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Which is themost reliable graphwith n nodes andm edges?
This celebrated problem has several aspects, according to
the notion of optimality (in a local or uniform sense), fail-
ure type (either nodes or edges), or reliability model (all-
terminal connectedness, two-terminal or multiterminal set-
ting). This article presents a chronological survey of the
multiple proposals to address the problem, together with
recent trends and enigmatic conjectures posed decades ago
that promote further research.
K E YWORD S
Uniformly most reliable graph, Uniformly least reliable graph,
All-terminal reliability, Two-terminal reliability, Failure type, Graph
theory

1 | HISTORIC MOTIVATION
Claude Shannon developed a mathematical theory of communications, which has tremendous impact in modern
telecommunication systems [69]. He was also interested in optimal network design. In fact, Moore and Shannon
wanted to design a perfect system using imperfect components [48]. This goal seems impossible; however, they for-
mally proved that special configurations of imperfect components (i.e., relays in a circuit) converge, using infinitely
many components, to a perfect system. A key concept was that of network composition or self-similarity, where the
elementary components are iteratively replaced by the whole system, such as a fractal. They also used the deletion-
contraction formula, which is an essential concept in the study of network reliability. This concept is now mature, and
has been extensively studied in the literature [49, 66, 68]. Moskowitz formally proved the factoring theorem, which
serves to repeatedly reduce/simplify the system into smaller subsystems, which can then be analyzed separately.
This is a kind of divide and conquer notion widely used in network reliability. He also understood the importance of
redundancy, and showed its strength in some series-parallel networks [49]. Satyanarayana extensively studied this
factorization, showing elegant linear-time evaluation algorithms for series-parallel networks considering an invariant
called the domination of a graph, which is defined in terms of minimally operational subgraphs [66, 68].
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2 Pablo Romero
On the one hand, the construction of perfect systems considers infinite imperfect components, but in practice,

the budget is always a constraint, and real systems are finite. On the other hand, a mature analysis of series-parallel
networks is available in the scientific literature, but this subfamily of networks does not include the optimal design.

The mathematical evaluation of the reliability function for a given system has major importance. The literature
is abundant; see [57] for an exposition on exact methods, or [64] for a book that covers approximate approaches.
However, less attention has been dedicated to the practical problem of network synthesis: which is the most reliable
network that interconnects a fixed number of nodes, using a fixed number of edges? The answer has an active impact
on decision-making when we must interconnect fixed sites with a fixed budget (limited number of links).

In the mathematical models, it is common to assume that the components fail with identical and independent
probability ρ ∈ [0, 1]. Unless otherwise specified, it is reasonable to consider homogeneous components with identi-
cal failures. The hypothesis of independence is dropped in some works; see [25] for a rich discussion with abundant
references, and [7, 47] for a reliability optimization framework under dependent failures. Nevertheless, the identi-
cal/independent setting is a valuable mathematical abstraction, and the question will be studied in this article under
these assumptions.

Do we know the precise value for the failure probability ρ beforehand? Normally not. In fact, a network is optimal
in a uniform sense if its reliability is greater than or equal to that of all other networks with identical numbers of nodes
and edges, regardless of the specific value of ρ (this is, for all the possible values of ρ ∈ [0, 1]).

There are at least three reasons to study uniformly optimally-reliable graphs. The first is a static network design:
the particular value of the elementary reliabilities can be neglected, and the network is optimal in a uniform sense.
The second is time-invariance: if all the components of the system uniformly deteriorate with time, the network still
represents the best design. The third is that these models represent a mathematical abstraction of several real-life
systems.

The search for symmetry and beauty is intriguing, and the existence, uniqueness and construction of uniformly
optimally-reliable graphs frequently appear to be themainmathematical questions. We celebrate the 50th anniversary
of the Networks journal, which has a deep relation with the progress in this field. This is not the first survey on this
topic. Frank Boesch formally defined the concept of uniformly optimally-reliable graphs in a survey [15]. Nevertheless,
that survey is focused on locally optimal analysis for values of ρ either close to 0 or 1. Wendy Myrvold [51] offered a
brief but nice report on the progress until 1996. Frank Boesch et al. [14] offered another survey in 2009 that involves
reliability in a wider sense, and a single section is focused on this topic. A graceful comprehensive treatment on
network reliability was recently authored by Jason Brown et al. [25].

This survey is organized as follows. The models under study are presented in Section 2. A historic-driven analysis
of the uniformly most reliable graphs (UMRGs) under the all-terminal reliability setting with edge failures is given in
Section 3. The progress in network synthesis under node failures is outlined in Section 4. Section 5 covers other spe-
cific network reliability models, such as two-terminal reliability, and extends the analysis to multigraphs and uniformly
least reliable graphs to find universal reliability bounds. A summary of open problems and trends for future work is
given in Section 6.
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2 | MODELS
In all the models under study, we are given a ground graph G = (V , E ) with n = |V | nodes and e = |E | edges,
which is undirected, loopless and connected. We deal with simple graphs (i.e., no repeated edges are allowed), unless
otherwise specified. Some components are subject to random independent failures. Two major cases are considered:
• Edge reliability, where nodes are perfect, but the edges fail with independent identical probability.
• Node reliability, which is analogous but considers perfect edges and imperfect nodes instead.
Let us denote ρ ∈ [0, 1] the elementary failure probability in either case. Joint failures are not discussed here; the
interested reader can consult [56].

The reliability RG (ρ) stands for the probability of a specified successful event, such as all-to-all connectedness
(also known as the all-terminal reliability), two-terminal or more generally, multiterminal communication. It is some-
times convenient to deal with its complementary probability, called unreliability, or UG (ρ) . Consider, for instance, the
all-terminal reliability under edge failures. Let mk (G ) denote the number of nonconnected subgraphs H = (V , F )
such that F ⊆ E and |E | − |F | = k . The cut-vector is m (G ) = (m0 (G ), . . . ,me (G )) . Note that mk (G ) is the number of
ways to disconnect G by precisely removing k edges. By the sum-rule, we can find UG (ρ) using the cut-vector:

UG (ρ) =
e∑
k=0

mk (G )ρk (1 − ρ)e−k . (1)

Similar expressions are obtained under reliability models with node failures. A discussion of reliability polynomials
and their roots in the complex plane in a more abstract setting of simplicial complexes and matroids is given in [24].
An excellent monograph on the combinatorics of network reliability was authored by Colbourn [31].

Observe that the unreliability polynomialUG (ρ) is fully determined by the cut-vector. Nevertheless, we warn the
reader that finding the cut-vector is an intrinsically difficult task for general graphs. In fact, Valiant introduced a hierar-
chy of #P -complete counting problems [75], basically harder problems than NP-complete decision problems [32, 41].
It is formally proven that finding the cut-vector belongs to the class of #P -complete counting problems under both
edge reliability [76] and node reliability [73]. Network reliability evaluation is difficult for node reliability [73], multi-
terminal [63] and two-terminal reliability models [6]. A gentle review of the complexity of network reliability analysis is
given by Ball [5]. The classical book authored by Garey and Johnson provides a rich introduction to complexity theory,
including valuable examples of NP-complete decision problems on network reliability, graph theory and combinato-
rial optimization, among others [34]. The reader is invited to consult the book authored by Harary for graph-theoretic
terminology; it also covers some open problems in graph theory and fundamental applications in engineering [39].
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3 | UNIFORMLY MOST RELIABLE GRAPHS

In this section we consider the all-terminal reliability model under edge failures. In a seminal paper, Boesch introduced
the corresponding synthesis problem: given n and e , find (n, e)-graphs G such that UG (ρ) ≤ UH (ρ) for all ρ ∈ [0, 1],
and all (n, e)-graphs H . Such graphs were called uniformly optimally reliable graphs by Boesch [15]. Myrvold later
renamed this graph class the uniformly most reliable graphs to avoid a tongue twister [51]. We will use the latter and
the corresponding acronym UMRGs in this context and other models.

From Equation (1), we can appreciate that if mk (G ) ≤ mk (H ) for all k ∈ {0, 1, . . . , e } and all (n, e)-graphs H , then
the unreliability polynomial is uniformly dominated, that is, UG (ρ) ≤ UH (ρ) for all ρ ∈ [0, 1], and G is UMRG. The
converse is one of the most enigmatic conjectures in the field, posed in 1986 by Boesch [15].

Observe that the local optimality in a neighborhood of ρ = 0 and ρ = 1 are necessary conditions for a graph to
become UMRG. On the one hand, when ρ tends to 0 the unreliability polynomial is equivalent to mλρλ (1 − ρ)e−λ ,
where λ is the edge connectivity, or the first positive integer k such that mk (G ) > 0. Clearly, the best choice is to pick
graphs with the greatest edge connectivity λ and the least number of edge-disconnecting sets mλ , which are called
λ-optimal graphs. The class of λ-optimal graphs presents the best reliability in some neighborhood of 0, this is, for all
ρ ∈ [0, ρ0) . Additionally, λ-optimal graphs share similar reliability polynomials in that interval with controlled gaps;
see [9] for details. On the other hand, if ρ tends to 1, the polynomial is equivalent to me−n+1 (G )ρe−n+1 (1 − ρ)n−1, and
it is necessary to minimize the number me−n+1. Its complement t (G ) = ( n

n−e+1
)
− me−n+1 is precisely the number of

spanning trees, or the tree number of the graph G . An (n, e)-graph with the greatest tree number in its class is called
a t -optimal graph. It is clear from its definition that UMRGs are t -optimal [77].

Even though the concepts of t -optimality and λ-optimality are more primitive than UMRGs, they are still not well
understood. Boesch conjectured in 1986 that UMRGs always exist for all the pairs of n and e , and that t -optimal graphs
are always λ-optimal [15]. Currently, we know that both conjectures are false (Figure 1 shows a simple counterexample
of both conjectures). However, he also conjectured that t -optimal graphs are always almost regular, and thus far, there
is neither formal proof nor counterexample.

This section is organized as follows. The progress on λ-optimality and t -optimality is briefly discussed in Sec-
tions 3.1 and 3.2. Some infinite families of counterexamples to the Boesch conjecture on the existence of UMRGs
are presented in Section 3.3. The UMRGs known thus far are shown in Section 3.4.

F IGURE 1 The t -optimal graph (left) is not λ-optimal (right) when (n, e) = (6, 11) .
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3.1 | Connectivity and λ-optimality
Berge posed 14 unsolved problems in his classical book on graph theory [10]. Problem 11 challenges the readers
to find the maximum connectivity and minimum diameter of an (n, e)-graph. Harary, in a simple and elegant paper,
proposed a full solution [38]. Recall that the Handshaking Lemma states that 2e = ∑n

i deg (vi ) . Indeed, each edge
represents a handshaking between two nodes; hence each edge contributes two units on the right-hand side of the
equation. Clearly, the minimum degree, δ (G ) , is dominated by the average degree: δ (G ) ≤ 2e/n . Furthermore,
the edge connectivity λ (G ) cannot be greater than δ (G ) . Therefore, δ (G ) ≤ b2e/n c, and Harary constructed a
special family of graphs that achieve equality, meeting the maximum edge connectivity [38]. These graphs achieve
the equality λ (G ) = κ (G ) , where κ (G ) is the node connectivity, and since the inequality κ (G ) ≤ λ (G ) is always
achieved, these graphs also achieve the maximum node connectivity [82].

If we want to construct the 2r -regular Harary graph with n nodes H2r ,n , first locate the nodes in a regular polygon
with labels 0, 1, . . . , n − 1, and then connect each node i with the closest nodes j in the polygon such that j = i ± t
for all t ∈ {1, . . . , r }, where the operations are performed in modulo n . A similar construction holds for H2r+1,n , but
a matching is added linking diametrically opposite nodes (and by the Handshaking Lemma, regular graphs must have
even order n in this case). Figure 2 illustrates the Harary graph H3,12, which is also known as the Wagner graph (who
considered this graph for the characterization of nonplanarity). The original work of Harary also shows a construction
for general nonregular graphs [38].

In the synthesis problem, it is useful to count the edge-disconnecting sets with λ (G ) edges, that is, mλ (G ) . Even
though finding the entire cut-vector m (G ) is a hard task, the number mλ (G ) can be efficiently found [6]. Harary
graphs achieve the maximum edge connectivity, but we also require the minimum value for mλ for λ-optimality. This
minimum was first obtained when 2e/n is integer and then for general pairs of n and e [8]. A trivial cut consists of
all the incident edges of a fixed node. Observe that in a λ-regular graph mλ ≥ n , since it has at least n trivial cuts.
The key concept considered by Bauer et al. [8] is superconnectivity: a λ-regular graph is superconnected if mλ = n .
Superconnected graphs are clearly λ-optimal. The authors construct generalized Harary graphs, and they show that
these graphs are superconnected whenever 2e/n ≥ 3, hence λ-optimal. Finally, if b2e/n c = 2, the authors consider
fair subdivisions of Harary graphs. The approach is the minimization of m2 (G ) , solving a combinatorial optimization
problem exactly. A curious fact is that Wang et al. [79] proved that if a graph has the greatest edge connectivity
λ (G ) in its class and minimizes mλ+1, then it also minimizes mλ , and it is λ-optimal. A further improvement is given
by Dong et al. [33], where the authors construct some generalized Harary graphs that are max-λ but also min-mi for
all i ∈ {λ, . . . , 2λ − 2}. Observe that a particular subset of λ-optimal graphs does not necessarily include a UMRG. A
characterization of λ-optimal graphs is still open. The reader can find a survey on graphs with maximum connectivity
in [40].

F IGURE 2 Harary Graph H3,12, also known as the Wagner graph.
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3.2 | Tree Number and t -optimality
Kirchhoff [44] studied time-invariant linear resistive circuits during the first half of the 19th century. Essentially, he
wanted to find the current vector, given resistances and voltages, which defines a linear system. Surprisingly, he found
a closed solution that interconnects graph theory and linear algebra forever, in a result that is known as the matrix-
tree theorem. The result states that the tree number t (G ) of a graph is the magnitude of any cofactor of the Laplacian
matrix LG = AG − δG , with AG being the adjacency matrix of the graph G and ∆G = d i ag (deg (v1), . . . , deg (vn ))
the diagonal matrix that stores the degrees of the nodes of G . Therefore, the tree number is efficiently found for
an arbitrary fixed graph [12]. Nevertheless, the t -optimality problem is nontrivial, since the number of (n, e)-graphs
(isomorphic or not) is (n (n−1)/2

e

) , and an exhaustive search is prohibitive for general values of n and e .
To date, few structural results on t -optimal graphs have been obtained, and the general problem awaits resolu-

tion. Saccoman et al. [65] published a graceful book on the tree number and its applications, specifically focused on
network synthesis and extended analysis for multigraphs. Kelmans et al. [43] and Shier [70] independently proved
that the complete graph minus a matching is t -optimal. Cheng [30] established that regular complete bipartite graphs
K (m,m, . . . ,m) are t -optimal. In the range of sparse graphs, all the trees trivially share identical tree number t = 1, and
elementary maximization shows that the cycle is t -optimal with t (Cn ) = n . Recall that a θ-graph consists of two nodes
linked by three disjoint paths; see Figure 3 for an illustration. Let us denote by θl1,l2,l3 the θ-graph whose path-lengthsare l1, l2 and l3. Wang and Wu [80] concluded that if e = n + 1, the balanced θ-graph is t -optimal. To find the tree
number, just observe that we must pick and remove two edges from different paths, and t (θl1,l2,l3 ) = l1 l2 + l1 l3 + l2 l3,and the maximization of t (θl1,l2,l3 ) subject to l1 + l2 + l3 = e requires that the lengths must be balanced, i.e., |l i − l j | ≤ 1
for all i , j .

The next step for e = n + 2 was independently solved by Tseng et al. [74] and Boesch et al. [17]. The first
work formally proves the t -optimality of special subdivisions of K4 by means of a nonlinear integer programming
problem [74], and the second proves further that these subdivisions define an infinite family of UMRGs [17]. In an
ambitious work, Wang [78] fully characterized all t -optimal graphs such that e = n + 3, and these graphs are special
subdivisions of the bipartite complete graph K3,3. It turns out that these graphs are UMRGs as well. See Figure 5
for a representation of these t -optimal graphs, which are in fact also UMRGs. Ath and Sobel [4] conjectured that the
t -optimal graphs for e = n + i and i ∈ {4, 5, 6, 7} are special subdivisions of theWagner, Petersen, Yutsis and Heawood
graphs respectively (see Figures 2 and 4 for illustrations of these graphs). Based on computational evidence, the
authors further conjectured that these graphs are UMRGs. Additional heuristics confirm that the previous graphs
and the Möbius-Kantor graph are both t -optimal and λ-optimal. Formal proofs that these graphs are UMRGs are still
awaiting [4].

Observe that all the known t -optimal graphs are regular or almost regular, and the corresponding conjecture posed
by Boesch that t -optimal graphs are almost regular is still open. Gilbert and Myrvold [35] propose a novel algebraic
technique to find t -optimal graphs when some disjoint paths or cycles are removed from the complete graph. Petingi
et al. [53] develop algebraic techniques involving eigenvalues to find t -optimal graphs for e ≥ n (n − 1)/2 − n + 2. The
cases where e = n (n − 1)/2 − n + 1 and e = n (n − 1)/2 − n were also included whenever e is a multiple of 3. In a
second article, Petingi et al. [54] found an interplay between the degree sequence of a graph and its tree number. As a
consequence, the authors generalize the Cheng result, showing that the complete almost regular multipartite graphs
are t -optimal. The range n (n − 1)/2 − 3n/2 < e < n (n − 1)/2 − n is also covered; the interested reader is suggested to
consult [54] for further details.
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u v

z1 z2 zt−1

y1 y2 ys−1

x1 x2 xr−1

F IGURE 3 θ-graph with lengths r , s and t .

Petersen Graph Yutsis Graph

Heawood Graph Möbius-Kantor Graph

F IGURE 4 Petersen and Yutsis graphs are UMRGs. Heawood and Möbius-Kantor graphs are presumably
UMRGs.

3.3 | Nonexistence of UMRGs
Infinite families of counterexamples to the Boesch conjecture on the existence of UMRGs are available in the scientific
literature [27, 42, 52]. In an early work, Kelmans offered a sketch of the proof that if n ≥ 6 is even and e = (n

2

)
− n+2

2 ,
or if n ≥ 9 is odd and e = (n

2

)
− n+52 , no UMRG exists [42]. A detailed proof is given by Myrvold et al. [52], showing that

the locally optimal graphs when ρ is close to 0 and close to 1 do not coincide. The smallest counterexample occurs
when n = 6 and e = 11; see Figure 1 for an illustration of the concrete t -optimal and λ-optimal graphs. Brown et
al. [27] covered another infinite family of counterexamples in specific pairs (n, e) such that (n

2

)
− n < e <

(n
2

)
− b n2 c.The point of departure is the t -optimality of some almost complete graphs offered by Petingi et al. [54]. Brown et al.

show that even though these graphs are the most reliable for ρ sufficiently close to 1, many of them are not the most
reliable for ρ close to 0. The authors also prove the nonexistence of UMRG in the extended family of multigraphs;
see [27] for details.
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3.4 | Existence of UMRGs
The first work that shows the existence of UMRGs was authored by Boesch et al. [17]. Recall that the corank of a
connected (n, e)-graph G is c = e − n + 1. The authors fully characterize UMRGs with corank c ≤ 3. Let us briefly
mention the main ideas of this fundamental article [17]:
• If c = 0, all the tree-graphs share the same reliability polynomials, and trees are UMRGs.
• If c = 1, the elementary cycle Cn is UMRG. A straightforward analysis leads us to conclude that Cn is min-mi

for all i . In fact, all the (n, n)-graphs share mk =
(e
k

) for k ≥ 2, and Cn is the only graph in its class such that
m0 (Cn ) = m1 (Cn ) = 0.

• If c = 2, Bauer et al. [8] already constructed λ-optimal graphs, which are balanced θ-graphs. Wang and Wu [80]
already found that t -optimal graphs are precisely balanced θ-graphs using combinatorial arguments. Since mk =(e
k

) for all k ≥ 3 and the members of this class, we conclude that balanced θ-graphs are UMRGs.
• If c = 3, the analysis is deeper. Boesch et al. [17] formally prove that fair node insertions of the complete graph

K4 are UMRGs. Observe that λ-optimality has been previously determined by Bauer et al. [8]. All the graphs
belonging to this class havem4 =

(e
4

) , and the analysis is focused on determining the t -optimality of the candidate
graphs. First, they formally prove that a UMRG cannot have parallel chains (that is, induced node-disjoint paths
ending in common nodes whose degrees are strictly greater than 2). The authors conclude that the UMRGs must
be certain subdivisions of K4, and finally, they find the best sequence of node insertions. Figure 5 presents the
node insertions that define all the UMRGs such that e = n + 2, starting from K4.
Boesch et al. [17] conjectured that a similar node insertion procedure starting from the bipartite complete graph

K3,3 generates all the UMRGs for corank c = 4. The conjecture is correct, and it was formally proven by Wang [78].
Figure 5 presents the node insertions that define UMRGs starting from K3,3. Again, the rationale behind its proof is
to show that parallel chains are not allowed, all the chains must have identical or almost identical length, and finally
that the UMRGs must be certain subdivisions of K3,3. Wang concludes that the graph class conjectured by Boesch et
al. defines UMRGs, and further, the graphs are min-mi .

1
7

3 5

6 4

2

1 2 34 5
67

8 9

10

F IGURE 5 Edge-subdivisions for K4 (left) and K3,3 (right). The pattern is cyclic with periods 6 and 9, respectively.
This results in the infinite families of UMRGs for e = n + 2 ≥ 6 and e = n + 3 ≥ 9.
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An intermediate result by Wang is that UMRGs must be biconnected (that is, G has no cut-nodes), whenever

e ≥ n . This result has been proven in an alternative manner by Canale et al. in two steps [29]. First, it is proven that if
H has a bridge, there exists a bridgeless graph G1 such that mi (G1) ≤ mi (H ) for all i . Then, if G1 is not biconnected
we can find a biconnected graph G2 such that mi (G2) ≤ mi (G1) for all i and conclude that a nonbiconnected graph
H is uniformly less reliable than G2. Graphs G1 and G2 are constructed using shortcuts; see Figures 6 and 7.

v

w x

y

P

F IGURE 6 Bridgeless graph G1. Replacing (x y ) by (yv ) , the bridge (wv ) is avoided.

w

x y

F IGURE 7 Biconnected graph G2. Replacing (wx ) by (x y ) , the cut-node w is avoided.

The progress in the graph classes with reduced corank is slow, and modest proofs for particular values of n and
e were recently covered. Ath and Sobel [4] conjectured the shape of UMRGs for coranks c ∈ {5, 6, 7, 8}. Computa-
tional experiments carried out by the authors suggest that some special subdivisions of the Wagner, Petersen, Yutsis
and Heawood graphs are UMRGs. Additional heuristics suggest that the Cantor-Möbius graph is also a UMRG [22].
More recently, it was analytically proven that some specific cubic graphs such as the Wagner [59], Petersen [58] and
Yutsis [29] graphs are UMRGs. The common methodology in these works is to prove that these graphs are in fact
min-mi for all i ∈ {0, . . . , e }. Llagostera et al. [46] provided an analysis of UMRGs with bounded corank, restricted to
the class of Hamiltonian graphs.

Boesch et al. [17] originally stated without mathematical proof that K4,4 is UMRG. This claim was computationally
confirmed by Myrvold, who presented a list of all UMRGs with eight nodes or fewer [50]. A mathematical proof that
K4,4 is UMRG recently appeared [28]. Another nontrivial 4-regular UMRG is K3 ∪ C4 with seven nodes [50]. See
Figure 8 for the known nontrivial 4-regular UMRGs thus far. Myrvold [50] conjectured that UMRGs must have the
largest girth and minimum diameter among the members of its class. Ath and Sobel [3] published a counterexample
that shows, finding a couple of graphswith n = 6 nodes, that theminimum diameter conjecture is false. Figure 9 serves
as a self-explanatory counterexample, where the UMRG is the graph on the left (the result of two node insertions to
K4). Interestingly, Ath and Sobel in the same article suggest that the largest girth conjecture is false. The authors give
a candidate counterexample for the pair (n, e) = (30, 37) ; see Figure 10. Observe that graphs H1 and H2 have girth
g (H1) = 9 and g (H2) = 10 respectively. If H1 is UMRG, then the largest girth conjecture is false. Ath and Sobel assert
that H1 is UMRG, but the proof is still elusive.
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Graph K3 ∪ C4 Graph K4,4

F IGURE 8 The known four regular UMRGs are K5, K6 minus a matching, K3 ∪ C4 (left) and K4,4 (right).

F IGURE 9 The UMRG has diameter 3 (left), but the minimum diameter is 2 (right).

Graph H1 Graph H2

F IGURE 10 Two graphs H1 (left) and H2 (right) with 30 nodes, 37 edges and girth g (H1) = 9 and g (H2) = 10. If
H1 is UMRG, then the largest girth conjecture is false. The shortest cycles are determined with thick lines.
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In the range of almost complete graphs, few UMRGs were found, covering the cases where no more than n edges

are removed to the complete graph Kn [2, 42, 67]. Kelmans [42] and Satyanarayana et al. [67] independently found a
reliability-increasing operation called swing surgery. This operation returns a more reliable graph under certain circum-
stances, and it can be combined with counting edge-disconnecting sets to find new UMRGs. Given its importance
in this field, the specific transformation is explained in the following result, which is a corollary of a more general
theorem due to Kelmans [42]:

Corollary 1 Let x , y , and z be distinct nodes of a simple graph H . Further assume that:

• NH (x ) − {y } ⊆ NH (y ) , and
• z ∈ NH (y ) − (NH (x ) ∪ {x }) .

If G = H − (y z ) + (xz ) , then RG (ρ) ≥ RH (ρ) for all ρ ∈ [0, 1].

Figure 11 presents a pictorial example.

x y

z

x y

z

F IGURE 11 By swing surgery, a more reliable graph is obtained replacing (y z ) by (xz ) .

An interpretation of swing surgery in the complementary graphs implies that Kn minus an arbitrary matching
defines UMRGs [42]. This is an alternative topological proof for the t -optimality of Kn minus a matching, which was
established by Shier using algebraic graph theory [70]. In a more recent work, Archer et al. [2] fully characterized
UMRGs when n ≥ 5 is odd and e = (n

2

)
− n+12 or e = (n

2

)
− n+32 . The complementary graphs are a matching plus P3 or C3,

respectively. These results serve as a complement to the cases of nonexistence provided by Brown et al. [27], covering
the study of pairs (n, e) such that (n

2

)
−n+2 ≤ e ≤

(n
2

) . Figure 12 summarizes the UMRGs known thus far, and the pairs
(n, e) where a UMRG does not exist in a graph constellation as a function of the possible pairs (n, e) . The red points
represent the pairs of (n, e) , where it is known that a UMRG does not exist, and green points, where UMRGs exist.
The straight lines include the infinite pairs where it is conjectured that UMRGs exist, using special subdivisions [4, 22].
The known UMRGs are depicted in each pair (n, e) , except for complete or almost complete graphs to avoid overlaps.
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n

e
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K1

K2

K3

K4

K5

K6

K7

K8

Y

c = 4

c = 5

c = 6

c = 7

c = 8

c = 9

c = 10

◦

◦

◦

◦

F IGURE 12 UMRGs found thus far as a function of (n, e)



Pablo Romero 13
4 | NODE RELIABILITY
Boesch in a beautiful work [13] describes two synthesis problems: finding locally optimal graphs for fixed values of ρ
and uniformly the most reliable graphs under node failures. The problem is formally established and well motivated
in terms of computer communications. The following paragraphs briefly describe these problems.

Consider a simple connected (n, e)-graph G = (V , E ) with perfect edges, but subject to node failures with prob-
ability ρ. The system works only if the subgraph induced by the operational nodes is connected and, further, it has at
least two operational nodes. If mk (G ) denotes the number of node-disconnecting sets of size k , then mi (G ) = 0 for
all i < κ (G ) , where κ (G ) denotes the node connectivity of G . By the sum-rule, the unreliability polynomial is:

Pn (G , ρ) =
n∑

k=κ (G )
mk (G )ρk (1 − ρ)n−k (2)

The first synthesis problem posed by Boesch is to find a graph G that minimizes Pn (G , ρ0) for a fixed value ρ0 ∈
(0, 1) , among the family of (n, e)-graphs. Since the domain is finite, the existence of a solution is certain.

On the one hand, if we look for locally optimal graphs in some neighborhood of ρ = 0, the polynomial is roughly
mκ (G )ρ

κ (G ) (1 − ρ)n−κ (G ) , and the minimization requires having the largest node connectivity κ (G ) , and additionally
the least number of node-disconnecting sets mκ (G ) . The graphs that achieve this property are called κ-optimal graphs.
Harary graphs are κ-optimal, and general multipartite regular graphs K (n, n, . . . , n) are always κ-optimal [16]. Smith et
al. presented a step-by-step procedure to construct κ-optimal graphs based on Harary graphs, when n/κ is a positive
integer [71]. On the other hand, if ρ is close to 1, the numbers mn (G ) = 1, mn−1 (G ) = n and mn−2 (G ) = ( n

n−2
)
− e are

identical for fixed n and e , and the invariant mn−3 (G ) makes the difference for ρ close to 1. By the inclusion-exclusion
principle [62]:

mn−3 (G ) =
(
n

3

)
−

n∑
i=1

(
deg (vi )

2

)
+ 2τ (G ), (3)

with τ (G ) being the number of induced triangles inG . A graph is 3-optimal if it minimizes the numbermn−3 (G ) . Clearly,
locally optimal graphs in a neighborhood of ρ = 1 must be 3-optimal. Observe that triangle-free graphs represent a
good subclass to explore, given thatmn−3 (G ) is increasing with τ (G ) . Observe that trees are in particular triangle-free
graphs, and the minimization of mn−3 is feasible and straightforward using convex optimization. The result is that the
star-graph K1,n−1 is the only 3-optimal graph among all the trees.

The second synthesis problem is to find an (n, e)-graph that minimizes the unreliability polynomial Pn (G , ρ) in a
uniform sense, for all ρ ∈ [0, 1]. Boesch shows that 3-optimal and κ-optimal graphs do not coincide when n = e ≥ 5,
and concludes that UMRGs do not always exist under this node reliability setting [13]. In fact, the largest node con-
nectivity when n = e is κ (G ) = 2, and the elementary cycles are the only κ-optimal graphs. If n = 3 or n = 4, it
is straightforward to check that the elementary cycles C3 and C4 are in fact UMRG. However, if n = e ≥ 5, the star
graph plus one edge are 3-optimal graphs when n = e ≥ 5, and UMRGs do not exist. Stivaros in his doctoral thesis [72]
proved that the star graphs are not only κ-optimal but also UMRGs. Furthermore, Stivaros showed that the complete
graph minus an arbitrary matching is UMRG as well and provided a discussion of 3-optimality, κ-optimality and hetero-
geneous node failures. In particular, all 3-optimal triangle-free and C5-free graphs are bipartite. Consequently, most
results are concerned with the search for complete bipartite UMRGs or their nonexistence for special pairs of n and
e .
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Goldshmidt et al. [36] prove that almost regular complete k -partite graphs are always UMRGs. A smart lower
bound for the numbersmG (k ) is first obtained, and finally, the authors deduce that this distinguished subclass has the
least number of node-disconnecting sets. The authors attribute this result to Bermond, even though the full proof is
introduced by them. Their first extension is to prove that Kb,b+2 is UMRG on its class, and it is themost optimistic result,
in the sense that Kb,b+i is never UMRG when i > 2, and further, that nonregular complete multipartite graphs whose
parts have either b or b + 2 nodes are never UMRG. Finally, the nonexistence of UMRGs for some pairs (n, e) such
that e < n2/4 is established. Using Stivaros’ result that 3-optimal (triangle-free and C5-free) graphs are bipartite, the
authors modify regular bipartite graphs with addition/removal of some edges, finding graphs with good performance
in terms of 3-optimality. Then, they show that κ-optimal graphs have greater values of mn−3, hence κ-optimal graphs
are never 3-optimal [36]. Later, Liu et al. [45] proved thatKb,b+1,b+2 is UMRG in its class, butKb,b+1,b+i is never UMRG if
i > 2. The first result involves elementary combinatorics, and the second is just to observe that the node connectivity
of the graphs Kb,b+1,b+i is not maximum when i > 2. A further generalization is carried out by Yu et al. [84], where the
authors prove that Kb,b+1,b+1,...,b+1,b+2 is UMRG in its class, but Kb,b+1,b+1,...,b+1,b+i for i > 2 is never UMRG.

5 | ADDITIONAL RELIABILITY MODELS
In this section we consider two-terminal reliability models under either node or edge failures, uniformly least reliable
graphs and some open problems dealing with multigraphs.

5.1 | Two-Terminal Reliability Model under Edge Failures
The corresponding synthesis problem under the two-terminal reliability setting was recently launched by Bertrand et
al. [11]. Consider two terminals s = v1 and t = vn and the remaining nonterminal nodes v2, . . . ,vn−1. Let Nk (G ) be
the number of s − t pathsets with precisely k edges. If p denotes the operational probability of the individual edges,
then the two-terminal reliability R2 (G ; p) is:

R2 (G ; p) =
e∑
k=1

Nk (G )pk (1 − p)e−k . (4)

Intuitively, we should greedily pick the shortest s− t paths first, including edge st , then the greatest number of 2-paths
N2, 3-paths N3, and so on. This intuition is first captured by the following result, which is a slight modification of the
reasoning posed by Brown et al. [27] for the all-terminal reliability setting:
Lemma 2
• If Ni (G ) = Ni (H ) for 1 ≤ i < k but Nk (G ) > Nk (H ) , G is more reliable than H for p close to 0.
• If Ni (G ) = Ni (H ) for l < i ≤ e but N l (G ) > N l (H ) , G is more reliable than H for p close to 1.

Following the previous intuition, Bertrand et al. [11] prove that a distinguished family of graphs is the most reliable
when p is close to 0:
Definition Let n ≥ 3 and 0 ≤ r ≤ n − 3. The graph An,r has distinguished nodes s = v1, t = vn and edges st , svi , vi t
for all 2 ≤ i ≤ n − 1, and also v2vj for all 3 ≤ j ≤ r + 2.
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See Figure 13 for a representation of An,r . This greedy construction of disjoint 2-paths is in fact most reliable when p
is close to 0:

Proposition 3 If n ≥ 4 and 5 ≤ e ≤ 2n − 3, the unique most reliable graph for p close to 0 is Ab e+22 c,(e+1)mod 2
together

with n − b e+22 c isolated nodes.

a1 = s

a2 a3 a4 ar+1 ar+2 ar+3 ar+4 an−1

an = t

F IGURE 13 The graph An,r

The authors find a closed formula for the two-terminal reliability R2 (An,r ; p) and consider a structural modifica-
tion A′n,r , An,r such that R2 (A′n,r ; 1/2) > R2 (An,r ; 1/2) . The nonexistence of UMRGs is concluded in this way for
n ≥ 11 and 20 ≤ e ≤ 3n − 9.

Bertrand et al. [11] studied almost complete graphs as well. The most reliable graphs for p close to 0 and 1 do
not coincide when (n

2

)
− b n−22 c ≤ e ≤

(n
2

)
− 2. Clearly, the complete graph Kn is the UMRG when e = (n

2

) . Finally, if
e =

(n
2

)
− 1 we should remove either st , sv2 or v2v3 to find only three nonisomorphic graphs. Our intuition suggests

that st should never be removed, and the authors formally prove that the UMRG is Kn − {v2v3 }. The reader is recom-
mended to consult [11] for further details.

This research line was subsequently followed by Xie et al. [83] in a recently published work. Table 1 summarizes
the progress in the synthesis problem under edge failures in the two-terminal reliability setting.

(n, e)-graphs UMRGs
n ≥ 11 and 20 ≤ e ≤ 3n − 9 Nonexistence [11]
n ≥ 11 and 3n − 8 ≤ e ≤ 3n − 6 Unknown
n ≥ 6 and 3n − 6 < e ≤ (n

2

)
− 2 Nonexistence [83]

n ≥ 4 and e ≥ (n
2

)
− 1 Existence [11]

TABLE 1 Summary of UMRGs for two-terminal/edge failure model, as a function of n and e .
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5.2 | Two-Terminal Reliability Model under Node Failures
If there are no further restrictions, the two-terminal reliability model under node failures is trivial: just connect the
terminals with a perfect edge, and the reliability is the maximum. Observe that we assume that only the nonterminal
nodes fail, and the edges are perfect.

If we force the distance between the terminals to be d (s, t ) ≥ 2, the intuition is that wemust pick as many disjoint
2-paths as possible between s and t . In fact, observe that the graph Bn−2 = K2,n−2 with precisely n −2 disjoint 2-paths
between the terminal nodes has the best reliability, even when compared with an arbitrary simple graph G :

RBn−2 (ρ) = 1 − ρ
n−2 ≥ RG (ρ), (5)

where ρ denotes the node failure probability. The rationale behind this inequality is that Bn−2 works if and only if
at least some node works. Nothing better can be achieved unless edge st is included, but in this case, we would
have d (s, t ) = 1. Brown et al. [23] prove that the previous greedy construction (i.e., an iterative addition of disjoint
2-paths) defines UMRGs with the constraint that d (s, t ) ≥ 2. The key concept is a weak node: v is weak if it is
connected to precisely one terminal node z ∈ {s, t }, and it has at least some other neighbor x < N (z ) . If the edges
Ev = {vx : x < N (z ) } are correspondingly replaced by Ez = {zx : vx ∈ Ev }, the resultipng graph is more reliable [23].
This reliability-increasing transformation is an adequate variation of swing surgery, suitable for the two-terminal node
reliability model. Observe that Br = K2,r does not have weak nodes, and define UMRGs for d (s, t ) = 2.

A shocking result is that there are no UMRGs if we force d (s, t ) ≥ 3, at least when the number of edges e
is not sufficiently large. Under this model, the most reliable graphs must have the largest node connectivity in a
neighborhood of ρ = 0. By Menger’s theorem [39], the number of node-disjoint 3-paths between s and t must be
maximized. However, in a neighborhood of ρ = 1 nodes fail frequently, and the number of 3-paths (disjoint or not)
must be maximized instead. These extremal problems are clearly different, and the locally optimal graphs do not
coincide when e is small [23]:
Theorem 4 There exists UMRGs subject to d (s, t ) ≥ 3 if and only if:

• e ≤ 8;
• n = 7 and e = 12, or
• e ≥ b (n+1)

2

4 c.

The particular cases where e ≤ 8 or (n, e) = (7, 12) can be computationally studied (the reliability polynomial can
be obtained and compared). The authors of [23] consider Hn to be the two-terminal graph with n + 2 nodes, where
the terminal nodes are fully linked with the separate partitions of a bipartite complete graph K b n2 c,d n2 e . They show
that any graph containing Hn as a special subgraph is UMRG, sharing an identical reliability polynomial provided that
d (s, t ) ≥ 3.

Interestingly, they also conjectured that no UMRG exists if we force d (s, t ) = d ≥ 4, whenever n ≥ 2(d − 1) and
the size e satisfies the following relation:

2d ≤ e ≤ (d − 2)
⌊ n

d − 1

⌋2
+

⌊ n

d − 1

⌋
− 1. (6)

A proof strategy for this conjecture is suggested, where again, the locally optimal graphs for ρ close to 0, or 1, are
presumably disjoint. The interested reader can find full details in [23].
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5.3 | Uniformly Least Reliable Graphs (ULRGs)
An (n, e)-graph G is a ULRG if its reliability is uniformly the worst; formally, UG (ρ) ≥ UH (ρ) for all (n, e)-graphs H
and ρ ∈ [0, 1]. Since the all-terminal reliability evaluation is a #P -complete problem, ULRGs serve in practice to build
universal reliability bounds, together with UMRGs. If p denotes the operational probability of the individual edges,
the reliability polynomial can be expressed in its general form [19]:

RG (p) = t (G )pn−1 +
e−1∑
k=n

(−1)k−(n−1) fk (G )pk + (−1)e−n+1D (G )pe , (7)

where t (G ) is the tree number and D (G ) is the domination of graph G . Recall that the domination in reliability theory
is the magnitude of the difference between odd-formations and even-formations (and a formation is a set of mini-
mally operational subgraphs whose union equals the whole graph; the reader can find further details in [1]). As in the
case of UMRG, both invariants t (G ) and D (G ) must be minimal in a ULRG [19]. Even though the determination of
t -optimal graphs is still not well understood, Bogdanowicz [21] fully characterized all the graphs with the least tree
number in a strict sense. The key is, first, to observe that an iterative application of swing surgery in reverse determines
a partial order, and it is a reliability-decreasing graph transformation. The graph set that consists of minimal elements
(or invariant graphs under this operation) is precisely the threshold graphs [20, 67].

The exact determination of the graph domination D (G ) is #P -complete; see [6] for a proof and [19] for its combi-
natorial interpretation. Boesch et al. [18] proved that threshold graphs attain the minimum domination D (G ) , but this
minimization is also achieved by other graphs. Specifically, D (G ) is minimum if and only ifG is either a threshold graph
or it consists of m blocks, such that one block is Kn−m , the second is K3 and the other blocks are single edges. Petingi
et al. [55] studied ULRGs in an almost complete case when e > (n − 1) (n − 2)/2. The authors defined a balloon graph
as a complete graph Kn−1 with a single cone of degree k : 0 < k ≤ n . After a careful analysis of reverse swing surgery
in the complementary graphs, they concluded that balloon graphs are ULRGs. Furthermore, these graphs accept an
exact reliability evaluation, which provides universal reliability bounds [26].
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F IGURE 14 Generalized Balloon Graph Gn,e with n = 9 nodes, e = 12 edges and i = 12 − 9 + 1 = 4 edges addedto K1,8. These edges are (2, 3), (2, 4), (3, 4) and (2, 5) .
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A recent study presents a generalization of balloon graphsGn,e for all pairs of n and e [61]. These graphs are induc-

tively defined as the smallest set such that Gn,n−1 = K1,n−1, and Gn,e+1 adds an edge to Gn,e , maximizing the resulting
number of bridges. An example is depicted in Figure 14. The author proves that Gn,e is ULRG whenever e ≤ n + 3.
A key element is to observe that fk (G ) is invariant under bridge contractions. Then, bridges are removed, and the
blocks of the resulting graph are studied using the Whitney characterization theorem for biconnected graphs [81].

As the main conclusions, the candidates for ULRGs are fully characterized. This is in strong contrast with UMRGs.
These graphs, if they exist, are in general not unique. The existence is guaranteed thus far for sparse graphs with
reduced corank (e ≤ n + 3) or almost complete graphs (e ≥ (n − 1) (n − 2)/2). The main conjecture is that generalized
balloon graphs are ULRGs.

5.4 | Reliability in Multigraphs
A brief combinatorial argument shows that if we consider all the (n, e)-multigraphs with e = (n

2

) edges (parallel edges
are allowed), then the t -optimal graph is Kn , which is the unique simple graph belonging to this class [43]. In fact,
we should maximize the product of the positive eigenvalues λi of the Laplacian matrix, subject to the constraint
2e =

∑
i λi . This maximization is achieved when the nonnegative eigenvalues are identical, precisely in the complete

graph Kn . Two related questions arise from this fact:

1. Is t -optimality preserved in the extended family of multigraphs?
2. Is the uniformly optimal reliability preserved as well?

These questions open the door to decide the construction of multiple edges if profitable. It is an easy exercise to find
examples where the answer is negative under heterogeneous edge failures. However, the matter is nontrivial under
identical and independent edge failures. Gross and Saccoman [37] formally proved that the answer to both problems is
affirmative when e ≤ n +2 and conjectured that the subdivisions of K3,3 are UMRGs in multigraphs. Using a laddering
domination technique (showing that graphs with corank i are uniformly least reliable than some graphwith corank i +1
for all i ∈ {0, 1, 2, 3} in the extended class of multigraphs), a recent work confirms that the Gross-Saccoman conjecture
is true [60]. This laddering domination methodology a priori does not scale with the corank, and the answer is yet
unknown for all the remaining cases where e ≥ n + 4.

6 | CONCLUDING REMARKS
The study of the uniformly most reliable graphs (UMRGs) serves as a guide for network design and decision-making.
During recent decades, abundant conjectures have been proposed, but most of them are still unsolved. The level
of abstraction in the problems invites mathematicians and computer scientists to develop and/or combine algebraic
graph theory, combinatorics, probability and calculus, matroid theory, combinatorial optimization and algorithmic
complexity, among many other fields, simultaneously. The search for symmetry and beauty is intriguing, and the
existence, uniqueness and construction of UMRGs frequently appear to be the main mathematical questions.

Boesch, in his foundational article [15], claimed that UMRGs always exist, but infinite families of counterexamples
were provided by different authors. If a graph minimizes the number of edge-disconnecting sets, it is UMRG. The con-
verse is a major conjecture in this field. If affirmative, there exists an optimal network design from both probabilistic
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(reliability-oriented) or deterministic (connectivity-oriented) points of view. Finding the (n, e)-graphs with the great-
est tree number, or t -optimal graphs, is a challenging task, which is understood only for sparse or almost complete
graphs. The (n, e)-graphs with the greatest edge connectivity λ and smallest mλ are not structurally characterized,
and particular λ-optimal constructions consider Harary graphs and generalizations. The existence and construction of
UMRGs is still awaiting for the range where n ≥ 9 and n +4 ≤ e ≤ (n

2

)
−n . In the case of a sparse graph where e = n + i

for i ∈ {4, 5, 6, 7}, computational experiments suggest that UMRGs are special subdivisions of Wagner, Petersen, Yut-
sis and Heawood graphs. These conjectures are trends for future work. A commonmethod to address these problems
is to count the number of edge-disconnecting sets and adequately partition the class of (n, e)-graphs. On the other
hand, the study of almost complete graphs combines reliability-improving transformations such as swing surgery with
smart comparison techniques.

In the field of UMRGs under node failures, only a few cases have been covered thus far. In an analogy with the
edge reliability setting, UMRGs must be both 3-optimal and κ-optimal. For example, cycles are κ-optimal but not 3-
optimal, and UMRGs do not exist in this setting when e = n . By the inclusion-exclusion principle, triangle-free graphs
are preferred in terms of 3-optimality, and κ-optimal graphs must be regular whenever possible. Regular multipartite
graphs satisfy the previous conditions. In fact, all known UMRGs under node failures are bipartite or multipartite
graphs, and the existence of UMRGs is still awaiting further research.

Two-terminal reliability models were recently explored under either node or edge failures in separate articles.
When edge failures are considered, UMRGs do not exist when n ≥ 11 and 20 ≤ e ≤ 3n − 9 or when n ≥ 6 and
3n − 6 ≤ e ≤

(n
2

)
− 2. If we remove a single edge between nonterminal nodes in the complete graph Kn , a UMRG is

obtained. The range of (n, e)-pairs such that n ≥ 11 and 3n − 8 ≤ e ≤ 3n − 6 is still unknown, and it is an attractive
topic for future research, since it covers the full pairs (n, e) , except for small values of n , which accept an exhaustive
computational analysis. The two-terminal problem is trivial under imperfect nonterminal nodes and perfect edges:
just connect the terminals with a perfect edge, and the reliability is the maximum. The problem is interesting if we
force a minimum distance between the terminals. A greedy construction adding as many disjoint 2-paths as possible
is optimum if the distance is d = 2. Curiously enough, if d ≥ 3 UMRGs exist in the range of dense graphs only, or for
particular pairs; see Theorem 4. A challenging conjecture of nonexistence was given for d ≥ 4.

Universal reliability bounds are available if we can derive uniformly least reliable graphs (ULRGs). Balloon graphs
are almost complete ULRGs. It is conjectured that generalized balloon graphs are ULRGs. It is interesting to observe
that if ULRGs exist, they are fully characterized, in strong contrast with UMRGs. Partial answers were given, and we
know that generalized balloon graphs are ULRGwhen e ≤ n+3. Another attractive question from an operational point
of view is to consider the extended class of multigraphs, opening the door to interconnect sites with multiple parallel
links. Are UMRGs still optimum in this extended class? An affirmative answer was partially given when e ≤ n + 3.

ACKNOWLEDGMENTS
I want to express my deepest gratitude to the anonymous reviewers and to Dr. Christina Graves who communicated
a major mistake in a draft in a personal communication. Thanks to Dr. Eduardo Canale and Dr. Christina Graves, who
kindly provided me with several figures that were included with their permission. I also want to thank Dr. Douglas
Shier, who encouraged me to prepare a survey on this fascinating topic and suggested several corrections as well. This
work is partially supported by the CSIC I+D project entitled Teoría y Construcción de Redes de Máxima Confiabilidad.



20 Pablo Romero
References
[1] A. Agrawal and R.E. Barlow, A survey of network reliability and domination theory, Oper. Res. 32 (1984), 478–492.
[2] K. Archer, C. Graves, and D. Milan, Classes of uniformly most reliable graphs for all-terminal reliability, Discr. Appl. Math.

267 (2019), 12–29.
[3] Y. Ath andM. Sobel, Counterexamples to conjectures for uniformly optimally reliable networks, Prob. Eng. Informat. Sciences.

14 (2000), 173–177.
[4] Y. Ath and M. Sobel, Some conjectured uniformly optimal reliable networks, Prob. Eng. Informat. Sciences. 14 (2000),

375–383.
[5] M.O. Ball, Computational complexity of network reliability analysis: An overview, IEEE Trans. Reliab. 35 (1986), 230 –239.
[6] M.O. Ball and J.S. Provan, The complexity of counting cuts and of computing the probability that a graph is connected, SIAM

J. Comput. 12 (1983), 777–788.
[7] J. Barrera, H. Cancela, and E. Moreno, Topological optimization of reliable networks under dependent failures, Oper. Res.

Lett. 43 (2015), 132 – 136.
[8] D. Bauer, F. Boesch, C. Suffel, and R. Tindell, Combinatorial optimization problems in the analysis and design of probabilistic

networks, Networks 15 (1985), 257–271.
[9] D. Bauer, F. Boesch, C. Suffel, and R. Van Slyke, On the validity of a reduction of reliable network design to a graph extremal

problem, IEEE Trans. Circuits Syst. 34 (1987), 1579–1581.
[10] C. Berge, Théorie des graphes et ses applications, Collection universitaire de mathématiques, Paris, Dunod, 1958.
[11] H. Bertrand, O. Goff, C. Graves, and M. Sun, On uniformly most reliable two-terminal graphs, Networks 72 (2018), 200–

216.
[12] N. Biggs, Algebraic graph theory, Cambridge Mathematical Library, Cambridge University Press, 1993.
[13] F. Boesch, On the synthesis of optimally reliable networks having unreliable nodes but reliable edges, IEEE INFOCOM ’88.

Seventh Annual Joint Conference of the IEEE Computer and Communcations Societies. Networks: Evolution or Revolu-
tion?, 1988, pp. 829–834.

[14] F. Boesch, A. Satyanarayana, and C. Suffel, A survey of some network reliability analysis and synthesis results, Networks 54
(2009), 99–107.

[15] F.T. Boesch, On unreliability polynomials and graph connectivity in reliable network synthesis, J. Graph Theory 10 (1986),
339–352.

[16] F.T. Boesch and A. Felzer, On the invulnerability of the regular complete k-partite graphs, SIAM J. Appl. Math. 20 (1971),
176–182.

[17] F.T. Boesch, X. Li, and C. Suffel, On the existence of uniformly optimally reliable networks, Networks 21 (1991), 181–194.
[18] F.T. Boesch, A. Satyanarayana, and C.L. Suffel, Least reliable networks and the reliability domination, IEEE Trans. Commun.

38 (1990), 2004–2009.
[19] F.T. Boesch, A. Satyanarayana, and C.L. Suffel, Some alternate characterizations of reliability domination, Prob. Eng. Infor-

mat. Sci. 4 (1990), 257–276.
[20] Z.R. Bogdanowicz, Undirected simple connected graphs with minimum number of spanning trees, Discr. Math. 309 (2009),

3074–3082.



Pablo Romero 21
[21] Z.R. Bogdanowicz, On family of graphs with minimum number of spanning trees, Graphs Comb. 29 (2013), 1647–1652.
[22] M. Bourel, E. Canale, F. Robledo, P. Romero, and L. Stábile, Building highly reliable networks with GRASP/VND heuristics,

2019 15th International Conference on the Design of Reliable Communication Networks (DRCN), 2019, pp. 91–98.
[23] I. Brown, C. Graves, B. Miller, and T. Russell, Most reliable two-terminal graphs with node failures, Networks 76 (2020),

414–426.
[24] J. Brown and C. DeGagné, On the reliability roots of simplicial complexes and matroids, Discr. Math. 342 (2019), 2356–

2370.
[25] J.I. Brown, C.J. Colbourn, D. Cox, C. Graves, and L. Mol, Network reliability: Heading out on the highway, Networks 77

(2021), 146–160.
[26] J.I. Brown, C.J. Colbourn, and J.S. Devitt, Network transformations and bounding network reliability, Networks 23 (1993),

1–17.
[27] J.I. Brown and D. Cox, Nonexistence of optimal graphs for all terminal reliability, Networks 63 (2014), 146–153.
[28] E. Canale, G. Rela, F. Robledo, and P. Romero, The complete bipartite graphK4,4 is uniformlymost-reliable, Submitted (2021).
[29] E.A. Canale, F. Robledo, P. Romero, and J. Viera, Building reliability-improving network transformations, Proceedings of the

15th International Conference on the Design of Reliable Communication Networks, IEEE, 2019, pp. 107–113.
[30] C.S. Cheng, Maximizing the total number of spanning trees in a graph: Two related problems in graph theory and optimum

design theory, J. Combinatorial Theory, Ser. B 31 (1981), 240–248.
[31] C.J. Colbourn, The combinatorics of network reliability, Oxford University Press, Inc., USA, 1987.
[32] S.A. Cook, The complexity of theorem-proving procedures, Proceedings of the Third Annual ACM Symposium on Theory

of Computing, Association for Computing Machinery, New York, NY, USA, 1971, STOC ’71 pp. 151–158.
[33] H. Deng, J. Chen, Q. Li, R. Li, and Q. Gao, On the construction of most reliable networks, Discr. Appl. Math. 140 (2004),

19–33.
[34] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W. H. Freeman and

Company, USA, 1990.
[35] B. Gilbert and W. Myrvold,Maximizing spanning trees in almost complete graphs, Networks 30 (1997), 97–104.
[36] O. Goldschmidt, P. Jaillet, and R. Lasota, On reliability of graphs with node failures, Networks 24 (1994), 251–259.
[37] D. Gross and J.T. Saccoman, Uniformly optimally reliable graphs, Networks 31 (1998), 217–225.
[38] F. Harary, The maximum connectivity of a graph, Proc. National Acad. Sci. 48 (1962), 1142–1146.
[39] F. Harary, Graph theory, Addison-Wesley, 1991.
[40] A. Hellwig and L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs: A survey, Discr. Math.

308 (2008), 3265–3296.
[41] R.M. Karp, Reducibility among combinatorial problems, Complexity of computer communications, R. E. Miller et al. (eds.),

1972, pp. 85–103.
[42] A. Kelmans, On graphs with randomly deleted edges, Acta Mathematica Hungarica 37 (1981), 77 – 88.
[43] A. Kelmans and V. Chelnokov, A certain polynomial of a graph and graphs with an extremal number of trees, J. Combinatorial

Theory, Ser. B 16 (1974), 197–214.



22 Pablo Romero
[44] G. Kirchhoff, Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer

ströme geführt wird, Annalen der Physik 148 (1847), 497–508.
[45] S. Liu, K.H. Cheng, and X. Liu, Network reliability with node failures, Networks 35 (2000), 109–117.
[46] P. Llagostera, N. López, and C. Comas, Network reliability in hamiltonian graphs, Discr. Optim. 41 (2021), 100645.
[47] O. Matus, J. Barrera, E. Moreno, and G. Rubino,On theMarshall–Olkin copula model for network reliability under dependent

failures, IEEE Trans. Reliab. 68 (2019), 451–461.
[48] E. Moore and C. Shannon, Reliable circuits using less reliable relays, J. Franklin I. 262 (1956), 191–208.
[49] F. Moskowitz, The analysis of redundancy networks, Trans. Am. Inst. Electrical Engineers, Part I: Commun. Electronics 77

(1958), 627–632.
[50] W.Myrvold, Uniformly-most reliable graphs do not always exist, Tech. report, Department of Computer Science, University

of Victoria, Victoria, B.C., Canada, 1990, Technical Report #DCS-120-IR.
[51] W. Myrvold, Reliable network synthesis: Some recent developments, Proceedings of the 8th International Conference on

Graph Theory, Combinatorics, Algorithms, and Applications, Volume II, 1996, pp. 650–660.
[52] W. Myrvold, K.H. Cheung, L.B. Page, and J.E. Perry, Uniformly-most reliable networks do not always exist, Networks 21

(1991), 417–419.
[53] L. Petingi, F. Boesch, and C. Suffel, On the characterization of graphs with maximum number of spanning trees, Discr. Math.

179 (1998), 155–166.
[54] L. Petingi and J. Rodriguez, A new technique for the characterization of graphs with a maximum number of spanning trees,

Discr. Math. 244 (2002), 351 – 373.
[55] L. Petingi, J.T. Saccoman, and L. Schoppmann, Uniformly least reliable graphs, Networks 27 (1996), 125–131.
[56] J. Pulsipher and V. Zavala, Measuring and optimizing system reliability: A stochastic programming approach, TOP (2020), 1

– 20.
[57] S. Rai, M. Veeraraghavan, and K.S. Trivedi, A survey of efficient reliability computation using disjoint products approach,

Networks 25 (1995), 147–163.
[58] G. Rela, F. Robledo, and P. Romero, Petersen graph is uniformly most-reliable, Machine Learning, Optimization, and Big

Data, G. Nicosia et al. (eds.), Springer International Publishing, Cham, 2018, pp. 426–435.
[59] P. Romero, Building uniformly most-reliable networks by iterative augmentation, International Workshop on Resilient Net-

works Design and Modeling, Alghero, Sardinia, Italy, 2017.
[60] P. Romero, The Gross–Saccoman conjecture is true, Networks 78 (2021), 164–173.
[61] P. Romero, Universal reliability bounds for sparse networks, IEEE Trans. Reliab. (to appear) (2021), 1–11.
[62] K.H. Rosen, Handbook of discrete and combinatorial mathematics, Chapman & Hall/CRC, 2nd edition 2010.
[63] A. Rosenthal, Computing the reliability of complex networks, SIAM J. Appl. Math. 32 (1977), 384–393.
[64] G. Rubino and B. Tuffin, Rare event simulation using Monte Carlo methods, Wiley, 2009.
[65] J. Saccoman, D. Gross, and C. Suffel, Spanning tree results for graphs and multigraphs: A matrix-theoretic approach, World

Scientific Publishing Company, 2014.
[66] A. Satyanarayana and M.K. Chang, Network reliability and the factoring theorem, Networks 13 (1983), 107–120.



Pablo Romero 23
[67] A. Satyanarayana, L. Schoppmann, and C.L. Suffel, A reliability-improving graph transformation with applications to network

reliability, Networks 22 (1992), 209–216.
[68] A. Satyanarayana and R.K. Wood, A linear-time algorithm for computing k-terminal reliability in series-parallel networks,

SIAM J. Comput. 14 (1985), 818–832.
[69] C.E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 623–656.
[70] D. Shier, Maximizing the number of spanning trees in a graph with n nodes and m edges, J. Res. National Bureau Standards

Sect. B 78B (1974), 193–196.
[71] D.H. Smith and L.L. Doty, On the construction of optimally reliable graphs, Networks 20 (1990), 723–729.
[72] C. Stivaros, On the residual node connectedness network reliability model, Ph.D. thesis, Stevens Institute of Technology,

1990.
[73] K. Sutner, A. Satyanarayana, and C. Suffel, The complexity of the residual node connectedness reliability problem, SIAM J.

Comput. 20 (1991), 149–155.
[74] S. Tseng and L.R. Wang, Maximizing the number of spanning trees of networks based on cycle basis representation, Int. J.

Comput. Math. 28 (1989), 47–56.
[75] L.G. Valiant, The complexity of computing the permanent, Theor. Comput. Sci. 8 (1979), 189–201.
[76] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. 8 (1979), 410–421.
[77] R. Van Slyke and H. Frank, Network reliability analysis: Part I, Networks 1 (1971), 279–290.
[78] G. Wang, A proof of Boesch’s conjecture, Networks 24 (1994), 277–284.
[79] G. Wang and L. Zhang, The structure of max λ-minmλ+1 graphs used in the design of reliable networks, Networks 30 (1997),

231–242.
[80] J. Wang and M. Wu, Network reliability analysis: On maximizing the number of spanning trees, Proceeding National Sci.

Council, Republic China, Part A, Physical Sci. Eng. 11 (1987), 238–244.
[81] H. Whitney, Non-separable and planar graphs, Proc. National Acad. Sciences. 17 (1931), 125–127.
[82] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math. 54 (1932), 150–168.
[83] S. Xie, H. Zhao, and J. Yin, Nonexistence of uniformly most reliable two-terminal graphs, Theor. Comput. Sci. 892 (2021),

279–288.
[84] S. Yu, F.M. Shao, and H. Meng, Uniformly optimal graphs in some classes of graphs with node failures, Discr. Math. 310

(2010), 159–166.


