Título : Learning for Optimization with Virtual Savant
Autor(es) : Massobrio, Renzo
Fecha de publicación : 25-may-2021
Tipo de publicación: Tesis de doctorado
Versión: Publicado
Supervisor(es) : Dorronsoro, Bernabé
Nesmachnow, Sergio
Publicado por: Universidad de Cádiz
Areas del conocimiento : Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ciencias de la Computación
Otros descriptores : virtual savant
machine learning
parallel computing
optimization
next release problem
heterogeneous computing scheduling problem
bus synchronization problem
Resumen : Optimization problems arising in multiple fields of study demand efficient algorithms that can exploit modern parallel computing platforms. The remarkable development of machine learning offers an opportunity to incorporate learning into optimization algorithms to efficiently solve large and complex problems. This thesis explores Virtual Savant, a paradigm that combines machine learning and parallel computing to solve optimization problems. Virtual Savant is inspired in the Savant Syndrome, a mental condition where patients excel at a specific ability far above the average. In analogy to the Savant Syndrome, Virtual Savant extracts patterns from previously-solved instances to learn how to solve a given optimization problem in a massively-parallel fashion. In this thesis, Virtual Savant is applied to three optimization problems related to software engineering, task scheduling, and public transportation. The efficacy of Virtual Savant is evaluated in different computing platforms and the experimental results are compared against exact and approximate solutions for both synthetic and realistic instances of the studied problems. Results show that Virtual Savant can find accurate solutions, effectively scale in the problem dimension, and take advantage of the availability of multiple computing resources.
URI / Handle: https://hdl.handle.net/20.500.12381/291
Financiadores: Fundación Carolina
Agencia Nacional de Investigación e Innovación
Universidad de Cádiz
Universidad de la República
Identificador ANII: POS_EXT_2015_1_123083
Nivel de Acceso: Acceso abierto
Licencia CC: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
phd-thesis.pdfDescargar Tesis de doctorado - Renzo Massobrio6.52 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)