Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) | es |
dc.contributor.author | Chatterjee, Parag | es |
dc.contributor.author | Noceti, Ofelia | es |
dc.contributor.author | Menéndez, Josemaría | es |
dc.contributor.author | Gerona, Solange | es |
dc.contributor.author | Harguindeguy, Natalia | es |
dc.contributor.author | Toribio, Melina | es |
dc.contributor.author | Cymberknop, Leandro J. | es |
dc.contributor.author | Armentano, Ricardo L. | es |
dc.date.accessioned | 2021-05-31T13:59:52Z | - |
dc.date.available | 2021-05-31T13:59:52Z | - |
dc.date.issued | 2020-01-30 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12381/290 | - |
dc.description.abstract | Recent years have seen a phenomenal change in healthcare paradigms and data analytics clubbed with computational intelligence has been a key player in this field. One of the main objectives of incorporating computational intelligence in healthcare analytics is to obtain better insights about the patients and proffer more efficient treatment. This work is based on liver transplant patients under the National Liver Transplant Program of Uruguay, considering in detail the health parameters of the patients. Applying computational intelligence helped to separate the cohort into clusters, thereby facilitating the efficient risk-group analysis of the patients assessed under the liver transplantation program with respect to their corresponding health parameters, in a predictive pre-transplant perspective. Also, this marks the foundation of Clinical Decision Support Systems in liver transplantation, which act as an assistive tool for the medical personnel in getting a deeper insight to patient health data and thanks to the holistic visualization of the healthcare scenario, also help in choosing a more efficient and personalized treatment strategy. | es |
dc.description.sponsorship | Agencia Nacional de Investigación e Innovación (ANII), Uruguay | es |
dc.description.sponsorship | Universidad Tecnológica Nacional, Buenos Aires, Argentina | es |
dc.description.sponsorship | Universidad de la República, Uruguay | es |
dc.description.sponsorship | Dirección Nacional de Sanidad de la Fuerzas Armadas, Montevideo, Uruguay | es |
dc.language.iso | eng | es |
dc.publisher | IEEE | es |
dc.rights | Acceso abierto | es |
dc.source | 2019 IEEE 9th International Conference on Advanced Computing (IACC) | es |
dc.source | IEEE Xplore | es |
dc.subject | Healthcare | es |
dc.subject | predictive analytics | es |
dc.subject | decision support system | es |
dc.subject | liver transplant | es |
dc.subject | data analytics | es |
dc.subject | prediction | es |
dc.subject | risk | es |
dc.title | Predictive Risk Analysis for Liver Transplant Patients — eHealth Model Under National Liver Transplant Program, Uruguay | es |
dc.type | Artículo | es |
dc.subject.anii | Ciencias Médicas y de la Salud | es |
dc.subject.anii | Ciencias Naturales y Exactas | es |
dc.subject.anii | Ciencias de la Computación e Información | es |
dc.subject.anii | Ingeniería y Tecnología | es |
dc.identifier.anii | FSDA_1_2017_1_143653 | es |
dc.type.version | Publicado | es |
dc.identifier.doi | 10.1109/IACC48062.2019.8971514 | - |
dc.anii.institucionresponsable | Universidad de la República, Uruguay | es |
dc.identifier.url | https://ieeexplore.ieee.org/document/8971514 | - |
dc.anii.subjectcompleto | / / Ciencias Médicas y de la Salud | es |
dc.anii.subjectcompleto | / / Ciencias Naturales y Exactas / Ciencias de la Computación e Información | es |
dc.anii.subjectcompleto | / / Ingeniería y Tecnología | es |
Aparece en las colecciones: | Publicaciones de ANII |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
Full Paper (Author's Accepted Version).pdf | Descargar | Final Accepted Version | 816.31 kB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)