermore,
cycles with arborescences are separable as well. Let us proceed our
analysis with two triangles linked by a single bridge 𝑒, a graph called
the Glasses-graph 𝐵𝑒 (see Fig. 4).

Lemma 6. The Glasses-graph 𝐵𝑒 is nonseparable.

Proof. The reasoning is identical to the Butterfly-graph. Consider an
assignment {𝑛𝑖}𝑖=1,…,7 as in the Butterfly-graph, but 𝑛7 is the assignment
for the bridge 𝑒. Therefore:

𝑀𝑆𝑇 (𝐵𝑒) + 𝑚(𝐵𝑒) = (𝑆 − 𝑛3 − 𝑛6)

+ min{𝑛1 + 𝑛2, 𝑛4 + 𝑛5, 𝑛7}

≤ 𝑆,

since min{𝑛1 + 𝑛2, 𝑛4 + 𝑛5, 𝑛7} ≤ 𝑛3 + 𝑛6, and the last inequality was
already proved for the Butterfly-graph. □

A slight generalization is possible:

Corollary 5. Two cycles linked by an elementary path are nonseparable.

We are now ready to fully characterize separable graphs:

Theorem 6. A graph 𝐺 is separable iff 𝐺 falls into one of the four
categories:

1. 𝐺 is not connected;
5

2. 𝐺 is a tree;
3. 𝐺 is an elementary cycle;
4. 𝐺 is an elementary cycle with arborescences.

Proof. The proof of the reverse direction is easy, as all graphs in the
four categories are separable:

1. If 𝐺 is disconnected, all of its configurations are cutsets and the
reliability is null. In this case, the inequality ∑𝑁

𝑖=1 𝜎𝑖 > 2𝑁 is not
satisfied by any binary vector 𝜎 = (𝜎1,… , 𝜎𝑁 ), and the graph is
separable.

2. If 𝐺 is a tree 𝑇𝑁 with 𝑁 links, the evidence is the hyperplane
∑𝑁

𝑖=1 𝜎𝑖 ≥ 𝑁 .
3. If 𝐺 = 𝐶𝑁 is an elementary cycle, the evidence is the inequality

∑𝑁
𝑖=1 𝜎𝑖 ≥ 𝑁 − 1.

4. If 𝐺 is a tree with arborescences, Corollary 2 states that 𝐺 is
separable.

To prove the direct direction, let 𝐺 be a separable graph, and assume
𝐺 is connected. We know by Corollary 4 that 𝐺 must have a bridge.
Combining Theorems 4 and 5, we know that every subgraph of 𝐺 must
be an elementary cycle. Combining Corollaries 3 and 5, 𝐺 cannot have
two cycles (either they are kissing or connected by a path). Therefore,
𝐺 is either a tree, an elementary cycle or an elementary cycle with
arborescences. □

The complexity of determining if a graph is separable under the
all-terminal reliability model is linear. It is enough to employ an
algorithm for finding if the graph is connected (for instance, a Depth
First Search or Breadth First Search, both of linear complexity). If it
is not connected, it is separable. If it is connected, and the number of
edges is less or equal to the number of nodes, then it is either a tree,
a cycle or an elementary cycle with arborescences, and it is separable.
If it is connected and the number of edges is strictly larger than the
number of nodes, then it is not separable.

Corollary 6. The all-terminal reliability evaluation of separable graphs
(in the case of independent elementary reliabilities) belongs to the class 
of polynomial-time problems.

Proof. The analysis is straightforward. Let 𝐺 be a separable graph:

1. If 𝐺 is not connected, then 𝑅(𝐺) = 0.
2. If 𝐺 = 𝑇𝑁 is a tree with 𝑁 links with independent reliabilities

(𝑝𝑒)𝑒∈𝑇𝑁 , then 𝑅(𝐺) =
∏

𝑒∈𝑇𝑁 𝑝𝑒.
3. If 𝐺 = 𝐶𝑁 , then

𝑅(𝐶𝑁 ) =
∏

𝑒∈𝐶𝑁

𝑝𝑒 +
∑

𝑒∈𝐶𝑁

(1 − 𝑝𝑒)
∏

𝑒′≠𝑒
𝑝𝑒′ .

4. Finally, if 𝐺 is an elementary cycle with arborescences: 𝐺 = 𝐶𝑙 ∪
𝑇𝑠, being 𝑇𝑠 union of trees pending from the cycle 𝐶𝑙. Therefore,
𝑅(𝐺) = 𝑅(𝐶𝑙) ×

∏

𝑒∈𝑇𝑠 𝑝𝑒.

The reader can appreciate that the reliability computation is a product,
or a sum of products of the elementary link reliabilities. Therefore, the
number of operations involved are linear, or quadratic, in the number
of links. □

The corank of a graph is the number of independent cycles. In
a connected graph with 𝑛 nodes and 𝑚 links, its corank is precisely
𝑐(𝐺) = 𝑚− 𝑛+ 1. It is worth to remark that Theorem 6 can be re-stated
in terms of corank: a connected graph 𝐺 is separable if and only if its
corank is either 0 or 1.

We close this section by discussing a connection between the com-
binatorial optimization problem called the Network Utility Problem
(NUP) and separable graphs. First, observe that an arbitrary spanning
tree of a connected graph 𝐺 has 𝑛 − 1 links. Therefore, the corank of

a graph is precisely the number of additional links that we must pay
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to build the graph 𝐺, starting from a minimally-connected graph. In
terms of communication, the corank of 𝐺 represents redundancy. At
the cost of redundancy, the resulting network can be robust under a
certain amount of link failures. The profit is the link connectivity 𝜆(𝐺),
which represents the lowest number of links that should be removed
in order to disconnect 𝐺. As a consequence, the utility of a graph,
𝑢(𝐺), is the difference between the connectivity and the corank: 𝑢(𝐺) =
𝜆(𝐺) − 𝑐(𝐺) = 𝜆 − 𝑚 + 𝑛 − 1. In [14], the authors formally proved the
following

Theorem 7. The graphs with maximum utility are exactly the trees and
cycles. Their utility value is 1.

Corollary 7. All the graphs with maximum utility are separable graphs.

The all-terminal reliability polynomial under identical elementary
reliabilities in the links 𝑟 is

𝑅𝐺(𝑟) =
𝑐(𝐺)−1
∑

𝑖=𝜆(𝐺)
𝑛𝑖(𝐺)𝑝𝑚−𝑖(1 − 𝑝)𝑖 + 𝜏(𝐺)𝑝𝑛−1(1 − 𝑝)𝑚−𝑛+1, (3)

where 𝑛𝑖(𝐺) is the number of connected subgraphs of 𝐺 with precisely
𝑚 − 𝑖 links, and 𝜏(𝐺) is the tree-number of 𝐺, which can be found
using Kirchhoff’s Matrix-Tree theorem [15]. Therefore, the number of
unknowns is precisely the number of terms involved in the summation:
𝑐(𝐺)−𝜆. The only cases where there are no terms in the sum occur either
when 𝑐(𝐺) − 𝜆 = −1, exactly in trees and cycles, or when 𝑐(𝐺) − 𝜆 = 0,
only in an elementary cycle with arborescence, 𝐾4, the Kite-graph and
the Butterfly-graph [14]. These graphs are considered as the simplest
in terms of reliability analysis. Indeed, in [14] the authors define the
level of difficulty of a graph as the difference 𝑑(𝐺) = 𝑐(𝐺) − 𝜆− 1, and a
graph is easy if and only if 𝑑(𝐺) ≤ 0:

Corollary 8. All separable graphs are easy graphs.

The reader can observe that the graphs with maximum utility 𝑢(𝐺)
are the easiest graphs, with the minimum level of difficulty 𝑑(𝐺).

5. 𝒅-separability

A natural extension of our prior analysis is a classification of non-
separable systems.

Let  = (𝑆, 𝑟, 𝜙) be an arbitrary SMBS, and consider its correspond-
ing 0-1 labels of the vertices of a hypercube 𝑄𝑁 in the Euclidean space
R𝑁 .

Definition 6 (Level of Separability). The level of separability of  is the
least positive integer 𝑑 such that occurs one of the following conditions:

• there exist 𝑑 hyperplanes such that all the pathsets reside in the
intersection of the 𝑑−half spaces specified by the non-negative
normal components of the hyperplanes; or

• there exist 𝑑 hyperplanes such that all the cutsets reside in the
intersection of the 𝑑−half spaces specified by the opposite of the
non-negative normal components.

Proposition 2. Let  be an arbitrary SMBS, and let 𝜇 = || be the
number of all its mincuts of . Then the level of separability d is at most 𝜇.

Proof. Suppose that 𝜔1,… , 𝜔𝜇 is the list of all the mincuts of .
Consider the sets 𝑆𝑖 = {𝑗 ∶ 𝜔𝑖

𝑗 = 0}, that represent the non-operational
states for the mincut 𝜔𝑖. Observe that the mincut 𝜔𝑖 does not meet the
inequality 𝜋𝑖 ∶

∑

𝑗∈𝑆𝑖
𝜔𝑖
𝑗 ≥ 1. Furthermore, the hyperplanes 𝜋1,… , 𝜋𝜇

meet Definition 6, and the result follows. □

Proposition 2 shows that the level of separability will always be well
defined for any arbitrary SMBS, thus it is an alternative way to classify
6

a notion of difficulty in the reliability evaluation for SMBSs.
If we return to the all-terminal reliability model, we know all the
graphs with level of separability 𝑑 = 1 (i.e., all separable graphs).
From Theorem 6 we can observe that the Butterfly-graph, the Glasses-
graph and Monma represent minimally nonseparable cases. For a better
understanding of Definition 6, we find the level of separability in these
minimally nonseparable cases in the following paragraphs.

Let us denote 𝑥1, 𝑥2, 𝑥3 and 𝑦1, 𝑦2, 𝑦3 the states of the links for
the Butterfly-graph, corresponding to both triangles (see Fig. 3). All
pathsets must have at least two links from every triangle, and the
following 2 hyperplanes determine pathsets:

𝑥1 + 𝑥2 + 𝑥3 ≥ 2

𝑦1 + 𝑦2 + 𝑦3 ≥ 2.

Since we know that the Butterfly-graph is nonseparable, 𝑑 > 1, and
ince the previous hyperplanes fulfill the definition, the level of sepa-
ability for the Butterfly-graph is 𝑑 = 2.

Analogously, if we link both triangles with a new link 𝑧, we get the
lasses-graph. A slight modification of the hyperplanes shows that the
lasses-graph has level of separability 𝑑 = 2:

1 + 𝑥2 + 𝑥3 + 3𝑧 ≥ 5

1 + 𝑦2 + 𝑦3 ≥ 2.

bserve that we force the link 𝑧 to be operational, adding the term
𝑧 in the first hyperplane. Finally, let us consider Monma graph 𝑀2,2,1
rom Fig. 2, where the three paths have respective lengths 2, 2 and 1,
nd the respective links from each path are sequentially identified with
he binary states 𝑥1, 𝑥2, 𝑦1, 𝑦2 and 𝑧. The reader is invited to check that
he level of separability in Monma graph 𝑀2,2,1 is also 𝑑 = 2, and the
ollowing pair of hyperplanes works:

0𝑥1 + 10𝑥2 + 𝑦1 + 𝑦2 + 𝑧 ≥ 12

1 + 𝑥2 + 10𝑦1 + 10𝑦2 + 𝑧 ≥ 12.

urrently, there is no constructive algorithm to produce the minimum
umber of hyperplanes for an SMBS. We wish to develop a complemen-
ary theory to the one presented in Section 4 for separable graphs, but
inding the correct level of separability for any given graph. Inspired
y Corollary 6, we propose the following:

onjecture 1. Let 𝑑 be a fixed positive integer. Then, the all-terminal
eliability evaluation of graphs with level of separability 𝑑 (under the
ypothesis of independent elementary reliabilities) belongs to the class  of
olynomial-time problems.

. Conclusions

In this work, we study the reliability evaluation of stochastic bi-
ary systems (SBS) and some properties arising from the definition of
eparability, and we apply these concepts to take a new look at the
ll-terminal reliability model.

An efficient representation of separable systems is presented, and
full characterization of these special systems is obtained for some

articular models. The major strength of separable systems is their
fficient representation. The major shortcoming is that the reliability
valuation is still 𝑃 -hard.

Separable systems accept polynomial-time reliability evaluation
hen restricted to the all-terminal reliability model. This result was
iscovered using functional analysis and feasible functionals from the
inks of a graph, meeting separability constraints.

As future work, we would like to establish Conjecture 1 for a better
nderstanding of nonseparable systems, and the interplay between
eneral SBSs and the all-terminal reliability model, which has a wide
pectrum of applications.
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