Título : Informe final del proyecto: Detección de anomalías en sistemas de telecomunicaciones mediante métodos de aprendizaje continuo
Autor(es) : Gómez Sena, Gabriel Pablo
Martinez Tagliafico, Sergio Andres
García González, Gastón Darío
Fernandez Pardo, Alicia
Fecha de publicación : 4-nov-2022
Tipo de publicación: Reporte técnico
Versión: Aceptado
Publicado por: Agencia Nacional de Investigación e Innovación
Areas del conocimiento : Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
Telecomunicaciones
Otros descriptores : Detección de anomalias
Aprendizaje continuo
Big data telecomunicaciones
Resumen : La detección de anomalías se aplica a múltiples contextos y es particularmente relevante en las redes de telecomunicaciones. Los sistemas usuales de monitoreo permiten detectar fallas en los equipos o enlaces, pero es menos común disponer de capacidad para detectar la degradación de la performance de un servicio o posibles intentos de ataque o fraude. El crecimiento y la complejidad de los servicios de telecomunicaciones actuales, requiere el análisis de múltiples fuentes de información. El tráfico de las interfaces de un enrutador, la cantidad de mensajes cursados por un equipo, la cantidad de llamadas, son ejemplos de variables relevantes a analizar. Actualmente existen plataformas que permiten almacenar y analizar grandes volúmenes de datos (Big Data) que representan una oportunidad para incorporar analítica de detección de anomalías sobre grandes volúmenes de información. Los datos de monitoreo de red generalmente consisten en cientos de contadores recopilados periódicamente en forma de series de tiempo, lo que resulta en un proceso multivariable (MTS) complejo de analizar. Los métodos tradicionales de detección de anomalías de series de tiempo tienen como objetivo el análisis de series de tiempo univariado, lo que hace que el análisis multivariante sea engorroso y prohibitivamente complejo cuando se trata de datos MTS. En el proyecto se propuso un enfoque novedoso para la detección de anomalías en datos MTS, que aprovecha las redes neuronales convolucionales (CNN) y los variational autoencoders (VAEs). Lo que permite detectar anomalías en los datos de MTS a través de un solo modelo, explotando la información temporal sin sacrificar recursos computacionales y de memoria. En particular, en lugar de utilizar redes neuronales recursivas, grandes filtros causales o muchas capas, el algoritmo propuesto se basa en convoluciones dilatadas (DC) para capturar fenómenos a largo y corto plazo en los datos, evitando arquitecturas profundas complejas y menos eficientes, simplificando así el aprendizaje. Se evaluó la detección de anomalías en el conjunto de datos TELCO, un conjunto de datos de monitoreo de red multidimensional a gran escala recopilado en Telefónica Uruguay, donde los eventos anómalos se detectaron manualmente. etiquetados por expertos durante un lapso de tiempo de siete meses, con una granularidad de cinco minutos. Usando este conjunto de datos, comparamos el desempeño con un amplio conjunto de detectores de anomalías de series temporales tradicionales provenientes de los dominios de procesamiento de señales y aprendizaje automático. Se evaluó también la capacidad de detección de cambios en el punto de operación y detección de "concept drift". En aras de la reproducibilidad y como contribución adicional, se pondrá a disposición de la comunidad el conjunto de datos TELCO, con la autorización de Telefónica y se publicara en forma abierta el código de los algoritmos implementados.
URI / Handle: https://hdl.handle.net/20.500.12381/3135
Recursos resultantes del proyecto: https://hdl.handle.net/20.500.12008/25926
https://hdl.handle.net/20.500.12008/25470
https://hdl.handle.net/20.500.12008/25478
https://hdl.handle.net/20.500.12008/31392
https://hdl.handle.net/20.500.12008/34255
https://hdl.handle.net/20.500.12008/25395
Institución responsable del proyecto: Universidad de la República. Facultad de Ingeniería
Financiadores: Agencia Nacional de Investigación e Innovación
Identificador ANII: FMV_1_2019_1_155850
Nivel de Acceso: Acceso abierto
Licencia CC: Reconocimiento 4.0 Internacional. (CC BY)
Aparece en las colecciones: Informes finales publicables de I+D

Archivos en este ítem:
archivo  Tamaño Formato
Informe_final_publicable_FMV_1_2019_1_155850.pdfDescargar 119.54 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento 4.0 Internacional. (CC BY)