Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)es
dc.contributor.authorChatterjee, Parages
dc.contributor.authorNoceti, Ofeliaes
dc.contributor.authorMenéndez, Josemaríaes
dc.contributor.authorGerona, Solangees
dc.contributor.authorToribio, Melinaes
dc.contributor.authorCymberknop, Leandroes
dc.contributor.authorArmentano, Ricardoes
dc.date.accessioned2021-05-18T11:56:16Z-
dc.date.available2021-05-18T11:56:16Z-
dc.date.issued2020-
dc.identifier.isbn978-0-12-819314-3-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/287-
dc.description.abstractHealthcare paradigms have always focused into the domain of early prediction of diseases. Especially in field of chronic diseases, the spotlight is always on the aspect of early detection and prevention by controlling the key risk factors in a comprehensive and integrated manner. In this endeavor the colossal power of health data comes into consideration; clubbed with the advanced techniques of computational intelligence to harvest the health data in the best possible way, the aim lies at the prediction of risks or deciphering interesting patterns and early signs of the diseases hidden in the health data. The output obtained from the intelligent analysis of the health data provides seminal insights to the design of more efficient treatment strategies. This work highlights some aspects of artificial intelligence in healthcare, illustrating through a case study of liver transplantation program, where the patient cohort could be interestingly separated into contrasting groups in a pretransplant scenario using machine learning, evincing a relationship with their respective posttransplant risks. In addition to relating the risk groups before liver transplantation with cardiometabolic risks through vascular age, this study accentuates the foundation of Clinical Decision Support System in transplantations, an assistive tool for the medical personnel to computationally analyze and visualize the comprehensive health situation of patients from the perspective of risks.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovación (ANII), Uruguayes
dc.description.sponsorshipUniversidad Tecnológica Nacional, Buenos Aires, Argentinaes
dc.description.sponsorshipUniversidad de la República, Uruguayes
dc.language.isoenges
dc.publisherAcademic Presses
dc.rightsAcceso abiertoes
dc.sourceData Analytics in Biomedical Engineering and Healthcarees
dc.subjectArtificial intelligencees
dc.subjectMachine learninges
dc.subjecteHealthes
dc.subjectData analyticses
dc.subjectPredictive analyticses
dc.subjectTransplantationes
dc.subjectLiveres
dc.subjectCardiometabolices
dc.subjectVascular agees
dc.titleMachine learning in healthcare toward early risk prediction: A case study of liver transplantationes
dc.typeParte de libroes
dc.subject.aniiCiencias Médicas y de la Saludes
dc.subject.aniiCiencias Naturales y Exactases
dc.subject.aniiCiencias de la Computación e Informaciónes
dc.subject.aniiIngeniería y Tecnologíaes
dc.identifier.aniiFSDA_1_2017_1_143653es
dc.type.versionPublicadoes
dc.identifier.doi10.1016/B978-0-12-819314-3.00004-5-
dc.anii.institucionresponsableUniversidad de la República, Uruguayes
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/B9780128193143000045-
dc.anii.subjectcompleto/ / Ciencias Médicas y de la Saludes
dc.anii.subjectcompleto/ / Ciencias Naturales y Exactas / Ciencias de la Computación e Informaciónes
dc.anii.subjectcompleto/ / Ingeniería y Tecnologíaes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
Book Chapter.pdfDescargar Chapter 4. Data Analytics in Biomedical Engineering and Healthcare. Elsevier3.53 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)