Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)es
dc.contributor.authorChatterjee, Parages
dc.contributor.authorCymberknop, Leandroes
dc.contributor.authorArmentano, Ricardoes
dc.date.accessioned2021-05-12T23:43:10Z-
dc.date.available2021-05-12T23:43:10Z-
dc.date.issued2019-09-03-
dc.identifier.isbn978-1-78985-472-5-
dc.identifier.isbn978-1-83880-308-7-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/285-
dc.description.abstractHealthcare is one of the key fields that works quite strongly with advanced analytical techniques for prediction of diseases and risks. Data being the most important asset in recent times, a huge amount of health data is being collected, thanks to the recent advancements of IoT, smart healthcare, etc. But the focal objective lies in making sense of that data and to obtain knowledge, using intelligent analytics. Nonlinear systems find use specifically in this field, working closely with health data. Using advanced methods of machine learning and computational intelligence, nonlinear analysis performs a key role in analyzing the enormous amount of data, aimed at finding important patterns and predicting diseases. Especially in the field of smart healthcare, this chapter explores some aspects of nonlinear systems in predictive analytics, providing a holistic view of the field as well as some examples to illustrate such intelligent systems toward disease prediction.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovación (ANII), Uruguayes
dc.description.sponsorshipUniversidad Tecnológica Nacional, Buenos Aires, Argentinaes
dc.description.sponsorshipUniversidad de la República, Uruguayes
dc.language.isoenges
dc.publisherIntechOpenes
dc.rightsAcceso abiertoes
dc.sourceNonlinear Systems — Theoretical Aspects and Recent Applicationses
dc.subjectnonlinear systemses
dc.subjecthealthcarees
dc.subjectartificial intelligencees
dc.subjectcomputational intelligencees
dc.subjectmachine learninges
dc.subjectpredictive analyticses
dc.subjectchronic diseasees
dc.subjectcanceres
dc.subjectcardiometabolic diseasees
dc.subjectParkinson’s diseasees
dc.titleNonlinear Systems in Healthcare towards Intelligent Disease Predictiones
dc.typeParte de libroes
dc.subject.aniiCiencias Médicas y de la Saludes
dc.subject.aniiCiencias Naturales y Exactases
dc.subject.aniiCiencias de la Computación e Informaciónes
dc.subject.aniiIngeniería y Tecnologíaes
dc.identifier.aniiFSDA_1_2017_1_143653es
dc.type.versionPublicadoes
dc.identifier.doi10.5772/intechopen.88163-
dc.anii.institucionresponsableUniversidad Tecnológica Nacional, Buenos Aires, Argentinaes
dc.identifier.urlhttps://www.intechopen.com/books/nonlinear-systems-theoretical-aspects-and-recent-applications/nonlinear-systems-in-healthcare-towards-intelligent-disease-prediction-
dc.anii.subjectcompleto/ / Ciencias Médicas y de la Saludes
dc.anii.subjectcompleto/ / Ciencias Naturales y Exactas / Ciencias de la Computación e Informaciónes
dc.anii.subjectcompleto/ / Ingeniería y Tecnologíaes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
IntechOpen Full Chapter.pdfDescargar Full Chapter530.76 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)